TWI578655B - Voltage balancing control system and method thereof - Google Patents

Voltage balancing control system and method thereof Download PDF

Info

Publication number
TWI578655B
TWI578655B TW105104102A TW105104102A TWI578655B TW I578655 B TWI578655 B TW I578655B TW 105104102 A TW105104102 A TW 105104102A TW 105104102 A TW105104102 A TW 105104102A TW I578655 B TWI578655 B TW I578655B
Authority
TW
Taiwan
Prior art keywords
voltage
balance control
zero sequence
command
expressed
Prior art date
Application number
TW105104102A
Other languages
Chinese (zh)
Other versions
TW201729482A (en
Inventor
鄭博泰
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW105104102A priority Critical patent/TWI578655B/en
Application granted granted Critical
Publication of TWI578655B publication Critical patent/TWI578655B/en
Publication of TW201729482A publication Critical patent/TW201729482A/en

Links

Landscapes

  • Inverter Devices (AREA)

Description

電壓平衡控制系統及其方法 Voltage balance control system and method thereof

本發明是關於一種電壓平衡控制系統及其方法,特別是關於一種利用特殊之零序電壓注入方式以減少輸出電流之失真的電壓平衡控制系統及其控制方法。 The present invention relates to a voltage balance control system and method thereof, and more particularly to a voltage balance control system and a control method thereof that utilize a special zero-sequence voltage injection method to reduce distortion of an output current.

一般三階中性點箝位轉換器常被用來做為高功率應用,例如馬達驅動之轉換器。若與二階轉換器相比,三階中性點箝位轉換器之開關元件跨壓,在相同的直流鏈電壓下只有二階轉換器的一半。此外,三階中性點箝位轉換器可輸出三個等級的相電壓與五個等級的線對線電壓,因此能夠有效降低輸出電壓與電流的諧波成份。 Generally, third-order neutral point clamp converters are often used as high-power applications, such as motor-driven converters. If compared with a second-order converter, the switching element of the third-order neutral-point clamp converter crosses the voltage, and is only half of the second-order converter under the same DC link voltage. In addition, the third-order neutral point clamp converter can output three levels of phase voltage and five levels of line-to-line voltage, thus effectively reducing the harmonic components of the output voltage and current.

三階中性點箝位轉換器的操作效能與其脈寬調變的方式有很大的關係。在常見的脈寬調變技術有兩大分類:弦波-三角波調變法以及空間向量調變法。而中性點電位的浮動問題是三階中性點箝位轉換器的重要議題之一。習知的中性點箝位轉換器之電壓平衡控制方法係利用在一些不平衡的負載或是非常態的切換方式,此種電壓平衡控制方法容易使中性點電壓持續變動或是漂移到不受控 制的準位,進而導致輸出性能的降低,甚至引起開關元件過壓而損壞。由此可知,目前此領域缺乏一種可以均勻地控制電容之充放電而且能減少輸出電流之失真的電壓平衡控制系統及其控制方法,故相關技術者均在尋求其解決之道。 The operational performance of the third-order neutral point clamp converter has a great relationship with the way of pulse width modulation. There are two major classifications in the common pulse width modulation technique: sine wave-triangle wave modulation method and space vector modulation method. The floating problem of the neutral point potential is one of the important topics of the third-order neutral point clamp converter. The voltage balance control method of the conventional neutral point clamp converter utilizes some unbalanced load or abnormal switching mode, and the voltage balance control method easily makes the neutral point voltage continuously change or drifts to be unaffected. control The level of the system, which in turn leads to a decrease in output performance, and even causes damage to the switching element due to overvoltage. It can be seen that there is a lack of a voltage balance control system and a control method thereof for uniformly controlling the charge and discharge of the capacitor and reducing the distortion of the output current, and the related art is seeking a solution.

因此,本發明提供一種電壓平衡控制系統及其方法,其利用零序電壓之注入結合充電能量差值之控制,可穩定且精準地調整中性點箝位轉換器中電容的電壓至直流電壓的一半,換句話說,可將中性點電壓精確地調整到一半的直流電壓。再者,在調整中性點箝位轉換器之電容的電壓過程中,其補償時間會跟著充電能量差值的變化而對應調整,此充電能量差值可自由預設。另外,透過本發明之電壓平衡控制系統及其方法可以減少輸出電流的諧波失真,亦即產生較好的電流品質。此外,本發明之電壓平衡控制系統及其方法適用於固定充放電或線性充放電的控制方式,相較於傳統的最大零序電壓注入方式,本發明有較好的總諧波失真(Total Harmonic Distortion,THD)。 Therefore, the present invention provides a voltage balance control system and method thereof, which utilizes zero-sequence voltage injection combined with charge energy difference control to stably and accurately adjust the voltage of a capacitor in a neutral-point clamp converter to a DC voltage. Half, in other words, the neutral point voltage can be accurately adjusted to half the DC voltage. Furthermore, in adjusting the voltage of the capacitor of the neutral point clamp converter, the compensation time is adjusted correspondingly to the change of the charging energy difference, and the charging energy difference can be freely preset. In addition, the voltage balance control system and the method thereof of the present invention can reduce harmonic distortion of the output current, that is, generate better current quality. In addition, the voltage balance control system and method thereof of the present invention are applicable to a fixed charge/discharge or linear charge and discharge control mode, and the present invention has better total harmonic distortion than the conventional maximum zero sequence voltage injection mode (Total Harmonic). Distortion, THD).

依據本發明一態樣提供一種電壓平衡控制系統,其用以控制平衡一中性點箝位轉換器之複數個電壓命令。此電壓平衡控制系統包含一電壓命令比較模組、一多餘向量平衡模組以及一電容電壓平衡控制模組。其中電壓命令比較模組接收複數個電壓命令並位移部分電壓命令之 電壓準位,然後比較電壓命令的大小而得到最大電壓命令與最小電壓命令。此電壓命令比較模組會輸出最大電壓命令與最小電壓命令。此外,多餘向量平衡模組電性連接電壓指令比較模組,多餘向量平衡模組接收並運算最大電壓命令與最小電壓命令以產生一平衡零序電壓。再者,電容電壓平衡控制模組電性連接電壓命令比較模組,此電容電壓平衡控制模組接收並運算來自中性點箝位轉換器之一指示電流、一第一直流電壓及一第二直流電壓以產生一零序電壓。而上述平衡零序電壓與零序電壓會同時注入中性點箝位轉換器之各電壓命令。 In accordance with one aspect of the present invention, a voltage balance control system is provided for controlling a plurality of voltage commands that balance a neutral point clamp converter. The voltage balance control system comprises a voltage command comparison module, a redundant vector balance module and a capacitor voltage balance control module. The voltage command comparison module receives a plurality of voltage commands and shifts part of the voltage commands. The voltage level is then compared to the magnitude of the voltage command to obtain the maximum voltage command and the minimum voltage command. This voltage command comparison module outputs the maximum voltage command and the minimum voltage command. In addition, the redundant vector balance module is electrically connected to the voltage command comparison module, and the redundant vector balance module receives and calculates the maximum voltage command and the minimum voltage command to generate a balanced zero sequence voltage. Furthermore, the capacitor voltage balance control module is electrically connected to the voltage command comparison module, and the capacitor voltage balance control module receives and calculates an indication current from the neutral point clamp converter, a first DC voltage, and a second The DC voltage is used to generate a zero sequence voltage. The balanced zero-sequence voltage and the zero-sequence voltage are simultaneously injected into the voltage commands of the neutral point clamp converter.

藉此,本發明之電壓平衡控制系統利用零序電壓之注入結合充電能量差值之控制,可穩定且精準地調整中性點箝位轉換器中電容之電壓至直流電壓的一半。此外,透過本發明之電壓平衡控制系統可以減少輸出電流的失真,亦即產生較好的電流品質。另外,本發明之電壓平衡控制系統適用於固定充放電或線性充放電的控制方式,相較於傳統的最大零序電壓注入方式,本發明有較好的總諧波失真。 Thereby, the voltage balance control system of the present invention utilizes the zero sequence voltage injection combined with the control of the charging energy difference, and can stably and accurately adjust the voltage of the capacitor in the neutral point clamp converter to half of the DC voltage. In addition, the voltage balance control system of the present invention can reduce the distortion of the output current, that is, generate better current quality. In addition, the voltage balance control system of the present invention is suitable for a fixed charge/discharge or linear charge and discharge control mode, and the present invention has better total harmonic distortion than the conventional maximum zero sequence voltage injection mode.

根據本發明一實施例,其中前述多餘向量平衡模組可具有一多餘電壓平衡運算函數,此多餘電壓平衡運算函數包含平衡零序電壓、總直流電壓、最大電壓命令以及最小電壓命令。總直流電壓等於第一直流電壓加上第二直流電壓。平衡零序電壓表示為V 0,bal,總直流電壓表示 為V dc ,最大電壓命令表示為V max ,最小電壓命令表示為V min 。多餘電壓平衡運算函數符合下式: According to an embodiment of the invention, the redundant vector balancing module may have an excess voltage balancing operation function including a balanced zero sequence voltage, a total DC voltage, a maximum voltage command, and a minimum voltage command. The total DC voltage is equal to the first DC voltage plus the second DC voltage. The balanced zero sequence voltage is expressed as V 0,bal , the total DC voltage is expressed as V dc , the maximum voltage command is expressed as V max , and the minimum voltage command is expressed as V min . The excess voltage balance operation function conforms to the following formula:

根據本發明一實施例,其中前述電容電壓平衡控制模組具有一電容電壓平衡控制運算函數,此電容電壓平衡控制運算函數包含零序電壓、空間向量區域參數、充電能量差值、總直流電壓、指示電流以及時間長度。零序電壓表示為V 0,空間向量區域參數表示為k region,充電能量差值表示為△Q,總直流電壓表示為V dc ,指示電流表示為i x ,時間長度表示為T s ,電容電壓平衡控制運算函數符合下式: 其中k region為1或-1。 According to an embodiment of the invention, the capacitor voltage balance control module has a capacitor voltage balance control operation function, and the capacitor voltage balance control operation function includes a zero sequence voltage, a space vector region parameter, a charging energy difference, a total DC voltage, Indicates current and length of time. The zero sequence voltage is expressed as V 0 , the space vector region parameter is represented as k region , the charging energy difference is expressed as Δ Q , the total DC voltage is expressed as V dc , the indicated current is expressed as i x , and the time length is expressed as T s , and the capacitor voltage is The balance control operation function conforms to the following formula: Where k region is 1 or -1.

根據本發明一實施例,其中前述電容電壓平衡控制運算函數可包含電容值、電壓差絕對值、第一直流電壓以及第二直流電壓。其中第一直流電壓表示為V dcu ,第二直流電壓表示為V dcd ,電壓差絕對值表示為|△V|,電容值表示為C dc 。電容電壓平衡控制運算函數符合下式: 其中sgn為邏輯函數。 According to an embodiment of the invention, the capacitor voltage balance control operation function may include a capacitance value, an absolute voltage difference value, a first DC voltage, and a second DC voltage. The first DC voltage is expressed as V dcu , the second DC voltage is expressed as V dcd , the absolute value of the voltage difference is expressed as |Δ V |, and the capacitance value is expressed as C dc . The capacitor voltage balance control operation function conforms to the following formula: Where sgn is a logical function.

根據本發明一實施例,其中前述電壓平衡控制系統可包含一第一加法器、一限制器以及複數個第二加法 器。其中第一加法器電性連接多餘向量平衡模組與電容電壓平衡控制模組,且第一加法器將平衡零序電壓與零序電壓相加後產生一總零序電壓。此外,限制器電性連接第一加法器且接收總零序電壓,且限制器會限制總零序電壓之大小並輸出一限制後總零序電壓。至於第二加法器則電性連接限制器,且各第二加法器相加其中一個電壓命令與限制後總零序電壓。 According to an embodiment of the invention, the voltage balance control system may include a first adder, a limiter, and a plurality of second additions. Device. The first adder is electrically connected to the redundant vector balance module and the capacitor voltage balance control module, and the first adder adds the balanced zero sequence voltage and the zero sequence voltage to generate a total zero sequence voltage. In addition, the limiter is electrically connected to the first adder and receives the total zero sequence voltage, and the limiter limits the magnitude of the total zero sequence voltage and outputs a limited total zero sequence voltage. As for the second adder, the limiter is electrically connected, and each of the second adders adds one of the voltage commands and the total zero sequence voltage after the limit.

根據本發明一實施例,其中前述電容電壓平衡控制模組具有一電容電壓平衡控制運算函數,此電容電壓平衡控制運算函數包含零序電壓、空間向量區域參數、線性參數、第一直流電壓、第二直流電壓、總直流電壓、指示電流及時間長度。零序電壓表示為V 0,空間向量區域參數表示為k region,線性參數表示為K q ,第一直流電壓表示為V dcu ,第二直流電壓表示為V dcd ,總直流電壓表示為V dc ,指示電流表示為i x ,時間長度表示為T s 。電容電壓平衡控制運算函數符合下式: 其中k region為1或-1。 According to an embodiment of the invention, the capacitor voltage balance control module has a capacitor voltage balance control operation function, and the capacitor voltage balance control operation function includes a zero sequence voltage, a space vector region parameter, a linear parameter, a first DC voltage, and a first Two DC voltage, total DC voltage, indicating current and length of time. The zero sequence voltage is expressed as V 0 , the space vector region parameter is represented as k region , the linear parameter is expressed as K q , the first DC voltage is represented as V dcu , the second DC voltage is expressed as V dcd , and the total DC voltage is expressed as V dc . The indicated current is expressed as i x and the length of time is expressed as T s . The capacitor voltage balance control operation function conforms to the following formula: Where k region is 1 or -1.

依據本發明另一態樣提供一種電壓平衡控制方法,其用以控制平衡一中性點箝位轉換器之複數個電壓命令。此電壓平衡控制方法包含一比較電壓命令步驟、一產生平衡零序電壓步驟、一產生零序電壓步驟以及一注入零序電壓步驟。其中比較電壓命令步驟係利用電壓命令比較模組位移部分複數個電壓命令之電壓準位,且比較電壓命 令的大小而得到最大電壓命令與最小電壓命令。產生平衡零序電壓步驟係利用多餘向量平衡模組來運算最大電壓命令與最小電壓命令以產生平衡零序電壓。另外,產生零序電壓步驟係利用電容電壓平衡控制模組運算來自中性點箝位轉換器之指示電流、第一直流電壓以及第二直流電壓以產生一零序電壓。而注入零序電壓步驟則是將平衡零序電壓與零序電壓同時注入中性點箝位轉換器之各電壓命令。 According to another aspect of the present invention, a voltage balance control method for controlling a plurality of voltage commands for balancing a neutral point clamp converter is provided. The voltage balance control method includes a comparison voltage command step, a step of generating a balanced zero sequence voltage, a step of generating a zero sequence voltage, and a step of injecting a zero sequence voltage. The comparison voltage command step uses the voltage command to compare the voltage level of the plurality of voltage commands of the module displacement portion, and compares the voltage life. The maximum voltage command and the minimum voltage command are obtained for the size of the command. The step of generating a balanced zero sequence voltage utilizes a redundant vector balancing module to calculate the maximum voltage command and the minimum voltage command to produce a balanced zero sequence voltage. In addition, the step of generating a zero sequence voltage uses the capacitor voltage balance control module to calculate the indicated current from the neutral point clamp converter, the first DC voltage, and the second DC voltage to generate a zero sequence voltage. The step of injecting the zero sequence voltage is to simultaneously inject the balanced zero sequence voltage and the zero sequence voltage into the voltage commands of the neutral point clamp converter.

藉此,本發明之電壓平衡控制方法利用零序電壓之注入結合充電能量差值之控制,可穩定且精準地調整中性點箝位轉換器中電容之電壓至一半的直流電壓。再者,透過第一與零序電壓之注入可以減少輸出電流的失真。此外,本發明之電壓平衡控制系統可用於固定充放電或線性充放電的控制方式,相較於傳統的最大零序電壓注入方式,本發明有較好的總諧波失真。 Thereby, the voltage balance control method of the present invention utilizes the zero sequence voltage injection combined with the control of the charging energy difference, and can stably and accurately adjust the voltage of the capacitor in the neutral point clamp converter to half of the DC voltage. Furthermore, the distortion of the output current can be reduced by the injection of the first and zero sequence voltages. In addition, the voltage balance control system of the present invention can be used for a fixed charge/discharge or linear charge and discharge control mode, and the present invention has better total harmonic distortion than the conventional maximum zero sequence voltage injection mode.

根據本發明一實施例,其中前述多餘向量平衡模組具有一多餘電壓平衡運算函數,此多餘電壓平衡運算函數包含平衡零序電壓、總直流電壓、最大電壓命令以及最小電壓命令。總直流電壓等於第一直流電壓加第二直流電壓。平衡零序電壓表示為V 0,bal,總直流電壓表示為V dc ,最大電壓命令表示為V max ,最小電壓命令表示為V min 。而多餘電壓平衡運算函數符合下式: According to an embodiment of the invention, the redundant vector balance module has an excess voltage balance operation function, and the redundant voltage balance operation function includes a balanced zero sequence voltage, a total DC voltage, a maximum voltage command, and a minimum voltage command. The total DC voltage is equal to the first DC voltage plus the second DC voltage. The balanced zero sequence voltage is expressed as V 0,bal , the total DC voltage is expressed as V dc , the maximum voltage command is expressed as V max , and the minimum voltage command is expressed as V min . The excess voltage balance operation function conforms to the following formula:

根據本發明一實施例,其中前述電容電壓平衡控制模組具有一電容電壓平衡控制運算函數,此電容電壓 平衡控制運算函數包含零序電壓、空間向量區域參數、總直流電壓、指示電流、充電能量差值以及時間長度。零序電壓表示為V 0,空間向量區域參數表示為k region,充電能量差值表示為△Q,總直流電壓表示為V dc ,指示電流表示為i x ,時間長度表示為T s 。電容電壓平衡控制運算函數符合下式: 其中k region為1或-1。 According to an embodiment of the invention, the capacitor voltage balance control module has a capacitor voltage balance control operation function, and the capacitor voltage balance control operation function includes a zero sequence voltage, a space vector region parameter, a total DC voltage, an indication current, and a charging energy. The difference and the length of time. The zero sequence voltage is represented as V 0 , the space vector region parameter is represented as k region , the charging energy difference is expressed as Δ Q , the total DC voltage is represented as V dc , the indicated current is expressed as i x , and the time length is expressed as T s . The capacitor voltage balance control operation function conforms to the following formula: Where k region is 1 or -1.

根據本發明一實施例,其中前述電容電壓平衡控制運算函數可包含電容值、電壓差絕對值、第一直流電壓以及第二直流電壓。其中第一直流電壓表示為V dcu ,第二直流電壓表示為V dcd ,電壓差絕對值表示為|△V|,電容值表示為C dc 。電容電壓平衡控制運算函數符合下式: 其中sgn為邏輯函數。 According to an embodiment of the invention, the capacitor voltage balance control operation function may include a capacitance value, an absolute voltage difference value, a first DC voltage, and a second DC voltage. The first DC voltage is expressed as V dcu , the second DC voltage is expressed as V dcd , the absolute value of the voltage difference is expressed as |Δ V |, and the capacitance value is expressed as C dc . The capacitor voltage balance control operation function conforms to the following formula: Where sgn is a logical function.

根據本發明一實施例,其中前述注入零序電壓步驟可包含利用一第一加法器與一限制器將平衡零序電壓與零序電壓運算輸出一限制後總零序電壓,並利用複數個第二加法器分別相加電壓命令與限制後總零序電壓。 According to an embodiment of the invention, the step of injecting the zero sequence voltage may include: using a first adder and a limiter to calculate a balanced zero sequence voltage and a zero sequence voltage to output a limited total zero sequence voltage, and using a plurality of The two adders respectively add the voltage command and the total zero sequence voltage after the limit.

根據本發明一實施例,其中前述電容電壓平衡控制模組具有一電容電壓平衡控制運算函數,此電容電壓平衡控制運算函數包含零序電壓、空間向量區域參數、線性參數、第一直流電壓、第二直流電壓、總直流電壓、指 示電流及時間長度。零序電壓表示為V 0,空間向量區域參數表示為k region,線性參數表示為K q ,第一直流電壓表示為V dcu ,第二直流電壓表示為V dcd ,總直流電壓表示為V dc ,指示電流表示為i x ,時間長度表示為T s 。電容電壓平衡控制運算函數符合下式: 其中k region為1或-1。 According to an embodiment of the invention, the capacitor voltage balance control module has a capacitor voltage balance control operation function, and the capacitor voltage balance control operation function includes a zero sequence voltage, a space vector region parameter, a linear parameter, a first DC voltage, and a first Two DC voltage, total DC voltage, indicating current and length of time. The zero sequence voltage is expressed as V 0 , the space vector region parameter is represented as k region , the linear parameter is expressed as K q , the first DC voltage is represented as V dcu , the second DC voltage is expressed as V dcd , and the total DC voltage is expressed as V dc . The indicated current is expressed as i x and the length of time is expressed as T s . The capacitor voltage balance control operation function conforms to the following formula: Where k region is 1 or -1.

100、100a‧‧‧中性點箝位轉換器 100, 100a‧‧‧Neutral Point Clamp Converter

110‧‧‧直流電源 110‧‧‧DC power supply

122、124‧‧‧電容 122, 124‧‧‧ capacitor

132‧‧‧第一中性點箝位轉換單元 132‧‧‧First Neutral Point Clamp Conversion Unit

134‧‧‧第二中性點箝位轉換單元 134‧‧‧Second neutral point clamp conversion unit

136‧‧‧第三中性點箝位轉換單元 136‧‧‧ Third Neutral Point Clamp Conversion Unit

200‧‧‧電壓平衡控制系統 200‧‧‧Voltage balance control system

300‧‧‧電壓命令比較模組 300‧‧‧Voltage Command Comparison Module

400‧‧‧多餘向量平衡模組 400‧‧‧Super Vector Balance Module

500‧‧‧電容電壓平衡控制模組 500‧‧‧Capacitor voltage balance control module

600‧‧‧第一加法器 600‧‧‧First Adder

700‧‧‧限制器 700‧‧‧Restrictor

800‧‧‧第二加法器 800‧‧‧second adder

900‧‧‧電壓平衡控制方法 900‧‧‧Voltage balance control method

S1‧‧‧比較電壓命令步驟 S1‧‧‧Compare voltage command steps

S2‧‧‧產生平衡零序電壓步驟 S2‧‧‧Generation of balanced zero sequence voltage steps

S3‧‧‧產生零序電壓步驟 S3‧‧‧ generates zero sequence voltage steps

C dc ‧‧‧電容值 C dc ‧‧‧capacitance value

O‧‧‧中性點 O ‧‧‧Neutral point

i n ‧‧‧中性點電流 i n ‧‧‧Neutral current

i a ‧‧‧第一輸出電流 i a ‧‧‧first output current

i b ‧‧‧第二輸出電流 i b ‧‧‧second output current

i c ‧‧‧第三輸出電流 i c ‧‧‧third output current

apan‧‧‧切換狀態 Ap , an ‧‧‧ switching status

bpbn‧‧‧切換狀態 Bp , bn ‧‧‧switch status

+‧‧‧高準位電壓輸出 +‧‧‧High level voltage output

0‧‧‧零準位電壓輸出 0‧‧‧zero level voltage output

-‧‧‧低準位電壓輸出 -‧‧‧Low-level voltage output

A、A1、B、C、D、E、F‧‧‧區域 A, A1, B, C, D, E, F‧‧‧ areas

θ‧‧‧相位角 Θ‧‧‧ phase angle

ut‧‧‧上三角線 Ut ‧‧‧Upper triangle

lt‧‧‧下三角線 Lt ‧‧‧ lower triangle

V max ‧‧‧最大電壓命令 V max ‧‧‧max voltage command

S4‧‧‧注入零序電壓步驟 S4‧‧‧Injection of zero sequence voltage step

‧‧‧電壓命令 , , ‧‧‧Voltage command

‧‧‧電壓命令 , , ‧‧‧Voltage command

‧‧‧電壓命令 , , ‧‧‧Voltage command

V dc ‧‧‧總直流電壓 V dc ‧‧‧ total DC voltage

V dcu ‧‧‧第一直流電壓 V dcu ‧‧‧first DC voltage

V dcd ‧‧‧第二直流電壓 V dcd ‧‧‧second DC voltage

v a ‧‧‧第一輸出電壓 v a ‧‧‧first output voltage

v b ‧‧‧第二輸出電壓 v b ‧‧‧second output voltage

v c ‧‧‧第三輸出電壓 v c ‧‧‧ third output voltage

V mid ‧‧‧中間電壓命令 V mid ‧‧‧ intermediate voltage command

V min ‧‧‧最小電壓命令 V min ‧‧‧minimum voltage command

‧‧‧電壓命令 , ‧‧‧Voltage command

T xp T xn ‧‧‧間隔 T xp , T xn ‧‧‧ interval

‧‧‧間隔 , ‧‧‧interval

V 0‧‧‧零序電壓 V 0 ‧‧ ‧ zero sequence voltage

V 0,bal‧‧‧平衡零序電壓 V 0,bal ‧‧‧balanced zero sequence voltage

i x ‧‧‧指示電流 i x ‧‧‧ indicates current

R‧‧‧電阻 R ‧‧‧resistance

第1圖係繪示本發明一實施方式之中性點箝位轉換器的電路架構示意圖。 FIG. 1 is a schematic diagram showing the circuit structure of a neutral point clamp converter according to an embodiment of the present invention.

第2圖係繪示本發明一實施方式之電壓平衡控制系統的電路架構示意圖。 FIG. 2 is a schematic diagram showing the circuit structure of a voltage balance control system according to an embodiment of the present invention.

第3圖係繪示第1圖之中性點箝位轉換器之輸出電壓的空間向量示意圖。 Fig. 3 is a schematic diagram showing the space vector of the output voltage of the neutral point clamp converter of Fig. 1.

第4圖係繪示第3圖之區域A1之輸出電壓的切換狀態示意圖。 Fig. 4 is a schematic diagram showing the switching state of the output voltage of the area A1 in Fig. 3.

第5A圖係繪示第3圖之一實施例之切換狀態所對應之電流示意圖。 Fig. 5A is a schematic view showing the current corresponding to the switching state of the embodiment of Fig. 3.

第5B圖係繪示第3圖之另一實施例之切換狀態所對應之電流示意圖。 FIG. 5B is a schematic diagram showing the current corresponding to the switching state of another embodiment of FIG. 3.

第5C圖係繪示第3圖之又一實施例之切換狀態所對應之電流示意圖。 Figure 5C is a schematic diagram showing the current corresponding to the switching state of still another embodiment of Figure 3.

第5D圖係繪示第3圖之再一實施例之切換狀態所對應之電流示意圖。 FIG. 5D is a schematic diagram showing the current corresponding to the switching state of still another embodiment of FIG. 3.

第6圖係繪示第3圖之各區域對應的參數定義。 Fig. 6 is a diagram showing the definition of parameters corresponding to each area of Fig. 3.

第7圖係繪示第1圖之中性點箝位轉換器的電壓命令與多餘向量之關係示意圖。 Fig. 7 is a diagram showing the relationship between the voltage command and the redundant vector of the neutral point clamp converter of Fig. 1.

第8圖係繪示第7圖於零序電壓注入後的電壓命令與多餘向量之關係示意圖。 Figure 8 is a diagram showing the relationship between the voltage command and the redundant vector after the zero-sequence voltage injection in Figure 7.

第9圖係繪示本發明另一實施方式之電壓平衡控制方法的流程示意圖。 FIG. 9 is a flow chart showing a voltage balance control method according to another embodiment of the present invention.

第10A圖係繪示第1圖之中性點箝位轉換器於量測時的電路架構示意圖。 Figure 10A is a schematic diagram showing the circuit architecture of the neutral point clamp converter of Figure 1 during measurement.

第10B圖係繪示第9A圖結合固定充放電方式的量測結果。 Fig. 10B is a graph showing the measurement results of the Fig. 9A combined with the fixed charge and discharge mode.

第10C圖係繪示第9A圖結合線性充放電方式的量測結果。 Figure 10C shows the measurement results of Figure 9A in combination with the linear charge and discharge mode.

以下將參照圖式說明本發明之複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之;並且重複之元件將可能使用相同的編號表示之。 Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. For the sake of clarity, many practical details will be explained in the following description. However, it should be understood that these practical details are not intended to limit the invention. That is, in some embodiments of the invention, these practical details are not necessary. In addition, some of the conventional structures and elements are illustrated in the drawings in a simplified schematic manner, and the repeated elements may be represented by the same reference numerals.

請一併參閱第1圖與第2圖。第1圖係繪示本發明一實施方式之中性點箝位轉換器100的電路架構示意圖。第2圖係繪示本發明一實施方式之電壓平衡控制系統200的電路架構示意圖。如圖所示,此中性點箝位轉換器100為三階中性點箝位轉換器,而電壓平衡控制系統200與中性點箝位轉換器100電性連接並用以平衡地控制中性點箝位轉換器100的三個電壓命令,進而穩定且精準地調整中性點箝位轉換器100之中性點電壓至總直流電壓V dc 的一半。下列將詳細說明中性點箝位轉換器100與電壓平衡控制系統200的電路細節與轉換控制之作動。 Please refer to Figure 1 and Figure 2 together. FIG. 1 is a schematic diagram showing the circuit structure of a neutral point clamp converter 100 according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing the circuit structure of a voltage balance control system 200 according to an embodiment of the present invention. As shown, the neutral point clamp converter 100 is a third-order neutral point clamp converter, and the voltage balance control system 200 is electrically coupled to the neutral point clamp converter 100 for balanced neutral control. Three voltage commands for point clamp converter 100 , and Then, the neutral point voltage of the neutral point clamp converter 100 is stably and accurately adjusted to half of the total DC voltage V dc . The circuit details and switching control of the neutral point clamp converter 100 and the voltage balance control system 200 will be described in detail below.

請參閱第1圖,中性點箝位轉換器100包含直流電源110、電容122、124、第一中性點箝位轉換單元132、第二中性點箝位轉換單元134以及第三中性點箝位轉換單元136。其中直流電源110提供總直流電壓V dc 。電容122與電容124彼此串接,且二電容122、124的電容值均為C dc ,電容122的跨壓為第一直流電壓V dcu ,而電容124的跨壓為第二直流電壓V dcd 。總直流電壓V dc 等於第一直流電壓V dcu 加上第二直流電壓V dcd ,而且二電容122、124相接處為中性點O。中性點O具有中性點電壓與中性點電流i n 。此外,第一中性點箝位轉換單元132、第二中性點箝位轉換單元134以及第三中性點箝位轉換單元136彼次並聯且輸入中性點電壓。第一中性點箝位轉換單元132輸出一第一輸出電壓v a 與一第一輸出電 流i a ;第二中性點箝位轉換單元134輸出一第二輸出電壓v b 與一第二輸出電流i b ;第三中性點箝位轉換單元136輸出一第三輸出電壓v c 與一第三輸出電流i c Referring to FIG. 1, the neutral point clamp converter 100 includes a DC power supply 110, capacitors 122, 124, a first neutral point clamp conversion unit 132, a second neutral point clamp conversion unit 134, and a third neutral. Point clamp conversion unit 136. The DC power source 110 provides a total DC voltage V dc . The capacitor 122 and the capacitor 124 are connected in series with each other, and the capacitance values of the two capacitors 122 and 124 are both C dc , the voltage across the capacitor 122 is the first DC voltage V dcu , and the voltage across the capacitor 124 is the second DC voltage V dcd . The total DC voltage V dc is equal to the first DC voltage V dcu plus the second DC voltage V dcd , and the junction of the two capacitors 122, 124 is a neutral point O . The neutral point O has a neutral point voltage and a neutral point current i n . Further, the first neutral point clamp conversion unit 132, the second neutral point clamp conversion unit 134, and the third neutral point clamp conversion unit 136 are connected in parallel and input a neutral point voltage. The first neutral point clamp conversion unit 132 outputs a first output voltage v a and a first output current i a ; the second neutral point clamp conversion unit 134 outputs a second output voltage v b and a second output Current i b ; the third neutral point clamp conversion unit 136 outputs a third output voltage v c and a third output current i c .

請參閱第3圖,第3圖係繪示第1圖之中性點箝位轉換器100之輸出電壓的空間向量示意圖。每一個節點代表一空間向量,其中位於內部六角形端點之六個空間向量被稱為多餘向量,而各多餘向量包含兩個切換狀態apan,例如ap:(+00)與an:(0--),此二切換狀態具有相同的輸出電壓。每一個切換狀態具有三個準位訊號,其分別代表第一輸出電壓v a 、第二輸出電壓v b 及第三輸出電壓v c 的準位訊號。其中“+”代表高準位電壓輸出,“0”代表零準位電壓輸出,“-”代表低準位電壓輸出。另外,空間向量的座標平面可分為六個區域。其中第一個區域為區域A,其相位角θ的範圍為大於等於負30度且小於正30度。第二個區域為區域B,其相位角θ的範圍為大於等於30度且小於90度。第三個區域為區域C,其相位角θ的範圍為大於等於90度且小於150度。第四個區域為區域D,其相位角θ的範圍為大於等於150度且小於210度。第五個區域為區域E,其相位角θ的範圍為大於等於210度且小於270度。第六個區域為區域F,其相位角θ的範圍為大於等於270度且小於330度。 Please refer to FIG. 3 , which is a schematic diagram showing the space vector of the output voltage of the neutral point clamp converter 100 of FIG. 1 . Each node represents a space vector, where the six spatial vectors at the inner hexagonal endpoint are called redundant vectors, and each redundant vector contains two switching states ap , an , such as ap :(+00) and an :( 0--), these two switching states have the same output voltage. Each switching state has three level signals, which respectively represent the level signals of the first output voltage v a , the second output voltage v b and the third output voltage v c . Where "+" represents the high level voltage output, "0" represents the zero level voltage output, and "-" represents the low level voltage output. In addition, the coordinate plane of the space vector can be divided into six regions. The first region is region A, and the phase angle θ ranges from greater than or equal to minus 30 degrees and less than plus 30 degrees. The second region is region B, and its phase angle θ ranges from 30 degrees or more to less than 90 degrees. The third region is region C, and its phase angle θ ranges from 90 degrees or more to less than 150 degrees. The fourth area is the area D, and the phase angle θ ranges from 150 degrees or more to less than 210 degrees. The fifth region is region E, and its phase angle θ ranges from 210 degrees or more to less than 270 degrees. The sixth region is region F, and its phase angle θ ranges from 270 degrees or more to less than 330 degrees.

請參閱第4圖,第4圖係繪示第3圖之區域A1之輸出電壓的切換狀態示意圖。其中切換狀態係依據電壓命令與上三角線ut、下三角線lt之比較而求 得。再者,電壓命令會依據下列式子(1)~式子(3)位移而產生新的電壓命令。此外,最大電壓命令表示為V max ,中間電壓命令表示為V mid ,最小電壓命令表示為V min ,其分別符合下列式子(4)~式子(6)。換句話說,最大電壓命令V max 與最小電壓命令V min 分別為所有電壓命令均移至上三角線ut後的最大值與最小值。例如:在原本第4圖的電壓命令之中,電壓命令位於上三角線ut,而電壓命令則位於下三角線lt,亦即電壓命令遍佈於上三角線ut與下三角線lt。然後,將所有電壓命令移至上三角線ut,也就是將電壓命令分別移至上三角線ut而形成新的電壓命令,至於電壓命令則等於新的電壓命令。最後,選擇新的電壓命令中之最大值當作最大電壓命令V max ,最小值則當作最小電壓命令V min 。另外,一併參閱第4圖與第7圖可得知,最大電壓命令V max 等於電壓命令(亦即電壓命令),最小電壓命令V min 則等於電壓命令。此最大電壓命令V max 與最小電壓命令V min 係用以當作零序電壓注入的範圍限定依據,以避免過調變的現象發生。 Please refer to FIG. 4, which is a schematic diagram showing the switching state of the output voltage of the area A1 in FIG. The switching state is based on the voltage command , , It is obtained by comparison with the upper triangle line ut and the lower triangle line lt . Again, the voltage command , and Will generate a new voltage command according to the following equation (1) ~ equation (3) displacement , and . Further, the maximum voltage command is expressed as V max , the intermediate voltage command is expressed as V mid , and the minimum voltage command is expressed as V min , which respectively conforms to the following equation (4) to equation (6). In other words, the maximum voltage command V max and the minimum voltage command V min are all voltage commands respectively. , and Move to the maximum and minimum values after the upper triangle line ut . For example: the voltage command in the original Figure 4 , and Voltage command Located on the upper triangle line ut , and the voltage command , Then located at the lower triangle line lt , that is, the voltage command , and It is spread over the upper triangle line ut and the lower triangle line lt . Then, all voltage commands , and Move to the upper triangle ut , that is, the voltage command and Move to the upper triangle ut separately to form a new voltage command and As for the voltage command Equal to the new voltage command . Finally, choose a new voltage command , and The maximum value is taken as the maximum voltage command V max and the minimum value is taken as the minimum voltage command V min . In addition, referring to Figures 4 and 7, it can be seen that the maximum voltage command V max is equal to the voltage command. (also known as voltage command) ), the minimum voltage command V min is equal to the voltage command . The maximum voltage command V max and the minimum voltage command V min are used as a basis for limiting the range of zero-sequence voltage injection to avoid over-modulation.

請參閱第5A~5D圖,第5A圖係繪示第3圖之切換狀態ap所對應之電流示意圖。第5B圖係繪示第3圖之切換狀態an所對應之電流示意圖。第5C圖係繪示第3圖之切換狀態bp所對應之電流示意圖。第5D圖係繪示第3圖之切換狀態bn所對應之電流示意圖。如圖所示,各多餘向量可分為兩個切換狀態apan或者兩個切換狀態bpbn。其中切換狀態ap代表二個“0”轉換與一個“+”轉換;切換狀態an代表二個“-”轉換與一個“0”轉換;切換狀態bp代表二個“+”轉換與一個“0”轉換;切換狀態bn代表二個“0”轉換與一個“-”轉換。而本發明透過這些切換狀態與對應之電流來控制電容122或電容124的充放電,使中性點箝位轉換器100之中性點電壓能精準地調節到總直流電壓V dc 的一半。 Please refer to FIG. 5A to FIG. 5D , and FIG. 5A is a schematic diagram showing the current corresponding to the switching state ap of FIG. 3 . Fig. 5B is a schematic diagram showing the current corresponding to the switching state an of Fig. 3. Fig. 5C is a schematic diagram showing the current corresponding to the switching state bp of Fig. 3. Fig. 5D is a schematic diagram showing the current corresponding to the switching state bn of Fig. 3. As shown, each redundant vector can be divided into two switching states ap , an or two switching states bp , bn . The switching state ap represents two "0" transitions and one "+"transition; the switching state an represents two "-" transitions and one "0"transition; the switching state bp represents two "+" transitions and one "0" transition. Conversion; switching state bn represents two "0" transitions and one "-" transition. The present invention controls the charging and discharging of the capacitor 122 or the capacitor 124 through these switching states and corresponding currents, so that the neutral point voltage of the neutral point clamp converter 100 can be accurately adjusted to half of the total DC voltage V dc .

請一併參閱第3圖與第6圖,第6圖係繪示第3圖之各區域對應的參數定義。其中區域分為六個,每一個區域具有對應之相位角θ、多餘向量、指示電流i x 以及中性點電位。透過各區域的對應關係可以瞭解二電容122、124之充放電狀況以及中性點電位的變化趨勢。 Please refer to FIG. 3 and FIG. 6 together. FIG. 6 is a diagram showing the parameter definition corresponding to each area of FIG. The region is divided into six, each region having a corresponding phase angle θ, a redundant vector, an indicating current i x , and a neutral point potential. Through the correspondence between the regions, the charge and discharge conditions of the two capacitors 122 and 124 and the trend of the neutral point potential can be known.

請一併參閱第6、7及8圖,第7圖係繪示第1圖之中性點箝位轉換器100的電壓命令V max V mid V min 與多餘向量之關係示意圖。第8圖則繪示第7圖於零序電壓V 0注入後的電壓命令與多餘向量之關係示意圖。如圖所示,其中最大電壓命令V max 、中間電壓命令 V mid 以及最小電壓命令V min 係分別利用前述式子(4)~式子(6)求得。根據最大電壓命令V max 、最小電壓命令V min 以及上三角線ut之分析可得知,多餘向量之切換狀態的間隔T xp 係對應最小電壓命令V min ,而多餘向量之另一個切換狀態的間隔T xn 係對應最大電壓命令V max ,其中參數xab係依據第6圖之電壓命令的相位角θ來作判斷,而且間隔T xp 加上間隔T xn 等於多餘向量總間隔T s 。此外,間隔T xp 與間隔T xn 可分別由式子(7)與式子(8)求得: 本發明利用零序電壓注入的方式控制多餘向量的調節,無論注入的零序電壓為正值或負值,多餘向量總間隔T s 均維持一固定值。而原本間隔T xp 與間隔T xn 經零序電壓注入後可分別透過下列式子(9)與式子(10)運算求得間隔與間隔 其中,,而V 0即代表注入的零序電壓。至於多餘向量的調節結果則如下列式子(11)所示: 其中。由上述式子(9)~式子(11)可知,當零序電壓V 0為正值時,間隔T xp 增大且間隔T xn 減小;反之,當零序電壓V 0為負值時,間隔T xp 減小且間隔T xn 增大。再者,為了避免過調變的現象發生,注入的零序電壓V 0必須限制在最大零序注入電壓V 0,max 之內,如式子(12)所示: 本發明使用上述之零序電壓V 0注入的概念結合下述之電壓平衡控制系統200中的模組來控制調整中性點電壓的準位,進而減少輸出電流的諧波失真。 Please refer to FIG. 6, FIG. 7 and FIG. 8 together. FIG. 7 is a schematic diagram showing the relationship between the voltage commands V max , V mid , V min and the redundant vector of the neutral point clamp converter 100 of FIG. 1 . Figure 8 shows the voltage command after the zero-sequence voltage V 0 is injected in Figure 7. , Schematic diagram of the relationship with redundant vectors. As shown in the figure, the maximum voltage command V max , the intermediate voltage command V mid , and the minimum voltage command V min are respectively obtained by using the above equations (4) to (6). According to the analysis of the maximum voltage command V max , the minimum voltage command V min and the upper triangular line ut , the interval T xp of the switching state of the redundant vector corresponds to the minimum voltage command V min , and the interval of the other switching state of the redundant vector T xn corresponds to the maximum voltage command V max , wherein the parameter x is a or b is determined according to the phase angle θ of the voltage command of FIG. 6 , and the interval T xp plus the interval T xn is equal to the redundant vector total interval T s . In addition, the interval T xp and the interval T xn can be obtained from the equation (7) and the equation (8), respectively: The invention controls the adjustment of the redundant vector by means of zero-sequence voltage injection, and the residual vector total interval T s maintains a fixed value regardless of whether the injected zero-sequence voltage is positive or negative. The original interval T xp and the interval T xn can be respectively calculated by the following equation (9) and the equation (10) after being injected through the zero sequence voltage. With spacing : among them , And V 0 represents the zero sequence voltage of the injection. As for the adjustment result of the redundant vector, it is as shown in the following formula (11): among them . It can be seen from the above equations (9) to (11) that when the zero sequence voltage V 0 is a positive value, the interval T xp increases and the interval T xn decreases; conversely, when the zero sequence voltage V 0 is negative The interval T xp decreases and the interval T xn increases. Furthermore, in order to avoid over-modulation, the injected zero-sequence voltage V 0 must be limited to the maximum zero-sequence injection voltage V 0, max , as shown in equation (12): The present invention uses the above-described concept of zero-sequence voltage V 0 injection in conjunction with a module in the voltage balance control system 200 described below to control the level of the neutral point voltage, thereby reducing harmonic distortion of the output current.

請一併參閱第2圖與第4圖,其中第2圖係用以實現零序電壓V 0與平衡零序電壓V 0,bal注入以及多餘向量調節的的電路架構。由第2圖可知,電壓平衡控制系統200包含一個電壓命令比較模組300、一個多餘向量平衡模組400、一個電容電壓平衡控制模組500、一個第一加法器600、一個限制器700以及三個第二加法器800。 Please refer to FIG. 2 and FIG. 4 together, wherein FIG. 2 is a circuit architecture for realizing zero sequence voltage V 0 and balanced zero sequence voltage V 0, bal injection and redundant vector adjustment. As can be seen from FIG. 2, the voltage balance control system 200 includes a voltage command comparison module 300, a redundant vector balance module 400, a capacitor voltage balance control module 500, a first adder 600, a limiter 700, and three. Second adders 800.

電壓命令比較模組300接收來自中性點箝位轉換器100的三個電壓命令,並位移部分的電壓命令之電壓準位。本實施例係將電壓命令之電壓準位從下三角線lt位移至上三角線ut,如第4圖所示。然後,電壓命令比較模組300會比較未位移之電壓命令以及位移後之電壓命令三者的大小而得到最大電壓命令V max 與最小電壓命令V min ,其運算過程係依據上述式子 (1)~式子(6)。最後,電壓命令比較模組300會輸出最大電壓命令與最小電壓命令至多餘向量平衡模組400與電容電壓平衡控制模組500。 Voltage command comparison module 300 receives three voltage commands from neutral point clamp converter 100 , and And shift the voltage level of the partial voltage command. This embodiment is a voltage command versus The voltage level is shifted from the lower triangle line lt to the upper triangle line ut , as shown in Fig. 4. Then, the voltage command comparison module 300 compares the undisplaced voltage commands. And the voltage command after displacement , The maximum voltage command V max and the minimum voltage command V min are obtained by the size of the three, and the operation process is based on the above equations (1) to (6). Finally, the voltage command comparison module 300 outputs a maximum voltage command and a minimum voltage command to the redundant vector balance module 400 and the capacitor voltage balance control module 500.

多餘向量平衡模組400電性連接電壓指令比較模組300,且多餘向量平衡模組400接收並運算最大電壓命令V max 與最小電壓命令V min 以產生一平衡零序電壓V 0,bal。詳細地說,多餘向量平衡模組400具有一多餘電壓平衡運算函數,此多餘電壓平衡運算函數包含平衡零序電壓V 0,bal、總直流電壓V dc 、最大電壓命令V max 以及最小電壓命令V min ,且此多餘電壓平衡運算函數符合下式: The redundant vector balance module 400 is electrically connected to the voltage command comparison module 300, and the redundant vector balance module 400 receives and calculates the maximum voltage command V max and the minimum voltage command V min to generate a balanced zero sequence voltage V 0,bal . In detail, the redundant vector balance module 400 has an excess voltage balance operation function including a balanced zero sequence voltage V 0,bal , a total DC voltage V dc , a maximum voltage command V max , and a minimum voltage command. V min , and the excess voltage balance operation function conforms to the following formula:

電容電壓平衡控制模組500電性連接電壓命令比較模組300,且電容電壓平衡控制模組500接收並運算來自中性點箝位轉換器100之指示電流i x 、第一直流電壓V dcu 以及第二直流電壓V dcd 以產生一零序電壓V 0。仔細地說,本發明之電壓平衡控制系統200可以自由地預先定義充電能量差值△Q,以調節中性點的電壓。此充電能量差值△Q代表電容122之充電能量與電容124之充電能量的差距。電容122之充電能量與電容124之充電能量可分別用下列式子(14)與式子(15)表示: 其中k region為空間向量區域參數,配合參閱第3圖與第6圖,此空間向量區域參數k region符合下式: 由於零序電壓V 0會影響間隔T xp 與間隔T xn ,而電容122與電容124之充電能量分別跟間隔T xp 與間隔T xn 有關聯性,因此零序電壓V 0亦會影響電容122與電容124之充電能量。再者,將式子(9)與式子(10)代入式子(14)與式子(15)可得到充電能量差值△Q符合下式: 其中Q c,up Q c,dn 分別代表電容122與電容124之充電能量。由於使用者可以自由地預先定義充電能量差值△Q的大小,故零序電壓V 0可以用充電能量差值△Q的大小來表示,如下列式子(18): 其中sgn為邏輯函數,|△Q|代表充電能量差值△Q的大小。此外,式子(18)亦可表示成下列式子(19): 其中|△V|代表電壓差絕對值。為了實現上述式子(18)與式子(19),電容電壓平衡控制模組500設有一電容電壓平衡控制運算函數,此電容電壓平衡控制運算函數包含零序電壓V 0、空間向量區域參數k region、第一直流電壓V dcu 、第二直流電壓V dcd 、充電能量差值大小|△Q|、總直流電壓 V dc 、指示電流i x 、時間長度T s 、電壓差絕對值|△V|以及電容值C dc ,其中總直流電壓V dc 等於第一直流電壓V dcu 加上第二直流電壓V dcd ,而且此電容電壓平衡控制運算函數對應式子(18)與式子(19)。由上述可知,在調整中性點箝位轉換器之電容的電壓之前,充電能量差值大小|△Q|或電壓差絕對值|△V|可自由預設,不同的充電能量差值大小|△Q|或電壓差絕對值|△V|會對應產生相異的補償時間,透過這種控制方式可以減少輸出電流的諧波失真而產生較好的電流品質。 The capacitor voltage balance control module 500 is electrically connected to the voltage command comparison module 300, and the capacitor voltage balance control module 500 receives and calculates the indication current i x from the neutral point clamp converter 100, the first DC voltage V dcu, and The second DC voltage V dcd is used to generate a zero sequence voltage V 0 . In particular, the voltage balance control system 200 of the present invention is free to pre-define the charge energy difference Δ Q to adjust the voltage at the neutral point. This charge energy difference Δ Q represents the difference between the charge energy of the capacitor 122 and the charge energy of the capacitor 124. The charging energy of the capacitor 122 and the charging energy of the capacitor 124 can be expressed by the following equations (14) and (15), respectively: Where k region is the space vector region parameter, with reference to Fig. 3 and Fig. 6, the space vector region parameter k region conforms to the following formula: Since the zero sequence voltage V 0 affects the interval T xp and the interval T xn , and the charging energy of the capacitor 122 and the capacitor 124 are related to the interval T xp and the interval T xn , respectively, the zero sequence voltage V 0 also affects the capacitor 122 and The charging energy of the capacitor 124. Furthermore, substituting the equation (9) and the equation (10) into the equation (14) and the equation (15) can obtain a difference in charging energy Δ Q in accordance with the following equation: Where Q c,up and Q c,dn represent the charging energy of the capacitor 122 and the capacitor 124 , respectively. Since the user can freely predefined charging energy difference △ Q size, it may be zero sequence voltage V 0 charging the energy difference △ Q size expressed as the following equation (18): Where sgn is a logic function and |△ Q | represents the magnitude of the charge energy difference Δ Q . In addition, the formula (18) can also be expressed as the following formula (19): Where |Δ V | represents the absolute value of the voltage difference. In order to implement the above equations (18) and (19), the capacitor voltage balance control module 500 is provided with a capacitor voltage balance control operation function, and the capacitor voltage balance control operation function includes a zero sequence voltage V 0 and a space vector region parameter k. Region , first DC voltage V dcu , second DC voltage V dcd , charge energy difference magnitude | Δ Q |, total DC voltage V dc , indicated current i x , time length T s , absolute voltage difference |Δ V | And a capacitance value C dc , wherein the total DC voltage V dc is equal to the first DC voltage V dcu plus the second DC voltage V dcd , and the capacitance voltage balance control operation function corresponds to the equation (18) and the equation (19). It can be seen from the above that before adjusting the voltage of the capacitance of the neutral point clamp converter, the charge energy difference value |Δ Q | or the voltage difference absolute value |Δ V | can be freely preset, and the different charge energy difference magnitude| △ Q | or the absolute value of the voltage difference | △ V | will produce a different compensation time. This control method can reduce the harmonic distortion of the output current and produce better current quality.

上述多餘向量平衡模組400之平衡零序電壓V 0,bal與電容電壓平衡控制模組500之零序電壓V 0會同時注入中性點箝位轉換器之各電壓命令。詳細地說,第一加法器600電性連接多餘向量平衡模組400與電容電壓平衡控制模組500,且第一加法器600將平衡零序電壓V 0,bal與零序電壓V 0相加後產生一總零序電壓。此外,限制器700電性連接第一加法器600且接收總零序電壓,且限制器700會限制總零序電壓之大小並輸出一限制後總零序電壓,也就是說,總零序電壓之大小需符合式子(12)的條件。再者,第二加法器800電性連接限制器700,且各第二加法器800將其中一個電壓命令與限制後總零序電壓相加而完成零序電壓注入之作動,換句話說,第二加法器800符合式子(20): 其中m等於a、bcVector excess above balance balance module 400 of the zero sequence voltage V 0, bal capacitor voltage balancing control module and the zero sequence voltage of 500 V 0 will be simultaneously injected into respective voltage commands of a neutral point clamped converter , and . In detail, the first adder 600 is electrically connected to the redundant vector balance module 400 and the capacitor voltage balance control module 500, and the first adder 600 adds the balanced zero sequence voltage V 0,bal to the zero sequence voltage V 0 . A total zero sequence voltage is then generated. In addition, the limiter 700 is electrically connected to the first adder 600 and receives the total zero sequence voltage, and the limiter 700 limits the total zero sequence voltage and outputs a limited total zero sequence voltage, that is, the total zero sequence voltage. The size must conform to the condition of equation (12). Furthermore, the second adder 800 is electrically connected to the limiter 700, and each of the second adders 800 adds one of the voltage commands to the limited total zero-sequence voltage to complete the zero-sequence voltage injection operation, in other words, The two adder 800 conforms to the equation (20): Where m is equal to a, b or c .

本發明提供兩種實施例,第一實施例為固定充放電(constant charging)的方式,其對應上述式子(18)與式子(19)。第二實施例則為線性充放電(linear charging)的方式,其對應下列式子(21)與式子(22): 其中K q 為線性參數,其亦可由使用者自由預設。線性參數K q 之數值係對應充電能量差值△Q以及第一直流電壓V dcu 與第二直流電壓V dcd 之差值大小,因此線性參數K q 的數值變化亦會影響零序電壓V 0的注入程度,而使用者可透過線性參數K q 的數值控制中性點電壓的調節,進而減少輸出電流的失真。 The present invention provides two embodiments, the first embodiment being a fixed charging method corresponding to the above formula (18) and equation (19). The second embodiment is a linear charging method corresponding to the following equations (21) and (22): Where K q is a linear parameter, which can also be freely preset by the user. The value of the linear parameter K q corresponds to the difference between the charging energy difference Δ Q and the first DC voltage V dcu and the second DC voltage V dcd , so that the numerical value of the linear parameter K q also affects the zero sequence voltage V 0 The degree of injection, and the user can control the neutral point voltage adjustment through the value of the linear parameter K q , thereby reducing the distortion of the output current.

請一併參閱第1、2及9圖,第9圖係繪示本發明另一實施方式之電壓平衡控制方法的流程示意圖。如圖所示,此電壓平衡控制方法900其用以平衡地控制中性點箝位轉換器100之複數個電壓命令。此電壓平衡控制方法900包含比較電壓命令步驟S1、產生平衡零序電壓步驟S2、產生零序電壓步驟S3以及注入零序電壓步驟S4。 Please refer to FIG. 1 , FIG. 2 and FIG. 9 together. FIG. 9 is a schematic flow chart of a voltage balance control method according to another embodiment of the present invention. As shown, this voltage balance control method 900 is used to balancely control a plurality of voltage commands of the neutral point clamp converter 100. The voltage balance control method 900 includes a comparison voltage command step S1, a balanced zero sequence voltage step S2, a zero sequence voltage step S3, and a zero sequence voltage step S4.

比較電壓命令步驟S1係利用電壓命令比較模組300位移部分的電壓命令之電壓準位,且比較電壓命令的大小而得到最大電壓命令V max 與最小電壓命令V min 。此外,比較電壓命令步驟S1係利用上述式子(1)~式子(6)之運算方式加以實現完成。 Comparing the voltage command line using the voltage command step S1 comparing the voltage level of the voltage command module of the displacement portion 300, and compare the size of the maximum voltage command obtained by the command voltage and the minimum voltage command V max V min. Further, the comparison voltage command step S1 is realized by the calculation method of the above equations (1) to (6).

產生平衡零序電壓步驟S2係利用多餘向量平衡模組400來運算最大電壓命令V max 與最小電壓命令V min ,以產生平衡零序電壓V 0,bal。另外,產生平衡零序電壓步驟S2係利用上述式子(13)之運算方式加以實現完成。 Generating balance of zero-sequence voltage using a step S2 based vector equilibrium extra module 400 computes the maximum command voltage and the minimum voltage command V max V min, to produce a balance of zero-sequence voltage V 0, bal. In addition, the step S2 of generating the balanced zero sequence voltage is accomplished by the operation of the above equation (13).

產生零序電壓步驟S3係利用電容電壓平衡控制模組500運算來自中性點箝位轉換器100之指示電流i x 、第一直流電壓V dcu 以及第二直流電壓V dcd ,以產生零序電壓V 0。再者,產生零序電壓步驟S3係透過上述式子(18)或式子(19)之運算方式加以實現完成。 The zero sequence voltage step S3 is performed by the capacitor voltage balance control module 500 to calculate the indication current i x , the first DC voltage V dcu , and the second DC voltage V dcd from the neutral point clamp converter 100 to generate a zero sequence voltage. V 0 . Furthermore, the step S3 is generated by the operation of the above equation (18) or (19).

注入零序電壓步驟S4則是將平衡零序電壓V 0,bal與零序電壓V 0同時注入中性點箝位轉換器100之各電壓命令,其藉由第一加法器600、限制器700以及第二加法器800依序作動而完成零序電壓的注入。本發明利用產生平衡零序電壓步驟S2中的平衡零序電壓V 0,bal配合產生零序電壓步驟S3中之充電能量差值大小|△Q|、電壓差絕對值|△V|或線性參數K q 之調節控制,使輸出電流的失真狀況得以改善。 The step of injecting the zero sequence voltage step S4 is to simultaneously inject the balanced zero sequence voltage V 0,bal and the zero sequence voltage V 0 into the voltage commands of the neutral point clamp converter 100. , and The zero sequence voltage injection is completed by the first adder 600, the limiter 700, and the second adder 800 being sequentially operated. The present invention utilizes the balanced zero-sequence voltage V 0,bal in the step S2 of generating the balanced zero-sequence voltage to match the magnitude of the charge energy difference |Δ Q |, the absolute value of the voltage difference |Δ V | or the linear parameter in the step S3 of generating the zero-sequence voltage. The adjustment control of K q improves the distortion of the output current.

請一併參閱第10A~10C圖。第10A圖係繪示第1圖之中性點箝位轉換器100a於量測時的電路架構示意圖。第10B圖係繪示第9A圖結合固定充放電方式的量測結果。第10C圖係繪示第9A圖結合線性充放電方式的量測結果。如圖所示,第10A圖之中性點箝位轉換器100a與第1圖中性點箝位轉換器100的差異僅在電容 124的兩端多並接一個電阻R,此電阻R用以模擬電路的不平衡。而第10B圖與第10C圖的量測環境條件則包含電壓差絕對值|△V|大於1,總直流電壓V dc 為400V,電容值C dc 為4500μF,切換頻率為10kHz,濾波電感為4mH。另外,第10B圖之△Q=3.7×10-5C,第10C圖之K q =0.0833。從圖中結果可得到表一之數據,而由這些數據可知本發明之固定充放電以及線性充放電方式相較於傳統的電壓平衡控制方式有較好的總諧波失真(THD)。 Please refer to Figures 10A~10C together. FIG. 10A is a schematic diagram showing the circuit structure of the neutral point clamp converter 100a in FIG. 1 during measurement. Fig. 10B is a graph showing the measurement results of the Fig. 9A combined with the fixed charge and discharge mode. Figure 10C shows the measurement results of Figure 9A in combination with the linear charge and discharge mode. As shown in the figure, the neutral point clamp converter 100a of FIG. 10A differs from the neutral point clamp converter 100 of FIG. 1 only in that a resistor R is connected to both ends of the capacitor 124, and the resistor R is used for Imbalance of analog circuits. The measurement environmental conditions of Fig. 10B and Fig. 10C include the absolute value of the voltage difference |Δ V | is greater than 1, the total DC voltage V dc is 400V, the capacitance value C dc is 4500 μF, the switching frequency is 10 kHz, and the filter inductance is 4 mH. . Further, △ section 10B of FIG Q = 3.7 × 10 -5 C, K of FIG. 10C of q = 0.0833. From the results of the figure, the data of Table 1 can be obtained. From these data, it can be seen that the fixed charge and discharge and linear charge and discharge modes of the present invention have better total harmonic distortion (THD) than the conventional voltage balance control mode.

由上述實施方式可知,本發明具有下列優點:其一,利用零序電壓之注入方式結合充電能量差值大小或電壓差絕對值之控制,可穩定且精準地調整中性點箝位轉換器中電容之電壓至直流電壓的一半。其二,在調整中性點箝位轉換器之電容的電壓過程中,其補償時間會跟著充電能量差值的變化而對應調整,此充電能量差值可自由預設。其三,透過本發明之電壓平衡控制系統及其方法可以減少輸出電流之失真並產生較好的電流品質。其四,本發明之電壓平衡控制系統及其方法可用於固定充放電或線性充放電的控制方式,相較於傳統的最大零序電壓注入方式,本發明有較好的總諧波失真。 It can be seen from the above embodiments that the present invention has the following advantages: First, the zero-sequence voltage injection method combined with the charging energy difference value or the absolute value of the voltage difference can stably and accurately adjust the neutral point clamp converter. The voltage of the capacitor is half of the DC voltage. Second, in adjusting the voltage of the capacitor of the neutral point clamp converter, the compensation time is adjusted correspondingly to the change of the charging energy difference, and the charging energy difference can be freely preset. Third, the voltage balance control system and method thereof of the present invention can reduce the distortion of the output current and produce better current quality. Fourth, the voltage balance control system and method thereof of the present invention can be used for a fixed charge/discharge or linear charge and discharge control mode, and the present invention has better total harmonic distortion than the conventional maximum zero sequence voltage injection mode.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

200‧‧‧電壓平衡控制系統 200‧‧‧Voltage balance control system

300‧‧‧電壓命令比較模組 300‧‧‧Voltage Command Comparison Module

V max ‧‧‧最大電壓命令 V max ‧‧‧max voltage command

V min ‧‧‧最小電壓命令 V min ‧‧‧minimum voltage command

400‧‧‧多餘向量平衡模組 400‧‧‧Super Vector Balance Module

500‧‧‧電容電壓平衡控制模組 500‧‧‧Capacitor voltage balance control module

600‧‧‧第一加法器 600‧‧‧First Adder

700‧‧‧限制器 700‧‧‧Restrictor

800‧‧‧第二加法器 800‧‧‧second adder

‧‧‧電壓命令 , , ‧‧‧Voltage command

‧‧‧電壓命令 , , ‧‧‧Voltage command

V 0‧‧‧零序電壓 V 0 ‧‧ ‧ zero sequence voltage

V 0,bal‧‧‧平衡零序電壓 V 0,bal ‧‧‧balanced zero sequence voltage

V dcu ‧‧‧第一直流電壓 V dcu ‧‧‧first DC voltage

V dcd ‧‧‧第二直流電壓 V dcd ‧‧‧second DC voltage

i x ‧‧‧指示電流 i x ‧‧‧ indicates current

Claims (12)

一種電壓平衡控制系統,用以控制平衡一中性點箝位轉換器之複數電壓命令,該電壓平衡控制系統包含:一電壓命令比較模組,接收該些電壓命令並位移部分該些電壓命令之電壓準位且比較該些電壓命令的大小而得到一最大電壓命令與一最小電壓命令,該電壓命令比較模組輸出該最大電壓命令與該最小電壓命令;一多餘向量平衡模組,電性連接該電壓指令比較模組,該多餘向量平衡模組接收並運算該最大電壓命令與該最小電壓命令以產生一平衡零序電壓;以及一電容電壓平衡控制模組,電性連接該電壓命令比較模組,該電容電壓平衡控制模組接收並運算來自該中性點箝位轉換器之一指示電流、一第一直流電壓及一第二直流電壓以產生一零序電壓;其中該平衡零序電壓與該零序電壓同時注入該中性點箝位轉換器之各該電壓命令。 A voltage balance control system for controlling a complex voltage command of a balanced-neutral point clamp converter, the voltage balance control system comprising: a voltage command comparison module, receiving the voltage commands and displacing part of the voltage commands Comparing the voltage levels and comparing the magnitudes of the voltage commands to obtain a maximum voltage command and a minimum voltage command, the voltage command comparison module outputs the maximum voltage command and the minimum voltage command; a redundant vector balance module, electrical Connecting the voltage command comparison module, the redundant vector balance module receives and calculates the maximum voltage command and the minimum voltage command to generate a balanced zero sequence voltage; and a capacitor voltage balance control module, electrically connecting the voltage command a module, the capacitor voltage balance control module receives and calculates an indication current from the neutral point clamp converter, a first DC voltage, and a second DC voltage to generate a zero sequence voltage; wherein the balance zero sequence The voltage is injected into the voltage command of the neutral point clamp converter simultaneously with the zero sequence voltage. 如申請專利範圍第1項所述之電壓平衡控制系統,其中該多餘向量平衡模組具有一多餘電壓平衡運算函數,該多餘電壓平衡運算函數包含該平衡零序電壓、一總直流電壓、該最大電壓命令及該最小電壓命令,該總直流電壓等於該第一直流電壓加該第二直流電壓,該平衡零序電壓表示為V 0,bal,該總直流電壓表示為V dc ,該最 大電壓命令表示為V max ,該最小電壓命令表示為V min ,該多餘電壓平衡運算函數符合下式: The voltage balance control system of claim 1, wherein the redundant vector balance module has an excess voltage balance operation function, the redundant voltage balance operation function including the balanced zero sequence voltage, a total DC voltage, a maximum voltage command and the minimum voltage command, the total DC voltage being equal to the first DC voltage plus the second DC voltage, the balanced zero sequence voltage being represented as V 0,bal , the total DC voltage being represented as V dc , the maximum voltage The command is expressed as V max , and the minimum voltage command is expressed as V min , and the excess voltage balance operation function conforms to the following formula: 如申請專利範圍第1項所述之電壓平衡控制系統,其中該電容電壓平衡控制模組具有一電容電壓平衡控制運算函數,該電容電壓平衡控制運算函數包含一零序電壓、一空間向量區域參數、一總直流電壓、該指示電流、一充電能量差值及一時間長度,該零序電壓表示為V 0,該空間向量區域參數表示為k region,該總直流電壓表示為V dc ,該指示電流表示為i x ,該充電能量差值表示為△Q,該時間長度表示為T s ,該電容電壓平衡控制運算函數符合下式: 其中k region為1或-1。 The voltage balance control system of claim 1, wherein the capacitor voltage balance control module has a capacitor voltage balance control operation function, and the capacitor voltage balance control operation function includes a zero sequence voltage and a space vector region parameter. a total DC voltage, the indicated current, a charging energy difference, and a length of time, the zero sequence voltage is represented as V 0 , the space vector region parameter is represented as k region , and the total DC voltage is represented as V dc , the indication The current is expressed as i x , and the difference in charging energy is expressed as Δ Q , and the length of time is expressed as T s , and the capacitance voltage balance control operation function conforms to the following formula: Where k region is 1 or -1. 如申請專利範圍第3項所述之電壓平衡控制系統,其中該電容電壓平衡控制運算函數更包含一電容值、一電壓差絕對值、該第一直流電壓及該第二直流電壓,該電容值表示為C dc ,該電壓差絕對值表示為|△V|,該第一直流電壓表示為V dcu ,該第二直流電壓表示為V dcd ,該電容電壓平衡控制運算函數符合下式: 其中sgn為邏輯函數。 The voltage balance control system of claim 3, wherein the capacitor voltage balance control operation function further comprises a capacitance value, an absolute voltage difference value, the first DC voltage, and the second DC voltage, the capacitance value. Expressed as C dc , the absolute value of the voltage difference is expressed as |Δ V |, the first DC voltage is represented as V dcu , and the second DC voltage is expressed as V dcd , and the capacitance voltage balance control operation function conforms to the following formula: Where sgn is a logical function. 如申請專利範圍第1項所述之電壓平衡控制系統,更包含:一第一加法器,電性連接該多餘向量平衡模組與該電容電壓平衡控制模組,該第一加法器相加該平衡零序電壓與該零序電壓並產生一總零序電壓;一限制器,電性連接該第一加法器且接收該總零序電壓,該限制器限制該總零序電壓之大小並輸出一限制後總零序電壓;以及複數第二加法器,電性連接該限制器,各該第二加法器相加其中一該電壓命令與該限制後總零序電壓。 The voltage balance control system of claim 1, further comprising: a first adder electrically connecting the redundant vector balance module and the capacitor voltage balance control module, wherein the first adder adds the Balancing the zero sequence voltage with the zero sequence voltage and generating a total zero sequence voltage; a limiter electrically connecting the first adder and receiving the total zero sequence voltage, the limiter limiting the total zero sequence voltage and outputting a limited total zero sequence voltage; and a plurality of second adders electrically coupled to the limiter, each of the second adders adding one of the voltage commands to the limited total zero sequence voltage. 如申請專利範圍第1項所述之電壓平衡控制系統,其中該電容電壓平衡控制模組具有一電容電壓平衡控制運算函數,該電容電壓平衡控制運算函數包含一零序電壓、一空間向量區域參數、一線性參數、該第一直流電壓、該第二直流電壓、一總直流電壓、該指示電流及一時間長度,該零序電壓表示為V 0,該空間向量區域參數表示為k region,該線性參數表示為K q ,該第一直流電壓表示為V dcu ,該第二直流電壓表示為V dcd ,該總直流電壓表示為V dc ,該指示電流表示為i x ,該時間長度表示為T s ,該電容電壓平衡控制運算函數符合下式: 其中k region為1或-1。 The voltage balance control system of claim 1, wherein the capacitor voltage balance control module has a capacitor voltage balance control operation function, and the capacitor voltage balance control operation function includes a zero sequence voltage and a space vector region parameter. a linear parameter, the first DC voltage, the second DC voltage, a total DC voltage, the indication current, and a length of time, the zero sequence voltage is represented as V 0 , and the space vector region parameter is represented as k region , The linear parameter is denoted as K q , the first DC voltage is denoted as V dcu , the second DC voltage is denoted as V dcd , the total DC voltage is expressed as V dc , and the indicated current is expressed as i x , and the time length is expressed as T s , the capacitor voltage balance control operation function conforms to the following formula: Where k region is 1 or -1. 一種電壓平衡控制方法,用以控制平衡一中性點箝位轉換器之複數電壓命令,該電壓平衡控制方法包含以下步驟:一比較電壓命令步驟,係利用一電壓命令比較模組位移部分該些電壓命令之電壓準位且比較該些電壓命令的大小而得到一最大電壓命令與一最小電壓命令;一產生平衡零序電壓步驟,係利用一多餘向量平衡模組運算該最大電壓命令與該最小電壓命令以產生一平衡零序電壓;一產生零序電壓步驟,係利用一電容電壓平衡控制模組運算來自該中性點箝位轉換器之一指示電流、一第一直流電壓及一第二直流電壓以產生一零序電壓;以及一注入零序電壓步驟,係將該平衡零序電壓與該零序電壓同時注入該中性點箝位轉換器之各該電壓命令。 A voltage balance control method for controlling a complex voltage command of a balanced-neutral point clamp converter, the voltage balance control method comprising the following steps: a comparison voltage command step, using a voltage command to compare the module displacement portions Voltage command voltage level and comparing the magnitudes of the voltage commands to obtain a maximum voltage command and a minimum voltage command; a step of generating a balanced zero sequence voltage, using a redundant vector balancing module to calculate the maximum voltage command and the The minimum voltage command generates a balanced zero sequence voltage; a step of generating a zero sequence voltage is performed by using a capacitor voltage balance control module to calculate a current from the neutral point clamp converter, a first DC voltage, and a first The two DC voltages are used to generate a zero sequence voltage; and a step of injecting the zero sequence voltage is performed by simultaneously injecting the balanced zero sequence voltage and the zero sequence voltage into the voltage commands of the neutral point clamp converter. 如申請專利範圍第7項所述之電壓平衡控制方法,其中該多餘向量平衡模組具有一多餘電壓平衡運算函數,該多餘電壓平衡運算函數包含該平衡零序電壓、一總直流電壓、該最大電壓命令及該最小電壓命令,該總直流電壓等於該第一直流電壓加該第二直流電壓,該平衡零序電壓表示為V 0,bal,該總直流電壓表示為V dc ,該最大電壓命令表示為V max ,該最小電壓命令表示為V min ,該多餘電壓平衡運算函數符合下式: The voltage balance control method according to claim 7, wherein the redundant vector balance module has an excess voltage balance operation function, and the redundant voltage balance operation function includes the balanced zero sequence voltage and a total DC voltage. a maximum voltage command and the minimum voltage command, the total DC voltage being equal to the first DC voltage plus the second DC voltage, the balanced zero sequence voltage being represented as V 0,bal , the total DC voltage being represented as V dc , the maximum voltage The command is expressed as V max , and the minimum voltage command is expressed as V min , and the excess voltage balance operation function conforms to the following formula: 如申請專利範圍第7項所述之電壓平衡控制方法,其中該電容電壓平衡控制模組具有一電容電壓平衡控制運算函數,該電容電壓平衡控制運算函數包含一零序電壓、一空間向量區域參數、一總直流電壓、該指示電流、一充電能量差值及一時間長度,該零序電壓表示為V 0,該空間向量區域參數表示為k region,該總直流電壓表示為V dc ,該指示電流表示為i x ,該充電能量差值表示為△Q,該時間長度表示為T s ,該電容電壓平衡控制運算函數符合下式: 其中k region為1或-1。 The voltage balance control method according to claim 7, wherein the capacitor voltage balance control module has a capacitor voltage balance control operation function, and the capacitor voltage balance control operation function includes a zero sequence voltage and a space vector region parameter. a total DC voltage, the indicated current, a charging energy difference, and a length of time, the zero sequence voltage is represented as V 0 , the space vector region parameter is represented as k region , and the total DC voltage is represented as V dc , the indication The current is expressed as i x , and the difference in charging energy is expressed as Δ Q , and the length of time is expressed as T s , and the capacitance voltage balance control operation function conforms to the following formula: Where k region is 1 or -1. 如申請專利範圍第9項所述之電壓平衡控制方法,其中該電容電壓平衡控制運算函數更包含一電容值、一電壓差絕對值、該第一直流電壓及該第二直流電壓,該電容值表示為C dc ,該電壓差絕對值表示為|△V|,該第一直流電壓表示為V dcu ,該第二直流電壓表示為V dcd ,該電容電壓平衡控制運算函數符合下式: 其中sgn為邏輯函數。 The voltage balance control method of claim 9, wherein the capacitor voltage balance control operation function further comprises a capacitance value, an absolute voltage difference value, the first DC voltage, and the second DC voltage, the capacitance value Expressed as C dc , the absolute value of the voltage difference is expressed as |Δ V |, the first DC voltage is represented as V dcu , and the second DC voltage is expressed as V dcd , and the capacitance voltage balance control operation function conforms to the following formula: Where sgn is a logical function. 如申請專利範圍第7項所述之電壓平衡控制方法,其中該注入零序電壓步驟更包含: 利用一第一加法器與一限制器將該平衡零序電壓與該零序電壓運算輸出一限制後總零序電壓,並利用複數第二加法器分別相加該些電壓命令與該限制後總零序電壓。 The voltage balance control method of claim 7, wherein the step of injecting the zero sequence voltage further comprises: Using a first adder and a limiter to calculate the balanced zero-sequence voltage and the zero-sequence voltage to output a limited total zero-sequence voltage, and using the plurality of second adders to respectively add the voltage commands and the total after the limit Zero sequence voltage. 如申請專利範圍第7項所述之電壓平衡控制方法,其中該電容電壓平衡控制模組具有一電容電壓平衡控制運算函數,該電容電壓平衡控制運算函數包含一零序電壓、一空間向量區域參數、一線性參數、該第一直流電壓、該第二直流電壓、一總直流電壓、該指示電流及一時間長度,該零序電壓表示為V 0,該空間向量區域參數表示為k region,該線性參數表示為K q ,該第一直流電壓表示為V dcu ,該第二直流電壓表示為V dcd ,該總直流電壓表示為V dc ,該指示電流表示為i x ,該時間長度表示為T s ,該電容電壓平衡控制運算函數符合下式: 其中k region為1或-1。 The voltage balance control method according to claim 7, wherein the capacitor voltage balance control module has a capacitor voltage balance control operation function, and the capacitor voltage balance control operation function includes a zero sequence voltage and a space vector region parameter. a linear parameter, the first DC voltage, the second DC voltage, a total DC voltage, the indication current, and a length of time, the zero sequence voltage is represented as V 0 , and the space vector region parameter is represented as k region , The linear parameter is denoted as K q , the first DC voltage is denoted as V dcu , the second DC voltage is denoted as V dcd , the total DC voltage is expressed as V dc , and the indicated current is expressed as i x , and the time length is expressed as T s , the capacitor voltage balance control operation function conforms to the following formula: Where k region is 1 or -1.
TW105104102A 2016-02-05 2016-02-05 Voltage balancing control system and method thereof TWI578655B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105104102A TWI578655B (en) 2016-02-05 2016-02-05 Voltage balancing control system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105104102A TWI578655B (en) 2016-02-05 2016-02-05 Voltage balancing control system and method thereof

Publications (2)

Publication Number Publication Date
TWI578655B true TWI578655B (en) 2017-04-11
TW201729482A TW201729482A (en) 2017-08-16

Family

ID=59241135

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105104102A TWI578655B (en) 2016-02-05 2016-02-05 Voltage balancing control system and method thereof

Country Status (1)

Country Link
TW (1) TWI578655B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110971162B (en) * 2019-12-11 2021-04-06 浙江大学 Model prediction torque control method of NPC three-level converter-PMSM system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201312926A (en) * 2011-09-08 2013-03-16 Delta Electronics Inc Parallel inverter drive system and the apparatus and method for suppressing circulating current in such system
CN103219908A (en) * 2013-03-26 2013-07-24 东南大学 Method for controlling balance of direct current side of cascaded grid-connected inverter based on zero sequence and negative sequence voltage injection
CN103236797A (en) * 2013-04-17 2013-08-07 西安交通大学 Method for controlling balance of capacitive voltages of five-level diode neutral point clamped converter
CN103401459A (en) * 2013-08-15 2013-11-20 东南大学 Triangularly connected chain H bridge suspended type inverter interphase DC side voltage balancing control method
CN103715924A (en) * 2012-10-09 2014-04-09 Lg优普乐株式会社 Three-level inverter having two direct current (DC)-links, and apparatus and method for controlling three-level inverter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201312926A (en) * 2011-09-08 2013-03-16 Delta Electronics Inc Parallel inverter drive system and the apparatus and method for suppressing circulating current in such system
CN103715924A (en) * 2012-10-09 2014-04-09 Lg优普乐株式会社 Three-level inverter having two direct current (DC)-links, and apparatus and method for controlling three-level inverter
CN103219908A (en) * 2013-03-26 2013-07-24 东南大学 Method for controlling balance of direct current side of cascaded grid-connected inverter based on zero sequence and negative sequence voltage injection
CN103236797A (en) * 2013-04-17 2013-08-07 西安交通大学 Method for controlling balance of capacitive voltages of five-level diode neutral point clamped converter
CN103401459A (en) * 2013-08-15 2013-11-20 东南大学 Triangularly connected chain H bridge suspended type inverter interphase DC side voltage balancing control method

Also Published As

Publication number Publication date
TW201729482A (en) 2017-08-16

Similar Documents

Publication Publication Date Title
Khadkikar et al. Generalised single-phase pq theory for active power filtering: simulation and DSP-based experimental investigation
JP6178433B2 (en) Power converter
JP2007295686A (en) Direct ac-ac power converter
US9929676B2 (en) Method for controlling three phase equivalent voltage of multilevel inverter
EP4064496A1 (en) Power quality grade determination method and apparatus in power grid, device and storage medium
Chauhan et al. Current error space phasor based hysteresis controller for two-level and three-level converters used in shunt active power filters
Cossutta et al. Control system to balance internal currents of a multilevel current-source inverter
TWI578655B (en) Voltage balancing control system and method thereof
JP2016046962A (en) Multilevel power conversion device
CN110336472B (en) H3IMC topological structure with unbalanced load and boost control method thereof
Ounejjar et al. New nine-level inverter with self balancing of capacitors voltages
KR101166663B1 (en) Apparatus of 3-phase uninterruptable power supplies having optimum gain control module in closed-loop
CN112532094A (en) Compound control method of T-type three-level NPC inverter
CN109687748B (en) Modulation and capacitance voltage balance control method of neutral point clamped five-level converter
JP2016063687A (en) Power conversion system
KR101836872B1 (en) Pulse-width modulation control method and device for achieving constant DC-side currents in three-level converter
JP6719693B1 (en) Power converter test apparatus and test method
JP6480290B2 (en) Power converter
Changizian et al. A novel FPGA control scheme to improve power factor and reduce the harmonic distortion in a three phase VIENNA rectifier
JP2018046601A (en) Control device of power factor improving converter
KR101224589B1 (en) Multilevel inverter
Maswood et al. A novel variable hysteresis band current control of three-phase three-level rectifier with constant switching frequency
JPH11164481A (en) Method for controlling active filter
Cervone et al. A hybrid modulation technique for the DC-bus voltage balancing in a three-phase NPC converter
Purandare et al. Three-Phase Three-Level Voltage Source Inverter with Voltage Balancer-A Simulation Study in Matlab/Simulink