TWI574143B - Solar power converter - Google Patents

Solar power converter Download PDF

Info

Publication number
TWI574143B
TWI574143B TW105108212A TW105108212A TWI574143B TW I574143 B TWI574143 B TW I574143B TW 105108212 A TW105108212 A TW 105108212A TW 105108212 A TW105108212 A TW 105108212A TW I574143 B TWI574143 B TW I574143B
Authority
TW
Taiwan
Prior art keywords
solar
unit
module
conversion module
power converter
Prior art date
Application number
TW105108212A
Other languages
Chinese (zh)
Other versions
TW201734695A (en
Inventor
Xuan-Zhang Jiang
ge-zhi Liu
jin-jie Zhang
Original Assignee
Nat Chung-Shan Inst Of Science And Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Chung-Shan Inst Of Science And Tech filed Critical Nat Chung-Shan Inst Of Science And Tech
Priority to TW105108212A priority Critical patent/TWI574143B/en
Application granted granted Critical
Publication of TWI574143B publication Critical patent/TWI574143B/en
Publication of TW201734695A publication Critical patent/TW201734695A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Dc-Dc Converters (AREA)

Description

太陽能功率轉換器 Solar power converter

本發明係關於電力電子技術之相關技術領域,尤指一種具有隔離型雙級全橋諧振式電路的太陽能功率轉換器。 The invention relates to the related technical field of power electronic technology, in particular to a solar power converter with an isolated two-stage full-bridge resonant circuit.

隨著太陽能板演進與發展,不同日照量與日照角度會影響太陽能板的發電量;因此,電路設計人員積極地嘗試研發各種具有隔離型雙級全橋諧振式電路的太陽能功率轉換器,以對應地應用在各種不同功率的太陽能電池板。 With the evolution and development of solar panels, different solar radiation and sunshine angles will affect the power generation of solar panels; therefore, circuit designers are actively trying to develop various solar power converters with isolated two-stage full-bridge resonant circuits to correspond It is applied to solar panels of various powers.

有鑑於具有隔離型雙級全橋諧振式電路的太陽能功率轉換器具有廣泛的應用,電路設計人員係積極地嘗試調整太陽能板所產生之浮動電壓並能使用在低壓輸入的情況中。較常見的方式是,電路設計員係採用非隔離式架構或隔離式架構,藉此減少太陽能板所產生之浮動電壓。 In view of the wide range of applications of solar power converters with isolated two-stage full-bridge resonant circuits, circuit designers are actively trying to adjust the floating voltage generated by the solar panels and can be used in the case of low voltage inputs. A more common approach is for circuit designers to use a non-isolated or isolated architecture to reduce the floating voltage generated by the solar panels.

圖1係為習知的非隔離降壓式太陽能功率轉換器與升降壓式太陽能功率轉換器的電路架構圖。如圖1(a)所示,習知的降壓式太陽功率轉換器係包括:太陽能電池模組(PV)、降壓式電源轉換單元、以及儲能單元(Battery bank)。其中,該降壓式電源轉換單元的輸入端係耦接於該太陽能電 池模組,該降壓式電源轉換單元的輸出端係耦接於該儲能單元。該技術主要是利用降壓式電源轉換單元之一電感和一電容所組成低通濾波器過濾高壓的諧波分量,使其滿足規格。習知的升降壓式太陽功率轉換器如圖1(b)所示:係包括:太陽能電池模組、降壓式電源轉換單元、升壓式電源轉換單元、以及儲能單元,其中,該降壓式電源轉換單元的輸入端係耦接於該太陽能電池模組,該降壓式電源轉換單元的輸出端係耦接於該升壓式電源轉換單元的輸入端,並且,該升壓式電源轉換單元的輸出端係耦接於該儲能單元。該技術主要是利用升壓式電源轉換單元與降壓式電源轉換單元特性,使得輸入之電壓均能滿足輸出規格,但缺點是需要較多開關,且控制較複雜,電路成本較高。同時,無論是降壓式電路或是升降壓式電路在高壓迴路端之設計上均需要更高之漏電流,以確保其安全性。 FIG. 1 is a circuit diagram of a conventional non-isolated buck solar power converter and a buck-boost solar power converter. As shown in FIG. 1(a), a conventional buck solar power converter includes a solar cell module (PV), a buck power conversion unit, and a battery bank. The input end of the buck power conversion unit is coupled to the solar power The output of the buck power conversion unit is coupled to the energy storage unit. The technology mainly uses a low-pass filter composed of one of the buck power conversion unit and a low-pass filter to filter the high-voltage harmonic components to meet the specifications. A conventional buck-boost solar power converter is shown in FIG. 1(b): a solar battery module, a buck power conversion unit, a boost power conversion unit, and an energy storage unit, wherein the drop The input end of the step-up power conversion unit is coupled to the input end of the step-up power conversion unit, and the boost power supply is coupled to the input end of the step-up power conversion unit. The output end of the conversion unit is coupled to the energy storage unit. The technology mainly utilizes the characteristics of the boost power conversion unit and the buck power conversion unit, so that the input voltage can meet the output specification, but the disadvantage is that more switches are needed, and the control is more complicated, and the circuit cost is higher. At the same time, both the buck circuit and the buck-boost circuit require a higher leakage current in the design of the high voltage loop to ensure its safety.

一般隔離式功率轉換器電路則選擇性較多,其電路可以採用單級式(single-stage)或雙級式(two-stage)來實現,單級式電路雖然電路實現成本較低,但電路在高低壓輸入下之性能可能有較大差異,開關元件之選擇亦較困難,且元件可能需要承受較高電壓。雙級式電路較具彈性,可以應付較寬廣之輸入電壓範圍,缺點是控制較複雜,電路成本較高。 Generally, the isolated power converter circuit has more selectivity, and the circuit can be implemented by single-stage or two-stage. The single-stage circuit has lower cost, but the circuit is low. Performance at high and low voltage inputs may vary widely, switching component selection is more difficult, and components may need to withstand higher voltages. The two-stage circuit is more flexible and can cope with a wider range of input voltages. The disadvantage is that the control is more complicated and the circuit cost is higher.

圖2係為習知不同型式單級隔離式功率轉換器架 構圖,如圖所示,圖2(a)係為習知的單級主動鉗位前向式太陽能功率轉換器,圖2(b)係為習知的單級半橋式太陽能功率轉換器,圖2(c)係為習知的單級全橋式太陽能功率轉換器。習知的單級主動鉗位前向式太陽能功率轉換器如圖2(a)所示,係包括:太陽能電池模組(PV)、降壓式電源轉換單元、儲能單元(Battery bank)、鉗位電路、以及隔離變壓器。其中,該鉗位電路的輸入端係耦接於該太陽能電池模組,該鉗位電路的輸出端係耦接於該隔離變壓器的輸入端,並且,該隔離變壓器的輸出端係耦接於該降壓式電源轉換單元的輸入端。進一步地,該降壓式電源轉換單元的輸出端係耦接於該儲能單元。習知的單級半橋式太陽能功率轉換器如圖2(b)所示,係包括:太陽能電池模組(PV)、儲能單元(Battery bank)、隔離變壓器、半橋式電路、以及整流器,其中,該半橋式電路的輸入端係耦接於該太陽能電池模組,該半橋式電路的輸出端係耦接於該隔離變壓器的輸入端,並且,該隔離變壓器的輸出端係耦接於該整流器的輸入端。進一步地,該整流器的輸出端係耦接於該儲能單元。習知的單級全橋式太陽能功率轉換器如圖2(c)所示,係包括:太陽能電池模組(PV)、儲能單元(Battery bank)、隔離變壓器、全橋式電路、以及整流器,其中,該全橋式電路的輸入端係耦接於該太陽能電池模組,該全橋式電路的輸出端係耦接於該隔離變壓器的輸入端,並且,該隔離變壓器的輸出端係耦接於該整流器的輸入端。進一步地,該 整流器的輸出端係耦接於該儲能單元。 Figure 2 is a conventional type of single-stage isolated power converter frame FIG. 2(a) is a conventional single-stage active clamp forward solar power converter, and FIG. 2(b) is a conventional single-stage half-bridge solar power converter. Figure 2(c) is a conventional single stage full bridge solar power converter. The conventional single-stage active clamp forward solar power converter is shown in FIG. 2(a) and includes a solar battery module (PV), a buck power conversion unit, and a battery bank. Clamp circuit, and isolation transformer. The input end of the clamp circuit is coupled to the solar cell module, the output end of the clamp circuit is coupled to the input end of the isolation transformer, and the output end of the isolation transformer is coupled to the The input of the buck power conversion unit. Further, an output end of the buck power conversion unit is coupled to the energy storage unit. The conventional single-stage half-bridge solar power converter is shown in FIG. 2(b) and includes: a solar cell module (PV), a battery bank, an isolation transformer, a half bridge circuit, and a rectifier. The input end of the half-bridge circuit is coupled to the solar cell module, the output end of the half-bridge circuit is coupled to the input end of the isolation transformer, and the output end of the isolation transformer is coupled Connected to the input of the rectifier. Further, an output end of the rectifier is coupled to the energy storage unit. A conventional single-stage full-bridge solar power converter, as shown in FIG. 2(c), includes: a solar cell module (PV), a battery bank, an isolation transformer, a full-bridge circuit, and a rectifier. The input end of the full-bridge circuit is coupled to the solar cell module, the output end of the full-bridge circuit is coupled to the input end of the isolation transformer, and the output end of the isolation transformer is coupled Connected to the input of the rectifier. Further, the The output of the rectifier is coupled to the energy storage unit.

綜上所述,單級太陽能功率轉換器電路架構主要是利用輸入電壓之浮動範圍,其變壓器匝數比之設計需使用最低電壓,而在高輸入電壓時,則利用調整責任週期的方式進行,因此高低壓責任週期變化大。 In summary, the single-stage solar power converter circuit architecture mainly uses the floating range of the input voltage, and the transformer turns ratio design needs to use the lowest voltage, and at the high input voltage, the adjustment responsibility cycle is used. Therefore, the cycle of high and low pressure responsibility varies greatly.

雙級式電路架構是將單級式電路之輸入側加上一升壓式電源轉換單元所設計而成。請繼續參閱圖3,圖3(a)係為習知的隔離雙級升壓式SRC(串聯諧振)太陽能功率轉換器的電路架構圖,圖3(b)係為習知的隔離雙級升壓式LLC太陽能功率轉換器的電路架構圖。習知的隔離雙級式SRC(串聯諧振)太陽能功率轉換器係包括:太陽能電池模組(PV)、儲能單元(Battery bank)、升壓式電源轉換單元、隔離變壓器、SRC(串聯諧振)半橋電路、以及整流器,其中,該SRC(串聯諧振)半橋電路的輸入端係透過該升壓式電源轉換單元而耦接於太陽能電池模組,該SRC(串聯諧振)半橋電路的輸出端係耦接於該隔離變壓器的輸入端,並且,該隔離變壓器的輸出端係耦接於該整流器的輸入端。進一步地,該整流器的輸出端係耦接於該儲能單元。另,如圖3(b)所示,習知的隔離雙級式LLC太陽能功率轉換器係包括:太陽能電池模組(PV)、儲能單元(Battery bank)、升壓式電源轉換單元、隔離變壓器、LLC半橋電路、以及整流器,其中,該LLC半橋電路的輸入端係透過該升壓式電源轉換單元而耦接於太陽能電池模組,該LLC半橋電 路的輸出端係耦接於該隔離變壓器的輸入端,並且,該隔離變壓器的輸出端係耦接於該整流器的輸入端。進一步地,該整流器的輸出端係耦接於該儲能單元。綜上所述,隔離雙級式太陽能功率轉換器電路架構主要是藉由該升壓式轉換器的調整,使得該第二級隔離式電路輸出與輸入之電壓變化較小以提升效率。 The two-stage circuit architecture is designed by adding a boost power conversion unit to the input side of the single-stage circuit. Please continue to refer to FIG. 3. FIG. 3(a) is a circuit diagram of a conventional isolated two-stage step-up SRC (series resonance) solar power converter, and FIG. 3(b) is a conventional isolation two-stage liter. Circuit diagram of a pressure-type LLC solar power converter. Conventional isolated two-stage SRC (series resonance) solar power converters include: solar cell module (PV), energy storage unit (Battery bank), boost power conversion unit, isolation transformer, SRC (series resonance) a half bridge circuit and a rectifier, wherein an input end of the SRC (series resonance) half bridge circuit is coupled to the solar cell module through the boost power conversion unit, and an output of the SRC (series resonance) half bridge circuit The end is coupled to the input of the isolation transformer, and the output of the isolation transformer is coupled to the input of the rectifier. Further, an output end of the rectifier is coupled to the energy storage unit. In addition, as shown in FIG. 3(b), the conventional isolated two-stage LLC solar power converter includes: a solar cell module (PV), a battery bank, a boost power conversion unit, and isolation. a transformer, an LLC half-bridge circuit, and a rectifier, wherein an input end of the LLC half-bridge circuit is coupled to the solar cell module through the boost power conversion unit, the LLC half-bridge power The output end of the circuit is coupled to the input end of the isolation transformer, and the output end of the isolation transformer is coupled to the input end of the rectifier. Further, an output end of the rectifier is coupled to the energy storage unit. In summary, the isolated two-stage solar power converter circuit architecture is mainly adjusted by the boost converter, so that the voltage of the output and input of the second-stage isolated circuit is small to improve efficiency.

因此,承圖1、圖2、圖3所述之非隔離型電路架構與隔離型電路架構雖廣泛應用於現有的太陽能功率轉換器中;然而,習知的非隔離式太陽能功率轉換器與隔離式太陽能功率轉換器仍具有以下主要之缺點:(1)於該非隔離型太陽能功率轉換器中,為了改善非隔離式太陽能功率轉換器電路之電氣安全性,一般都會改為隔離式雙級太陽能功率轉換器以增加電氣安全性;但是,若採用習知的隔離式雙級太陽能功率轉換器,其高低壓所需控制的責任週期(Duty Cycle)變化較大,造成系統性能、效率及穩定度較差。(2)於習知的隔離型雙級太陽能功率轉換器中,其第二級電路若採用諧振式電路,則需要作變頻控制。然,第二級電路雖然可採用全橋式電路,並使用定頻之相移PWM控制電路改善,但全橋式電路在輕載時不易進入零電壓切換,導致轉換效率較差。 Therefore, the non-isolated circuit architecture and isolated circuit architecture described in Figures 1, 2, and 3 are widely used in existing solar power converters; however, conventional non-isolated solar power converters and isolation The solar power converter still has the following main disadvantages: (1) In the non-isolated solar power converter, in order to improve the electrical safety of the non-isolated solar power converter circuit, it is generally changed to the isolated two-stage solar power. Converters to increase electrical safety; however, if the conventional isolated two-stage solar power converter is used, the duty cycle of the high and low voltage required control changes greatly, resulting in poor system performance, efficiency and stability. . (2) In the conventional isolated two-stage solar power converter, if the second-stage circuit adopts a resonant circuit, frequency conversion control is required. However, although the second-stage circuit can adopt a full-bridge circuit and use a fixed-frequency phase-shift PWM control circuit to improve, the full-bridge circuit is less likely to enter zero-voltage switching at light loads, resulting in poor conversion efficiency.

為改善習知技術之缺點,本發明提供一種太陽能功率轉換器。本發明係提出一雙級式且具有隔離全橋諧振式 太陽能功率轉換器架構,其第一級電路可為升壓式、降壓式或升降壓式轉換器,並具有執行最大功率點追蹤(Maximum Power Point Tracking,MPPT)控制之能力,第二級電路則採用全橋諧振式轉換器架構,使其輸出電壓穩定並可提升整體效率。 To improve the shortcomings of the prior art, the present invention provides a solar power converter. The present invention proposes a two-stage and isolated full bridge resonant type The solar power converter architecture, the first stage circuit can be a boost, buck or buck-boost converter, and has the ability to perform Maximum Power Point Tracking (MPPT) control, the second stage circuit A full-bridge resonant converter architecture is used to stabilize the output voltage and improve overall efficiency.

為達上述目的及其他目的,本發明係提供一種太陽能功率轉換器,該太陽能功率轉換器係用於將一太陽能模組產生之電能轉換成穩定直流電,該太陽能功率轉換器係包括:一多相交錯式電源轉換模組,係耦接該太陽能模組,該多相交錯式電源轉換模組係接收該太陽能模組輸出之電能並產生一電壓,並對該太陽能模組執行一最大功率追蹤動作;一濾波單元,係耦接該多相交錯式電源轉換模組,該濾波單元係用於濾除該多相交錯式電源轉換模組輸出之雜訊;一全橋式諧振轉換模組,該全橋式諧振轉換模組係包括一電容與四功率開關,該電容係耦接該濾波單元與該多相交錯式電源轉換模組,該四功率開關係為全橋式排列、並耦接該電容;一變壓單元,係為一變壓器,該變壓單元係耦接該全橋式諧振轉換模組;一整流單元,係耦接該變壓單元;其中該全橋式諧振轉換模組係利用該電容與該變壓單元之一次側進行諧振頻率轉換,藉以提昇整體效率,再經由該整流單元整流後輸出一穩定直流電。 To achieve the above and other objects, the present invention provides a solar power converter for converting electrical energy generated by a solar module into a stable direct current, the solar power converter comprising: a multiphase The interleaved power conversion module is coupled to the solar module, and the multi-phase interleaved power conversion module receives the electric energy output by the solar module and generates a voltage, and performs a maximum power tracking action on the solar module. a filtering unit is coupled to the multi-phase interleaved power conversion module, wherein the filtering unit is configured to filter out noise outputted by the multi-phase interleaved power conversion module; and a full bridge resonant conversion module, The full-bridge resonant conversion module includes a capacitor and a four-power switch, the capacitor is coupled to the filter unit and the multi-phase interleaved power conversion module, and the four power-on relationship is a full-bridge arrangement and coupled to the Capacitor; a transformer unit is a transformer, the transformer unit is coupled to the full bridge type resonant converter module; a rectifying unit is coupled to the transformer unit; wherein the full bridge The resonant converter module of the system using the capacitance of the primary side of the transforming unit for converting the resonance frequency, in order to enhance the overall efficiency, and then outputs a stabilized direct current rectified through the rectification unit after.

本發明其中一實施例中,該多相交錯式電源轉換 模組係包括一儲能單元,該儲能單元係耦接該太陽能模組,該儲能單元係接收並儲存該太陽能模組產生之電流。 In one embodiment of the present invention, the multiphase interleaved power conversion The module includes an energy storage unit coupled to the solar module, and the energy storage unit receives and stores the current generated by the solar module.

本發明其中一實施例中,更包括一輸出濾波單元,該輸出濾波單元係耦接於該多相交錯式電源轉換模組的輸出端。 In an embodiment of the present invention, an output filtering unit is coupled to the output end of the multi-phase interleaved power conversion module.

本發明其中一實施例中,該多相交錯式電源轉換模組係為升壓式功率轉換器、降壓式功率轉換器或升降壓功率轉換器。 In one embodiment of the present invention, the multi-phase interleaved power conversion module is a boost power converter, a buck power converter, or a buck-boost power converter.

本發明其中一實施例中,該功率開關係具有旁路二極體。 In one embodiment of the invention, the power-on relationship has a bypass diode.

本發明之主要目的在於提供一種具有隔離型雙級全橋諧振式電路的太陽能功率轉換器。不同於傳統隔離雙級太陽能功率轉換器,本發明之太陽能功率轉換器係藉由固定無控制相移方式控制全橋式諧振轉換模組。藉由此設計,該全橋式諧振轉換模組之所有功率開關在任何負載下均能達到零電壓切換,不僅可以改善輕載效率,對於全負載變動範圍下之效率均有改善及助益。 SUMMARY OF THE INVENTION A primary object of the present invention is to provide a solar power converter having an isolated two-stage full-bridge resonant circuit. Different from the traditional isolated two-stage solar power converter, the solar power converter of the present invention controls the full-bridge resonant converter module by a fixed uncontrolled phase shift mode. By designing, all the power switches of the full-bridge resonant converter module can achieve zero voltage switching under any load, which can not only improve the light load efficiency, but also improve and benefit the efficiency under the full load variation range.

以上之概述與接下來的詳細說明及附圖,皆是為了能進一步說明本發明達到預定目的所採取的方式、手段及功效。而有關本發明的其他目的及優點,將在後續的說明及圖示中加以闡述。 The above summary, the following detailed description and the accompanying drawings are intended to further illustrate the manner, the Other objects and advantages of the present invention will be described in the following description and drawings.

10‧‧‧太陽能模組 10‧‧‧Solar modules

11‧‧‧多相交錯式電源轉換模組 11‧‧‧Multiphase Interleaved Power Conversion Module

111‧‧‧儲能單元 111‧‧‧ Energy storage unit

12‧‧‧濾波單元 12‧‧‧Filter unit

13‧‧‧全橋式諧振轉換模組 13‧‧‧Full-bridge resonant converter module

131‧‧‧電容 131‧‧‧ Capacitance

132a~132d‧‧‧功率開關 132a~132d‧‧‧Power switch

14‧‧‧變壓單元 14‧‧‧Transformer unit

15‧‧‧整流單元 15‧‧‧Rectifier unit

16‧‧‧穩壓單元 16‧‧‧Stabilizer

圖1係為習知的非隔離降壓式太陽能功率轉換器與升降壓式太陽能功率轉換器的電路架構圖。 FIG. 1 is a circuit diagram of a conventional non-isolated buck solar power converter and a buck-boost solar power converter.

圖2係為習知不同型式單級隔離式功率轉換器架構圖。 FIG. 2 is a structural diagram of a conventional single-stage isolated power converter of different types.

圖3(a)係為習知的隔離雙級升壓式SRC(串聯諧振)太陽能功率轉換器的電路架構圖。 Figure 3 (a) is a circuit architecture diagram of a conventional isolated two-stage boost SRC (series resonant) solar power converter.

圖3(b)係為習知的隔離雙級升壓式LLC太陽能功率轉換器的電路架構圖。 Figure 3 (b) is a circuit architecture diagram of a conventional isolated two-stage boosting LLC solar power converter.

圖4係為本發明之太陽能功率轉換器實施例電路架構圖。 4 is a circuit diagram of an embodiment of a solar power converter of the present invention.

圖5A係為本發明之太陽能功率轉換器之理論等效電路圖。 5A is a theoretical equivalent circuit diagram of a solar power converter of the present invention.

圖5B係為本發明之太陽能功率轉換器之模擬波形圖。 FIG. 5B is an analog waveform diagram of the solar power converter of the present invention.

圖6係為本發明實施例之太陽能模組(PV)啟動與變載狀況下之模擬波形圖。 FIG. 6 is an analog waveform diagram of a solar module (PV) under startup and load conditions according to an embodiment of the present invention.

圖7係為本發明實施例於在滿載狀態下各部位元件之模擬波形圖。 FIG. 7 is an analog waveform diagram of components of each part in a fully loaded state according to an embodiment of the present invention.

以下係藉由特定的具體實例說明本發明之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地瞭解本發明之其他優點與功效。 The embodiments of the present invention are described below by way of specific examples, and those skilled in the art can readily appreciate other advantages and functions of the present invention from the disclosure herein.

眾所周知,太陽能功率轉換器分為隔離型與非隔離型,其中,非隔離型太陽能功率轉換器包括升壓式功率轉換器、降壓式功率轉換器、以及升/降壓式功率轉換器;另, 隔離型太陽能功率轉換器包括推挽式太陽能功率轉換器以及返馳式太陽能功率轉換器。 As we all know, solar power converters are divided into isolated and non-isolated types, among which non-isolated solar power converters include boost power converters, buck power converters, and boost/buck power converters; , The isolated solar power converter includes a push-pull solar power converter and a flyback solar power converter.

圖4為本發明之太陽能功率轉換器實施例電路架構圖,用於說明本發明之運作原理。本發明實施例之太陽能功率轉換器如圖所示,該太陽能功率轉換器係用於將一太陽能模組10產生之電能轉換成穩定直流電,該實施例係包括:一多相交錯式電源轉換模組11,係耦接該太陽能模組10,該多相交錯式電源轉換模組11係接收該太陽能模組10輸出之電能並產生一電壓,並對該太陽能模組10執行一最大功率追蹤動作;一濾波單元12,係耦接該多相交錯式電源轉換模組11,該濾波單元12係用於濾除該多相交錯式電源轉換模組11輸出之雜訊;一全橋式諧振轉換模組13,該全橋式諧振轉換模組13係包括一電容131與四功率開關(132a~132d),該電容131係耦接該濾波單元12與該多相交錯式電源轉換模組11,該四功率開關(132a~132d)係為全橋式排列、並耦接該電容131;一變壓單元14,係為一變壓器,該變壓單元係耦接該全橋式諧振轉換模組;一整流單元15,係耦接該變壓單元;其中該全橋式諧振轉換模組13係利用該電容131與該變壓單元14之一次側進行諧振頻率轉換,藉以提昇整體效率,再經由該整流單元15輸出一穩定直流電。 4 is a circuit diagram of an embodiment of a solar power converter of the present invention for explaining the operation principle of the present invention. In the solar power converter of the embodiment of the present invention, the solar power converter is used to convert the electrical energy generated by a solar module 10 into a stable direct current. The embodiment includes: a multi-phase interleaved power conversion mode The group 11 is coupled to the solar module 10, and the multi-phase interleaved power conversion module 11 receives the electrical energy output by the solar module 10 and generates a voltage, and performs a maximum power tracking operation on the solar module 10. a filtering unit 12 coupled to the multi-phase interleaved power conversion module 11 for filtering noise outputted by the multi-phase interleaved power conversion module 11; a full bridge resonant conversion The module 13 includes a capacitor 131 and a four-power switch (132a-132d). The capacitor 131 is coupled to the filter unit 12 and the multi-phase interleaved power conversion module 11. The four-power switch (132a-132d) is a full-bridge type and coupled to the capacitor 131; a transformer unit 14 is a transformer, and the transformer unit is coupled to the full-bridge resonant converter module; a rectifying unit 15 coupled to the transformer ; Wherein the full-bridge resonant converter module 13 using the capacitor line 131 and the resonant frequency conversion of the primary side of the transforming unit 14, in order to enhance the overall efficiency, and then outputs a stabilized direct current through the rectifier unit 15.

本發明之太陽能功率轉換器實施例中,該太陽能模組10係為具有一或複數組太陽能電池板之太陽能發電裝 置。 In the embodiment of the solar power converter of the present invention, the solar module 10 is a solar power device with one or multiple array solar panels. Set.

本發明之太陽能功率轉換器實施例中,該多相交錯式電源轉換模組11更進一步包括儲能單元111,該儲能單元係耦接該太陽能模組10,係接收並儲存該太陽能模組10產生之電流。其中該多相交錯式電源轉換模組11可為升壓式、降壓式或升降壓式功率轉換器;該儲能單元111係可為一或複數電感。於本發明一實施例中,係根據該太陽能模組10所具有之太陽能電池板數量,以一組太陽能電池板搭配一組儲能單元之電感為原則。當該太陽能模組10之電流、電壓輸出量發生變化時,該變化量會被該多相交錯式電源轉換模組11濾波,同時,該多相交錯式電源轉換模組11會輸出一電能至該全橋式諧振轉換模組13。 In the embodiment of the solar power converter of the present invention, the multi-phase interleaved power conversion module 11 further includes an energy storage unit 111. The energy storage unit is coupled to the solar module 10 to receive and store the solar module. 10 generated current. The multi-phase interleaved power conversion module 11 can be a boost, buck or buck-boost power converter; the energy storage unit 111 can be one or a plurality of inductors. In an embodiment of the present invention, according to the number of solar panels of the solar module 10, a set of solar panels is combined with the inductance of a group of energy storage units. When the current and voltage output of the solar module 10 changes, the amount of change is filtered by the multi-phase interleaved power conversion module 11, and the multi-phase interleaved power conversion module 11 outputs an electric energy to The full bridge type resonant conversion module 13 is provided.

本發明之一實施例中,該濾波單元12係可為一電感;該濾波單元12的一端係耦接於該多相交錯式電源轉換模組11,其另一端係耦接於該電容131;該全橋式諧振轉換模組13之電容131係亦耦接於該多相交錯式電源轉換模組11;如此,藉由該濾波單元12之電感儲存該多相交錯式電源轉換模組11所輸出之電流,使得該全橋式諧振轉換模組13的輸入端等同耦接於該多相交錯式電源轉換模組11之一輸出電流源,該多相交錯式電源轉換模組11輸出之電壓亦被該電容131所儲存。 In one embodiment of the present invention, the filter unit 12 is an inductor; one end of the filter unit 12 is coupled to the multi-phase interleaved power conversion module 11, the other end of which is coupled to the capacitor 131; The capacitor 131 of the full-bridge resonant converter module 13 is also coupled to the multi-phase interleaved power conversion module 11; thus, the multi-phase interleaved power conversion module 11 is stored by the inductance of the filtering unit 12 The output current is such that the input end of the full-bridge resonant converter module 13 is equally coupled to an output current source of the multi-phase interleaved power conversion module 11 , and the output voltage of the multi-phase interleaved power conversion module 11 It is also stored by the capacitor 131.

本發明之一實施例中,該全橋式諧振轉換單元 132更包括四個功率開關(132a~132d),該四個功率開關係具有旁路二極體。 In an embodiment of the invention, the full bridge resonant conversion unit 132 further includes four power switches (132a-132d) having bypass diodes.

本發明之一實施例中,該全橋式諧振轉換模組13之功率開關(132a~132d)係採用全橋式架構,並採用無需控制之相移方法驅動各功率開關(132a~132d),亦即相移角度不變,且設定為最大相移量(近乎180度)以獲致最佳效率,因此控制方法如同單級電路一樣,所需控制機制相當簡單。由於該全橋式諧振轉換模組13之諧振方式為定頻,故電路設計容易;且直接利用該電容131與該變壓單元14之一次側電感(即變壓器之漏感)作諧振,故無需外加諧振電感,簡化電路配置與降低製造成本。 In an embodiment of the present invention, the power switches (132a-132d) of the full-bridge resonant conversion module 13 adopt a full-bridge architecture, and drive the power switches (132a-132d) by using a phase shift method without control. That is, the phase shift angle is constant, and the maximum phase shift amount (nearly 180 degrees) is set to obtain the best efficiency, so the control method is the same as the single-stage circuit, and the required control mechanism is quite simple. Since the resonance mode of the full-bridge resonant converter module 13 is a fixed frequency, the circuit design is easy; and the capacitor 131 directly uses the primary side inductance of the transformer unit 14 (ie, the leakage inductance of the transformer) to resonate, so Additional resonant inductors simplify circuit configuration and reduce manufacturing costs.

本發明之一實施例中,經由該整流單元15輸出之穩定直流電係可儲存在一儲能電池內,或直接供給需直流電之電網或裝置使用。在本發明一實施例中,該整流單元15的輸出端係可額外裝設一穩壓單元16,以提供更佳之直流電輸出品質,該穩壓單元係可為一電容。 In an embodiment of the invention, the stabilized DC power output via the rectifying unit 15 can be stored in an energy storage battery or directly supplied to a power grid or device requiring DC power. In an embodiment of the present invention, an output terminal of the rectifying unit 15 may be additionally provided with a voltage stabilizing unit 16 to provide better DC output quality, and the voltage stabilizing unit may be a capacitor.

本發明之太陽能功率轉換器具有全橋式諧振轉換架構,在實際運作過程中無需進行額外的控制動作,惟使用者若需更進一步精確控制該太陽能模組之輸出轉換效率,可在本發明中增加一控制單元,提升控制品質。本發明之一實施例中,可包括一控制單元(圖未示),該控制單元係耦接於該多相交錯式電源轉換模組11以及該全橋式諧振轉換模組 13,該控制單元係根據該多相交錯式電源轉換模組11以及該全橋式諧振轉換模組13之輸出狀況,對該多相交錯式電源轉換模組以及該全橋式諧振轉換模組進行回授控制,使本發明之太陽能功率轉換器滿足額定之輸出規範。 The solar power converter of the invention has a full bridge resonant conversion architecture, and no additional control action is required in the actual operation process, but the user needs to further accurately control the output conversion efficiency of the solar module, which can be in the invention. Add a control unit to improve control quality. An embodiment of the present invention may include a control unit (not shown) coupled to the multi-phase interleaved power conversion module 11 and the full-bridge resonant conversion module. 13. The control unit is based on the multi-phase interleaved power conversion module 11 and the output condition of the full-bridge resonant conversion module 13, the multi-phase interleaved power conversion module and the full-bridge resonant conversion module. Feedback control is performed such that the solar power converter of the present invention meets the rated output specifications.

請繼續參閱圖5A與圖5B,圖5A係為本發明之太陽能功率轉換器實施例理論等效電路圖,圖5B係為本發明之太陽能功率轉換器之模擬波形圖。本發明之太陽能功率轉換器實施例理論依據如下所述:該太陽能模組輸入一電流源I bf ,該電流源之平均電壓V r 即為該多相交錯式電源轉換模組11之輸出電壓V b 電路之諧振乃由該變壓單元15一次側線圈之漏感L r 與輸入之諧振電容C r (即該全橋式諧振轉換模組13之電容131)所形成,諧振頻率ω o 為: 諧振阻抗Z o 為: 利用變壓單元之匝數比予以升壓,此匝數比設計為: 當開關相移之角度為最大時,效率較高,故可不需做電壓控 制。當利用功率開關S1(對應圖4之132a)及S4(對應圖4之132d)導通之前半週區間來作分析,其結果亦可用於功率開關S2(對應圖4之132b)及S3(對應圖4之132c)導通之後半週區間。當132a及132d導通時則可得下列狀態方程式: Please refer to FIG. 5A and FIG. 5B. FIG. 5A is a theoretical equivalent circuit diagram of a solar power converter embodiment of the present invention, and FIG. 5B is an analog waveform diagram of the solar power converter of the present invention. The theoretical basis of the solar power converter embodiment of the present invention is as follows: the solar module inputs a current source I bf , and the average voltage V r of the current source is the output voltage V of the multi-phase interleaved power conversion module 11 b : The resonance of the circuit is formed by the leakage inductance L r of the primary side coil of the transformer unit 15 and the input resonant capacitor C r (ie, the capacitance 131 of the full bridge resonant conversion module 13), and the resonant frequency ω o is: The resonant impedance Z o is: The boost ratio is boosted by the turns ratio of the transformer unit. The turns ratio is designed as: When the angle of the phase shift of the switch is maximum, the efficiency is high, so voltage control is not required. When using the power switch S1 (corresponding to 132a of FIG. 4) and S4 (corresponding to 132d of FIG. 4) to conduct the previous half-cycle section for analysis, the result can also be used for the power switch S2 (corresponding to 132b of FIG. 4) and S3 (corresponding diagram 4 of 132c) half a week after the conduction. When 132a and 132d are turned on, the following equation of state is obtained:

其中I r 為電感電流,自感電流I m 半週之電流上升率為: 利用(4)及(6)求解可得:V r (t)=Asinω o t+B cosω o t+V b (8)其中AB為待求參數。(8)代入(6)可得:I r (t)=I bf +ω o C r B sin ω o t-ω o C r A cos ω o t (9)若要功率開關達到零電壓切換且其旁路之二極體要達到零電流導通,必需使I r (0)=0,且(9)中一開始之I r 必需往負值諧振,亦即B<0,因此:I r (0)=I bf -ω o C r A=0 (10)由(10)可得: 利用C r 之充放電需平衡可知,(8)中V r (t)半週之平均值等於V b 將(8)及(11)代入(12)可得: 由(12)及(14)可得B<0之條件為:f s <f o (14)亦即開關之切換頻率需低於諧振頻率。 Where I r is the inductor current, and the current rise rate of the self-inductive current I m is half a week: Using (4) and (6), we can obtain: V r ( t ) = A sin ω o t + B cos ω o t + V b (8) where A and B are parameters to be determined. (8) Substituting (6): I r ( t ) = I bf + ω o C r B sin ω o t - ω o C r A cos ω o t (9) If the power switch reaches zero voltage switching and To bypass the diode to achieve zero current conduction, it is necessary to make I r (0) = 0, and the first I r in (9) must resonate to a negative value, that is, B <0, therefore: I r ( 0)= I bf - ω o C r A =0 (10) is available from (10): It is known that the charge and discharge of C r are balanced, and the average value of V r ( t ) half cycle in (8) is equal to V b : Substituting (8) and (11) into (12) is available: The conditions for B <0 from (12) and (14) are: f s < f o (14), that is, the switching frequency of the switch needs to be lower than the resonant frequency.

本發明之一實施例中,可利用該變壓單元15匝數比的設計予以升壓。如此,當該全橋式諧振轉換模組13之四開關(132a~132d)相移之角度為最大(將近180度)時,效率較高,故可不需做額外的電壓控制動作。 In an embodiment of the present invention, the design of the turns ratio of the transforming unit 15 can be used to boost the voltage. Thus, when the angle of the phase shift of the four switches (132a-132d) of the full-bridge resonant converter module 13 is maximum (nearly 180 degrees), the efficiency is high, so that no additional voltage control action is required.

請繼續參閱圖6,係為本發明實施例之太陽能模組(PV)啟動與變載狀況下之模擬波形圖。如圖所示,於本發明之一實施例中,係使用輸入最大功率點19V、100W之PV(太陽能模組10),該多相交錯式電源轉換模組11之輸出設定為25V、一儲存經本發明轉換之直流電的儲能電池所需工作電壓(即接收該太陽能功率轉換器輸出直流電之目標所需的直流電電壓)設定為24V,並且,該變壓單元14之變壓器匝數比約為1、該多相交錯式電源轉換模組11以及該全橋式諧振轉換模組13的切換頻率均設為100kHz。該全橋式諧振轉換模組13則採用固定無控制相移方式,利用其匝數比以維持輸出電壓25V,且諧振頻率設定在160kHz、Cr為20μF,漏感Lr為0.05μH,變 壓器自感量為8μH,其自感量較低,故有助於縮小變壓器體積,降低電路整體建置成本。於本發明一實施例中,可額外耦接一C-L濾波器於該多相交錯式電源轉換模組11的輸入端與該太陽能模組10之間,用以降低該太陽能模組(PV)之電流漣波。本發明於實際運用中,當使用一控制單元控制該多相交錯式電源轉換模組11之工作狀態時,在該控制單元之電流命令輸入處亦可加上一1kHz截止頻率之低通濾波器,該低通濾波器係耦接該多相交錯式電源轉換模組11與該控制單元間,使得該多相交錯式電源轉換模組11之啟動能夠平穩。 Please refer to FIG. 6 , which is an analog waveform diagram of a solar module (PV) under startup and load conditions according to an embodiment of the invention. As shown in the figure, in one embodiment of the present invention, a PV (solar module 10) having a maximum power point of 19V and 100W is used, and the output of the multi-phase interleaved power conversion module 11 is set to 25V, a storage. The required operating voltage of the DC energy storage battery converted by the present invention (ie, the DC voltage required to receive the target of the solar power converter output DC power) is set to 24V, and the transformer turns ratio of the transformer unit 14 is about 1 The switching frequency of the multi-phase interleaved power conversion module 11 and the full-bridge resonant conversion module 13 is set to 100 kHz. The full-bridge resonant converter module 13 adopts a fixed uncontrolled phase shift mode, and uses its turns ratio to maintain an output voltage of 25V, and the resonant frequency is set at 160 kHz, Cr is 20 μF, and the leakage inductance Lr is 0.05 μH. The self-inductance of the press is 8μH, and its self-inductance is low, which helps to reduce the volume of the transformer and reduce the overall construction cost of the circuit. In an embodiment of the present invention, a CL filter may be additionally coupled between the input end of the multi-phase interleaved power conversion module 11 and the solar module 10 to reduce the solar module (PV). Current chopping. In the practical application, when a control unit is used to control the working state of the multi-phase interleaved power conversion module 11, a low-pass filter with a 1 kHz cutoff frequency may be added to the current command input of the control unit. The low-pass filter is coupled between the multi-phase interleaved power conversion module 11 and the control unit, so that the startup of the multi-phase interleaved power conversion module 11 can be smooth.

請繼續參閱圖7,係為本發明實施例於在滿載狀態下各部位元件之模擬波形圖。如圖所示,於本發明實施例中,其中,該多相交錯式電源轉換模組11之輸出電流確實為四相交錯,並且,該全橋式諧振轉換模組13之該四個功率開關(132a~132d)亦均能達成零電壓切換,功率開關之旁路二極體亦為零電流導通與截止。 Please refer to FIG. 7 again, which is an analog waveform diagram of components of each part in a full load state according to an embodiment of the present invention. As shown in the figure, in the embodiment of the present invention, the output current of the multi-phase interleaved power conversion module 11 is indeed four-phase interleaved, and the four power switches of the full-bridge resonant conversion module 13 (132a~132d) can also achieve zero voltage switching, and the bypass diode of the power switch is also turned on and off by zero current.

本發明係提供一種太陽能功率轉換器,本發明之特點在於:(1)不同於習知的隔離雙級太陽能功率轉換器需額外控制半橋式諧振電路之頻率以達到最大的轉換效率,本發明設置一全橋式諧振轉換模組於太陽能功率轉換器之中,藉由固定無控制相移方式控制該全橋式諧振轉換模組,該全橋式諧振轉換模組之所有功率開關在任何負載下均能達到零電壓切換,不僅可以改善在輕載時的效率,對於全負載變動範 圍下之效率亦有改善及助益,且控制機制簡單可靠;(2)本發明之全橋式諧振轉換模組之變壓器自感量相當低,相較於習知技術之隔離式雙級太陽能功率轉換器的架構,本發明可以使用較小之變壓器,有助於降低成本及縮小裝置體積。 The invention provides a solar power converter, and the invention is characterized in that: (1) different from the conventional isolated two-stage solar power converter, the frequency of the half bridge resonant circuit is additionally controlled to achieve maximum conversion efficiency, and the invention A full bridge resonant converter module is disposed in the solar power converter, and the full bridge resonant converter module is controlled by a fixed uncontrolled phase shifting mode, and all power switches of the full bridge resonant converter module are at any load Zero voltage switching can be achieved underneath, which not only improves efficiency at light loads, but also for full load variation. The efficiency of the surrounding is also improved and helpful, and the control mechanism is simple and reliable. (2) The self-inductance of the transformer of the full-bridge resonant conversion module of the present invention is relatively low, compared to the isolated two-stage solar energy of the prior art. The architecture of the power converter, the invention can use a smaller transformer, helping to reduce costs and reduce the size of the device.

上述之實施例僅為例示性說明本發明之特點及其功效,而非用於限制本發明之實質技術內容的範圍。任何熟習此技藝之人士均可在不違背本發明之精神及範疇下,對上述實施例進行修飾與變化。因此,本發明之權利保護範圍,應如後述之申請專利範圍所列。 The above-described embodiments are merely illustrative of the features and functions of the present invention, and are not intended to limit the scope of the technical scope of the present invention. Modifications and variations of the above-described embodiments can be made by those skilled in the art without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention should be as set forth in the scope of the claims described below.

10‧‧‧太陽能模組 10‧‧‧Solar modules

11‧‧‧多相交錯式電源轉換模組 11‧‧‧Multiphase Interleaved Power Conversion Module

111‧‧‧儲能單元 111‧‧‧ Energy storage unit

12‧‧‧濾波單元 12‧‧‧Filter unit

13‧‧‧全橋式諧振轉換模組 13‧‧‧Full-bridge resonant converter module

131‧‧‧電容 131‧‧‧ Capacitance

132a~132d‧‧‧功率開關 132a~132d‧‧‧Power switch

14‧‧‧變壓單元 14‧‧‧Transformer unit

15‧‧‧整流單元 15‧‧‧Rectifier unit

16‧‧‧穩壓單元 16‧‧‧Stabilizer

Claims (9)

一種太陽能功率轉換器,係用於將一太陽能模組產生之電能轉換成穩定直流電,該太陽能功率轉換器係包括:一多相交錯式電源轉換模組,係耦接該太陽能模組,該多相交錯式電源轉換模組係接收該太陽能模組輸出之電能並產生一電壓,並對該太陽能模組執行一最大功率追蹤動作;一濾波單元,係耦接該多相交錯式電源轉換模組,該濾波單元係用於濾除該多相交錯式電源轉換模組輸出之雜訊;一全橋式諧振轉換模組,該全橋式諧振轉換模組係包括一電容與四功率開關,該電容係耦接該濾波單元與該多相交錯式電源轉換模組,該四功率開關係為全橋式排列、並耦接該電容;一變壓單元,係為一變壓器,該變壓單元係耦接該全橋式諧振轉換模組;一整流單元,係耦接該變壓單元;其中該全橋式諧振轉換模組係利用該電容與該變壓單元之一次側進行諧振頻率轉換,再經由該整流單元整流後輸出一穩定直流電。 A solar power converter for converting electrical energy generated by a solar module into a stable direct current, the solar power converter comprising: a multi-phase interleaved power conversion module coupled to the solar module, the plurality The interleaved power conversion module receives the power output by the solar module and generates a voltage, and performs a maximum power tracking operation on the solar module; a filtering unit is coupled to the multi-phase interleaved power conversion module The filtering unit is configured to filter out the noise outputted by the multi-phase interleaved power conversion module; a full-bridge resonant conversion module, the full-bridge resonant conversion module includes a capacitor and a four-power switch, The capacitor is coupled to the filter unit and the multi-phase interleaved power conversion module, wherein the four power-on relationship is a full-bridge arrangement and coupled to the capacitor; and a transformer unit is a transformer, the transformer unit Coupling the full-bridge resonant conversion module; a rectifying unit coupled to the transforming unit; wherein the full-bridge resonant switching module uses the capacitor to resonate with the primary side of the transforming unit Rate conversion, and then outputs a stabilized direct current rectified through the rectification unit after. 如申請專利範圍第1項所述之太陽能功率轉換器,其中該多相交錯式電源轉換模組係包括:一儲能單元,係耦接該 太陽能模組,該儲能單元係接收並儲存該太陽能模組產生之電流。 The solar power converter of claim 1, wherein the multi-phase interleaved power conversion module comprises: an energy storage unit coupled to the The solar module, the energy storage unit receives and stores the current generated by the solar module. 如申請專利範圍第1項所述之太陽能功率轉換器,更包括一控制單元,該控制單元係耦接於該多相交錯式電源轉換模組以及該全橋式諧振轉換模組,該控制單元係根據該多相交錯式電源轉換模組以及該全橋式諧振轉換模組之輸出狀況,進行回授控制。 The solar power converter of claim 1, further comprising a control unit coupled to the multi-phase interleaved power conversion module and the full-bridge resonant conversion module, the control unit The feedback control is performed according to the output status of the multi-phase interleaved power conversion module and the full-bridge resonant conversion module. 如申請專利範圍第1項所述之太陽能功率轉換器,其中該多相交錯式電源轉換模組係為升壓式、降壓式或升降壓式功率轉換器。 The solar power converter of claim 1, wherein the multiphase interleaved power conversion module is a boost, buck or buck-boost power converter. 如申請專利範圍第1項所述之太陽能功率轉換器,其中該四功率開關係具有旁路二極體。 The solar power converter of claim 1, wherein the four power-on relationship has a bypass diode. 如申請專利範圍第1項所述之太陽能功率轉換器,其中更包括一穩壓單元,該穩壓單元係耦接於該整流單元之輸出端。 The solar power converter of claim 1, further comprising a voltage stabilizing unit coupled to the output end of the rectifying unit. 如申請專利範圍第6項所述之太陽能功率轉換器,其中該穩壓單元係為一電容。 The solar power converter of claim 6, wherein the voltage stabilizing unit is a capacitor. 如申請專利範圍第1項所述之太陽能功率轉換器,其中該濾波單元係為一電感。 The solar power converter of claim 1, wherein the filtering unit is an inductor. 如申請專利範圍第2項所述之太陽能功率轉換器,其中該儲能單元係為一或複數電感。 The solar power converter of claim 2, wherein the energy storage unit is one or a plurality of inductors.
TW105108212A 2016-03-17 2016-03-17 Solar power converter TWI574143B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105108212A TWI574143B (en) 2016-03-17 2016-03-17 Solar power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105108212A TWI574143B (en) 2016-03-17 2016-03-17 Solar power converter

Publications (2)

Publication Number Publication Date
TWI574143B true TWI574143B (en) 2017-03-11
TW201734695A TW201734695A (en) 2017-10-01

Family

ID=58766238

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105108212A TWI574143B (en) 2016-03-17 2016-03-17 Solar power converter

Country Status (1)

Country Link
TW (1) TWI574143B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI659603B (en) * 2017-11-14 2019-05-11 立錡科技股份有限公司 Photovoltaic power circuit and resonant circuit thereof and method for extracting electrical energy from photovoltaic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094949A (en) * 2011-11-04 2013-05-08 索尼公司 Control apparatus and control method
TW201320575A (en) * 2011-11-11 2013-05-16 Yu-Kang Lo DC/DC converter of multi-phase digital controlled
TW201338390A (en) * 2012-01-25 2013-09-16 Empower Micro Systems Inc Stacked voltage source inverter with separate DC sources
CN104283449A (en) * 2013-07-12 2015-01-14 英飞凌科技奥地利有限公司 Multiphase Power Converter Circuit and Method
CN102904454B (en) * 2012-10-11 2015-03-25 南京航空航天大学 Efficient insulation DC (direct-current) converter system in photovoltaic power generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094949A (en) * 2011-11-04 2013-05-08 索尼公司 Control apparatus and control method
TW201320575A (en) * 2011-11-11 2013-05-16 Yu-Kang Lo DC/DC converter of multi-phase digital controlled
TW201338390A (en) * 2012-01-25 2013-09-16 Empower Micro Systems Inc Stacked voltage source inverter with separate DC sources
CN102904454B (en) * 2012-10-11 2015-03-25 南京航空航天大学 Efficient insulation DC (direct-current) converter system in photovoltaic power generation system
CN104283449A (en) * 2013-07-12 2015-01-14 英飞凌科技奥地利有限公司 Multiphase Power Converter Circuit and Method

Also Published As

Publication number Publication date
TW201734695A (en) 2017-10-01

Similar Documents

Publication Publication Date Title
Zhang et al. PWM plus secondary-side phase-shift controlled soft-switching full-bridge three-port converter for renewable power systems
Tang et al. Hybrid switched-inductor converters for high step-up conversion
Sanjeevikumar et al. A simple MPPT algorithm for novel PV power generation system by high output voltage DC-DC boost converter
CN101588139A (en) High power factor isolated buck-type power factor correction converter
Gupta et al. Improved power quality transformerless single-stage bridgeless converter based charger for light electric vehicles
TWI489762B (en) High efficiency AC - DC voltage conversion circuit
KR101304777B1 (en) DC/DC converter with wide input voltage range
Liu et al. Interleaved high step-up converter with coupled inductor and voltage multiplier for renewable energy system
Xiao et al. An interleaving double-switch Buck-Boost converter for PV grid-connected inverter
US20170170739A1 (en) Solar power converter with isolated bipolar full-bridge resonant circuit
Al-Obaidi et al. A review of non-isolated bidirectional DC-DC converters for hybrid energy storage system
Moschopoulos Quadratic power conversion for industrial applications
TWI574143B (en) Solar power converter
Muthukrishnan et al. DC–DC Boost converter for solar power application
Malek et al. A Novel Coupled-Inductor Soft-Switching Bidirectional DC-DC Converter with High Voltage Conversion Ratio
Gautam et al. A comparison of soft-switched DC-to-DC converters for electrolyser application
Narasimharaju et al. Voltage mode control of coupled inductor bidirectional DC to DC converter
KR101152359B1 (en) Interleaved boost converter using common inductor
Gao et al. Performance evaluation of a non-isolated three-port converter for PV-battery hybrid energy system
Yu et al. A transformerless boost inverter for stand-alone photovoltaic generation systems
Zengin et al. Evaluation of two-stage soft-switched flyback micro-inverter for photovoltaic applications
Chub et al. Sheppard-Taylor isolated high boost DC-DC converter
He et al. Switched-inductor/switched-capacitor active-network converters
Chandran et al. A high voltage gain multiport zeta-zeta converter for renewable energy systems
Halivni et al. High-Gain Transformer-less Multiphase Hybrid Boost SMPS with Digital Per-Phase Current-Programing