TWI572127B - Zero voltage switching forward high step-down converter input in series and output in parallel - Google Patents

Zero voltage switching forward high step-down converter input in series and output in parallel Download PDF

Info

Publication number
TWI572127B
TWI572127B TW105127455A TW105127455A TWI572127B TW I572127 B TWI572127 B TW I572127B TW 105127455 A TW105127455 A TW 105127455A TW 105127455 A TW105127455 A TW 105127455A TW I572127 B TWI572127 B TW I572127B
Authority
TW
Taiwan
Prior art keywords
diode
output
transformer
inductor
voltage
Prior art date
Application number
TW105127455A
Other languages
Chinese (zh)
Other versions
TW201807937A (en
Inventor
楊松霈
謝承道
陳信助
黃昭明
邱柏凱
洪盟家
陳志恩
Original Assignee
崑山科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 崑山科技大學 filed Critical 崑山科技大學
Priority to TW105127455A priority Critical patent/TWI572127B/en
Application granted granted Critical
Publication of TWI572127B publication Critical patent/TWI572127B/en
Publication of TW201807937A publication Critical patent/TW201807937A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Description

串聯輸入並聯輸出零電壓切換順向式高降壓轉換器Serial input and output zero voltage switching forward high buck converter

本發明係有關於一種串聯輸入並聯輸出零電壓切換順向式高降壓轉換器,尤其是指一種能降低高輸入電壓應力及降低高輸出電流應力,且能使輸出電流漣波降低,並能令整體轉換器體積縮小,使轉換器整體的功率密度上升,而在其整體施行使用上更增實用功效特性之串聯輸入並聯輸出零電壓切換順向式高降壓轉換器創新設計者。The invention relates to a series-turn input and output zero voltage switching forward type high buck converter, in particular to a method capable of reducing high input voltage stress and reducing high output current stress, and capable of reducing output current ripple, and capable of The overall converter is reduced in size, so that the overall power density of the converter is increased, and the serial input of the utility model is further increased in practical use, and the output of the zero-voltage switching forward high-voltage buck converter is an innovative designer.

按,由於油源日趨減少,使得節能意識高漲,由美國環境保護組織(The U﹒S﹒ Environmental Protection Agency)和美國能源部門(The U﹒S﹒ Department of Energy)共同發起的Energy Star標籤認證計劃成立於1992年,其目的是讓消費者透過電子或電器產品上的能源標籤來識別具節能效益的產品,進而減低溫室效應。而Energy Star 4﹒0將80 PLUS規範列入標準,對提供給個人電腦內部的AC-DC切換式電源供應器,無論在電腦處在待機或是休眠狀態時,電源供應器在輸出負載20%、50%、100%時,最少要有80%以上的效率。此外,能源之星也與Intel發起的CSCI拯救氣候行動計劃(Climate Savers Computing Initiative,CSCI)合作,加快節能技術和規範的採用。由於80 PLUS符合節能與環保的思潮,因此目前新推出的電源供應器幾乎都以支援80 PLUS規範為主要賣點,以節能省電的特色,來獲得歐美消費市場認同。在2008年80 PLUS規範增加了更嚴格的銅、銀、金牌標章認證。而且2009年7月1日起Energy Star 5﹒0和80 PLUS銅牌標章兩者有同樣的效率要求。因此選擇使用符合80 PLUS和Energy Star認可的電源供應器,將有助於節省更多的能源及成本。因此設計高效率之電源轉換器,滿足日趨嚴苛的電源規範已是時勢所趨。According to the increasing oil source, the awareness of energy conservation is high. The Energy Star label certification program jointly sponsored by The U.S. Environmental Protection Agency and The U.S. Department of Energy Founded in 1992, the goal is to enable consumers to identify energy-efficient products through energy labels on electronic or electrical products, thereby reducing the greenhouse effect. Energy Star 4.0 puts the 80 PLUS specification into the standard. For the AC-DC switched power supply provided to the PC, the power supply is 20% of the output load when the computer is in standby or hibernation. At 50% or 100%, there must be at least 80% efficiency. In addition, ENERGY STAR has partnered with Intel's CSCI Climate Savers Computing Initiative (CSCI) to accelerate the adoption of energy-efficient technologies and specifications. Because 80 PLUS meets the trend of energy saving and environmental protection, the newly launched power supply is almost always supporting the 80 PLUS specification as the main selling point, and it is recognized by the European and American consumer market with the characteristics of energy saving and power saving. In 2008, the 80 PLUS specification added stricter copper, silver, and gold medal certification. And on July 1, 2009, Energy Star 5.0 and 80 PLUS bronze medals have the same efficiency requirements. Therefore, choosing to use 80 PLUS and Energy Star approved power supplies will help save more energy and cost. Therefore, designing high-efficiency power converters to meet increasingly stringent power supply specifications is a constant trend.

其中,就一般常見用以降壓之電力轉換器而言,請參閱第二十七圖現有之降壓轉換器電路圖所示,該降壓式轉換器(2)主要係透過開關 與二極體 組成的斬波器得到脈波電壓後,經過二階低通濾波器取出輸出電壓 ,其滿足 ,其透過開關 導通責任比 調整;然而,該降壓式轉換器(2)應用於高輸入電壓且高降壓成輸出低壓大電流應用時,其導通責任比操作需極端窄小,易受雜訊干擾,且不易做閉迴路穩壓控制,另開關 利用率低,影響電路效率,同時該開關 與二極體 需承受高電壓與高電流應力,又該開關 屬硬性切換,無柔性切換性能,在高頻切換時,切換損失會導致開關 元件溫度上升,減少開關 元件壽命。 Among them, as for the power converters commonly used for step-down, please refer to the circuit diagram of the existing buck converter of the twenty-seventh figure, the buck converter (2) mainly through the switch And diode After the chopper is configured to obtain the pulse wave voltage, the output voltage is taken out through the second-order low-pass filter. Satisfy Through its switch Responsibility ratio Adjustment; however, when the buck converter (2) is applied to high input voltage and high voltage drop to output low voltage and high current applications, its conduction responsibility is extremely narrow compared to operation, is susceptible to noise interference, and is not easy to close. Loop regulator control, another switch Low utilization, affecting circuit efficiency, and the switch And diode Need to withstand high voltage and high current stress, and the switch It is a hard switch, no flexible switching performance, switching loss will lead to switching when switching at high frequency Component temperature rises, reduces switching Component life.

請再參閱第二十八圖現有之雙晶順向式轉換器電路圖所示,該雙晶順向式轉換器(3)主要係加入變壓器以達到電氣隔離,輸出電壓 ,雖有 的限制,但是具有降壓彈性,不需利用極小的導通責任比達成高降壓特性,而是利用變壓器匝比 達成,如此,開關導通責任比即可操作在正常可控制範圍,此外,該雙晶順向式轉換器(3)的兩個主開關S 1、S 2均會被二極體箝位在輸入電壓 ,因此適合應用於大輸入電壓場合;然而,該雙晶順向式轉換器(3)於使用上卻發現,由於其 的限制,限縮該雙晶順向式轉換器(3)輸入電壓的應用範圍,且若要達到高降壓則變壓器的匝比 要越大,導致變壓器的體積變大,會產生寄生電容、繞線電組及漏電感也會增大,使整體電路的突波上升,造成元件需承受更大的應力,亦使該雙晶順向式轉換器(3)效率下降,於高降壓成輸出低壓大電流及高功率應用時,變壓器的次級側之整流二極體與磁性元件,仍須承受大電流應力,會導致元件損失上升,同時其開關屬硬性切換,無柔性切換性能,在高頻切換時,切換損失會導致開關元件溫度上升,減少開關元件壽命。 Please refer to the circuit diagram of the existing bimorphic forward converter of the twenty-eighth figure. The bimorphic forward converter (3) is mainly added to the transformer to achieve electrical isolation and output voltage. Although there is Limitation, but with buck resilience, without using a very small on-response ratio to achieve high buck characteristics, but using transformer turns ratio In this way, the switch conduction duty ratio can be operated in the normal controllable range. In addition, the two main switches S 1 and S 2 of the twin crystal forward converter (3) are clamped at the input by the diode. Voltage Therefore, it is suitable for applications with large input voltages; however, the twin-crystal forward converter (3) is found in use due to its Limit, limit the application range of the input voltage of the bi-directional forward converter (3), and the ratio of the transformer to achieve high buck The larger the voltage is, the larger the size of the transformer will be, the parasitic capacitance will be generated, the winding group and the leakage inductance will also increase, causing the surge of the overall circuit to rise, causing the component to withstand greater stress and also making the twin The efficiency of the forward converter (3) is degraded. When the high voltage is reduced to the output low voltage, high current and high power application, the rectifier diode and the magnetic component on the secondary side of the transformer still have to withstand large current stress, which may cause components. The loss increases, and the switch is hard switching, and there is no flexible switching performance. When switching at high frequency, the switching loss will cause the temperature of the switching element to rise and reduce the life of the switching element.

請再參閱第二十九圖現有之雙晶順向式高降壓轉換器電路圖所示,該雙晶順向式高降壓轉換器(4)為改善變壓器匝比 過大,又需要達到高降壓目的,在整流二極體 後串聯降壓電感[buck inductor],使 時變壓器能量才會傳至輸出側,使次級側實際導通責任比小於開關導通責任比 ,而達到高降壓目的;然而,該雙晶順向式高降壓轉換器(4)於使用上卻發現,由於其 的限制,限縮該雙晶順向式高降壓轉換器(4)輸入電壓的應用範圍,於高降壓成輸出低壓大電流及高功率應用時,變壓器的次級側二極體與磁性元件,須承受大電流應力,導致元件損失與熱應力上升,並由於該雙晶順向式高降壓轉換器(4)之電壓轉換比受到降壓電感影響,且與頻率有關,使得小信號建模時須將頻率當做一個變數,不僅增加小信號模式推導的難度,也使穩壓控制較難達成,同時其開關屬硬性切換,無柔性切換性能,在高頻切換時,切換損失會導致開關元件溫度上升,減少開關元件壽命。 Please refer to the circuit diagram of the existing dual-crystal forward high-voltage buck converter shown in the twenty-ninth figure. The dual-crystal forward high-voltage buck converter (4) is used to improve the transformer turns ratio. Too large, and need to achieve high voltage reduction purposes, in the rectifier diode Rear series buck inductor [buck inductor] When the transformer energy is transmitted to the output side, the secondary conduction actual duty ratio is smaller than the switch conduction responsibility ratio. To achieve high buck purpose; however, the twin-crystal forward high-voltage buck converter (4) was found to be used due to its Limitation, limit the application range of the input voltage of the bisector forward high-voltage buck converter (4), the secondary side diode and magnetic of the transformer when the high voltage is reduced to output low voltage, high current and high power applications The component must withstand large current stresses, causing component loss and thermal stress to rise, and because the voltage conversion ratio of the bimorphic forward high-voltage buck converter (4) is affected by the step-down inductance, and is related to frequency, making small signals When modeling, the frequency must be regarded as a variable, which not only increases the difficulty of deriving the small signal mode, but also makes the voltage regulation control difficult to achieve. At the same time, the switch is hard switching and has no flexible switching performance. When switching at high frequency, the switching loss will result in The temperature of the switching element rises, reducing the life of the switching element.

緣是,發明人有鑑於此,秉持多年該相關行業之豐富設計開發及實際製作經驗,針對現有之結構及缺失再予以研究改良,提供一種串聯輸入並聯輸出零電壓切換順向式高降壓轉換器,以期達到更佳實用價值性之目的者。In view of this, the inventor has been in the process of many years of rich experience in design and development of the relevant industries, and has made research and improvement on existing structures and defects, providing a series of input and output zero voltage switching forward high step-down conversion. In order to achieve better practical value.

本發明之主要目的在於提供一種串聯輸入並聯輸出零電壓切換順向式高降壓轉換器,其主要係能降低高輸入電壓應力及降低高輸出電流應力,且能使輸出電流漣波降低,並能令整體轉換器體積縮小,使轉換器整體的功率密度上升,而在其整體施行使用上更增實用功效特性者。The main object of the present invention is to provide a serial-to-input parallel-output zero-voltage switching forward high-voltage buck converter, which is mainly capable of reducing high input voltage stress and reducing high output current stress, and can reduce output current ripple, and It can reduce the size of the overall converter, increase the power density of the converter as a whole, and increase the utility characteristics in its overall implementation.

本發明串聯輸入並聯輸出零電壓切換順向式高降壓轉換器之主要目的與功效,係由以下具體技術手段所達成:The main purpose and effect of the serial input and output zero-voltage switching forward high-voltage buck converter of the present invention are achieved by the following specific technical means:

其主要係令轉換器於輸入電源 之正極並聯有電容 的第一端及主開關 的第一端,於輸入電源 之負極則並聯有電容 的第一端及輔助開關 的第一端,該電容 的第二端及該電容 的第二端連接有共振電感 的第一端,該主開關 的第二端並聯有二極體 的負極及變壓器 初級側的正極,該輔助開關 的第二端並聯有二極體 的正極及變壓器 初級側的負極,令該變壓器 初級側的負極及該變壓器 初級側的正極與該共振電感 的第二端相連接,該變壓器 次級側的正極連接整流二極體 的正極,該整流二極體 的負極連接降壓電感 的第一端,該降壓電感 的第二端並聯有飛輪二極體 的負極與輸出電感 的第一端,該變壓器 次級側的正極連接整流二極體 的正極,該整流二極體 的負極連接降壓電感 的第一端,該降壓電感 的第二端並聯有飛輪二極體 的負極與輸出電感 的第一端,令該輸出電感 的第二端及該輸出電感 的第二端與輸出電容 的第一端及負載 的第一端相連接,而該變壓器 次級側的負極則與該飛輪二極體 的正極連接後,一併與該輸出電容 的第二端及負載 的第二端相連接,同時該變壓器 次級側的負極於與該飛輪二極體 的正極連接後,同樣與該輸出電容 的第二端及負載 的第二端相連接。 Mainly to make the converter on the input power The positive pole has a capacitor in parallel First end and main switch First end, at input power The negative pole has a capacitor in parallel First end and auxiliary switch First end of the capacitor Second end and the capacitor Resonant inductor connected to the second end First end, the main switch The second end is connected in parallel with a diode Negative pole and transformer Positive side of the primary side, the auxiliary switch The second end is connected in parallel with a diode Positive pole and transformer The negative side of the primary side, the transformer Primary side negative electrode and the transformer Positive side of the primary side and the resonant inductor The second end of the connection, the transformer Secondary side positive connection rectifying diode Positive electrode, the rectifier diode Negative connection buck inductor The first end of the buck inductor Flywheel diode in parallel with the second end Negative and output inductor First end of the transformer Secondary side positive connection rectifying diode Positive electrode, the rectifier diode Negative connection buck inductor The first end of the buck inductor Flywheel diode in parallel with the second end Negative and output inductor The first end of the output inductor Second end and the output inductor Second end and output capacitor First end and load The first end is connected and the transformer The negative side of the secondary side is connected to the flywheel diode After the positive pole is connected, together with the output capacitor Second end and load The second end is connected while the transformer The negative side of the secondary side is connected to the flywheel diode After the positive connection, the same with the output capacitor Second end and load The second ends are connected.

為令本發明所運用之技術內容、發明目的及其達成之功效有更完整且清楚的揭露,茲於下詳細說明之,並請一併參閱所揭之圖式及圖號:For a more complete and clear disclosure of the technical content, the purpose of the invention and the effects thereof achieved by the present invention, it is explained in detail below, and please refer to the drawings and drawings:

首先,請參閱第一圖本發明之電路圖所示,本發明之轉換器(1)主要係於輸入電源 之正極並聯有電容 的第一端及主開關 的第一端,於輸入電源 之負極則並聯有電容 的第一端及輔助開關 的第一端,該電容 的第二端及該電容 的第二端連接有共振電感 的第一端,該主開關 的第二端並聯有二極體 的負極及變壓器 初級側的正極,該輔助開關 的第二端並聯有二極體 的正極及變壓器 初級側的負極,令該變壓器 初級側的負極及該變壓器 初級側的正極與該共振電感 的第二端相連接,該變壓器 次級側的正極連接整流二極體 的正極,該整流二極體 的負極連接降壓電感 的第一端,該降壓電感 的第二端並聯有飛輪二極體 的負極與輸出電感 的第一端,該變壓器 次級側的正極連接整流二極體 的正極,該整流二極體 的負極連接降壓電感 的第一端,該降壓電感 的第二端並聯有飛輪二極體 的負極與輸出電感 的第一端,令該輸出電感 的第二端及該輸出電感 的第二端與輸出電容 的第一端及負載 的第一端相連接,而該變壓器 次級側的負極則與該飛輪二極體 的正極連接後,一併與該輸出電容 的第二端及負載 的第二端相連接,同時該變壓器 次級側的負極於與該飛輪二極體 的正極連接後,同樣與該輸出電容 的第二端及負載 的第二端相連接。 First, referring to the first diagram of the circuit diagram of the present invention, the converter (1) of the present invention is mainly used for input power. The positive pole has a capacitor in parallel First end and main switch First end, at input power The negative pole has a capacitor in parallel First end and auxiliary switch First end of the capacitor Second end and the capacitor Resonant inductor connected to the second end First end, the main switch The second end is connected in parallel with a diode Negative pole and transformer Positive side of the primary side, the auxiliary switch The second end is connected in parallel with a diode Positive pole and transformer The negative side of the primary side, the transformer Primary side negative electrode and the transformer Positive side of the primary side and the resonant inductor The second end of the connection, the transformer Secondary side positive connection rectifying diode Positive electrode, the rectifier diode Negative connection buck inductor The first end of the buck inductor Flywheel diode in parallel with the second end Negative and output inductor First end of the transformer Secondary side positive connection rectifying diode Positive electrode, the rectifier diode Negative connection buck inductor The first end of the buck inductor Flywheel diode in parallel with the second end Negative and output inductor The first end of the output inductor Second end and the output inductor Second end and output capacitor First end and load The first end is connected and the transformer The negative side of the secondary side is connected to the flywheel diode After the positive pole is connected, together with the output capacitor Second end and load The second end is connected while the transformer The negative side of the secondary side is connected to the flywheel diode After the positive connection, the same with the output capacitor Second end and load The second ends are connected.

而該轉換器(1)在使用過程中,根據該主開關 、該輔助開關 、該主開關 的本體二極體 、該輔助開關 的本體二極體 、該整流二極體 、該飛輪二極體 、該整流二極體 、該飛輪二極體 、該二極體 之導通與否,可以將該轉換器(1)在一個切換週期T s的動作,分成十二個線性階段,其各線性階段線性等效電路以及主要元件波形如下所示,請再一併參閱第二圖本發明之主要元件時序波形圖所示: And the converter (1) is in use, according to the main switch The auxiliary switch Main switch Ontology diode The auxiliary switch Ontology diode The rectifier diode Flywheel diode The rectifier diode Flywheel diode The diode Whether it is turned on or off, the converter (1) can be divided into twelve linear phases in one switching cycle T s , and the linear equivalent circuits and main component waveforms of each linear phase are as follows, please refer to The second figure shows the timing diagram of the main components of the present invention:

第一階段[ ]:[主開關 :off、輔助開關 :off、主開關 的本體二極體 :off、輔助開關 的本體二極體 :off、整流二極體 :on、飛輪二極體 :off、整流二極體 :on、飛輪二極體 :on、二極體 :on]:請再一併參閱第三圖本發明之第一操作階段等效電路圖所示,本階段開始於 ,共振電感電流 之分流 ,分別對主開關 之共振電容 線性充電及對輔助開關 之共振電容 線性放電。當 時,飛輪二極體 切換為on,進入下一階段。 The first stage[ ]:[Main switch :off, auxiliary switch :off, main switch Ontology diode :off, auxiliary switch Ontology diode :off, rectifier diode :on, flywheel diode :off, rectifier diode :on, flywheel diode :on, diode :on]: Please refer to the third diagram for the first phase of the invention, as shown in the equivalent circuit diagram. This phase begins at Resonant inductor current Diversion versus , respectively, to the main switch Resonant capacitor Linear charging and auxiliary switch Resonant capacitor Linear discharge. when Flywheel diode Switch to on to go to the next stage.

第二階段[ ]:[主開關 :off、輔助開關 :off、主開關 的本體二極體 :off、輔助開關 的本體二極體 :off、整流二極體 :on、飛輪二極體 :on、整流二極體 :on、飛輪二極體 :on、二極體 :on]:請再一併參閱第四圖本發明之第二操作階段等效電路圖所示,本階段開始於 ,飛輪二極體 切換為on,輸出整流器開始進行電流換向,該整流二極體 之電流 遞減、該飛輪二極體 之電流 遞增;同時,該整流二極體 之電流 遞增、該飛輪二極體 之電流 遞減。此時,降壓電感 反射至初級側與變壓器 之磁化電感 並聯。共振電感 、變壓器 之漏電感 、變壓器 之磁化電感 、主開關 之共振電容 、輔助開關 之共振電容 形成共振電路,主開關 共振電容 之電壓共振上升,輔助開關 共振電容 之電壓 共振下降,輸出整流器持續進行換向。當電壓 共振至零,輔助開關 的內部本體二極體(body diode) 導通,而將共振電容 之電壓箝制在零進入下一階段。 second stage[ ]:[Main switch :off, auxiliary switch :off, main switch Ontology diode :off, auxiliary switch Ontology diode :off, rectifier diode :on, flywheel diode :on, rectifier diode :on, flywheel diode :on, diode :on]: Please refer to the fourth diagram for the second phase of the invention, as shown in the equivalent circuit diagram. This phase begins at Flywheel diode Switching to on, the output rectifier starts current commutation, the rectifying diode Current Declining, the flywheel diode Current Increment; at the same time, the rectifying diode Current Incremental, the flywheel diode Current Decrement. At this time, the buck inductor , Reflected to the primary side and transformer versus Magnetizing inductance , in parallel. Resonance inductor ,transformer with Leakage inductance with ,transformer versus Magnetizing inductance versus ,Main switch Resonant capacitor Auxiliary switch Resonant capacitor Forming a resonant circuit, main switch Resonant capacitor Voltage resonance rises, auxiliary switch Resonant capacitor Voltage The resonance drops and the output rectifier continues to commutate. When voltage Resonance to zero, auxiliary switch Internal body diode Conductive, and resonant capacitor The voltage is clamped at zero to the next stage.

第三階段[ ]:[主開關 :off、輔助開關 :on、主開關 的本體二極體 :off、輔助開關 的本體二極體 :on、整流二極體 :on、飛輪二極體 :on、整流二極體 :on、飛輪二極體 :on、二極體 :on]:請再一併參閱第五圖本發明之第三操作階段等效電路圖所示,本階段開始於 ,當電壓 共振至零,輔助開關 上的本體二極體 導通,共振電容電壓 被箝位至零,因此 ,此時,輔助開關 切換至on,即達到零電壓切換(ZVS)。當 時,共振電感電流 線性下降至零時,輔助開關 本體二極體 切換為off,進入下一階段。 The third stage[ ]:[Main switch :off, auxiliary switch :on, main switch Ontology diode :off, auxiliary switch Ontology diode :on, rectifier diode :on, flywheel diode :on, rectifier diode :on, flywheel diode :on, diode :on]: Please refer to the fifth diagram for the third phase of the invention, as shown in the equivalent circuit diagram. This phase begins at When voltage Resonance to zero, auxiliary switch Ontology diode Conduction, resonant capacitor voltage Clamped to zero, so At this time, the auxiliary switch Switch to on to achieve zero voltage switching (ZVS). when Resonance inductor current Auxiliary switch when linearly falling to zero Body diode Switch to off and proceed to the next stage.

第四階段[ ]:[主開關 :off、輔助開關 :on、主開關 的本體二極體 :off、輔助開關 的本體二極體 :off、整流二極體 :on、飛輪二極體 :on、整流二極體 :on、飛輪二極體 :on、二極體 :on]:請再一併參閱第六圖本發明之第四操作階段等效電路圖所示,本階段開始於 ,電路動作與上階段相同,共振電感電流 持續線性下降至負值,使輔助開關 的本體二極體 切換為off,電流流經輔助開關 本體。當 時,降壓電感電流 上升至與輸出電感電流 相同時,飛輪二極體 切換為off,進入下一階段。 Fourth stage [ ]:[Main switch :off, auxiliary switch :on, main switch Ontology diode :off, auxiliary switch Ontology diode :off, rectifier diode :on, flywheel diode :on, rectifier diode :on, flywheel diode :on, diode :on]: Please refer to the sixth diagram for the fourth operational phase of the present invention as shown in the equivalent circuit diagram. This phase begins at , the circuit action is the same as the previous phase, the resonant inductor current Continuously linearly falling to a negative value, making the auxiliary switch Ontology diode Switch to off, current flows through the auxiliary switch Ontology. when Buck inductor current Rising to the output inductor current At the same time, the flywheel diode Switch to off and proceed to the next stage.

第五階段[ ]:[主開關 :off、輔助開關 :on、主開關 的本體二極體 :off、輔助開關 的本體二極體 :off、整流二極體 :on、飛輪二極體 :on、整流二極體 :on、飛輪二極體 :off、二極體 :on]:請再一併參閱第七圖本發明之第五操作階段等效電路圖所示,本階段開始於 ,此階段降壓電感電流 上升至與輸出電感電流 相同,飛輪二極體 切換為off,降壓電感電流 與輸出電感電流 一同線性上升。當 時,降壓電感電流 下降至零,整流二極體 切換為off,進入下一階段。 Fifth stage [ ]:[Main switch :off, auxiliary switch :on, main switch Ontology diode :off, auxiliary switch Ontology diode :off, rectifier diode :on, flywheel diode :on, rectifier diode :on, flywheel diode :off, diode :on]: Please refer to the seventh diagram. The equivalent circuit diagram of the fifth operation stage of the present invention is shown in this figure. , this stage of step-down inductor current Rising to the output inductor current Same, flywheel diode Switch to off, step-down inductor current Output inductor current It rises linearly together. when Buck inductor current Drop to zero, rectifying diode Switch to off and proceed to the next stage.

第六階段[ ]:[主開關 :off、輔助開關 :on、主開關 的本體二極體 :off、輔助開關 的本體二極體 :off、整流二極體 :off、飛輪二極體 :on、整流二極體 :on、飛輪二極體 :off、二極體 :on]:請再一併參閱第八圖本發明之第六操作階段等效電路圖所示,本階段開始於 ,降壓電感電流 與輸出電感電流 一同線性上升,輸出電感電流 以斜率 線性下降。當輔助開關 切換為off時,則本階段結束。 Sixth stage [ ]:[Main switch :off, auxiliary switch :on, main switch Ontology diode :off, auxiliary switch Ontology diode :off, rectifier diode :off, flywheel diode :on, rectifier diode :on, flywheel diode :off, diode :on]: Please refer to the eighth circuit diagram of the sixth operational phase of the present invention as shown in the equivalent circuit diagram. This phase begins with , step-down inductor current Output inductor current Linear rise together, output inductor current Slope Linear decline. Auxiliary switch When switching to off, this phase ends.

第七階段[ ]:[主開關 :off、輔助開關 :off、主開關 的本體二極體 :off、輔助開關 的本體二極體 :off、整流二極體 :on、飛輪二極體 :on、整流二極體 :on、飛輪二極體 :off、二極體 :on]:請再一併參閱第九圖本發明之第七操作階段等效電路圖所示,本階段開始於 ,輔助開關 切換為off,共振電感電流 之分流 ,分別對主開關 之共振電容 線性放電及對輔助開關 之共振電容 線性充電。當 時,飛輪二極體 切換為on,進入下一階段。 Seventh stage [ ]:[Main switch :off, auxiliary switch :off, main switch Ontology diode :off, auxiliary switch Ontology diode :off, rectifier diode :on, flywheel diode :on, rectifier diode :on, flywheel diode :off, diode :on]: Please refer to the ninth figure. The equivalent circuit diagram of the seventh operation stage of the present invention is shown in this stage. , auxiliary switch Switch to off, resonant inductor current Diversion versus , respectively, to the main switch Resonant capacitor Linear discharge and auxiliary switch Resonant capacitor Linear charging. when Flywheel diode Switch to on to go to the next stage.

第八階段[ ]:[主開關 :off、輔助開關 :off、主開關 的本體二極體 :off、輔助開關 的本體二極體 :off、整流二極體 :on、飛輪二極體 :on、整流二極體 :on、飛輪二極體 :on、二極體 :on]:請再一併參閱第十圖本發明之第八操作階段等效電路圖所示,本階段開始於 ,飛輪二極體 切換為on,輸出整流器開始進行電流換向,該整流二極體 之電流 遞增、該飛輪二極體 之電流 遞減;同時,該整流二極體 之電流 遞減、該飛輪二極體 之電流 遞增。此時,降壓電感 反射至初級側與變壓器 之磁化電感 並聯。共振電感 、變壓器 之漏電感 、變壓器 之磁化電感 、主開關 之共振電容 、輔助開關 之共振電容 形成共振電路,主開關 共振電容 之電壓共振下降,輔助開關 共振電容 之電壓 共振上升,輸出整流器持續進行換向。當電壓 共振至零,主開關 的內部本體二極體(body diode) 導通,而將共振電容 之電壓箝制在零進入下一階段。 The eighth stage [ ]:[Main switch :off, auxiliary switch :off, main switch Ontology diode :off, auxiliary switch Ontology diode :off, rectifier diode :on, flywheel diode :on, rectifier diode :on, flywheel diode :on, diode :on]: Please refer to the tenth figure again. The equivalent circuit diagram of the eighth operation stage of the present invention begins at this stage. Flywheel diode Switching to on, the output rectifier starts current commutation, the rectifying diode Current Incremental, the flywheel diode Current Decrement; at the same time, the rectifier diode Current Declining, the flywheel diode Current Increment. At this time, the buck inductor , Reflected to the primary side and transformer versus Magnetizing inductance , in parallel. Resonance inductor ,transformer with Leakage inductance with ,transformer versus Magnetizing inductance versus ,Main switch Resonant capacitor Auxiliary switch Resonant capacitor Forming a resonant circuit, main switch Resonant capacitor Voltage resonance drop, auxiliary switch Resonant capacitor Voltage As the resonance rises, the output rectifier continues to commutate. When voltage Resonance to zero, main switch Internal body diode Conductive, and resonant capacitor The voltage is clamped at zero to the next stage.

第九階段[ ]:[主開關 :on、輔助開關 :off、主開關 的本體二極體 :on、輔助開關 的本體二極體 :off、整流二極體 :on、飛輪二極體 :on、整流二極體 :on、飛輪二極體 :on、二極體 :on]:請再一併參閱第十一圖本發明之第九操作階段等效電路圖所示,本階段開始於 ,當電壓 共振至零,主開關開關 上的本體二極體 導通,共振電容電壓 被箝位至零,因此 ,此時,主開關開關 切換至on,即達到零電壓切換(ZVS)。當 時,共振電感電流 線性上升至零時,主開關 本體二極體 切換為off,進入下一階段。 Ninth stage [ ]:[Main switch :on, auxiliary switch :off, main switch Ontology diode :on, auxiliary switch Ontology diode :off, rectifier diode :on, flywheel diode :on, rectifier diode :on, flywheel diode :on, diode :on]: Please refer to the eleventh figure for the ninth operation stage of the present invention as shown in the equivalent circuit diagram. This phase begins at When voltage Resonance to zero, main switch Ontology diode Conduction, resonant capacitor voltage Clamped to zero, so At this time, the main switch Switch to on to achieve zero voltage switching (ZVS). when Resonance inductor current Main switch when linear rise to zero Body diode Switch to off and proceed to the next stage.

第十階段[ ]:[主開關 :on、輔助開關 :off、主開關 的本體二極體 :off、輔助開關 的本體二極體 :off、整流二極體 :on、飛輪二極體 :on、整流二極體 :on、飛輪二極體 :on、二極體 :on]:請再一併參閱第十二圖本發明之第十操作階段等效電路圖所示,本階段開始於 ,電路動作與上階段相同,共振電感電流 持續線性上升至正值,使主開關 的本體二極體 切換為off,電流流經主開關 本體。當 時,降壓電感電流 上升至與輸出電感電流 相同時,飛輪二極體 切換為off,進入下一階段。 Tenth stage [ ]:[Main switch :on, auxiliary switch :off, main switch Ontology diode :off, auxiliary switch Ontology diode :off, rectifier diode :on, flywheel diode :on, rectifier diode :on, flywheel diode :on, diode :on]: Please refer to the twelfth figure. The equivalent circuit diagram of the tenth operation stage of the present invention is shown in this figure. , the circuit action is the same as the previous phase, the resonant inductor current Continuous linear rise to positive value, making the main switch Ontology diode Switch to off, current flows through the main switch Ontology. when Buck inductor current Rising to the output inductor current At the same time, the flywheel diode Switch to off and proceed to the next stage.

第十一階段[ ]:[主開關 :on、輔助開關 :off、主開關 的本體二極體 :off、輔助開關 的本體二極體 :off、整流二極體 :on、飛輪二極體 :off、整流二極體 :on、飛輪二極體 :on、二極體 :on]:請再一併參閱第十三圖本發明之第十一操作階段等效電路圖所示,本階段開始於 ,此階段降壓電感電流 上升至與輸出電感電流 相同,飛輪二極體 切換為off,降壓電感電流 與輸出電感電流 一同線性上升。當 時,降壓電感電流 下降至零,整流二極體 切換為off,進入下一階段。 Eleventh stage [ ]:[Main switch :on, auxiliary switch :off, main switch Ontology diode :off, auxiliary switch Ontology diode :off, rectifier diode :on, flywheel diode :off, rectifier diode :on, flywheel diode :on, diode :on]: Please refer to the thirteenth figure for the eleventh operation stage of the present invention as shown in the equivalent circuit diagram, this stage begins with , this stage of step-down inductor current Rising to the output inductor current Same, flywheel diode Switch to off, step-down inductor current Output inductor current It rises linearly together. when Buck inductor current Drop to zero, rectifying diode Switch to off and proceed to the next stage.

第十二階段[ ]:[主開關 :on、輔助開關 :off、主開關 的本體二極體 :off、輔助開關 的本體二極體 :off、整流二極體 :on、飛輪二極體 :off、整流二極體 :off、飛輪二極體 :on、二極體 :on]:請再一併參閱第十四圖本發明之第十二操作階段等效電路圖所示,本階段開始於 ,降壓電感電流 與輸出電感電流 一同線性上升,輸出電感電流 以斜率 線性下降。當主開關 切換為off時,則本階段結束,回到第一階段。 Twelfth stage [ ]:[Main switch :on, auxiliary switch :off, main switch Ontology diode :off, auxiliary switch Ontology diode :off, rectifier diode :on, flywheel diode :off, rectifier diode :off, flywheel diode :on, diode :on]: Please refer to the fourteenth figure of the invention in the twelfth operation stage equivalent circuit diagram, this stage begins , step-down inductor current Output inductor current Linear rise together, output inductor current Slope Linear decline. When the main switch When switching to off, the phase ends and returns to the first phase.

依據上述電路動作分析,使用IsSpice模擬軟體及實作結果驗證上述之高降壓特性,以及主開關 與輔助開關 柔性切換性能。設定該轉換器(1)之相關參數為:輸入電源 =400V、輸出電壓 =48V、輸出功率 =600W、切換頻率f s=100kHz、變壓器匝數比 =1、變壓器 之磁化電感 = 、變壓器 之磁化電感 = 、降壓電感 = 、降壓電感 = 、輸出電感 = 、輸出電感 = 、電容 = 、電容 = 、輸出電容 = ;以下以模擬波形與實作結果檢驗該轉換器(1)的特點: According to the above circuit action analysis, use the IsSpice simulation software and the implementation results to verify the above high buck characteristics, and the main switch With auxiliary switch Flexible switching performance. Set the relevant parameters of the converter (1) as: input power =400V, output voltage =48V, output power =600W, switching frequency f s =100kHz, transformer turns ratio =1, transformer Magnetizing inductance = ,transformer Magnetizing inductance = Buck inductor = Buck inductor = Output inductor = Output inductor = ,capacitance = ,capacitance = Output capacitor = The following is a test of the characteristics of the converter (1) with analog waveforms and implementation results:

A.電氣規格驗證:請再一併參閱第十五圖本發明之主開關驅動信號、輸入電源及輸出電壓的模擬波形圖與第十六圖本發明之主開關驅動信號、輸入電源及輸出電壓的實作波形圖所示,實作中導通比 時,輸出電壓 為48V;但若是以傳統串聯輸入並聯輸出順向式轉換器之電壓轉換比公式 ,在 時,輸出電壓 為74V,明顯無法降至訂定的電氣規格。 A. Electrical specification verification: Please refer to the fifteenth diagram. The main switch driving signal, input power supply and output voltage analog waveform diagram and the sixteenth embodiment of the present invention, the main switch driving signal, input power and output voltage of the present invention The implementation of the waveform diagram, the implementation of the conduction ratio Output voltage 48V; but if the voltage conversion ratio formula of the traditional series input parallel output forward converter ,in , Output voltage At 74V, it is obviously impossible to reduce the specified electrical specifications.

B.開關柔切性能:請再一併參閱第十七圖本發明之主開關驅動信號及主開關跨壓的模擬波形圖、第十八圖本發明之主開關驅動信號及主開關跨壓的實作波形圖、第十九圖本發明之輔助開關驅動信號及輔助開關跨壓的模擬波形圖、第二十圖本發明之輔助開關驅動信號及輔助開關跨壓的實作波形圖所示,當 時,主開關 與輔助開關 之驅動信號 與其跨壓 之波形的模擬與實作結果,由圖可知兩開關之電壓應力皆為 ,主開關 之跨壓 下降至零後,驅動信號 才切換為on,達到ZVS性能;輔助開關 之跨壓 下降至零後,驅動信號 才切換為on,達到ZVS性能。 B. Switching and cutting performance: Please refer to the seventeenth figure for the main switch driving signal and the main switch crossover analog waveform diagram of the present invention, and the eighteenth aspect of the present invention, the main switch driving signal and the main switch across the voltage The waveform diagram of the implementation, the nineteenth diagram, the analog waveform diagram of the auxiliary switch drive signal and the auxiliary switch across the voltage, and the twentieth diagram, the implementation waveform diagram of the auxiliary switch drive signal and the auxiliary switch across the voltage of the present invention, when Main switch With auxiliary switch Drive signal and Cross pressure and The simulation and implementation results of the waveform, it can be seen from the figure that the voltage stress of both switches is ,Main switch Cross pressure Drive signal after falling to zero Switch to on to achieve ZVS performance; auxiliary switch Cross pressure Drive signal after falling to zero Switch to on to achieve ZVS performance.

C.漣波相消性能:請再一併參閱第二十一圖本發明之輸出電感電流的模擬波形圖與第二十二圖本發明之輸出電感電流的實作波形圖所示,雖然轉換器係以互補的驅動方式操作,但其並聯連接之輸出側仍具有交錯操作,具漣波相消性能,因此,及可分攤電流且可降低輸出電流 之漣波。 C. Chopper cancellation performance: Please refer to the twenty-first figure for the output inductor current of the present invention, and the twenty-second diagram of the output inductor current of the present invention, although the conversion is shown. The devices operate in a complementary drive mode, but the output side of the parallel connection still has a staggered operation with chopping cancellation performance, so that the current can be distributed and the output current can be reduced. The wave of waves.

D.高降壓性能驗證:請再一併參閱第二十三圖本發明之降壓電感電流 與輸出電感電流 模擬波形圖、第二十四圖本發明之降壓電感電流 與輸出電感電流 實作波形圖、第二十五圖本發明之降壓電感電流 與輸出電感電流 模擬波形圖、第二十六圖本發明之降壓電感電流 與輸出電感電流 實作波形圖所示,加入降壓電感 能使轉換器(1)達到高降壓,係因為當主開關 切換為on時,次級側二極體電流開始換向,降壓電感 電流 開始上升,須等到降壓電感電流 時,二極體電流換向完畢,能量才能傳至負載 ,亦即次級側所得之實際導通責任比較主開關 之導通責任比小。 D. High-voltage step-down performance verification: Please refer to the twenty-third figure for the step-down inductor current of the present invention. Output inductor current Analog waveform diagram, twenty-fourth embodiment of the present invention, the step-down inductor current Output inductor current Implementation of the waveform diagram, the twenty-fifth figure of the present invention, the step-down inductor current Output inductor current Analog waveform diagram, twenty-sixth embodiment of the present invention, the step-down inductor current Output inductor current As shown in the implementation waveform diagram, add a buck inductor , Enables the converter (1) to achieve a high buck because the main switch When switching to on, the secondary side diode current begins to commutate, and the step-down inductor Current Start to rise, wait until the step-down inductor current When the diode current is commutated, the energy can be transferred to the load. , that is, the actual conduction responsibility of the secondary side is compared with the main switch The responsibility ratio is small.

藉由以上所述,本發明之使用實施說明可知,本發明與現有技術手段相較之下,本發明主要係具有下列優點:From the above, the implementation description of the present invention shows that the present invention has the following advantages in comparison with the prior art means:

1.低電壓導通比:利用降壓電感達到低電壓導通比,不需將導通責任比操作於極端窄小,亦不需使用匝比較大的變壓器,可降低變壓器的寄生元件,減少轉換器的突波。1. Low voltage conduction ratio: low-voltage conduction ratio is achieved by using the step-down inductor. It is not necessary to operate the conduction duty ratio to be extremely narrow, and it is not necessary to use a relatively large transformer, which can reduce the parasitic components of the transformer and reduce the converter. Surge.

2.串聯輸入架構:分擔輸入電壓,使開關元件具有低電壓應力,適用於高電壓輸入應用。2. Series input architecture: Sharing the input voltage, making the switching components have low voltage stress, suitable for high voltage input applications.

3.並聯輸出架構:分擔輸出電流,可分散磁性元件與半導體元件的功率損失及熱應力,適用於高功率及輸出低壓大電流應用。3. Parallel output architecture: share the output current, can disperse the power loss and thermal stress of magnetic components and semiconductor components, and is suitable for high power and output low voltage and high current applications.

4.交錯式PWM操作:使輸出電感電流具漣波相消性能,降低輸出電容電流漣波,因此可降低輸出濾波電容值與尺寸,可選用較小的輸出濾波元件,可使得轉換器體積減小,提高功率密度。4. Interleaved PWM operation: The output inductor current has chopping cancellation performance and reduces output capacitor current chopping, thus reducing the output filter capacitor value and size. A smaller output filter component can be used to reduce the converter volume. Small, increase power density.

5.零電壓切換:利用開關的輸出電容、共振電感與變壓器漏電感,形成共振電路,使得轉換器具有零電壓切換(ZVS)的性能,降低切換損失,提升效率;同時可提高開關切換頻率,降低儲能元件的尺寸大小,另一方面,也能避免漏電感所造成的電壓突波,保護開關元件避免高電壓應力。5. Zero voltage switching: Using the output capacitance of the switch, the resonant inductor and the leakage inductance of the transformer, a resonant circuit is formed, which makes the converter have zero voltage switching (ZVS) performance, reduces switching loss, improves efficiency, and improves switching frequency. The size of the energy storage component is reduced, and on the other hand, voltage surge caused by leakage inductance can be avoided, and the switching element is protected from high voltage stress.

6.自然磁通重置:僅使用一個輔助二極體與獨特電路構造,達到磁通重置的功能。6. Natural Flux Reset: The function of flux reset is achieved by using only one auxiliary diode and a unique circuit configuration.

雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇。While the invention has been described in connection with the preferred embodiments described above, it is not intended to limit the scope of the invention. The technical scope protected by the invention.

(1)‧‧‧轉換器(1)‧‧‧ converter

(2)‧‧‧降壓式轉換器(2) ‧‧‧ buck converter

(3)‧‧‧雙晶順向式轉換器(3)‧‧‧Double-crystal forward converter

(4)‧‧‧雙晶順向式高降壓轉換器(4)‧‧‧Double-Phase Forward High-Buck Converter

第一圖:本發明之電路圖First picture: circuit diagram of the invention

第二圖:本發明之主要元件時序波形圖Second picture: timing waveform diagram of the main components of the present invention

第三圖:本發明之第一操作階段等效電路圖Third figure: equivalent circuit diagram of the first operation stage of the present invention

第四圖:本發明之第二操作階段等效電路圖Fourth figure: equivalent circuit diagram of the second operation stage of the present invention

第五圖:本發明之第三操作階段等效電路圖Figure 5: Equivalent circuit diagram of the third operation stage of the present invention

第六圖:本發明之第四操作階段等效電路圖Figure 6: Equivalent circuit diagram of the fourth operation stage of the present invention

第七圖:本發明之第五操作階段等效電路圖Figure 7: Equivalent circuit diagram of the fifth operation stage of the present invention

第八圖:本發明之第六操作階段等效電路圖Figure 8: Equivalent circuit diagram of the sixth operation stage of the present invention

第九圖:本發明之第七操作階段等效電路圖Ninth diagram: equivalent circuit diagram of the seventh operation stage of the present invention

第十圖:本發明之第八操作階段等效電路圖Figure 11: Equivalent circuit diagram of the eighth operation stage of the present invention

第十一圖:本發明之第九操作階段等效電路圖Eleventh drawing: equivalent circuit diagram of the ninth operation stage of the present invention

第十二圖:本發明之第十操作階段等效電路圖Twelfth figure: equivalent circuit diagram of the tenth operation stage of the present invention

第十三圖:本發明之第十一操作階段等效電路圖Thirteenth figure: equivalent circuit diagram of the eleventh operation stage of the present invention

第十四圖:本發明之第十二操作階段等效電路圖Figure 14: Equivalent circuit diagram of the twelfth operation stage of the present invention

第十五圖:本發明之主開關驅動信號、輸入電源及輸出電壓的模擬波形圖Figure 15: Analog waveform diagram of the main switch drive signal, input power supply and output voltage of the present invention

第十六圖:本發明之主開關驅動信號、輸入電源及輸出電壓的實作波形圖Figure 16: Actual waveform diagram of the main switch drive signal, input power supply and output voltage of the present invention

第十七圖:本發明之主開關驅動信號及主開關跨壓的模擬波形圖Figure 17: Analog waveform diagram of the main switch drive signal and the main switch voltage across the present invention

第十八圖:本發明之主開關驅動信號及主開關跨壓的實作波形圖Figure 18: Actual waveform diagram of the main switch drive signal and the main switch cross-over voltage of the present invention

第十九圖:本發明之輔助開關驅動信號及輔助開關跨壓的模擬波形圖Figure 19: Analog waveform diagram of the auxiliary switch drive signal and the auxiliary switch across the voltage of the present invention

第二十圖:本發明之輔助開關驅動信號及輔助開關跨壓的實作波形圖Figure 20: Actual waveform diagram of the auxiliary switch drive signal and auxiliary switch cross-voltage of the present invention

第二十一圖:本發明之輸出電感電流的模擬波形圖Figure 21: Analog waveform diagram of the output inductor current of the present invention

第二十二圖:本發明之輸出電感電流的實作波形圖Twenty-second graph: implementation waveform diagram of the output inductor current of the present invention

第二十三圖:本發明之降壓電感電流與輸出電感電流 模擬波形圖Twenty-third figure: the step-down inductor current of the present invention Output inductor current Analog waveform

第二十四圖:本發明之降壓電感電流與輸出電感電流 實作波形圖Figure 24: Buck inductor current of the present invention Output inductor current Implementation waveform

第二十五圖:本發明之降壓電感電流與輸出電感電流 模擬波形圖Figure 25: Buck inductor current of the present invention Output inductor current Analog waveform

第二十六圖:本發明之降壓電感電流與輸出電感電流 實作波形圖Figure 26: Buck inductor current of the present invention Output inductor current Implementation waveform

第二十七圖:現有之降壓式轉換器電路圖Figure 27: Existing buck converter circuit diagram

第二十八圖:現有之雙晶順向式轉換器電路圖Figure 28: Existing circuit diagram of the twin-crystal forward converter

第二十九圖:現有之雙晶順向式高降壓轉換器電路圖The twenty-ninth picture: the existing dual crystal forward high-voltage buck converter circuit diagram

(1)‧‧‧轉換器 (1)‧‧‧ converter

Claims (1)

一種串聯輸入並聯輸出零電壓切換順向式高降壓轉換器,其主要係令轉換器於輸入電源 之正極並聯有電容 的第一端及主開關的第一端,於輸入電源 之負極則並聯有電容 的第一端及輔助開關 的第一端,該電容 的第二端及該電容 的第二端連接有共振電感 的第一端,該主開關的第二端並聯有二極體 的負極及變壓器初級側的正極,該輔助開關 的第二端並聯有二極體 的正極及變壓器初級側的負極,令該變壓器初級側的負極及該變壓器初級側的正極與該共振電感 的第二端相連接,該變壓器次級側的正極連接整流二極體 的正極,該整流二極體 的負極連接降壓電感 的第一端,該降壓電感 的第二端並聯有飛輪二極體 的負極與輸出電感 的第一端,該變壓器次級側的正極連接整流二極體 的正極,該整流二極體 的負極連接降壓電感 的第一端,該降壓電感 的第二端並聯有飛輪二極體 的負極與輸出電感 的第一端,令該輸出電感 的第二端及該輸出電感 的第二端與輸出電容 的第一端及負載 的第一端相連接,而該變壓器次級側的負極則與該飛輪二極體 的正極連接後,一併與該輸出電容 的第二端及負載 的第二端相連接,同時該變壓器次級側的負極於與該飛輪二極體 的正極連接後,同樣與該輸出電容 的第二端及負載 的第二端相連接。 A series of input and output zero voltage switching forward high buck converters, which mainly make the converters input power The positive pole has a capacitor in parallel The first end and the first end of the main switch are at the input power source The negative pole has a capacitor in parallel First end and auxiliary switch First end of the capacitor Second end and the capacitor Resonant inductor connected to the second end At the first end, the second end of the main switch is connected in parallel with a diode Negative pole and positive pole on the primary side of the transformer, the auxiliary switch The second end is connected in parallel with a diode The positive electrode and the negative electrode on the primary side of the transformer, the negative electrode on the primary side of the transformer and the positive electrode on the primary side of the transformer and the resonant inductor The second end of the transformer is connected, and the positive side of the transformer is connected to the rectifying diode Positive electrode, the rectifier diode Negative connection buck inductor The first end of the buck inductor Flywheel diode in parallel with the second end Negative and output inductor The first end of the transformer, the positive side of the transformer is connected to the rectifying diode Positive electrode, the rectifier diode Negative connection buck inductor The first end of the buck inductor Flywheel diode in parallel with the second end Negative and output inductor The first end of the output inductor Second end and the output inductor Second end and output capacitor First end and load The first end of the transformer is connected, and the negative pole of the secondary side of the transformer is connected to the flywheel diode After the positive pole is connected, together with the output capacitor Second end and load The second end of the transformer is connected, and the negative pole of the secondary side of the transformer is connected to the flywheel diode After the positive connection, the same with the output capacitor Second end and load The second ends are connected.
TW105127455A 2016-08-26 2016-08-26 Zero voltage switching forward high step-down converter input in series and output in parallel TWI572127B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105127455A TWI572127B (en) 2016-08-26 2016-08-26 Zero voltage switching forward high step-down converter input in series and output in parallel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105127455A TWI572127B (en) 2016-08-26 2016-08-26 Zero voltage switching forward high step-down converter input in series and output in parallel

Publications (2)

Publication Number Publication Date
TWI572127B true TWI572127B (en) 2017-02-21
TW201807937A TW201807937A (en) 2018-03-01

Family

ID=58608559

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105127455A TWI572127B (en) 2016-08-26 2016-08-26 Zero voltage switching forward high step-down converter input in series and output in parallel

Country Status (1)

Country Link
TW (1) TWI572127B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI628903B (en) * 2017-07-25 2018-07-01 國立高雄第一科技大學 Isolated high step-down buck converter
TWI669897B (en) * 2017-08-29 2019-08-21 崑山科技大學 Combined two-stages high step-down converter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781419A (en) * 1996-04-12 1998-07-14 Soft Switching Technologies, Inc. Soft switching DC-to-DC converter with coupled inductors
US6353547B1 (en) * 2000-08-31 2002-03-05 Delta Electronics, Inc. Three-level soft-switched converters
TW200826456A (en) * 2006-12-06 2008-06-16 Sheng-You Ceng Interleaving converter with the snubber of single-capacitor
TWI351157B (en) * 2007-11-09 2011-10-21 Univ Nat Taiwan Science Tech Circuit, converter and method with zvs
TWI439034B (en) * 2012-04-23 2014-05-21 Univ Kun Shan Zero voltage switching power converter
CN105406707A (en) * 2014-09-08 2016-03-16 英飞凌科技奥地利有限公司 Multi-cell Power Conversion Method And Multi-cell Power Converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781419A (en) * 1996-04-12 1998-07-14 Soft Switching Technologies, Inc. Soft switching DC-to-DC converter with coupled inductors
US6353547B1 (en) * 2000-08-31 2002-03-05 Delta Electronics, Inc. Three-level soft-switched converters
TW200826456A (en) * 2006-12-06 2008-06-16 Sheng-You Ceng Interleaving converter with the snubber of single-capacitor
TWI351157B (en) * 2007-11-09 2011-10-21 Univ Nat Taiwan Science Tech Circuit, converter and method with zvs
TWI439034B (en) * 2012-04-23 2014-05-21 Univ Kun Shan Zero voltage switching power converter
CN105406707A (en) * 2014-09-08 2016-03-16 英飞凌科技奥地利有限公司 Multi-cell Power Conversion Method And Multi-cell Power Converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI628903B (en) * 2017-07-25 2018-07-01 國立高雄第一科技大學 Isolated high step-down buck converter
TWI669897B (en) * 2017-08-29 2019-08-21 崑山科技大學 Combined two-stages high step-down converter

Also Published As

Publication number Publication date
TW201807937A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
Yang et al. Bridgeless SEPIC converter with a ripple-free input current
Huber et al. Performance evaluation of bridgeless PFC boost rectifiers
US8766605B2 (en) Bridgeless PFC converter and the method thereof
TWI513164B (en) Flyback active clamping power converter
Huang et al. Losses analysis and low standby losses quasi-resonant flyback converter design
Hasanpour et al. Analysis of a new soft-switched step-up trans-inverse DC/DC converter based on three-winding coupled-inductor
Kim et al. Topology characteristics analysis and performance comparison for optimal design of high efficiency PFC circuit for telecom
TWI572127B (en) Zero voltage switching forward high step-down converter input in series and output in parallel
TWI591951B (en) Interleaved three-winding high boost dc-dc converter
Khatua et al. Novel transformer-less DAB converters for the regulated first-stage of a two-stage 48 V VRM
TWI580166B (en) Interleaved boost converter
Nafari et al. An extendable interleaved quasi Z-source high step-up DC–DC converter
TW201709647A (en) Digital-controlled converter for low voltage and large current output employing zero voltage switching mechanism to reduce switching loss of power switch, surge and ringing artifacts
TWI578684B (en) Asymmetric half-bridge high step-down converter
Wei et al. A soft-switching non-inverting buck-boost converter
Wei et al. A simple structure of zero-voltage switching (ZVS) and zero-current switching (ZCS) buck converter with coupled inductor
CN115149809A (en) Non-isolated full-bridge cascaded converter circuit and control method thereof
Cheng et al. Design of a digitally-controlled LLC resonant converter with synchronous rectification
TW202147755A (en) High performance two stage power converter with enhanced light load management
TWI669897B (en) Combined two-stages high step-down converter
TWM437003U (en) Low ripple boost DC-DC converter
Cho et al. A new-half bridge converter without DC offset of magnetizing current
Jiang et al. LLC LED Driver with Current-Sharing Capacitor Having Low Voltage Stress. Energies 2021, 14, 112
CN208015587U (en) A kind of high efficiency list inductance multiple-channel output pfc converter time-sharing multiplexing control circuit
Tran et al. Design of Battery Charger with USB Type-C Power Delivery Interface

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees