TWI502875B - Dc/ac converter for solar photovoltaic module - Google Patents

Dc/ac converter for solar photovoltaic module Download PDF

Info

Publication number
TWI502875B
TWI502875B TW102141406A TW102141406A TWI502875B TW I502875 B TWI502875 B TW I502875B TW 102141406 A TW102141406 A TW 102141406A TW 102141406 A TW102141406 A TW 102141406A TW I502875 B TWI502875 B TW I502875B
Authority
TW
Taiwan
Prior art keywords
active switching
switching element
coupled
side coil
secondary side
Prior art date
Application number
TW102141406A
Other languages
Chinese (zh)
Other versions
TW201519570A (en
Inventor
Po Li Chen
Pao Chuan Lin
Ming Hung Yu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW102141406A priority Critical patent/TWI502875B/en
Publication of TW201519570A publication Critical patent/TW201519570A/en
Application granted granted Critical
Publication of TWI502875B publication Critical patent/TWI502875B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Description

應用於太陽光電模組的直流轉交流轉換裝置DC to AC conversion device applied to solar photovoltaic module

本發明係有關於一種應用於太陽光電模組的直流轉交流轉換裝置,且特別有關於將太陽光電模組的直流電源轉換為交流電源並饋入電網之直流轉交流轉換裝置。The invention relates to a DC-to-AC conversion device applied to a solar photovoltaic module, and particularly relates to a DC-to-AC conversion device for converting a DC power source of a solar photovoltaic module into an AC power source and feeding the power grid.

基於石化能源短缺問題以及對環境保護的認知提高,再生能源為近年來積極發展的技術領域,其中太陽能電池(solar cell)因理論效率較高且技術發展較成熟,為許多國家積極發展的重要產業。除此之外,在太陽能發電技術方面,小容量化及模組化的太陽能發電裝置具有提升系統發電效率、加快使用者成本回收速度、使用者安裝容易等特點,成為現今再生能源的主流。Based on the shortage of petrochemical energy and the awareness of environmental protection, renewable energy is a technological field that has been actively developed in recent years. Among them, solar cells are important industries that are actively developed in many countries due to their high theoretical efficiency and mature technology. . In addition, in terms of solar power generation technology, the small-capacity and modular solar power generation device has the characteristics of improving system power generation efficiency, speeding up user cost recovery, and easy installation by users, and has become the mainstream of today's renewable energy.

太陽能光電模組主要是透過太陽能板進行光電轉換進而產生直流電源,再藉由轉換器將直流電源轉換成交流電源以供負載使用或饋入電網,與電網同步並聯運轉。一般太陽能光電模組所使用的轉換器電路架構多採用兩級切換模式。如一低頻隔離型直流轉交流轉換器中,後級交流轉換電路的輸出電壓是經低頻變壓器的升降壓後得到負載所需的交流電源,但低頻變壓器的體積較大且重量較重,且輸出功率受限於低頻變壓器的功率大小。The solar photovoltaic module mainly performs photoelectric conversion through the solar panel to generate a DC power source, and then converts the DC power source into an AC power source by the converter for the load to use or feed into the power grid, and synchronously runs in parallel with the power grid. In general, the converter circuit architecture used in solar photovoltaic modules uses a two-stage switching mode. For example, in a low-frequency isolated DC-to-AC converter, the output voltage of the rear-stage AC conversion circuit is the AC power required to obtain the load after the buck-boost of the low-frequency transformer, but the low-frequency transformer is bulky and heavier, and the output power is Limited by the power level of the low frequency transformer.

又如一高頻隔離型直流轉交流轉換器中,前級大多以直流轉換器控制直流鏈輸出端的電壓大小,然後藉由高頻切換將電能經高頻變壓器傳遞至二次側,高頻變壓器的二次側輸出端與電容器並聯,以作為電路濾波及儲能之用。此高頻轉換器雖然體積及輸出功率不會受變壓器的影響,但卻會因運作於高頻切換,切換損失也隨著切換頻率的增加而增加,使得電路的轉換效率不易提高。除此之外,後級交流轉換器電路之輸入端利用上述與高頻變壓器之二次側輸出端並聯的電容器作為電路間的能量緩衝,因此該電容器之電容大小會隨著轉換器功率的增加而增加,電路體積與成本也隨之增加。再者,高容值之電容器通常是使用電解質電容器,會降低系統的可靠度。In another example, a high-frequency isolated DC-to-AC converter uses a DC converter to control the voltage at the output of the DC link, and then transfers the energy to the secondary side through the high-frequency transformer through high-frequency switching. The secondary side output is connected in parallel with the capacitor for circuit filtering and energy storage. Although the volume and output power of the high-frequency converter are not affected by the transformer, the switching loss is also increased with the increase of the switching frequency due to the operation of the high-frequency converter, so that the conversion efficiency of the circuit is not easily improved. In addition, the input terminal of the rear-stage AC converter circuit uses the above-mentioned capacitor connected in parallel with the secondary side output terminal of the high-frequency transformer as an energy buffer between the circuits, so the capacitance of the capacitor increases with the power of the converter. With the increase, the circuit volume and cost also increase. Furthermore, high-capacitance capacitors typically use electrolytic capacitors, which reduces system reliability.

有鑑於此,本揭露提供一種應用於太陽光電模組的直流轉交流轉換裝置,將太陽光電模組所輸出的直流電源轉換為交流電源並饋入電網,運作在高頻模式下,且能降低切換損耗,並避免變壓器飽和,以提高轉換效率及提高系統的可靠度。In view of this, the present disclosure provides a DC-to-AC conversion device applied to a solar photovoltaic module, which converts a DC power outputted by a solar photovoltaic module into an AC power source and feeds the power grid, operates in a high frequency mode, and can be reduced. Switch losses and avoid transformer saturation to improve conversion efficiency and increase system reliability.

本揭露一實施例提供一種應用於太陽光電模組的直流轉交流轉換裝置,包括:一隔離式單端初級電感轉換電路,包括具有三組線圈的一隔離變壓器,用以將太陽光電模組所輸出的一直流電壓轉換為一交流電壓;以及一角度與相位控制電路,接收該交流電壓並控制該交流電壓的輸出功率角度以及相位,並將該交流電壓饋入一電網。An embodiment of the present invention provides a DC-to-AC conversion device for a solar photovoltaic module, comprising: an isolated single-ended primary inductance conversion circuit, comprising an isolation transformer having three sets of coils for using a solar photovoltaic module The output DC voltage is converted into an AC voltage; and an angle and phase control circuit receives the AC voltage and controls the output power angle and phase of the AC voltage, and feeds the AC voltage to a power grid.

a、b‧‧‧輸入端a, b‧‧‧ input

Ca ‧‧‧直流隔離電容C a ‧‧‧DC isolation capacitor

Cin ‧‧‧電容C in ‧‧‧ capacitor

Da 、Db ‧‧‧被動二極體元件D a , D b ‧‧‧ Passive diode components

iac ‧‧‧輸出交流電流i ac ‧‧‧Output AC current

iS1 、iDa 、iDb ‧‧‧電流i S1 , i Da , i Db ‧ ‧ current

L1 ‧‧‧儲能電感L 1 ‧‧‧ storage inductor

S1 、Sa 、Sb 、Sa1 、Sb1 ‧‧‧主動開關元件S 1 , S a , S b , S a1 , S b1 ‧‧‧ active switching elements

T‧‧‧變壓器T‧‧‧Transformer

Tp ‧‧‧一次側線圈T p ‧‧‧ primary side coil

Tsa 、Tsb ‧‧‧二次側線圈T sa , T sb ‧‧‧ secondary coil

VGS1 、VGSa 、VGSb ‧‧‧控制訊號V GS1 , V GSa , V GSb ‧‧‧ control signals

第1圖為根據本發明一實施例之應用於太陽光電模組的直流轉交流轉換裝置的方塊示意圖。FIG. 1 is a block diagram showing a DC-to-AC conversion device applied to a solar photovoltaic module according to an embodiment of the invention.

第2圖為根據本發明一實施例之應用於太陽光電模組的直流轉交流轉換裝置的電路示意圖。2 is a circuit diagram of a DC-to-AC converter applied to a solar photovoltaic module according to an embodiment of the invention.

第3圖為第2圖之應用於太陽光電模組的直流轉交流轉換裝置的訊號時序圖。Fig. 3 is a signal timing diagram of the DC-to-AC converter applied to the solar photovoltaic module of Fig. 2.

第4A至4B圖為第2圖之應用於太陽光電模組的直流轉交流轉換裝置在電網正半週期的操作示意圖。4A to 4B are schematic diagrams showing the operation of the DC-to-AC converter applied to the solar photovoltaic module in the positive half cycle of the grid in Fig. 2.

第5A至5B圖為第2圖之應用於太陽光電模組的直流轉交流轉換裝置在電網負半週期的操作示意圖。5A to 5B are schematic diagrams showing the operation of the DC-to-AC converter applied to the solar photovoltaic module in the negative half cycle of the grid in Fig. 2.

第6圖為根據本發明一實施例之應用於太陽光電模組的直流轉交流轉換裝置的示意圖。Figure 6 is a schematic diagram of a DC-to-AC converter applied to a solar photovoltaic module in accordance with an embodiment of the present invention.

第7圖為根據本發明一實施例之應用於太陽光電模組的直流轉交流轉換裝置的示意圖。Figure 7 is a schematic diagram of a DC-to-AC converter applied to a solar photovoltaic module in accordance with an embodiment of the present invention.

第8圖為根據本發明一實施例之應用於太陽光電模組的直流轉交流轉換裝置的示意圖。Figure 8 is a schematic diagram of a DC-to-AC converter applied to a solar photovoltaic module in accordance with an embodiment of the present invention.

第9圖為根據本發明一實施例之應用於太陽光電模組的直流轉交流轉換裝置的示意圖。Figure 9 is a schematic diagram of a DC-to-AC converter applied to a solar photovoltaic module in accordance with an embodiment of the present invention.

以下說明為本發明的實施例。其目的是要舉例說明本發明一般性的原則,不應視為本發明之限制,本發明之範圍當以申請專利範圍所界定者為準。The following description is an embodiment of the present invention. The intent is to exemplify the general principles of the invention and should not be construed as limiting the scope of the invention, which is defined by the scope of the claims.

值得注意的是,以下所揭露的內容可提供多個用 以實踐本發明之不同特點的實施例或範例。以下所述之特殊的元件範例與安排僅用以簡單扼要地闡述本發明之精神,並非用以限定本發明之範圍。此外,以下說明書可能在多個範例中重複使用相同的元件符號或文字。然而,重複使用的目的僅為了提供簡化並清楚的說明,並非用以限定多個以下所討論之實施例以及/或配置之間的關係。此外,以下說明書所述之一個特徵連接至、耦接至、以及/或形成於另一特徵之上等的描述,實際可包含多個不同的實施例,包括該等特徵直接接觸,或者包含其它額外的特徵形成於該等特徵之間等等,使得該等特徵並非直接接觸。It is worth noting that the content disclosed below can provide multiple uses. Embodiments or examples that embody different features of the invention. The specific elements and arrangements of the elements described below are merely illustrative of the spirit of the invention and are not intended to limit the scope of the invention. In addition, the following description may reuse the same component symbols or characters in various examples. However, the re-use is for the purpose of providing a simplified and clear description, and is not intended to limit the relationship between the various embodiments and/or configurations discussed below. In addition, the description of one of the features described in the following description, which is connected to, coupled to, and/or formed on another feature, etc., may actually include a plurality of different embodiments, including direct contact of the features, or other Additional features are formed between the features, etc. such that the features are not in direct contact.

第1圖為根據本發明一實施例之應用於太陽光電模組10的直流轉交流轉換裝置20的方塊示意圖,用以將太陽光電模組10所輸出的直流電壓轉換為交流電壓並饋入電網CG。直流轉交流轉換裝置20包括一隔離式單端初級電感轉換(Single Ended Primary Inductor Converter,SEPIC)電路200以及一角度與相位控制電路300。隔離式單端初級電感轉換電路200將上述直流電壓轉換為一交流電壓,包括一隔離變壓器T。角度與相位控制電路300接收隔離式單端初級電感轉換電路200之交流電壓並控制隔離式單端初級電感轉換電路200之交流電壓的輸出功率角度以及相位,然後將交流電流饋入至電網CG。1 is a block diagram of a DC-to-AC converter 20 applied to a solar photovoltaic module 10 for converting a DC voltage outputted by a solar photovoltaic module 10 into an AC voltage and feeding it into a power grid according to an embodiment of the invention. CG. The DC-to-AC converter 20 includes an isolated Single Ended Primary Inductor Converter (SEPIC) circuit 200 and an angle and phase control circuit 300. The isolated single-ended primary inductance conversion circuit 200 converts the above-mentioned DC voltage into an AC voltage, including an isolation transformer T. The angle and phase control circuit 300 receives the AC voltage of the isolated single-ended primary inductance conversion circuit 200 and controls the output power angle and phase of the AC voltage of the isolated single-ended primary inductance conversion circuit 200, and then feeds the AC current to the grid CG.

第2圖為根據本發明一實施例之應用於太陽光電模組的直流轉交流轉換裝置的電路示意圖。如第2圖所示,隔離式單端初級電感轉換電路200包括輸入端a和b、電容Cin 、儲能電感L1 、直流隔離電容Ca 、主動開關元件S1 以及隔離變壓器 T。輸入端a和b接收太陽光電模組所輸出的直流電壓,其中輸入端a耦接至直流電壓的正端,輸入端b耦接至直流電壓的負端。電容Cin 耦接於輸入端a和b之間,儲能電感L1 的第一端耦接至輸入端a,儲能電感L1 的第二端耦接至直流隔離電容Ca 的第一端以及主動開關元件S1 的第一端,主動開關元件S1 的第二端耦接至輸入端b,主動開關元件S1 的控制端(閘極端)耦接至一控制電路(圖中未示)。隔離變壓器T為一三線圈組的隔離變壓器,包括一次側線圈Tp 以及二次側線圈Tsa 和Tsb ,其中一次側線圈Tp 的第一端耦接至直流隔離電容Ca 的第二端,一次側線圈Tp 的第二端耦接至輸入端b,且一次側線圈Tp 的第一端和二次側線圈Tsa 的第一端以及二次側線圈Tsb 的第一端具有相同極性(如圖中黑點所示)。二次側線圈Tsa 的第二端和二次側線圈Tsb 的第一端耦接至電網CG的第二端。在本揭露中,電網CG泛指供電之交流匯流排。2 is a circuit diagram of a DC-to-AC converter applied to a solar photovoltaic module according to an embodiment of the invention. As shown in FIG. 2, the isolated single-ended primary inductance conversion circuit 200 includes input terminals a and b, a capacitor C in , a storage inductor L 1 , a DC isolation capacitor C a , an active switching element S 1 , and an isolation transformer T. The input terminals a and b receive the DC voltage outputted by the solar photovoltaic module, wherein the input terminal a is coupled to the positive terminal of the DC voltage, and the input terminal b is coupled to the negative terminal of the DC voltage. The capacitor C in is coupled between the input terminals a and b, the first end of the storage inductor L 1 is coupled to the input end a, and the second end of the storage inductor L 1 is coupled to the first of the DC isolation capacitor C a and an active terminal end of the first switching element S 1, a second end of the active switching element S 1 is coupled to the input terminal B, the switching control terminal of the active element S 1 (gate terminal) is coupled to a control circuit (not Show). The isolation transformer T is an isolation transformer of a three-coil group, and includes a primary side coil T p and a secondary side coil T sa and T sb , wherein the first end of the primary side coil T p is coupled to the second of the DC isolation capacitor C a The second end of the primary side coil T p is coupled to the input end b, and the first end of the primary side coil T p and the first end of the secondary side coil T sa and the first end of the secondary side coil T sb Have the same polarity (shown by black dots in the figure). The second end of the secondary side coil T sa and the first end of the secondary side coil T sb are coupled to the second end of the grid CG. In the present disclosure, the grid CG refers to the alternating current bus of the power supply.

角度與相位控制電路300包括主動開關元件Sa 和Sb 以及被動二極體元件Da 和Db 。主動開關元件Sa 為正半週期的主動開關元件,其第一端耦接至二次側線圈Tsa 的第一端,其第二端耦接至被動二極體元件Da 的陽極端。被動二極體元件Da 的陰極端耦接至電網CG的第一端。主動開關元件Sb 為負半週期的主動開關元件,其第一端耦接至電網CG的第一端,其第二端耦接至被動二極體元件Db 的陽極端。被動二極體元件的陰極端耦接至二次側線圈Tsb 的第二端。主動開關元件Sa 和Sb 的控制端耦接至上述控制電路(圖中未示),上述控制電路可為一類比或數位的積體電路,用以控制主動開關元件S1 、Sa 和Sb 的導通與截 止。The angle and phase control circuit 300 includes active switching elements S a and S b and passive diode elements D a and D b . The active switching element S a is a positive half-cycle active switching element, the first end of which is coupled to the first end of the secondary side coil T sa and the second end of which is coupled to the anode end of the passive diode element D a . The cathode end of the passive diode element D a is coupled to the first end of the grid CG. The active switching element S b is a negative half cycle active switching element, the first end of which is coupled to the first end of the power grid CG and the second end of which is coupled to the anode end of the passive diode element D b . The cathode end of the passive diode element is coupled to the second end of the secondary side coil T sb . Active switching elements S a and S b of the control terminal coupled to said control circuit (not shown), the control circuit may be an analog or digit integrated circuit for controlling the active switching element S 1, S a, and The conduction and cutoff of S b .

當電網CG的弦波處於正半週期時,正半週期主動開關元件Sa 和被動二極體Da 為導通,變壓器T的輸出電流iDa 透過導通的主動開關元件Sa 和被動二極體Da 傳送至電網CG,且此時負半週期主動開關元件Sb 和被動二極體Db 為不導通;當電網CG的弦波處於負半週期時,負半週期主動開關元件Sb 和被動二極體Db 為導通,變壓器T的輸出電流iDb 透過導通的主動開關元件Sb 和被動二極體Db 傳送至電網CG,且此時正半週期主動開關元件Sa 和被動二極體Da 為不導通。When the grid CG of the sine wave in the positive half cycle, the positive half cycle of active switching element S a passive diode D a is turned on, the output current of the transformer T i Da through the conducting active switching element S a passive diode D a is transmitted to the grid CG, and at this time, the negative half-cycle active switching element S b and the passive diode D b are non-conducting; when the sine wave of the grid CG is in the negative half cycle, the negative half-cycle active switching element S b and passive diode D b is turned on, the output current of the transformer T i Db transmitted through the conducting active switching element S b and passive diode D b to the grid the CG, and this time the positive half cycle of active switching element S a passive two The polar body D a is non-conductive.

第3圖為第2圖之應用於太陽光電模組的直流轉交流轉換裝置的訊號時序圖,以下將配合第4A至4B圖以及第5A至5B圖說明第2圖之應用於太陽光電模組的直流轉交流轉換裝置的操作,其中第4A至4B圖為第2圖之應用於太陽光電模組的直流轉交流轉換裝置在電網正半週期的操作示意圖,而第5A至5B圖為第2圖之應用於太陽光電模組的直流轉交流轉換裝置在電網負半週期的操作示意圖。Figure 3 is a signal timing diagram of the DC-to-AC converter used in the solar photovoltaic module of Figure 2, which will be applied to the solar photovoltaic module in accordance with Figs. 4A to 4B and 5A to 5B. The operation of the DC-to-AC converter, wherein Figures 4A to 4B are diagrams of the operation of the DC-to-AC converter applied to the solar module in Figure 2 in the positive half cycle of the grid, and Figures 5A to 5B are the second The schematic diagram of the operation of the DC-to-AC converter used in the solar photovoltaic module in the negative half cycle of the grid.

當電網CG的弦波處於正半週期時,若控制電路藉由控制訊號VGS1 導通主動開關元件S1 (也就是控制主動開關元件S1 的第一端和第二端之間為通路),如第4A圖所示,則儲能電感L1 開始儲存電能,直流隔離電容Ca 對一次側線圈Tp 釋放能量,因此一次側電流iS1 開始線性增加。當電網CG的弦波處於正半週期時,若控制電路在主動開關元件S1 導通一預定時間後截止主動開關元件S1 ,如第4B圖所示,則儲能電感L1 對直流隔離電容Ca 釋放能量,同時一次側線圈Tp 將能量傳送至二次側線 圈Tsa ,此時由於當電網CG的弦波處於正半週期時,控制電路藉由控制訊號VGSa 導通正半週期主動開關元件Sa (如第2圖控制訊號VGSa 所示),因此二次側線圈Tsa 透過角度與相位控制電路中導通的正半週期主動開關元件Sa 以及被動二極體元件Da 將能量饋入至電網CG,如第4B圖所示。每次當控制電路偵測到儲能電感L1 的釋能電流為零時,控制電路就會導通主動開關元件S1 ,並於一預定時間後截止主動開關元件S1 ,當主動開關元件S1 截止時,儲能電感L1釋放能量至釋能電流為零,然後當控制電路偵測到儲能電感L1 的釋能電流為零時便重複上列步驟。因此,如第3圖中控制訊號VGS1 的圖形所示,主動開關元件S1 不斷重覆地導通一預定時間後截止,主動開關元件S1 導通與截止時的操作如上列所述,不再複述。When the sine wave of the power grid CG is in the positive half cycle, if the control circuit turns on the active switching element S 1 by the control signal V GS1 (that is, controls the path between the first end and the second end of the active switching element S 1 ), as shown in Figure 4A, the energy storage inductor L 1 begins to store energy, the DC blocking capacitor C a T p of the primary side coil to release energy, and therefore the primary-side current i S1 starts to increase linearly. When the sine wave of the grid CG is in the positive half cycle, if the control circuit turns off the active switching element S 1 after the active switching element S 1 is turned on for a predetermined time, as shown in FIG. 4B, the storage inductor L 1 is connected to the DC isolation capacitor. C a releases energy, and the primary side coil T p transmits energy to the secondary side coil T sa . At this time, when the sine wave of the power grid CG is in the positive half cycle, the control circuit conducts the positive half cycle active by the control signal V GSa . S a switching element (in FIG. 2 as the control signal V GSa shown), thus the secondary winding T sa conduction control circuit through the positive half cycle of the phase angle of the switching element S a active and passive elements diode D a will Energy is fed into the grid CG as shown in Figure 4B. Each time when the control circuit detects that the inductor L 1 discharging current is zero, the control circuit will be turned active switching element S 1, and is turned off after a predetermined time of the active switching elements S 1, when the active switching elements S At the end of 1 time, the energy storage inductor L1 releases energy until the release current is zero, and then repeats the above steps when the control circuit detects that the discharge current of the energy storage inductor L 1 is zero. Therefore, as shown in the graph of the control signal V GS1 in FIG. 3, the active switching element S 1 is turned on repeatedly for a predetermined time and then turned off, and the operation of the active switching element S 1 when turned on and off is as described above. repeat.

當電網CG的弦波處於負半週期時,若控制電路藉由控制訊號VGS1 導通主動開關元件S1 ,如第5A圖所示,則儲能電感L1 開始儲存電能,直流隔離電容Ca 對一次側線圈Tp 釋放能量,因此一次側電流iS1 開始線性增加。當電網CG的弦波處於正半週期時,若控制電路在主動開關元件S1 導通一預定時間後截止主動開關元件S1 ,如第5B圖所示,則儲能電感L1 對直流隔離電容Ca 釋放能量,同時一次側線圈Tp 將能量傳送至二次側線圈Tsb ,此時由於當電網CG的弦波處於負半週期時,控制電路藉由控制訊號VGSb 導通負半週期主動開關元件Sb (如第2圖控制訊號VGSb 所示),因此二次側線圈Tsb 透過角度與相位控制電路中導通的負半週期主動開關元件Sb 以及被動二極體元件Db 將能量饋入至電網CG,如第5B圖所示。每次當控制電路偵測到 儲能電感L1 的釋能電流為零時,控制電路就會導通主動開關元件S1 ,並於一預定時間後截止主動開關元件S1 ,當主動開關元件S1 截止時,儲能電感L1釋放能量至釋能電流為零,然後當控制電路偵測到儲能電感L1 的釋能電流為零時便重複上列步驟。因此,如第3圖中控制訊號VGS1 的圖形所示,主動開關元件S1 不斷重覆地導通一預定時間後截止,主動開關元件S1 導通與截止時的操作如上列所述,不再複述。在本揭露中,主動開關元件可為電晶體,例如金氧半導體場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)或絕緣閘雙極性電晶體(Insulated Gate Bipolar Transistor,IGBT),也可為矽控整流器(Silicon Controlled Rectifier,SCR)或閘極關閉元件(Gate Turn Off,GTF)。When the sine wave of the power grid CG is in the negative half cycle, if the control circuit turns on the active switching element S 1 by the control signal V GS1 , as shown in FIG. 5A , the energy storage inductor L 1 starts to store electrical energy, and the DC isolation capacitor C a T p of the primary side coil to release energy, and therefore the primary-side current i S1 starts to increase linearly. When the sine wave of the power grid CG is in the positive half cycle, if the control circuit turns off the active switching element S 1 after the active switching element S 1 is turned on for a predetermined time, as shown in FIG. 5B, the energy storage inductor L 1 is connected to the DC isolation capacitor. C a releases energy, and the primary side coil T p transfers energy to the secondary side coil T sb . At this time, when the sine wave of the power grid CG is in the negative half cycle, the control circuit conducts the negative half cycle active by the control signal V GSb . The switching element S b (shown as control signal V GSb in FIG. 2 ), so that the secondary side coil T sb transmits the negative half-cycle active switching element S b and the passive diode element D b that are turned on in the angle and phase control circuit Energy is fed into the grid CG as shown in Figure 5B. Each time when the control circuit detects that the inductor L 1 discharging current is zero, the control circuit will be turned active switching element S 1, and is turned off after a predetermined time of the active switching elements S 1, when the active switching elements S At the end of 1 time, the energy storage inductor L1 releases energy until the release current is zero, and then repeats the above steps when the control circuit detects that the discharge current of the energy storage inductor L 1 is zero. Therefore, as shown in the graph of the control signal V GS1 in FIG. 3, the active switching element S 1 is turned on repeatedly for a predetermined time and then turned off, and the operation of the active switching element S 1 when turned on and off is as described above. repeat. In the disclosure, the active switching element may be a transistor, such as a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) or an Insulated Gate Bipolar Transistor (IGBT). It can also be a Silicon Controlled Rectifier (SCR) or a Gate Turn Off (GTF).

透過上列所述之直流轉交流轉換裝置,可將太陽光電模組所輸出的直流電源轉換為交流電源並饋入至電網CG,如第3圖的輸出交流電流iac 所示。上述實施例之直流轉交流轉換裝置中的隔離式單端初級電感轉換電路具有電流源特性,可降低輸入側的電流鏈波,並採用邊界導通技術,每次激磁電感電流(即儲能電感L1 的釋能電流)為零時控制主動開關元件S1 為導通,因此主動開關元件S1 具有零電壓導通(Zero Voltage Switching,ZVS)的特性,可減少開關元件的切換損失。除此之外,藉由控制電路控制主動開關元件S1 的導通時間可控制輸出功率。Through the DC-to-AC conversion device described above, the DC power output from the solar photovoltaic module can be converted into AC power and fed to the grid CG, as shown by the output AC current i ac in FIG. The isolated single-ended primary inductance conversion circuit in the DC-to-AC converter of the above embodiment has a current source characteristic, which can reduce the current chain wave on the input side, and adopts boundary conduction technology, each time the inductor current (ie, the energy storage inductor L) When the discharge current of 1 is zero, the active switching element S 1 is controlled to be turned on. Therefore, the active switching element S 1 has a characteristic of zero voltage switching (ZVS), which can reduce the switching loss of the switching element. In addition, with the active control circuit for controlling the conduction time of the switching element S 1 may control the output power.

由於主動開關元件S1 處於高頻切換模式下且變壓器T為隔離變壓器,因此隔離式單端初級電感轉換電路在電路 設計上可縮小體積。另外,隔離式單端初級電感轉換電路中的直流隔離電容可去除變壓器T的直流成份,因此可以利用薄膜電容取代電解電容,提高系統的可靠度。隔離式單端初級電感轉換電路的二次側線圈電性耦接至角度與相位控制電路,角度與相位控制電路透過與電網CG頻率同步切換的主動開關元件Sa 和Sb 以及被動二極體元件Da 和Db 控制交流電源的輸出功率角度與相位,達到與電網同步的併網效果,且由於主動開關元件Sa 和Sb 的切換頻率與電網CG的頻率(例如60Hz)同步,因此開關元件的切換損失很低。另外,由於本實施例之直流轉交流轉換裝置所需的電路元件數目相較於先前技術較少,可以降低系統成本。Since the active switching element S 1 is in the high frequency switching mode and the transformer T is the isolation transformer, the isolated single-ended primary inductance conversion circuit can be reduced in size in circuit design. In addition, the DC isolation capacitor in the isolated single-ended primary inductance conversion circuit can remove the DC component of the transformer T, so the film capacitor can be used instead of the electrolytic capacitor to improve the reliability of the system. The secondary side coil of the isolated single-ended primary inductance conversion circuit is electrically coupled to the angle and phase control circuit, and the angular and phase control circuit transmits the active switching elements S a and S b and the passive diode through synchronous switching with the grid CG frequency. element D a and D b controls the AC output of the power angle and the phase, to achieve the grid results in synchronization with the grid, and since the active switches S a and the switching frequency of the grid CG frequency S b (e.g., 60Hz) element synchronized, The switching loss of the switching element is very low. In addition, since the number of circuit components required for the DC-to-AC converter of the present embodiment is smaller than that of the prior art, the system cost can be reduced.

以下實施例與第2圖之實施例的差異主要在於角度與相位控制電路,因此以下主要針對角度與相位控制電路的差異進行說明,其餘相似部份如上列所述,不再複述。The difference between the following embodiments and the embodiment of FIG. 2 mainly lies in the angle and phase control circuit. Therefore, the following mainly describes the difference between the angle and phase control circuits, and the rest of the similar parts are as described above and will not be described again.

第6圖為根據本發明另一實施例之應用於太陽光電模組的直流轉交流轉換裝置的示意圖。第6圖之角度與相位控制電路包括主動開關元件Sa 和Sb 以及被動二極體元件Da 和Db 。主動開關元件Sa 為正半週期主動開關元件,其第一端耦接至電網CG的第二端,其第二端耦接至二次側線圈Tsa 的第二端。被動二極體元件Da 的陽極端耦接至二次側線圈Tsa 的第一端,其陰極端耦接至電網CG的第一端。主動開關元件Sb 為負半週期主動開關元件,其第一端耦接至二次側線圈Tsb 的第一端,其第二端耦接至電網CG的第二端。被動二極體元件Db 的陰極端耦接至二次側線圈Tsb 的第二端,其陽極端耦接至電網CG的 第一端。主動開關元件Sa 和Sb 由上述控制電路控制導通與截止,當電網CG的弦波處於正半週期時,正半週期主動開關元件Sa 和被動二極體Da 為導通,變壓器T的輸出電流iDa 透過導通的主動開關元件Sa 和被動二極體Da 傳送至電網CG,且此時負半週期主動開關元件Sb 和被動二極體Db 為不導通;當電網CG的弦波處於負半週期時,負半週期主動開關元件Sb 和被動二極體Db 為導通,變壓器T的輸出電流iDb 透過導通的主動開關元件Sb 和被動二極體Db 傳送至電網CG,且此時正半週期主動開關元件Sa 和被動二極體Da 為不導通。Figure 6 is a schematic diagram of a DC-to-AC converter applied to a solar photovoltaic module in accordance with another embodiment of the present invention. The angle and phase control circuit of Figure 6 includes active switching elements S a and S b and passive diode elements D a and D b . The active switching element S a is a positive half-cycle active switching element, the first end of which is coupled to the second end of the power grid CG, and the second end of which is coupled to the second end of the secondary side coil T sa . The anode end of the passive diode element D a is coupled to the first end of the secondary side coil T sa , and the cathode end thereof is coupled to the first end of the grid CG. The active switching element S b is a negative half-cycle active switching element, the first end of which is coupled to the first end of the secondary side coil T sb and the second end of which is coupled to the second end of the power grid CG. The cathode end of the passive diode element D b is coupled to the second end of the secondary side coil T sb , and the anode end thereof is coupled to the first end of the grid CG. Active switching elements S a and S b is turned on and off controlled by the control circuit, when the grid CG of the sine wave in the positive half cycle, the positive half cycle of active switching element S a passive diode D a is turned on, the transformer T output current i Da through the active switching element of S a and passive diode transmits D a to the grid CG, and at this time a negative half cycle active switching element S b and passive diode D b nonconducting; when the grid CG is When the sine wave is in the negative half cycle, the negative half cycle active switching element S b and the passive diode D b are turned on, and the output current i Db of the transformer T is transmitted to the active switching element S b and the passive diode D b that are turned on to grid CG, and at this time active positive half cycle and the switching element S a passive diode D a nonconducting.

第7圖為根據本發明另一實施例之應用於太陽光電模組的直流轉交流轉換裝置的示意圖。第7圖之角度與相位控制電路包括主動開關元件Sa 、Sa1 、Sb 和Sb1 。主動開關元件Sa 和Sa1 為正半週期主動開關元件,主動開關元件Sa 的第一端耦接至電網CG的第二端,主動開關元件Sa 的第二端耦接至二次側線圈Tsa 的第二端,主動開關元件Sa1 的第一端耦接至電網CG的第一端,主動開關元件Sa1 的第二端耦接至二次側線圈Tsa 的第一端。主動開關元件Sb 和Sb1 為負半週期主動開關元件,主動開關元件Sb 的第一端耦接至二次側線圈Tsb 的第一端,主動開關元件Sb 的第二端耦接至電網CG的第二端,主動開關元件Sb1 的第一端耦接至二次側線圈Tsb 的第二端,主動開關元件Sb1 的第二端耦接至電網CG的第一端。主動開關元件Sa 、Sa1 、Sb 和Sb1 由上述控制電路控制導通與截止,當電網CG的弦波處於正半週期時,正半週期主動開關元件Sa 和Sa1 為導通,輸出電流iDa 透過導通的主動開關元件Sa 和Sa1 傳送至電網CG,且此時負半週期 主動開關元件Sb 和Sb1 為不導通;當電網CG的弦波處於負半週期時,負半週期主動開關元件Sb 和Sb1 為導通,輸出電流iDb 透過導通的主動開關元件Sb 和Sb1 傳送至電網CG,且此時正半週期主動開關元件Sa 和Sa1 為不導通。Figure 7 is a schematic diagram of a DC-to-AC converter applied to a solar photovoltaic module in accordance with another embodiment of the present invention. The angle and phase control circuit of Figure 7 includes active switching elements S a , S a1 , S b and S b1 . Active switching elements Sa 1 and S a is a positive half cycle of the switching active element, the active terminal of the switching element S a second terminal coupled to a first power grid CG of active switching element S a second terminal coupled to the secondary side a first terminal coupled to a first end of the grid CG, a second terminal coupled to the active switching element S a1 is coupled to the secondary winding T sa first and second ends of the coil T sa, S a1 is the active switching element. The active switching elements S b and S b1 are negative half-cycle active switching elements, the first end of the active switching element S b is coupled to the first end of the secondary side coil T sb , and the second end of the active switching element S b is coupled To the second end of the power grid CG, the first end of the active switching element S b1 is coupled to the second end of the secondary side coil T sb , and the second end of the active switching element S b1 is coupled to the first end of the power grid CG. The active switching elements S a , S a1 , S b and S b1 are controlled to be turned on and off by the above control circuit. When the sine wave of the power grid CG is in the positive half cycle, the positive half cycle active switching elements S a and S a1 are turned on and output. current i Da a1 transmitted through the conducting active switching element S a and S to the grid CG, and at this time a negative half cycle active switching elements S B and S B1 is not turned on; when the grid CG is a sine wave in the negative half cycle, the negative half cycle active switching element S b and S b1 transmitted through the conducting active switching element S b and S b1 to the grid CG is turned on, the output current i Db, and this time the positive half cycle of active switching element S a and S a1 nonconducting .

第8圖為根據本發明另一實施例之應用於太陽光電模組的直流轉交流轉換裝置的示意圖。第8圖之角度與相位控制電路包括主動開關元件Sa 和Sb 以及被動二極體元件Da 和Db 。主動開關元件Sa 為正半週期主動開關元件,其第一端耦接至二次側線圈Tsa 的第一端,其第二端耦接至電網CG的第一端。被動二極體元件Da 的陽極端耦接至電網CG的第二端,其陰極端耦接至二次側線圈Tsa 的第二端。主動開關元件Sb 為負半週期主動開關元件,其第一端耦接至電網CG的第一端,其第二端耦接至二次側線圈Tsb 的第二端。被動二極體元件Db 的陽極端耦接至二次側線圈Tsb 的第一端,其陰極端耦接至電網CG的第二端。主動開關元件Sa 和Sb 由上述控制電路控制導通與截止,當電網CG的弦波處於正半週期時,正半週期主動開關元件Sa 和被動二極體Da 為導通,輸出電流iDa 透過導通的主動開關元件Sa 和被動二極體Da 傳送至電網CG,且此時負半週期主動開關元件Sb 和被動二極體Db 為不導通;當電網CG的弦波處於負半週期時,負半週期主動開關元件Sb 和被動二極體Db 為導通,輸出電流iDb 透過導通的主動開關元件Sb 和被動二極體Db 傳送至電網CG,且此時正半週期主動開關元件Sa 和正半週期被動二極體Da 為不導通。Figure 8 is a schematic diagram of a DC-to-AC converter applied to a solar photovoltaic module in accordance with another embodiment of the present invention. The angle and phase control circuit of Figure 8 includes active switching elements S a and S b and passive diode elements D a and D b . The active switching element S a is a positive half-cycle active switching element, the first end of which is coupled to the first end of the secondary side coil T sa , and the second end of which is coupled to the first end of the power grid CG . The anode end of the passive diode element D a is coupled to the second end of the grid CG, and the cathode end thereof is coupled to the second end of the secondary side coil T sa . The active switching element S b is a negative half-cycle active switching element, the first end of which is coupled to the first end of the power grid CG and the second end of which is coupled to the second end of the secondary side coil T sb . The anode end of the passive diode element D b is coupled to the first end of the secondary side coil T sb , and the cathode end thereof is coupled to the second end of the grid CG. Active switching elements S a and S b Control turned on and off by the control circuit, when the grid CG of the sine wave in the positive half cycle, the positive half cycle of active switching element S a passive diode D a is turned on, the output current i Da transmitted through conducting active switching element S a passive diode D a to the grid CG, and at this time a negative half cycle active switching element S b and passive diode D b nonconducting; when the grid CG is sinusoidal in During the negative half cycle, the negative half cycle active switching element S b and the passive diode D b are turned on, and the output current i Db is transmitted to the power grid CG through the turned-on active switching element S b and the passive diode D b . active positive half cycle and the switching element S a positive half cycle of the passive diode D a nonconducting.

第9圖為根據本發明另一實施例之應用於太陽光 電模組的直流轉交流轉換裝置的示意圖。第9圖之角度與相位控制電路包括主動開關元件Sa 、Sa1 、Sb 和Sb1 。主動開關元件Sa 和Sa1 為正半週期主動開關元件,主動開關元件Sa 的第一端耦接至二次側線圈Tsa 的第一端,主動開關元件Sa 的第二端耦接至主動開關元件Sa1 的第二端,因此主動開關元件Sa 和Sa1 為背接式,主動開關元件Sa1 的第一端耦接至電網CG的第一端。主動開關元件Sb 和Sb1 為負半週期主動開關元件,主動開關元件Sb 的第一端耦接至電網CG的第一端,主動開關元件Sb 的第二端耦接至主動開關元件Sb1 的第二端,主動開關元件Sb1 的第一端耦接至二次側線圈Tsb 的第二端。主動開關元件Sa 、Sa1 、Sb 和Sb1 由上述控制電路控制導通與截止,當電網CG的弦波處於正半週期時,正半週期主動開關元件Sa 和Sa1 為導通,輸出電流iDa 透過導通的主動開關元件Sa 和Sa1 傳送至電網CG,且此時負半週期主動開關元件Sb 和Sb1 為不導通;當電網CG的弦波處於負半週期時,負半週期主動開關元件Sb 和Sb1 為導通,輸出電流iDb 透過導通的主動開關元件Sb 和Sb1 傳送至電網CG,且此時正半週期主動開關元件Sa 和Sa1 為不導通。Figure 9 is a schematic diagram of a DC-to-AC converter applied to a solar photovoltaic module in accordance with another embodiment of the present invention. The angle and phase control circuit of Fig. 9 includes active switching elements S a , S a1 , S b and S b1 . Active switching elements Sa 1 and S a is a positive half cycle of the switching active element, a first terminal coupled to the active switching element S a is coupled to a first end of the secondary winding T sa, active switching element S a second terminal coupled To the second end of the active switching element S a1 , the active switching elements S a and Sa 1 are connected to each other, and the first end of the active switching element S a1 is coupled to the first end of the power grid CG. The active switching elements S b and S b1 are negative half-cycle active switching elements, the first end of the active switching element S b is coupled to the first end of the power grid CG, and the second end of the active switching element S b is coupled to the active switching element The second end of the S b1 , the first end of the active switching element S b1 is coupled to the second end of the secondary side coil T sb . The active switching elements S a , S a1 , S b and S b1 are controlled to be turned on and off by the above control circuit. When the sine wave of the power grid CG is in the positive half cycle, the positive half cycle active switching elements S a and S a1 are turned on and output. current i Da a1 transmitted through the conducting active switching element S a and S to the grid CG, and at this time a negative half cycle active switching elements S B and S B1 is not turned on; when the grid CG is a sine wave in the negative half cycle, the negative half cycle active switching element S b and S b1 transmitted through the conducting active switching element S b and S b1 to the grid CG is turned on, the output current i Db, and this time the positive half cycle of active switching element S a and S a1 nonconducting .

以上所述為實施例的概述特徵。所屬技術領域中具有通常知識者應可以輕而易舉地利用本發明為基礎設計或調整以實行相同的目的和/或達成此處介紹的實施例的相同優點。所屬技術領域中具有通常知識者也應了解相同的配置不應背離本創作的精神與範圍,在不背離本創作的精神與範圍下他們可做出各種改變、取代和交替。說明性的方法僅表示示範性的步驟,但這些步驟並不一定要以所表示的順序執行。可另外 加入、取代、改變順序和/或消除步驟以視情況而作調整,並與所揭露的實施例精神和範圍一致。The above is an overview feature of the embodiment. Those having ordinary skill in the art should be able to use the present invention as a basis for design or adaptation to achieve the same objectives and/or achieve the same advantages of the embodiments described herein. It should be understood by those of ordinary skill in the art that the same configuration should not depart from the spirit and scope of the present invention, and various changes, substitutions and substitutions can be made without departing from the spirit and scope of the present invention. The illustrative methods are merely illustrative of the steps, but are not necessarily performed in the order presented. Additional The steps of adding, replacing, changing the order and/or eliminating the steps are adjusted as appropriate and are consistent with the spirit and scope of the disclosed embodiments.

a、b‧‧‧輸入端a, b‧‧‧ input

Ca ‧‧‧直流隔離電容C a ‧‧‧DC isolation capacitor

Cin ‧‧‧電容C in ‧‧‧ capacitor

Da 、Db ‧‧‧二極體D a , D b ‧‧‧ diode

iS1 、iDa 、iDb 、iac ‧‧‧電流i S1 , i Da , i Db , i ac ‧ ‧ current

L1 ‧‧‧儲能電感L 1 ‧‧‧ storage inductor

CG‧‧‧電網CG‧‧‧ grid

S1 、Sa 、Sb ‧‧‧主動開關元件S 1 , S a , S b ‧‧‧ active switching elements

T‧‧‧變壓器T‧‧‧Transformer

Tp ‧‧‧一次側線圈T p ‧‧‧ primary side coil

Tsa 、Tsb ‧‧‧二次側線圈T sa , T sb ‧‧‧ secondary coil

Claims (12)

一種應用於太陽光電模組的直流轉交流轉換裝置,包括:一隔離式單端初級電感轉換電路,包括具有三組線圈的一隔離變壓器,用以將太陽光電模組所輸出的一直流電壓轉換為一交流電壓;以及一角度與相位控制電路,接收該交流電壓並控制該交流電壓的輸出功率角度以及相位,並將該交流電壓饋入一電網;其中該三組線圈包括一次側線圈、第一二次側線圈以及第二二次側線圈,該隔離式單端初級電感轉換電路更包括耦接至該一次側線圈的一主動開關元件,該角度與相位控制電路包括耦接至該第一二次側線圈和該電網的一第一主動開關元件以及耦接至該第二二次側線圈和該電網的一第二主動開關元件;其中該隔離式單端初級電感轉換電路更包括:一第一輸入端,耦接至該直流電壓的正端;一第二輸入端,耦接至該直流電壓的負端;一儲能電感,其中該儲能電感的第一端耦接至該第一輸入端,該儲能電感的第二端耦接至該主動開關元件的第一端;以及一直流隔離電容,其中該直流隔離電容的第一端耦接至該主動開關元件的第一端,該直流隔離電容的第二端耦接至該一次側線圈的第一端;其中該一次側線圈的第二端以及該主動開關元件的第二端耦接至該第二輸入端,且該一次側線圈的第一端和 該第一二次側線圈的第一端以及第二二次側線圈的第一端具有相同的極性。 A DC-to-AC conversion device for a solar photovoltaic module, comprising: an isolated single-ended primary inductance conversion circuit, comprising an isolation transformer having three sets of coils for converting a DC voltage outputted by a solar photovoltaic module An AC voltage; and an angle and phase control circuit, receiving the AC voltage and controlling an output power angle and phase of the AC voltage, and feeding the AC voltage to a power grid; wherein the three sets of coils include a primary side coil, a secondary side coil and a second secondary side coil, the isolated single-ended primary inductance conversion circuit further includes an active switching element coupled to the primary side coil, the angle and phase control circuit including coupling to the first a secondary side coil and a first active switching element of the power grid and a second active switching element coupled to the second secondary side coil and the power grid; wherein the isolated single-ended primary inductance conversion circuit further comprises: a first input end coupled to the positive end of the DC voltage; a second input end coupled to the negative end of the DC voltage; a storage inductor, The first end of the energy storage inductor is coupled to the first input end, the second end of the energy storage inductor is coupled to the first end of the active switching element, and the DC isolation capacitor, wherein the DC isolation capacitor is One end is coupled to the first end of the active switching element, and the second end of the DC isolation capacitor is coupled to the first end of the primary side coil; wherein the second end of the primary side coil and the first end of the active switching element The two ends are coupled to the second input end, and the first end of the primary side coil The first end of the first secondary side coil and the first end of the second secondary side coil have the same polarity. 如申請專利範圍第1項所述之應用於太陽光電模組之直流轉交流轉換裝置,更包括:一控制電路,耦接至該主動開關元件的控制端、該第一主動開關元件的控制端以及該第二主動開關元件的控制端,用以控制該主動開關元件、該第一主動開關元件以及該第二主動開關元件的導通與截止。 The DC-to-AC conversion device for a solar photovoltaic module according to the first aspect of the invention, further comprising: a control circuit coupled to the control end of the active switching element and the control end of the first active switching element And a control end of the second active switching element for controlling conduction and deactivation of the active switching element, the first active switching element, and the second active switching element. 如申請專利範圍第1項所述之應用於太陽光電模組之直流轉交流轉換裝置,其中該隔離式單端初級電感轉換電路更包括:一電容,耦接於該第一輸入端以及該第二輸入端之間。 The DC-to-AC conversion device for a solar photovoltaic module according to the first aspect of the invention, wherein the isolated single-ended primary inductance conversion circuit further includes: a capacitor coupled to the first input terminal and the first Between the two inputs. 如申請專利範圍第3項所述之應用於太陽光電模組之直流轉交流轉換裝置,其中:在該電網的弦波處於正半週期時,該第一主動開關元件導通,該第二主動開關元件截止,且該主動開關元件不斷重覆地導通一預定時間後截止,當該主動開關元件導時該儲能電感儲存電能,當該主動開關元件截止時該儲能電感釋能至電流為零;以及在該電網的弦波處於負半週期時,該第二主動開關元件導通,該第一主動開關元件截止,且該主動開關元件不斷重覆地導通一預設時間後截止,當該主動開關元件導通時,該儲能電感儲存電能,當該主動開關元件截止時,該儲能電感釋能至電流為零。 The DC-to-AC conversion device applied to a solar photovoltaic module according to claim 3, wherein the first active switching element is turned on when the sine wave of the power grid is in a positive half cycle, and the second active switch The component is turned off, and the active switching component is turned on repeatedly for a predetermined time, and the energy storage inductor stores energy when the active switching component is turned on. When the active switching component is turned off, the energy storage inductor is released to zero current. And when the sine wave of the power grid is in a negative half cycle, the second active switching element is turned on, the first active switching element is turned off, and the active switching element is continuously turned on repeatedly for a predetermined time and then cut off when the active When the switching element is turned on, the energy storage inductor stores electrical energy, and when the active switching element is turned off, the energy storage inductor releases energy to zero. 如申請專利範圍第4項所述之應用於太陽光電模組之直流轉交流轉換裝置,其中該第一主動開關元件的第一端耦接至該第一二次側線圈的第一端,該第二主動開關元件的第一端耦接至該電網的第一端,該第一二次側線圈的第二端以及該第二二次側線圈的第一端耦接至該電網的第二端,且該角度與相位控制電路更包括:一第一被動二極體元件,其中該第一被動二極體元件的陽極端耦接至該第一主動開關元件的第二端,該第一被動二極體元件的陰極端耦接至該電網的第一端;以及一第二被動二極體元件,其中該第二被動二極體元件的陽極端耦接至該第二主動開關元件的第二端,該第二被動二極體元件的陰極端耦接至該第二二次側線圈的第二端。 The DC-to-AC converter of the solar photovoltaic module of claim 4, wherein the first end of the first active switching element is coupled to the first end of the first secondary coil, The first end of the second active switching element is coupled to the first end of the power grid, and the second end of the first secondary side coil and the first end of the second secondary side coil are coupled to the second end of the power grid And the angle and phase control circuit further includes: a first passive diode component, wherein an anode end of the first passive diode component is coupled to a second end of the first active switching component, the first a cathode end of the passive diode component coupled to the first end of the power grid; and a second passive diode component, wherein an anode end of the second passive diode component is coupled to the second active switching component The second end of the second passive diode element is coupled to the second end of the second secondary side coil. 如申請專利範圍第4項所述之應用於太陽光電模組之直流轉交流轉換裝置,其中該第一主動開關元件的第一端耦接至該電網的第二端,該第一主動開關元件的第二端耦接至該第一二次側線圈的第二端,該第二主動開關元件的第一端耦接至該第二二次側線圈的第一端,該第二主動開關元件的第二端耦接至該電網的第二端,且該角度與相位控制電路更包括:一第一被動二極體元件,其中該第一被動二極體元件的陽極端耦接至該第一二次側線圈的第一端,該第一被動二極體元件的陰極端耦接至該電網的第一端;以及一第二被動二極體元件,其中該第二被動二極體元件的陰極端耦接至該第二二次側線圈的第二端,該第二被動二極體元件的陽極端耦接至該電網的第一端。 The DC-to-AC converter of the solar photovoltaic module of claim 4, wherein the first end of the first active switching element is coupled to the second end of the power grid, the first active switching component The second end is coupled to the second end of the first secondary side coil, the first end of the second active switching element is coupled to the first end of the second secondary side coil, the second active switching element The second end is coupled to the second end of the power grid, and the angle and phase control circuit further includes: a first passive diode component, wherein an anode end of the first passive diode component is coupled to the first a first end of the secondary side coil, a cathode end of the first passive diode element coupled to the first end of the power grid; and a second passive diode element, wherein the second passive diode element The cathode end is coupled to the second end of the second secondary side coil, and the anode end of the second passive diode element is coupled to the first end of the power grid. 如申請專利範圍第4項所述之應用於太陽光電模組之直流轉交流轉換裝置,其中該第一主動開關元件的第一端耦接至該電網的第二端,該第一主動開關元件的第二端耦接至該第一二次側線圈的第二端,該第二主動開關元件的第一端耦接至該第二二次側線圈的第一端,該第二主動開關元件的第二端耦接至該電網的第二端,且該角度與相位控制電路更包括:一第三主動開關元件,其中該第三主動開關元件的第一端耦接至該電網的第一端,該第三主動開關元件的第二端耦接至該第一二次側線圈的第一端;以及一第四主動開關元件,其中該第四主動開關元件的第一端耦接至該第二二次側線圈的第二端,該第四主動開關元件的第二端耦接至該電網的第一端。 The DC-to-AC converter of the solar photovoltaic module of claim 4, wherein the first end of the first active switching element is coupled to the second end of the power grid, the first active switching component The second end is coupled to the second end of the first secondary side coil, the first end of the second active switching element is coupled to the first end of the second secondary side coil, the second active switching element The second end is coupled to the second end of the power grid, and the angle and phase control circuit further includes: a third active switching element, wherein the first end of the third active switching element is coupled to the first end of the power grid The second end of the third active switching element is coupled to the first end of the first secondary side coil; and a fourth active switching element, wherein the first end of the fourth active switching element is coupled to the first end a second end of the second secondary side coil, the second end of the fourth active switching element is coupled to the first end of the power grid. 如申請專利範圍第4項所述之應用於太陽光電模組之直流轉交流轉換裝置,其中該第一主動開關元件的第一端耦接至該第一二次側線圈的第一端,該第一主動開關元件的第二端耦接至該電網的第一端,該第二主動開關元件的第一端耦接至該該電網的第一端,該第二主動開關元件的第二端耦接至第二二次側線圈的第二端,且該角度與相位控制電路更包括:一第一被動二極體元件,其中該第一被動二極體元件的陽極端耦接至該電網的第二端,該第一被動二極體元件的陰極端耦接至該第一二次側線圈的第二端;以及一第二被動二極體元件,其中該第二被動二極體元件的陽極端耦接至該第二二次側線圈的第一端,該第二被動二極體元件的陰極端耦接至該電網的第二端。 The DC-to-AC converter of the solar photovoltaic module of claim 4, wherein the first end of the first active switching element is coupled to the first end of the first secondary coil, The second end of the first active switching element is coupled to the first end of the power grid, the first end of the second active switching element is coupled to the first end of the power grid, and the second end of the second active switching element The second end of the second secondary side coil is coupled to the phase control circuit, and the angle control circuit further includes: a first passive diode element, wherein an anode end of the first passive diode element is coupled to the power grid a second end of the first passive diode element coupled to the second end of the first secondary side coil; and a second passive diode element, wherein the second passive diode element The anode end is coupled to the first end of the second secondary side coil, and the cathode end of the second passive diode element is coupled to the second end of the power grid. 如申請專利範圍第4項所述之應用於太陽光電模組之直流轉交流轉換裝置,其中該第一主動開關元件的第一端耦接至該第一二次側線圈的第一端,該第二主動開關元件的第一端耦接至該電網的第一端,該第一二次側線圈的第二端以及該第二二次側線圈的第一端耦接至該電網的第二端,且該角度與相位控制電路更包括:一第三主動開關元件,其中該第三主動開關元件的第一端耦接至該電網的第一端,該第三主動開關元件的第二端耦接至該第一主動開關元件的第二端;以及一第四主動開關元件,其中該第四主動開關元件的第一端耦接至該第二二次側線圈的第二端,該第四主動開關元件的第二端耦接至該第二主動開關元件的第二端。 The DC-to-AC converter of the solar photovoltaic module of claim 4, wherein the first end of the first active switching element is coupled to the first end of the first secondary coil, The first end of the second active switching element is coupled to the first end of the power grid, and the second end of the first secondary side coil and the first end of the second secondary side coil are coupled to the second end of the power grid And the angle and phase control circuit further includes: a third active switching element, wherein the first end of the third active switching element is coupled to the first end of the power grid, and the second end of the third active switching element a second end coupled to the first active switching element; and a fourth active switching element, wherein the first end of the fourth active switching element is coupled to the second end of the second secondary side coil, the first The second end of the four active switching elements is coupled to the second end of the second active switching element. 如申請專利範圍第1項所述之應用於太陽光電模組之直流轉交流轉換裝置,其中該主動開關元件、該第一主動開關元件和該第二主動開關元件為金氧半導體場效電晶體、絕緣閘雙極性電晶體、矽控整流器或閘極關閉元件。 The DC-to-AC conversion device for a solar photovoltaic module according to claim 1, wherein the active switching element, the first active switching element, and the second active switching element are MOS field effect transistors , insulated gate bipolar transistor, 矽 controlled rectifier or gate closing element. 如申請專利範圍第7項所述之應用於太陽光電模組之直流轉交流轉換裝置,其中該第三主動開關元件和該第四主動開關元件為金氧半導體場效電晶體、絕緣閘雙極性電晶體、矽控整流器或閘極關閉元件。 The DC-to-AC conversion device applied to a solar photovoltaic module according to claim 7, wherein the third active switching element and the fourth active switching element are MOSFETs, insulated gate bipolar A transistor, a controlled rectifier or a gate closing element. 如申請專利範圍第9項所述之應用於太陽光電模組之直流轉交流轉換裝置,其中該第三主動開關元件和該第四主動開關元件為金氧半導體場效電晶體、絕緣閘雙極性電晶體、矽控整流器或閘極關閉元件。 The DC-to-AC conversion device for a solar photovoltaic module according to claim 9, wherein the third active switching element and the fourth active switching element are MOS field effect transistors, and insulating gate bipolar A transistor, a controlled rectifier or a gate closing element.
TW102141406A 2013-11-14 2013-11-14 Dc/ac converter for solar photovoltaic module TWI502875B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102141406A TWI502875B (en) 2013-11-14 2013-11-14 Dc/ac converter for solar photovoltaic module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102141406A TWI502875B (en) 2013-11-14 2013-11-14 Dc/ac converter for solar photovoltaic module

Publications (2)

Publication Number Publication Date
TW201519570A TW201519570A (en) 2015-05-16
TWI502875B true TWI502875B (en) 2015-10-01

Family

ID=53721095

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102141406A TWI502875B (en) 2013-11-14 2013-11-14 Dc/ac converter for solar photovoltaic module

Country Status (1)

Country Link
TW (1) TWI502875B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201216605A (en) * 2010-10-08 2012-04-16 Ind Tech Res Inst Circuit module for DC-AC converter adapted solar power AC units
CN102832838A (en) * 2012-08-31 2012-12-19 燕山大学 Isolated single-level double-Sepic inverter based on magnetic integration
TWM449407U (en) * 2012-10-25 2013-03-21 Chicony Power Tech Co Ltd Power converting device
TW201325057A (en) * 2011-12-06 2013-06-16 Ind Tech Res Inst A DC-to-DC voltage regulator and the operating method thereof
TW201328161A (en) * 2011-12-30 2013-07-01 Nat Univ Tsing Hua A kind of two-stage isolated DC/AC conversion circuit structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201216605A (en) * 2010-10-08 2012-04-16 Ind Tech Res Inst Circuit module for DC-AC converter adapted solar power AC units
TW201325057A (en) * 2011-12-06 2013-06-16 Ind Tech Res Inst A DC-to-DC voltage regulator and the operating method thereof
TW201328161A (en) * 2011-12-30 2013-07-01 Nat Univ Tsing Hua A kind of two-stage isolated DC/AC conversion circuit structure
CN102832838A (en) * 2012-08-31 2012-12-19 燕山大学 Isolated single-level double-Sepic inverter based on magnetic integration
TWM449407U (en) * 2012-10-25 2013-03-21 Chicony Power Tech Co Ltd Power converting device

Also Published As

Publication number Publication date
TW201519570A (en) 2015-05-16

Similar Documents

Publication Publication Date Title
US8432709B2 (en) DC-to-AC power inverting apparatus for photovoltaic modules
Gui et al. A high voltage-gain LLC micro-converter with high efficiency in wide input range for PV applications
US10707775B2 (en) Method and apparatus for multi phase shift power converter control
TWI511432B (en) Dc voltage converter and clamp circuit
WO2009043257A1 (en) Wide input voltage power supply module
US20140177299A1 (en) Inverter and grid-connected power generation system
CN102035378A (en) All solid state high-voltage power supply with positive and negative pulse outputs
CN102075092A (en) Flyback converter leakage inductance absorption and soft switching control
CN102088252B (en) Inverter without transformer realized by switched capacitor and applications of inverter
CN112003467A (en) Three switching tube bridgeless Cuk power factor correction converter
WO2015078095A1 (en) Flyback ac-dc conversion device and conversion method thereof
TWI530074B (en) Converter circuit with power factor correction
US7969225B2 (en) Circuit of reducing power loss of switching device
TWI481180B (en) Dc-ac converter and conversion circuit
CN105978322B (en) A kind of quasi- sources Z DC-DC converter of switching capacity type high-gain
WO2010139187A1 (en) Circuit for converting dc voltage to ac voltage
CN107276393B (en) High-voltage power supply circuit
WO2015078093A1 (en) Ac-ac power source conversion device and conversion method thereof
TWI502875B (en) Dc/ac converter for solar photovoltaic module
RU2664234C1 (en) Damper and device for transformation of power energy that uses damper
CN102368616A (en) Power factor compensation control circuit of self-turn-off device
CN103973129A (en) Soft-switching power electronic transformer
WO2015070515A1 (en) Power conversion device and conversion method thereof
Wang et al. An auxiliary link based on flyback circuit with voltage spike suppression for single-phase isolated full-bridge boost PFC
TWI504124B (en) AC - to - AC power conversion device and its conversion method