TWI499887B - Solar power system and abnormality detection method thereof - Google Patents

Solar power system and abnormality detection method thereof Download PDF

Info

Publication number
TWI499887B
TWI499887B TW102148440A TW102148440A TWI499887B TW I499887 B TWI499887 B TW I499887B TW 102148440 A TW102148440 A TW 102148440A TW 102148440 A TW102148440 A TW 102148440A TW I499887 B TWI499887 B TW I499887B
Authority
TW
Taiwan
Prior art keywords
solar power
power generation
duty cycle
standard
value
Prior art date
Application number
TW102148440A
Other languages
Chinese (zh)
Other versions
TW201525644A (en
Inventor
Rumin Chao
Shihhong Ko
Chenfeng Lo
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW102148440A priority Critical patent/TWI499887B/en
Publication of TW201525644A publication Critical patent/TW201525644A/en
Application granted granted Critical
Publication of TWI499887B publication Critical patent/TWI499887B/en

Links

Description

太陽能發電系統與其異常檢測方法Solar power generation system and its abnormality detection method

本發明是有關於一種太陽能發電系統與其異常檢測方法,特別是有關於一種適用最大功率追蹤(Maximum Power Point Tracking)技術之太陽能發電系統與其異常檢測方法。The invention relates to a solar power generation system and an abnormality detecting method thereof, in particular to a solar power generation system and an abnormality detecting method applicable to a maximum power point tracking technology.

近年來,由於環境污染的問題越來越嚴重,很多國家開始開發新的綠色能源來減少環境污染的問題。太陽能發電系統可將太陽的光能轉為電能,且這種轉換不會產生任何污染性的物質,因此太陽能發電系統逐漸受到重視。太陽能發電系統係由多個太陽能發電單元所組成。為了使系統輸出最大功率,太陽能發電系統通常需藉助最大功率點追蹤演算法來控制太陽能發電單元。In recent years, as the problem of environmental pollution has become more and more serious, many countries have begun to develop new green energy sources to reduce environmental pollution. Solar power systems convert solar energy into electrical energy, and this conversion does not produce any polluting substances, so solar power systems are gaining attention. The solar power generation system is composed of a plurality of solar power generation units. In order for the system to output maximum power, solar power systems typically require a maximum power point tracking algorithm to control the solar power unit.

根據太陽能發電單元的配置方式,太陽能發電系統可分為集中式系統和分散式系統。集中式系統設備簡單,但是常因遮陰效應、發電單元劣化或匹配等問題造成最大功率追蹤的技術困難,同時此系統之最大功率輸出將低於 每個太陽能發電單元最大功率輸出的總和,也造成系統發電效率降低之結果。因此,分散式系統變成另一種技術之選擇。分散式系統採用與前述相同之最大功率點追蹤技術,但在每個太陽能發電單元串連一個功率優化器,使得每個太陽能發電單元進行模組階層的最大功率點追蹤;其缺點在於增加許多量測感測器及運算核心的使用,也造成系統建置之成本。分散式系統雖以每個太陽能發電單元的最佳輸出為目的,但是仍須在發電單元端進行電壓與電流量測,及最大功率計算,相對增加系統建置成本。According to the configuration of the solar power generation unit, the solar power generation system can be divided into a centralized system and a distributed system. The centralized system equipment is simple, but the technical difficulty of maximum power tracking is often caused by shading effect, power unit degradation or matching, and the maximum power output of this system will be lower than The sum of the maximum power output of each solar power unit also results in a reduction in system power generation efficiency. Therefore, the decentralized system becomes the alternative of another technology. The decentralized system uses the same maximum power point tracking technology as described above, but a power optimizer is connected in series with each solar power generation unit, so that each solar power generation unit performs maximum power point tracking of the module level; the disadvantage is that a large amount is added. The use of sensors and computing cores also contributes to the cost of system implementation. Although the decentralized system is aimed at the optimal output of each solar power generation unit, it is still necessary to perform voltage and current measurement at the power generation unit end, and maximum power calculation, which relatively increases the system construction cost.

為了解決上述問題,在此提出一種太陽能發電系統與其異常檢測方法,其可使用系統整體電流及電壓輸出資料來調變整個系統最大功率輸出在最佳值,同時也能瞭解系統中每個太陽能發電單元的發電情形,並判斷各個太陽能發電單元是否因遮陰、劣化、損壞而導致功率出減少。In order to solve the above problems, a solar power generation system and an abnormality detecting method thereof are proposed, which can use the overall current and voltage output data of the system to modulate the maximum power output of the entire system at an optimum value, and also know each solar power generation in the system. The power generation situation of the unit, and whether the respective solar power generation units are reduced in power due to shading, deterioration, and damage.

本發明之一方面是在提供一種太陽能發電系統與其異常檢測方法,其可使整個系統最大功率輸出在最佳值,並根據太陽能發電單元所接收之控制訊號的責任週期來判斷太陽能發電單元是否發生異常。One aspect of the present invention provides a solar power generation system and an abnormality detecting method thereof, which can maximize the maximum power output of the entire system, and determine whether the solar power generating unit occurs according to the duty cycle of the control signal received by the solar power generating unit. abnormal.

根據本發明之一實施例,此太陽能發電系統包含最大功率追蹤控制器以及複數組太陽能發電單元。最大功率追蹤控制器係電性連接至太陽能發電單元,以輸出複數組控制訊號至太陽能發電單元,而使太陽能發電系統輸出最 大功率。當太陽能發電單元輸出最大功率時,最大功率追蹤控制器利用控制訊號之複數個責任週期值與標準責任週期範圍,判斷這些責任週期值中之至少一者是否位於標準責任週期範圍內,當責任週期值之至少一者未位於相應之標準責任週期範圍內時,最大功率追蹤控制器決定這些責任週期值之至少一者所對應之太陽能發電單元發生異常。According to an embodiment of the invention, the solar power generation system includes a maximum power tracking controller and a complex array solar power generation unit. The maximum power tracking controller is electrically connected to the solar power generation unit to output a complex array control signal to the solar power generation unit, so that the solar power generation system outputs the most High Power. When the solar power unit outputs the maximum power, the maximum power tracking controller uses the plurality of duty cycle values of the control signal and the standard duty cycle range to determine whether at least one of the duty cycle values is within the standard responsibility period, when the duty cycle When at least one of the values is not within the corresponding standard responsibility period, the maximum power tracking controller determines that the solar power unit corresponding to at least one of the duty cycle values is abnormal.

根據本發明之另一實施例,在此太陽能發電系統之異常檢測方法中,首先提供複數組太陽能發電單元。接著,進行標準責任週期值建立階段,以建立每個太陽能發電單元所對應之標準責任週期值。在標準責任週期值建立階段中,首先檢查太陽能發電單元,以確保太陽能發電單元正常。接著,利用最大功率追蹤控制器來進行最大功率追蹤步驟,以使太陽能發電系統輸出最大功率,並獲得太陽能發電單元所對應之複數個歷史控制訊號。然後,於太陽能發電系統輸出最大功率時,計算這些歷史控制訊號之複數個歷史責任週期值。接著,紀錄太陽能發電單元所對應之責任週期值,做為歷史責任週期,其中每一歷史責任週期值定義為相應太陽能發電單元之一標準責任週期值。然後,根據每一太陽能發電單元之標準責任週期值來計算每一太陽能發電單元之標準責任週期範圍。在供電階段中,首先利用最大功率追蹤控制器來進行最大功率追蹤步驟,以輸出複數個控制訊號至太陽能發電單元來使太陽能發電系統輸出最大功率,其中這些控制訊號係一對一對應至太陽能發電單元。接著,於太陽能發電系統輸出最大功率時, 計算每一控制訊號之責任週期值。然後,判斷太陽能發電單元之一者之責任週期值是否位於相應之標準責任週期範圍內。當這些太陽能發電單元之一者之責任週期值未位於標準責任週期範圍內時,決定此太陽能發電單元發生異常。According to another embodiment of the present invention, in the abnormality detecting method of the solar power generating system, a complex array solar power generating unit is first provided. Next, a standard duty cycle value establishment phase is performed to establish a standard duty cycle value corresponding to each solar power generation unit. In the standard duty cycle value establishment phase, the solar power generation unit is first checked to ensure that the solar power generation unit is normal. Then, the maximum power tracking controller is used to perform the maximum power tracking step, so that the solar power generation system outputs the maximum power, and obtains a plurality of historical control signals corresponding to the solar power generation unit. Then, when the solar power system outputs the maximum power, a plurality of historical duty cycle values of the historical control signals are calculated. Next, the duty cycle value corresponding to the solar power generation unit is recorded as a historical responsibility cycle, wherein each historical responsibility cycle value is defined as a standard duty cycle value of the corresponding solar power generation unit. Then, the standard duty cycle range of each solar power generation unit is calculated according to the standard duty cycle value of each solar power generation unit. In the power supply phase, the maximum power tracking controller is first used to perform a maximum power tracking step to output a plurality of control signals to the solar power generation unit to output maximum power to the solar power generation system, wherein the control signals are one-to-one corresponding to solar power generation. unit. Then, when the solar power system outputs the maximum power, Calculate the duty cycle value of each control signal. Then, it is judged whether the duty cycle value of one of the solar power generation units is within the corresponding standard responsibility period. When the duty cycle value of one of these solar power generation units is not within the standard duty cycle, an abnormality is determined in the solar power generation unit.

由上述說明可知,本發明實施例之太陽能發電系統與其異常檢測方法可根據太陽能發電單元所接收之控制訊號的責任週期來了解系統中每個太陽能發電單元發電情形,並判斷各個太陽能發電單元是否因遮陰、劣化、損壞而導致功率出減少,同時還可提供管理者足夠資訊以訂立替換、清潔等維修工作,並達到系統安裝時所期待之發電成效。It can be seen from the above description that the solar power generation system and the abnormality detecting method of the embodiment of the present invention can understand the power generation situation of each solar power generation unit in the system according to the duty cycle of the control signal received by the solar power generation unit, and determine whether each solar power generation unit is caused by Shading, deterioration, damage, resulting in reduced power, but also provide sufficient information for managers to establish replacement, cleaning and other maintenance work, and achieve the desired power generation results when the system is installed.

100‧‧‧太陽能發電系統100‧‧‧Solar power system

110‧‧‧MPPT控制器110‧‧‧MPPT controller

120‧‧‧太陽能發電單元120‧‧‧Solar power unit

122‧‧‧直流/直流轉換器122‧‧‧DC/DC Converter

124‧‧‧光伏模組124‧‧‧Photovoltaic Module

130‧‧‧電流感測器130‧‧‧ Current Sensor

200‧‧‧最大功率追蹤方法200‧‧‧Maximum power tracking method

210‧‧‧量測步驟210‧‧‧Measurement steps

220‧‧‧梯度計算步驟220‧‧‧ Gradient calculation steps

230‧‧‧最大值計算步驟230‧‧‧Maximum calculation steps

240‧‧‧收斂判斷步驟240‧‧‧Convergence judgment step

250‧‧‧紀錄步驟250‧‧‧ Recording steps

260‧‧‧電流判斷步驟260‧‧‧current judgment step

300‧‧‧異常檢測方法300‧‧‧Anomaly detection method

310‧‧‧標準責任週期值建立階段310‧‧‧Standard duty cycle value establishment phase

312‧‧‧檢查步驟312‧‧‧Checking steps

314‧‧‧最大功率點追蹤步驟314‧‧‧Maximum power point tracking step

316‧‧‧計算與紀錄步驟316‧‧‧ Calculation and record steps

318‧‧‧標準責任週期範圍計算步驟318‧‧‧Standard responsibility cycle range calculation steps

320‧‧‧供電階段320‧‧‧Power supply stage

322‧‧‧最大功率點追蹤步驟322‧‧‧Maximum power point tracking step

324‧‧‧計算步驟324‧‧‧ Calculation steps

326‧‧‧判斷步驟326‧‧‧ Judgment steps

Vload ‧‧‧總電壓V load ‧‧‧ total voltage

Iload ‧‧‧總電流I load ‧‧‧ total current

D1 ~Dn ‧‧‧責任週期D 1 ~D n ‧‧‧Responsibility cycle

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,上文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下:The above and other objects, features, and advantages of the present invention will become more apparent and understood.

第1圖係繪示根據本發明實施例之太陽能發電系統的架構示意圖。1 is a schematic view showing the structure of a solar power generation system according to an embodiment of the present invention.

第2圖係繪示最大功率追蹤(Maximum Power Point Tracking)控制器所進行之最大功率追蹤方法的流程示意圖。Figure 2 is a flow chart showing the maximum power tracking method performed by the Maximum Power Point Tracking controller.

第3圖係繪示根據本發明實施例之太陽能發電系統之異常檢測方法的流程示意圖。FIG. 3 is a schematic flow chart showing an abnormality detecting method of a solar power generation system according to an embodiment of the present invention.

請參照第1圖,其係繪示根據本發明實施例之太陽能發電系統100的架構示意圖。太陽能發電系統100包含最大功率追蹤(Maximum Power Point Tracking)控制器110、複數個太陽能發電單元120以及電流感測器130。在本實施例中,每一太陽能發電單元120包含直流/直流轉換器122以及光伏模組124(例如太陽能板),但本發明之實施例並不受限於此。電流感測器130係用以感測太陽能發電系統100之總電流Iload 的大小,並將其傳送給MPPT控制器110。MPPT控制器110係電性連接至電流感測器130以及每一太陽能發電單元120之直流/直流轉換器122,以根據總電流Iloa d以及太陽能發電系統100之總電壓Vload 來輸出控制訊號至直流/直流轉換器122,藉此控制太陽能發電單元120的操作電壓並進行MPPT操作,其中控制訊號為脈衝寬度調變(Pulse Width Modulation;PWM)訊號,而MPPT控制器110係調整PWM訊號之責任週期來進行MPPT操作。在本實施例中,MPPT控制器110係分別送出責任週期為D1 ~Dn 的控制訊號至太陽能發電單元120之直流/直流轉換器122。Please refer to FIG. 1 , which is a schematic diagram showing the architecture of a solar power generation system 100 according to an embodiment of the present invention. The solar power generation system 100 includes a Maximum Power Point Tracking controller 110, a plurality of solar power generation units 120, and a current sensor 130. In the present embodiment, each solar power generation unit 120 includes a DC/DC converter 122 and a photovoltaic module 124 (eg, a solar panel), but embodiments of the present invention are not limited thereto. The current sensor 130 is used to sense the magnitude of the total current I load of the solar power generation system 100 and transmit it to the MPPT controller 110. The MPPT controller 110 is electrically connected to the current sensor 130 and the DC/DC converter 122 of each solar power generation unit 120 to output a control signal according to the total current I loa d and the total voltage V load of the solar power generation system 100 . To the DC/DC converter 122, thereby controlling the operating voltage of the solar power generating unit 120 and performing MPPT operation, wherein the control signal is a Pulse Width Modulation (PWM) signal, and the MPPT controller 110 adjusts the PWM signal. The duty cycle is used to perform MPPT operations. In this embodiment, the MPPT controller 110 sends control signals with duty cycles D 1 ~ D n to the DC/DC converter 122 of the solar power generation unit 120, respectively.

值得注意的是,在本實施例中總電壓Vload 為固定值,因此太陽能發電系統100不需要再額外加裝電壓感測器即可得知總電壓Vload 的值。然而,在本發明之其他實施例中,亦可使用電壓感測器來感測總電壓Vload 之值。It should be noted that in the present embodiment, the total voltage V load is a fixed value, so the solar power generation system 100 does not need to additionally install a voltage sensor to know the value of the total voltage V load . However, in other embodiments of the invention, a voltage sensor can also be used to sense the value of the total voltage Vload .

請參照第2圖,其係繪示MPPT控制器110所進行 之最大功率追蹤方法200的流程示意圖。在本實施例中,最大功率追蹤方法200係利用最大梯度法(Steepest Ascent Method)以及黃金分割法(Golden Section)來進行最大功率追蹤,然而本發明之實施例並不受限於此。在本發明之其他實施例中亦可使用其他方法,例如粒子群演算法(Particle Swarm Optimization;PSO)來進行太陽能發電系統100的最大功率追蹤。Please refer to FIG. 2, which is illustrated by the MPPT controller 110. A schematic diagram of the flow of the maximum power tracking method 200. In the present embodiment, the maximum power tracking method 200 performs maximum power tracking using the Steepest Ascent Method and the Golden Section, however, embodiments of the present invention are not limited thereto. Other methods, such as Particle Swarm Optimization (PSO), may be used in other embodiments of the invention to perform maximum power tracking of the solar power system 100.

在最大功率追蹤方法200中,首先進行量測步驟210,以分別針對個別太陽能發電單元120之直流/直流轉換器122增加一責任週期ΔD ,接著再量測總電流Iload 的變化量。n個太陽能發電單元構成的系統,包含目前操作點,共需量測n+1點的數據以計算梯度。接著,進行梯度計算步驟220。以兩個太陽能發電單元構成的系統為例,第k次疊代的操作點x(k) 定義為(D1 ,D2 )。除了x(k) 分別還需要量測(D1 +ΔD ,D2 )與(D1 ,D2 +ΔD )下之目標函數值,再以下列方程式(1)式來計算梯度值: In the maximum power tracking method 200, a measurement step 210 is first performed to add a duty cycle ΔD to the DC/DC converter 122 of the individual solar power generation unit 120, respectively, and then measure the amount of change in the total current I load . The system consisting of n solar power generation units, including the current operating point, requires a total of n+1 points of data to be calculated to calculate the gradient. Next, a gradient calculation step 220 is performed. Taking a system composed of two solar power generation units as an example, the operation point x (k) of the kth iteration is defined as (D 1 , D 2 ). In addition to x (k) , it is also necessary to measure the objective function values under (D 1 + ΔD , D 2 ) and (D 1 , D 2 + ΔD ), and then calculate the gradient values by the following equation (1):

其中D1 與D2 分別為兩個太陽能發電單元所對應的初始責任週期,而函式f 則代表總電流Iload (或總功率)與責任週期之關係。Where D 1 and D 2 are the initial duty cycles corresponding to the two solar power generation units, respectively, and the function f represents the relationship between the total current I load (or total power) and the duty cycle.

然後,進行最大值計算步驟230,以沿著梯度方向利用黃金分割法作一維搜尋以找到此方向上的最大值。然而,此處需要限制搜尋長度,以免太長的搜尋長度會增加 不必要的搜尋時間。另一方面,隨著疊代次數的增加,亦可藉由縮小搜尋長度增加追蹤的精度。接著,進行收斂判斷步驟240,以利用下式(2)做為收斂條件來判斷是否收斂: Then, a maximum value calculation step 230 is performed to make a one-dimensional search using the golden section method along the gradient direction to find the maximum value in this direction. However, here you need to limit the search length so that too long a search length will increase unnecessary search time. On the other hand, as the number of iterations increases, the accuracy of the tracking can also be increased by narrowing the search length. Next, a convergence determination step 240 is performed to determine whether or not to converge using the following equation (2) as a convergence condition:

其中,收斂門檻值ε 之值可由使用者根據需求來自行決定。The value of the convergence threshold ε can be determined by the user according to the demand.

式(2)中比較相鄰兩次搜尋結果f (k ) 以及f (k -1) ,將兩者的差值除以前次輸出結果作正規化,如果計算結果小於預先設定的收斂門檻值ε ,則判斷MPPT收斂,而此即為最大功率點。找到最大功率點後,接著進行紀錄步驟250,以記錄目前最大功率下的總電流Iload 的值。然後,進行電流判斷步驟260,以在運作過程中量測後續的電流值。如果總電流有明顯的改變時即表示系統狀況發生變化,此時再由目前的操作點重新進行最大功率追蹤方法200。例如,使用者可設定一電流變化閥值,當後續的電流值變化超過電流變化閥值時,再重新進行最大功率追蹤方法200。In the formula (2), the two adjacent search results f ( k ) and f ( k -1) are compared, and the difference between the two is normalized by the previous output result, if the calculation result is smaller than the preset convergence threshold ε Then, it is judged that the MPPT converges, and this is the maximum power point. After finding the maximum power point, a recording step 250 is then performed to record the value of the total current I load at the current maximum power. Then, a current determination step 260 is performed to measure subsequent current values during operation. If there is a significant change in the total current, the system condition changes, and then the maximum power tracking method 200 is re-executed from the current operating point. For example, the user can set a current change threshold and re-perform the maximum power tracking method 200 when the subsequent current value changes beyond the current change threshold.

由上述說明可知,本實施例之最大功率追蹤方法200改善了現有分散式太陽能系統的缺失,其僅需一組系統電壓及電流資訊即可進行太陽能發電系統的最大功率追蹤,進而大幅減少太陽能發電系統建置所需感測器的成本。It can be seen from the above description that the maximum power tracking method 200 of the present embodiment improves the lack of the existing distributed solar power system, and only needs a set of system voltage and current information to perform maximum power tracking of the solar power generation system, thereby greatly reducing solar power generation. The cost of the system is required to build the sensor.

另外,在太陽能發電系統100中,每一直流/直流轉換器122的最佳操作責任週期實際上受到各太陽能發電 單元120的最大功率輸出的影響。假設太陽能發電系統10中第i個太陽能發電單元120的最大功率PMPP,i 為已知,由串聯系統可知所有直流/直流轉換器122的輸出電流相等,如果所有太陽能發電單元120均工作在最大功率點上,則第i個太陽能發電單元120之直流/直流轉換器122的輸出電壓Vout,i 可以下式(3)計算之: Additionally, in solar power system 100, the optimal operational responsibility cycle for each DC/DC converter 122 is actually affected by the maximum power output of each solar power generation unit 120. It is assumed that the maximum power P MPP,i of the i-th solar power generation unit 120 in the solar power generation system 10 is known, and it is known from the series system that the output currents of all the DC/DC converters 122 are equal if all the solar power generation units 120 are operating at the maximum. At the power point, the output voltage V out,i of the DC/DC converter 122 of the i-th solar power generation unit 120 can be calculated by the following equation (3):

其中,Ptotal 為太陽能發電系統100所輸出之總功率。由於單一系統中的所有太陽能發電單元120擺放地點相近,操作溫度相差不大,單純考慮光照度的變化,各太陽能板的操作電壓VMPP,i 的相差不多,此時直流/直流轉換器122的操作責任週期(duty cycle)Di 直接受到太陽能電池最大功率值的影響,則操作責任週期Di 可以下式(4)表示: Wherein P total is the total power output by the solar power generation system 100. Since all the solar power generation units 120 in a single system are placed at similar locations, the operating temperatures are not much different. Considering the change of the illuminance, the operating voltages of the solar panels V MPP, i are similar, and the DC/DC converter 122 is at this time. The operational duty cycle D i is directly affected by the maximum power value of the solar cell, and the operational responsibility cycle D i can be expressed by the following formula (4):

其中κ =VLoad /VMPP ,其中VMPP 為VMPP,i 的近似值。另外,上式(4)係以直流/直流轉換器122為降壓型轉換器來推得,但本發明實施例之直流/直流轉換器122並不受限於此。Where κ = V Load /V MPP , where V MPP is an approximation of V MPP,i . Further, the above formula (4) is derived by using the DC/DC converter 122 as a step-down converter, but the DC/DC converter 122 of the embodiment of the present invention is not limited thereto.

經過移項,最後可得到下式(5) After the shift, the last formula (5) is obtained.

由上式(5)可知,當太陽能發電系統100完成最大功率點追蹤後,即可以上式(5)來預估各太陽能發電單元 120的實際輸出功率,再進而判斷是否有太陽能發電單元120發生如遮蔽或故障的情況。It can be seen from the above formula (5) that when the solar power generation system 100 completes the maximum power point tracking, the solar power generation unit can be estimated by the above formula (5). The actual output power of 120 is further determined whether there is a situation in which the solar power generating unit 120 is occluded or malfunctioned.

請參照第3圖,其係繪示根據本發明實施例之太陽能發電系統之異常檢測方法300的流程示意圖。異常檢測方法300係利用直流/直流轉換器122的操作責任週期來判斷太陽能發電單元120是否異常。異常檢測方法300包含標準責任週期值建立階段310以及供電階段320。標準責任週期值建立階段310係用以建立每一太陽能發電單元120之標準責任週期範圍,以使供電階段320能根據標準責任週期範圍來判斷太陽能發電單元120是否發生異常。Please refer to FIG. 3, which is a flow chart showing an abnormality detecting method 300 of a solar power generation system according to an embodiment of the present invention. The abnormality detecting method 300 determines whether or not the solar power generating unit 120 is abnormal by the operation duty cycle of the DC/DC converter 122. The anomaly detection method 300 includes a standard duty cycle value establishment phase 310 and a power supply phase 320. The standard duty cycle value establishing phase 310 is used to establish a standard duty cycle range for each solar power generating unit 120 so that the powering phase 320 can determine whether the solar power generating unit 120 is abnormal according to the standard duty cycle range.

在標準責任週期值建立階段310中,首先進行檢查步驟312,以檢查所有的太陽能發電單元120,以確保太陽能發電單元120正常(未被遮蔽或未故障)。然後,進行最大功率點追蹤步驟314,以利用最大功率追蹤控制器110來進行最大功率追蹤方法,使最大功率追蹤控制器110輸出控制訊號至所有的太陽能發電單元120來使太陽能發電系統100輸出最大功率。在本實施例中,最大功率點追蹤步驟314係利用最大功率追蹤方法200來追蹤最大功率點,但本發明之實施例並不受限於此。在本發明之其他實施例中,亦可利用粒子群演算法來追蹤最大功率點。In the standard duty cycle value establishment phase 310, an inspection step 312 is first performed to check all of the solar power generation units 120 to ensure that the solar power generation unit 120 is normal (unmasked or not faulty). Then, a maximum power point tracking step 314 is performed to utilize the maximum power tracking controller 110 for the maximum power tracking method to cause the maximum power tracking controller 110 to output control signals to all of the solar power generating units 120 to maximize the output of the solar power system 100. power. In the present embodiment, the maximum power point tracking step 314 utilizes the maximum power tracking method 200 to track the maximum power point, although embodiments of the invention are not so limited. In other embodiments of the invention, a particle swarm algorithm can also be utilized to track the maximum power point.

接著,進行計算與紀錄步驟316,以於太陽能發電系統100輸出最大功率時,計算出每一太陽能發電單元120所接收之控制訊號之責任週期值,同時紀錄此責任週期值來作為相應太陽能發電單元120之標準責任週期值。然後,進行標準責任 週期範圍計算步驟318,以根據每一太陽能發電單元120所對應之標準責任週期值來計算出相應的標準責任週期範圍,如此每個太陽能發電單元120皆會有一個相應的標準責任週期範圍。在本實施例中,標準責任週期範圍係根據標準責任週期值以及預設容忍範圍來決定。例如,使用者可將預設容忍範圍訂為±5%,則標準責任週期範圍則為標準責任週期值±5%。Then, a calculation and recording step 316 is performed to calculate a duty cycle value of the control signal received by each solar power generation unit 120 when the solar power generation system 100 outputs the maximum power, and record the duty cycle value as the corresponding solar power generation unit. The standard duty cycle value of 120. Then, carry out standard responsibility The period range calculation step 318 is to calculate a corresponding standard duty cycle range according to the standard duty cycle value corresponding to each solar power generation unit 120, such that each solar power generation unit 120 has a corresponding standard duty cycle range. In this embodiment, the standard duty cycle range is determined based on the standard duty cycle value and the preset tolerance range. For example, the user can set the preset tolerance range to ±5%, and the standard responsibility period range is ±5% of the standard duty cycle value.

另外,由於標準責任週期值建立階段310係用以計算標準責任週期範圍,故在標準責任週期值建立階段310中所獲得的太陽能發電單元控制訊號稱為歷史控制訊號,而歷史控制訊號之責任週期值則稱為歷史責任週期值,以區分標準責任週期值建立階段310和供電階段320中的控制訊號與其責任週期值。In addition, since the standard duty cycle value establishment phase 310 is used to calculate the standard duty cycle range, the solar power unit control signal obtained in the standard responsibility cycle value establishment phase 310 is referred to as a history control signal, and the history control signal is responsible for the duty cycle. The value is referred to as the historical responsibility period value to distinguish between the control signal in the standard duty cycle value establishment phase 310 and the power supply phase 320 and its duty cycle value.

在供電階段320中,首先進行最大功率點追蹤步驟322,以持續利用最大功率追蹤控制器110來進行最大功率追蹤方法200,使最大功率追蹤控制器110輸出控制訊號至所有的太陽能發電單元120來使太陽能發電系統100輸出最大功率。在本發明之實施例中,最大功率點追蹤步驟322可為最大功率點追蹤步驟314的延續。例如,當供電階段320緊接著標準責任週期值建立階段310進行時,可在實施最大功率點追蹤步驟314之後,一直持續以最大功率追蹤方法200來進行最大功率點的追蹤。然而,本發明之實施例並不受限於此。在本發明之其他實施例中,亦可於標準責任週期值建立階段310和供電階段320中插入其他的步驟來提供其他有益的功能。In the powering phase 320, a maximum power point tracking step 322 is first performed to continuously utilize the maximum power tracking controller 110 for the maximum power tracking method 200 to cause the maximum power tracking controller 110 to output control signals to all of the solar power generating units 120. The solar power generation system 100 is caused to output the maximum power. In an embodiment of the invention, the maximum power point tracking step 322 may be a continuation of the maximum power point tracking step 314. For example, when the power phase 320 is followed by the standard duty cycle value establishing phase 310, the maximum power point tracking can be continued with the maximum power tracking method 200 after the maximum power point tracking step 314 is implemented. However, embodiments of the invention are not limited thereto. In other embodiments of the invention, other steps may be inserted in the standard duty cycle value establishing phase 310 and the powering phase 320 to provide other beneficial functions.

然後,進行計算步驟324,於太陽能發電系統100輸出最大功率時,計算每一太陽能發電單元120所接收之控制訊號之責任週期值。接著,進行判斷步驟326,以判斷每一太陽能發電單元120所接收之控制訊號之責任週期值是否位於相應之標準責任週期範圍。若某一個太陽能發電單元120之控制訊號之責任週期值未位於相應之標準責任週期範圍內,則決定此太陽能發電單元120發生異常(例如故障或被遮蔽)。Then, a calculation step 324 is performed to calculate a duty cycle value of the control signal received by each solar power generation unit 120 when the solar power generation system 100 outputs the maximum power. Next, a determining step 326 is performed to determine whether the duty cycle value of the control signal received by each solar power generating unit 120 is within a corresponding standard duty cycle range. If the duty cycle value of the control signal of a certain solar power generation unit 120 is not within the corresponding standard responsibility period, it is determined that the solar power generation unit 120 is abnormal (for example, faulty or blocked).

由上述說明可知,本發明實施例之異常檢測方法300不但可利用系統電流及電壓輸出資料來調變整個系統最大功率輸出在最佳值,也可利用每個太陽能發電單元的責任週期值來瞭解系統中每個太陽能發電單元的發電情形,並判斷各個太陽能發電單元是否因遮陰、劣化、損壞而導致功率出減少。如此,本發明實施例之異常檢測方法300可提供管理者足夠資訊來訂立替換、清潔等維修工作,並達到系統安裝時所期待之發電成效。It can be seen from the above description that the abnormality detecting method 300 of the embodiment of the present invention can not only utilize the system current and voltage output data to modulate the maximum power output of the entire system at an optimal value, but also utilize the duty cycle value of each solar power generating unit to understand The power generation situation of each solar power generation unit in the system, and whether the respective solar power generation units are reduced in power due to shading, deterioration, and damage. As such, the abnormality detecting method 300 of the embodiment of the present invention can provide sufficient information for the manager to establish maintenance work such as replacement and cleaning, and achieve the power generation effect expected when the system is installed.

另外,值得一提的是,在本發明之其他實施例中,使用者可利用責任週期的標準差來訂立標準責任週期範圍。請參照下表一,其係紀錄8個太陽能發電單元120於兩種照度條件(600W/m2 ,1000W/m2 )下產生的二種工作範例(case 1,case 2),其中D1 -D8 為8個太陽能發電單元120所對應之責任週期值。Additionally, it is worth mentioning that in other embodiments of the invention, the user can utilize the standard deviation of the duty cycle to establish a standard duty cycle range. Referring to the Table, its records based solar power generation unit 120 8 in the two kinds of illuminance conditions (600W / m 2, 2 1000W / m) generated two kinds of working example in (case 1, case 2), where D 1 - D 8 is the duty cycle value corresponding to the eight solar power generation units 120.

根據表一,可計算出Case1和Case2對應之責任週期平均值皆為40,而標準差則分別為3.43與4.63。接著,利用責任週期的標準差來訂立標準責任週期範圍。例如,以責任週期平均值40加上/減去標準差3.43,即可獲得Case1所對應的標準責任週期範圍43.43-36.57,並判斷出責任週期D1 所對應之太陽能發電單元120發生異常。又例如,以責任週期平均值40加上/減去標準差4.63,即可獲得Case2所對應的標準責任週期範圍44.63-35.37,並判斷出責任週期D1 和D2 所對應之太陽能發電單元120發生異常。According to Table 1, it can be calculated that the average duty cycle corresponding to Case1 and Case2 is 40, and the standard deviation is 3.43 and 4.63, respectively. Next, use the standard deviation of the duty cycle to establish a standard range of liability cycles. For example, the average value of the duty cycle to 40 plus / minus standard deviation 3.43, can be obtained Case1 duty cycle corresponding to the standard range of 43.43-36.57, and a solar power generation unit determines the duty cycle D 1 120 corresponding to the occurrence of abnormality. As another example, the average value of the duty cycle to 40 plus / minus standard deviation 4.63, to obtain the corresponding standard of the duty cycle range of 44.63-35.37 Case2, and determines the duty cycle D 1 and D 2 corresponding to the solar power unit 120 An exception occurs.

再者,在本發明之再一實施例中,可利用太陽能發電單元被判定為異常的時間來判斷此太陽能發電單元是否被遮蔽或是故障。例如,在上述Case1的情況下,若責任週期D1 落在標準責任週期範圍外的時間超過預設之時間閥值,即判斷責任週期D1 所對應的太陽能發電單元故障。在此,時間閥值為太陽能發電單元所在區域的日照時間,但本發明之實施例並不受限於此。在本發明之其他實施例中,使用者可根據實際需求來設定時間閥值。Furthermore, in still another embodiment of the present invention, it is possible to determine whether the solar power generation unit is shielded or malfunctioned by the time when the solar power generation unit is determined to be abnormal. For example, in the case of the above-described Case1, if the time to fall outside the standard duty cycle D 1 exceeds a preset range of the duty cycle of the time threshold, i.e. determines the duty cycle D 1 corresponding to the solar power unit failure. Here, the time threshold is the sunshine time of the area where the solar power generation unit is located, but the embodiment of the present invention is not limited thereto. In other embodiments of the invention, the user can set the time threshold based on actual demand.

雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知 識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed above in several embodiments, it is not intended to limit the invention, and is generally known in the technical field to which the present invention pertains. The scope of protection of the present invention is defined by the scope of the appended claims, and the scope of the invention is defined by the scope of the appended claims.

300‧‧‧異常檢測方法300‧‧‧Anomaly detection method

310‧‧‧標準責任週期值建立階段310‧‧‧Standard duty cycle value establishment phase

312‧‧‧檢查步驟312‧‧‧Checking steps

314‧‧‧最大功率點追蹤步驟314‧‧‧Maximum power point tracking step

316‧‧‧計算與紀錄步驟316‧‧‧ Calculation and record steps

318‧‧‧標準責任週期範圍計算步驟318‧‧‧Standard responsibility cycle range calculation steps

320‧‧‧供電階段320‧‧‧Power supply stage

322‧‧‧最大功率點追蹤步驟322‧‧‧Maximum power point tracking step

324‧‧‧計算步驟324‧‧‧ Calculation steps

326‧‧‧判斷步驟326‧‧‧ Judgment steps

Claims (4)

一種太陽能發電系統,包含:複數組太陽能發電單元;一最大功率追蹤控制器,電性連接至該些太陽能發電單元,以輸出複數組控制訊號至該些太陽能發電單元來使該太陽能發電系統輸出最大功率,其中該些控制訊號為脈衝寬度調變訊號;以及一電流感測器,用以偵測該些太陽能發電單元所輸出之一總電流值,以供該最大功率追蹤控制器根據該總電流值來計算該些太陽能發電單元所輸出之一總功率值;其中,該最大功率追蹤控制器係以最大梯度法(Steepest Ascent Method)以及黃金分割法(Golden Section)來使該太陽能發電系統輸出最大功率,且當該太陽能發電系統輸出最大功率時,該最大功率追蹤控制器計算該些控制訊號之複數個責任週期值以及該些太陽能發電單元所對應之複數個標準責任週期範圍,並判斷該些責任週期值之至少一者是否位於相應之該標準責任週期範圍內,當該些責任週期值之該至少一者未位於相應之該標準責任週期範圍內時,該最大功率追蹤控制器決定該些責任週期值之該至少一者所對應之太陽能發電單元發生異常,該標準責任週期值範圍係根據一標準責任週期值以及一預設容忍範圍來計算獲得,該標準責任週期值為一預設數值。 A solar power generation system comprising: a complex array solar power generation unit; a maximum power tracking controller electrically connected to the solar power generation units to output a complex array control signal to the solar power generation units to maximize the output of the solar power generation system Power, wherein the control signals are pulse width modulation signals; and a current sensor for detecting a total current value output by the solar power generation units for the maximum power tracking controller to be based on the total current The value is used to calculate a total power value of the output of the solar power generation unit; wherein the maximum power tracking controller maximizes the output of the solar power generation system by a maximum gradient method (Steepest Ascent Method) and a Golden Section method (Golden Section) Power, and when the solar power system outputs maximum power, the maximum power tracking controller calculates a plurality of duty cycle values of the control signals and a plurality of standard duty cycle ranges corresponding to the solar power generating units, and determines the Whether at least one of the duty cycle values is located in the corresponding standard The maximum power tracking controller determines the solar power corresponding to the at least one of the duty cycle values when the at least one of the duty cycle values is not within the corresponding standard responsibility period An abnormality occurs in the unit. The standard duty cycle value range is calculated based on a standard duty cycle value and a predetermined tolerance range. The standard duty cycle value is a preset value. 如請求項第1項所述之太陽能發電系統,其中當該些責任週期值之該至少一者未位於相應之該標準責任週期範 圍內時,該最大功率追蹤控制器計算該些責任週期值之該至少一者未位於相應之該標準責任週期範圍內之一異常持續時間,並判斷此異常持續時間是否大於一預設時間閥值,以根據判斷結果來決定該些責任週期值之該至少一者所對應之太陽能發電單元為故障或被遮蔽。 The solar power generation system of claim 1, wherein when at least one of the duty cycle values is not located in the corresponding standard duty cycle While in the enclosure, the maximum power tracking controller calculates that the at least one of the duty cycle values is not within an interval of the abnormal duration of the corresponding standard duty cycle, and determines whether the abnormal duration is greater than a preset time valve And determining, according to the determination result, that the solar power generation unit corresponding to the at least one of the duty cycle values is faulty or obscured. 一種太陽能發電系統之異常檢測方法,包含:提供複數組太陽能發電單元;提供一電流感測器來偵測該些太陽能發電單元所輸出之一總電流值,供一最大功率追蹤控制器根據該總電流值來計算該些太陽能發電單元所輸出之一總功率;進行一標準責任週期值建立階段,包含:檢查該些太陽能發電單元,以確保該些太陽能發電單元正常;利用該最大功率追蹤控制器來進行一最大功率追蹤步驟,以使該太陽能發電系統輸出最大功率,並獲得該些太陽能發電單元所對應之複數個歷史控制訊號,其中該些歷史控制訊號為脈衝寬度調變訊號,該最大功率追蹤控制器係以最大梯度法(Steepest Ascent Method)以及黃金分割法(Golden Section)來進行該最大功率追蹤步驟;於該太陽能發電系統輸出最大功率時,計算該些歷史控制訊號之複數個歷史責任週期值;紀錄該些太陽能發電單元所對應之該些歷史責任週期值,其中每一該些歷史責任週期值定義為相應太陽能發電單元之一標準責任週期值; 根據每一該些太陽能發電單元之一標準責任週期值來計算每一該些太陽能發電單元之一標準責任週期範圍,其中該標準責任週期範圍係根據該標準責任週期值以及一預設容忍範圍來決定;以及進行一供電階段,包含:利用該最大功率追蹤控制器來進行該最大功率追蹤步驟,以輸出複數個控制訊號至該些太陽能發電單元來使該太陽能發電系統輸出最大功率,其中該些控制訊號係一對一對應至該些太陽能發電單元,該些控制訊號為脈衝寬度調變訊號;於該太陽能發電系-統輸出最大功率時,計算每一該些控制訊號之一責任週期值;判斷該些太陽能發電單元之一者之該責任週期值是否位於相應之該標準責任週期範圍內;以及當該些太陽能發電單元之一者之該責任週期值未位於該標準責任週期範圍內時,決定該些太陽能發電單元之該者發生異常。 An abnormality detecting method for a solar power generation system, comprising: providing a complex array solar power generating unit; providing a current sensor to detect a total current value outputted by the solar power generating units, for a maximum power tracking controller according to the total Calculating a total power of the output of the solar power generating units; performing a standard duty cycle value establishing phase, comprising: checking the solar power generating units to ensure that the solar power generating units are normal; using the maximum power tracking controller And performing a maximum power tracking step, so that the solar power system outputs maximum power, and obtains a plurality of historical control signals corresponding to the solar power generating units, wherein the historical control signals are pulse width modulation signals, and the maximum power The tracking controller performs the maximum power tracking step by using the Steepest Ascent Method and the Golden Section; when the solar power system outputs the maximum power, calculating a plurality of historical responsibilities of the historical control signals Period value; record the solar power generation The historical responsibility period values corresponding to the units, wherein each of the historical responsibility period values is defined as a standard duty cycle value of the corresponding solar power generation unit; Calculating a standard responsibility period range of each of the solar power generation units according to a standard duty cycle value of each of the solar power generation units, wherein the standard responsibility period range is based on the standard responsibility period value and a predetermined tolerance range Determining; and performing a power supply phase, comprising: using the maximum power tracking controller to perform the maximum power tracking step to output a plurality of control signals to the solar power generating units to output maximum power to the solar power generation system, wherein the The control signals are one-to-one corresponding to the solar power generating units, and the control signals are pulse width modulation signals; and when the solar power system outputs maximum power, calculating a duty cycle value of each of the control signals; Determining whether the duty cycle value of one of the solar power generation units is within a corresponding standard duty cycle period; and when the duty cycle value of one of the solar power generation units is not within the standard responsibility cycle period, It is decided that the person of the solar power generation units is abnormal. 如請求項第3項所述之太陽能發電系統之異常檢測方法,更包含:當該些太陽能發電單元之一者之該責任週期值未位於該標準責任週期範圍內時,計算該責任週期值未位於該標準責任週期範圍內之一異常持續時間;以及判斷該異常持續時間是否大於一預設時間閥值,以獲得一判斷結果;其中,當該判斷結果為是時,決定該些太陽能發電單元 之該者故障,而當該判斷結果為否時,決定該些太陽能發電單元之該者被遮蔽。The method for detecting an abnormality of the solar power generation system according to Item 3 of the claim further includes: when the responsibility period value of one of the solar power generation units is not within the standard responsibility period, calculating the responsibility period value is not An abnormal duration in the range of the standard responsibility period; and determining whether the abnormal duration is greater than a preset time threshold to obtain a determination result; wherein, when the determination result is yes, determining the solar power generation units The person fails, and when the result of the determination is no, it is determined that the person of the solar power generation units is shielded.
TW102148440A 2013-12-26 2013-12-26 Solar power system and abnormality detection method thereof TWI499887B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102148440A TWI499887B (en) 2013-12-26 2013-12-26 Solar power system and abnormality detection method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102148440A TWI499887B (en) 2013-12-26 2013-12-26 Solar power system and abnormality detection method thereof

Publications (2)

Publication Number Publication Date
TW201525644A TW201525644A (en) 2015-07-01
TWI499887B true TWI499887B (en) 2015-09-11

Family

ID=54197617

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102148440A TWI499887B (en) 2013-12-26 2013-12-26 Solar power system and abnormality detection method thereof

Country Status (1)

Country Link
TW (1) TWI499887B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202119298A (en) * 2019-11-14 2021-05-16 財團法人資訊工業策進會 Solar panel power system abnormal diagnosis and analysis device and method based on fhmm (factorial hidden markov model) and power generation prediction
TWI721864B (en) * 2020-04-15 2021-03-11 國立勤益科技大學 Photovoltaic apparatus and maximum power point tracking method using particle swarm optimization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008125915A2 (en) * 2006-12-06 2008-10-23 Solaredge, Ltd. Monitoring of distributed power harvesting systems using dc power sources
CN101668377A (en) * 2008-09-03 2010-03-10 冠捷投资有限公司 Cold cathode florescent lamp converter, control method thereof and control module thereof
US20120268087A1 (en) * 2011-01-17 2012-10-25 Kent Kernahan Idealized solar panel
TW201306435A (en) * 2011-07-21 2013-02-01 Univ Nat Cheng Kung Photovoltaic power apparatus and photovoltaic power system
CN103092250A (en) * 2013-01-09 2013-05-08 上海电力学院 Compound control method of photovoltaic maximum power point tracking on condition of partial shadow

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008125915A2 (en) * 2006-12-06 2008-10-23 Solaredge, Ltd. Monitoring of distributed power harvesting systems using dc power sources
CN101668377A (en) * 2008-09-03 2010-03-10 冠捷投资有限公司 Cold cathode florescent lamp converter, control method thereof and control module thereof
US20120268087A1 (en) * 2011-01-17 2012-10-25 Kent Kernahan Idealized solar panel
TW201306435A (en) * 2011-07-21 2013-02-01 Univ Nat Cheng Kung Photovoltaic power apparatus and photovoltaic power system
CN103092250A (en) * 2013-01-09 2013-05-08 上海电力学院 Compound control method of photovoltaic maximum power point tracking on condition of partial shadow

Also Published As

Publication number Publication date
TW201525644A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
EP3361631B1 (en) Current-voltage curve scan method for photovoltaic module, and optimizer
US9207700B2 (en) Solar power system and control system
US9799779B2 (en) Systems and methods for photovoltaic string protection
US8289183B1 (en) System and method for solar panel array analysis
EP2824533B1 (en) Photovoltaic system
KR100974176B1 (en) Method for determining the type of connection of at least two electrical devices and system comprising several electric devices
US20140226379A1 (en) Method and apparatus for chaotic democratic pulse width modulation generation
CN107453403B (en) Photovoltaic power generation system and control method thereof
KR101064113B1 (en) Output performance analyzing device for solar cell strings of solar power generation system and method thereof
CN102722212A (en) Maximum power point tracking method for photovoltaic power generation system under non-uniform illumination
JP2011228598A (en) Photovoltaic power generation system and photovoltaic power generation control equipment
TWI499887B (en) Solar power system and abnormality detection method thereof
US10141886B2 (en) Method and apparatus for extracting electrical energy from photovoltaic module
US9748769B2 (en) Serially connected micro-inverter system having concertina output voltage control
KR102175429B1 (en) Apparatus for photovoltaic power generation
KR101987253B1 (en) Solar cell system
JP2015532578A (en) Multiple input single output combined power generation system
JP2014081669A (en) Power supply system, power supply control device, power supply control method, and program
Ma et al. Automatic shading detection system for photovoltaic strings
JP2015099447A (en) Photovoltaic power generation system, operation point correction device using the same, and operation point correction method
JP2014127081A (en) Power conditioner for photovoltaic power generation
JP2019216547A (en) Power control apparatus, photovoltaic power generation system, and failure diagnosing method of photovoltaic power generation facility
KR20230100975A (en) apparatus and method for Maximum power point tracking in photovoltaic system having flyback convertor
US10326277B2 (en) Hierarchical control of a plurality of power subsystems and method of operating the same
Hariharan et al. Degradation detection of PV arrays using extremum-seeking control based MPPT

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees