TWI497809B - Heterogeneous hydrogen-catalyst reactor - Google Patents

Heterogeneous hydrogen-catalyst reactor Download PDF

Info

Publication number
TWI497809B
TWI497809B TW098125725A TW98125725A TWI497809B TW I497809 B TWI497809 B TW I497809B TW 098125725 A TW098125725 A TW 098125725A TW 98125725 A TW98125725 A TW 98125725A TW I497809 B TWI497809 B TW I497809B
Authority
TW
Taiwan
Prior art keywords
hydrogen
reaction
catalyst
metal
group
Prior art date
Application number
TW098125725A
Other languages
Chinese (zh)
Other versions
TW201104948A (en
Inventor
Randell L Mills
Original Assignee
Blacklight Power Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blacklight Power Inc filed Critical Blacklight Power Inc
Priority to TW098125725A priority Critical patent/TWI497809B/en
Publication of TW201104948A publication Critical patent/TW201104948A/en
Application granted granted Critical
Publication of TWI497809B publication Critical patent/TWI497809B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

非均勻氫催化劑反應器Non-homogeneous hydrogen catalyst reactor

本發明係針對一種催化劑系統,其包含能夠引起呈n=1態之原子氫形成較低能態之氫催化劑、原子氫源及能夠引發且擴展形成較低能量氫之反應之其他物質。在某些實施例中,本發明係針對包含至少一種原子氫源及促進氫催化形成低能量氫(hydrino)之催化劑或催化劑源的反應混合物。本文中所揭示之固體及液體燃料之反應物及反應亦為包含各相混合物之非均勻燃料的反應物及反應。反應混合物包含至少兩種選自氫催化劑或氫催化劑源及原子氫源之組份,其中原子氫與氫催化劑中之至少一者可由反應混合物之反應形成。在其他實施例中,反應混合物進一步包含在某些實施例中可具有導電性之載體、諸如有機溶劑或無機溶劑之包括熔鹽的溶劑、吸氣劑及至少一種由於進行反應而引起催化活化之反應物。The present invention is directed to a catalyst system comprising a hydrogen catalyst capable of causing atomic hydrogen in the n = 1 state to form a lower energy state, an atomic hydrogen source, and other species capable of initiating and expanding the reaction to form lower energy hydrogen. In certain embodiments, the present invention is directed to a reaction mixture comprising at least one source of atomic hydrogen and a catalyst or catalyst source that promotes hydrogen catalysis to form a low energy hydrino. The reactants and reactions of the solid and liquid fuels disclosed herein are also reactants and reactions of non-homogeneous fuels comprising a mixture of phases. The reaction mixture comprises at least two components selected from the group consisting of a hydrogen catalyst or a hydrogen catalyst source and an atomic hydrogen source, wherein at least one of the atomic hydrogen and the hydrogen catalyst can be formed by the reaction of the reaction mixture. In other embodiments, the reaction mixture further comprises a carrier that can have electrical conductivity in certain embodiments, a solvent including a molten salt such as an organic solvent or an inorganic solvent, a getter, and at least one catalytic activation due to the reaction. Reactant.

可藉由一或多種化學反應來活化或引發且擴展形成低能量氫之反應。此等反應可選自以下:(i)放熱反應,其為低能量氫反應提供活化能量;(ii)偶合反應,其提供催化劑源或原子氫源中之至少一者以維持低能量氫反應;(iii)自由基反應,在某些實施例中,其在低能量氫反應期間用作來自催化劑之電子的受體;(iv)氧化還原反應,在某些實施例中,其在低能量氫反應期間用作來自催化劑之電子的受體;(v)交換反應,諸如陰離子交換,包括鹵離子、硫離子、氫離子、砷離子、氧離子、磷離子及氮離子交換,在一實施例中交換反應在催化劑接受來自原子氫之能量時促進催化劑發生電離作用形成低能量氫;及(vi)吸氣劑、載體或基質輔助之低能量氫反應,其可提供用於低能量氫反應之至少一種化學環境,用以轉移電子以促進H催化劑功能,經歷可逆相變或其他物理變化或其電子態變化,且結合較低能量氫產物以增加低能量氫反應之程度或速率中之至少一者。在某些實施例中,導電性載體起動活化反應。The reaction to form low energy hydrogen can be activated or initiated by one or more chemical reactions. Such reactions may be selected from the group consisting of: (i) an exothermic reaction that provides activation energy for a low energy hydrogen reaction; (ii) a coupling reaction that provides at least one of a catalyst source or an atomic hydrogen source to maintain a low energy hydrogen reaction; (iii) a free radical reaction, in some embodiments, as a acceptor for electrons from the catalyst during a low energy hydrogen reaction; (iv) a redox reaction, in some embodiments, in a low energy hydrogen (v) an exchange reaction, such as anion exchange, including halide, sulfur, hydrogen, arsenic, oxygen, phosphorus, and nitrogen ion exchange, in one embodiment, in an embodiment The exchange reaction promotes ionization of the catalyst to form low energy hydrogen when the catalyst receives energy from atomic hydrogen; and (vi) a getter, carrier or matrix assisted low energy hydrogen reaction that provides at least a low energy hydrogen reaction A chemical environment used to transfer electrons to promote H catalyst function, undergo reversible or other physical changes or changes in their electronic states, and combine lower energy hydrogen products to increase low energy hydrogen reactions The degree or rate of at least one. In certain embodiments, the electrically conductive carrier initiates an activation reaction.

在其他實施例中,本發明係針對包含至少兩種選自以下之組份的動力系統:催化劑源或催化劑;原子氫源或原子氫;形成催化劑源或催化劑及原子氫源或原子氫之反應物;一或多種引發原子氫催化之反應物;及起動催化劑之載體,其中該動力系統可進一步包含以下任一者:反應容器、真空泵、功率變換器及諸如分離器系統、電解器、用於逆轉交換反應之熱系統及自反應產物使燃料再生之化學合成反應器的系統。In other embodiments, the invention is directed to a power system comprising at least two components selected from the group consisting of a catalyst source or catalyst; an atomic hydrogen source or atomic hydrogen; a reaction to form a catalyst source or catalyst and an atomic hydrogen source or atomic hydrogen; And one or more reactants which initiate atomic hydrogen catalysis; and a carrier for starting the catalyst, wherein the power system may further comprise any one of the following: a reaction vessel, a vacuum pump, a power converter, and such as a separator system, an electrolyzer, A system for reversing the thermal system of the exchange reaction and the chemical synthesis reactor for regenerating the fuel from the reaction product.

在其他實施例中,本發明係針對用於形成具有較低能態氫之化合物、包含至少兩種選自以下之組份的系統:催化劑源或催化劑;原子氫源或原子氫;形成催化劑源或催化劑及原子氫源或原子氫之反應物;一或多種引發原子氫催化之反應物;及起動催化劑之載體,其中用於形成具有較低能態氫之化合物的系統可進一步包含以下任一者:反應容器、真空泵及諸如分離器系統、電解器、用於逆轉交換反應之熱系統及由反應產物再生燃料之化學合成反應器的系統。In other embodiments, the invention is directed to a system for forming a compound having lower energy hydrogen, comprising at least two components selected from the group consisting of: a catalyst source or a catalyst; an atomic hydrogen source or atomic hydrogen; forming a catalyst source Or a catalyst and an atomic hydrogen source or an atomic hydrogen reactant; one or more reactants which initiate atomic hydrogen catalysis; and a carrier for starting the catalyst, wherein the system for forming a compound having a lower energy state hydrogen may further comprise any of the following : a reaction vessel, a vacuum pump, and a system such as a separator system, an electrolyzer, a thermal system for reversing the exchange reaction, and a chemical synthesis reactor for regenerating fuel from the reaction product.

本發明之其他實施例係針對用於形成具有較低能態氫之化合物、包含至少兩種選自以下之組份的電池組或燃料電池系統:催化劑源或催化劑;原子氫源或原子氫;形成催化劑源或催化劑及原子氫源或原子氫之反應物;一或多種引發原子氫催化之反應物;及起動催化劑之載體,其中用於形成具有較低能態氫之化合物的電池組或燃料電池系統可進一步包含以下任一者:反應容器、真空泵及諸如分離器系統、電解器、用於逆轉交換反應之熱系統及自反應產物再生燃料之化學合成反應器的系統。Other embodiments of the present invention are directed to a battery or fuel cell system for forming a compound having lower energy hydrogen, comprising at least two components selected from the group consisting of: a catalyst source or a catalyst; an atomic hydrogen source or atomic hydrogen; a reactant that forms a catalyst source or catalyst and an atomic hydrogen source or atomic hydrogen; one or more reactants that initiate atomic hydrogen catalysis; and a carrier that initiates the catalyst, wherein the battery or fuel used to form the compound having lower energy hydrogen The battery system may further comprise any one of the following: a reaction vessel, a vacuum pump, and a system such as a separator system, an electrolyzer, a thermal system for reversing the exchange reaction, and a chemical synthesis reactor for regenerating the fuel from the reaction product.

本發明係針對催化劑系統,其自原子氫釋放能量以形成電子殼層處於相對於原子核較近之位置之較低能態。所釋放之能量用於產生動力且另外新的氫物質及化合物為所需產物。此等能態由經典物理定律預測且需要催化劑接受來自氫之能量以經歷相應能量釋放轉移。The present invention is directed to a catalyst system that releases energy from atomic hydrogen to form a lower energy state in which the electron shell is in a relatively close position relative to the nucleus. The energy released is used to generate power and additional new hydrogen species and compounds are the desired products. These energy states are predicted by classical physical laws and require the catalyst to accept energy from hydrogen to undergo a corresponding energy release transfer.

經典物理學所示氫原子、氫陰離子、氫分子離子及氫分子之閉合形式解,且預測具有分數主量子數之相應物質。使用麥克斯爾方程式(Maxwell's equation),將電子結構推導為邊界值問題,其中在躍遷期間該電子包含隨時間變化之電磁場的源電流,其限制在於受縛n=1態電子不可發射能量。由H原子解答預測之反應包含共振、非輻射能量自另外穩定原子氫轉移至能夠接受該能量之催化劑,從而形成能態比預先認為可能之能態低的氫。特定言之,經典物理學預測原子氫可與提供淨焓為原子氫位能整數倍之反應的某些原子、準分子、離子及雙原子氫化物進行催化反應,E h =27.2eV ,其中E h 為一哈崔(Hartree)。需要特定物質(例如,He +Ar +Sr +KLiHClNaH )與原子氫一同存在以催化該過程,該等物質可基於其已知之電子能階來鑑別。反應包含非輻射能量轉移、接著q ‧13.6eV 連續譜發射或q ‧13.6eV 轉移至H ,以形成非常熱之激發態H 及能量比未反應原子氫低之對應於分數主量子數之氫原子。亦即,在氫原子主要能階之公式中:A closed form solution of a hydrogen atom, a hydrogen anion, a hydrogen molecular ion, and a hydrogen molecule, as shown by classical physics, and predicting a corresponding substance having a fractional main quantum number. Using the Maxwell's equation, the electronic structure is derived as a boundary value problem, where the electron contains the source current of the electromagnetic field that changes with time during the transition, which is limited by the n = 1 state electron unemitting energy. The reaction predicted by the H atom solution involves the transfer of resonance, non-radiative energy from an otherwise stable atomic hydrogen to a catalyst capable of accepting this energy, thereby forming a hydrogen having a lower energy state than previously thought possible. In particular, classical physics predicts that atomic hydrogen can be catalyzed by certain atoms, excimers, ions, and diatomic hydrides that provide a net reaction of an integral multiple of the atomic hydrogen potential, E h =27.2 eV , where E h is a Hartree. Specific materials (e.g., He + , Ar + , Sr + , K , Li , HCl , and NaH ) are required to be present along with the atomic hydrogen to catalyze the process, and such materials can be identified based on their known electronic energy levels. The reaction involves non-radiative energy transfer followed by a q ‧13.6 eV continuum emission or q ‧13.6 eV transfer to H to form a very hot excited state H and a lower hydrogen atom corresponding to the fractional main quantum number than the unreacted atomic hydrogen . That is, in the formula of the main energy level of a hydrogen atom:

n =1,2,3,... (2) n =1,2,3,... (2)

其中a H 為氫原子之波耳半徑(Bohr radius)(52.947pm),e 為電子電荷大小,且ε0 為真空電容率,分數量子數:Where a H is the Bohr radius of the hydrogen atom (52.947 pm), e is the electron charge, and ε 0 is the vacuum permittivity, fractional quantum number:

代替關於氫激發態之芮得伯方程式(Rydberg equation)中熟知之參數n =整數且表示較低能態氫原子,稱為「低能量氫」。雖然氫之n =1態及氫之態為非輻射的,但經由非輻射能量轉移可能實現兩種非輻射態之間的轉移(比如說,n =1至n =1/2)。氫為由方程式(1)及(3)所示之穩定狀態的特例,其中氫或低能量氫原子之相應半徑如以下所示:Instead of the well-known parameter n = integer in the Rydberg equation for hydrogen excited states and representing a lower energy hydrogen atom, it is called "low energy hydrogen". Although hydrogen n = 1 state and hydrogen The state is non-radiative, but transfer between two non-radiative states may be achieved via non-radiative energy transfer (eg, n = 1 to n = 1/2). Hydrogen is a special case of the steady state shown by equations (1) and (3), wherein the corresponding radius of hydrogen or low-energy hydrogen atoms is as follows:

其中p =1,2,3,...。為使能量守恆,能量必須以正常n =1態氫原子之位能整數單位自氫原子轉移至催化劑,且半徑轉變成。低能量氫係由普通氫原子與具有以下淨反應焓之適當催化劑反應形成Where p =1, 2, 3, .... In order to conserve energy, energy must be transferred from the hydrogen atom to the catalyst in integer units of the normal n =1 state hydrogen atom, and the radius is converted into . Low-energy hydrogen is formed by the reaction of a common hydrogen atom with a suitable catalyst having the following net reaction enthalpy

m ‧27.2eV  (5) m ‧27.2 eV (5)

其中m 為整數。咸信當淨反應焓更緊密地與m ‧27.2eV 匹配時催化速率增加。已發現具有在m ‧27.2eV ±10%、較佳±5%內之淨反應焓的催化劑適合於大部分應用。Where m is an integer. The catalytic rate increases when the net reaction 焓 is more closely matched to m ‧27.2 eV . Catalysts having a net reaction enthalpy within m ‧27.2 eV ±10%, preferably ±5%, have been found to be suitable for most applications.

催化劑反應包含兩個能量釋放步驟:非輻射能量轉移至催化劑,接著當半徑減小至相應穩定終態時進行另外能量釋放。因此,通用反應如以下所示:The catalyst reaction involves two energy release steps: non-radiative energy is transferred to the catalyst, followed by additional energy release as the radius is reduced to the corresponding stable final state. Therefore, the general response is as follows:

Cat ( q + r )+ +re -Cat q + +m ‧27.2eV 且 (8) Cat ( q + r )+ + re -Cat q + + m ‧27.2 eV and (8)

總反應為The total response is

qrmp 為整數。具有氫原子半徑(對應於分母中之1)及等於質子球心電場之(m +p )倍之球心電場,且為半徑為H 半徑之的相應穩態。當電子自氫原子半徑至此距離之半徑徑向加速時,能量以特徵光發射或第三體動能形式釋放。發射可呈具有下之邊界且延伸至較長波長的遠紫外線連續輻射形式。除輻射外,可發生共振動能轉移以形成快H 。隨後藉由與背景H 2 碰撞使此等快H (n =1)原子激發,接著相應H (n =3)快原子發射,產生變寬之巴耳麥α發射(Balmer α emission)。觀測到與預測一致的顯著巴耳麥α譜線變寬(>100eV)。 q , r , m and p are integers. Has a hydrogen atomic radius (corresponding to 1 in the denominator) and a spherical magnetic field equal to ( m + p ) times the proton spherical electric field, and For a radius of H radius Corresponding steady state. When electrons are from hydrogen atom radius to When the radius of this distance is accelerated radially, the energy is released in the form of characteristic light emission or third body kinetic energy. Launch can have The lower boundary and extends to the longer wavelengths of the far ultraviolet continuous radiation form. In addition to radiation, a common vibrational energy transfer can occur to form a fast H. The fast H ( n =1) atoms are then excited by collision with the background H 2 , followed by the corresponding H ( n = 3) fast atomic emission, resulting in a broadened Balmer α emission. A significant balmer alpha line broadening (>100 eV) consistent with the prediction was observed.

因此,合適催化劑可提供m ‧27.2eV 之淨反應正焓。亦即,催化劑共振接受來自氫原子之非輻射能量轉移,且向周圍釋放該能量,以實現電子躍遷至分數量子能階。由於非輻射能量轉移,所以氫原子變得不穩定且進一步發射能量,直至其達到具有由方程式(1)及(3)所示之主要能階的較低能量非輻射態。因此,催化自氫原子釋放能量,伴隨氫原子尺寸r n =na H 相應減小,其中n 由方程式(3)所示。舉例而言,H (n =1)至H (n =1/4)之催化釋放204eV,且氫半徑自a H 減至。催化劑產物H (1/p )亦可與電子反應,形成低能量氫氫陰離子H - (1/p ),或兩個H (1/p )可反應形成相應分子低能量氫H 2 (1/p )。Therefore, a suitable catalyst can provide a net reaction of m ‧27.2 eV . That is, the catalyst resonance accepts non-radiative energy transfer from the hydrogen atoms and releases the energy to the surroundings to effect electronic transition to fractional quantum energy levels. Due to the non-radiative energy transfer, the hydrogen atoms become unstable and further emit energy until they reach a lower energy non-radiative state having the main energy levels shown by equations (1) and (3). Therefore, the catalysis of the release of energy from the hydrogen atom is accompanied by a corresponding decrease in the hydrogen atom size r n = na H , where n is represented by the equation (3). For example, the catalytic release of H ( n =1) to H ( n = 1/4) is 204 eV, and the hydrogen radius is reduced from a H to . The catalyst product H (1/ p ) can also react with electrons to form a low-energy hydrino hydride H - (1/ p ), or two H (1/ p ) can react to form a corresponding molecule of low-energy hydrogen H 2 (1/ p ).

特定言之,催化產物H (1/p )亦可與電子反應,形成具有結合能E B 之新穎氫陰離子H - (1/p ):In particular, the catalytic product H (1/ p ) can also react with electrons to form a novel hydrogen anion H - (1/ p ) with a binding energy E B :

其中p =整數>1,s =1/2,為約化蒲郎克常數(Planck's constant bar),μ 0 為真空磁導率,m e 為電子質量,μ e 為由所示之低電子質量,其中m p 為質子質量,a 0 為波耳半徑,且離子半徑為。自方程式(10),計算出氫陰離子電離能為0.75418eV ,且實驗值為6082.99±0.15cm -1 (0.75418eV)。Wherein p = an integer> 1, s = 1/2 , To reduce the Planck's constant bar, μ 0 is the vacuum permeability, m e is the electron mass, and μ e is the The low electron mass shown, where m p is the proton mass, a 0 is the radius of the wave, and the ionic radius is . From equation (10), the ionization energy of the hydride ion was calculated to be 0.75418 eV , and the experimental value was 6082.99 ± 0.15 cm -1 (0.75418 eV).

向高磁場移位之NMR峰為半徑相對於普通氫陰離子減小且質子反磁性屏蔽增加之較低能態氫存在的直接證據。位移由普通氫陰離子H - 之位移與歸因於較低能態之分量的和所示:The NMR peak shifted to a high magnetic field is a direct evidence of the presence of a lower energy state hydrogen with a reduced radius relative to the normal hydride anion and increased proton diamagnetic shielding. The displacement is shown by the sum of the displacement of the ordinary hydrogen anion H - and the component attributed to the lower energy state:

其中對於H - 而言,p =0,且對於H - (1/p )而言,p =整數>1,且α為精細結構常數。Wherein, for H - , p = 0, and for H - (1/ p ), p = integer > 1 and α is a fine structure constant.

H (1/p )可與質子反應且兩個H (1/p )可反應,分別形成H 2 (1/p )+H 2 (1/p )。在不輻射之約束下由橢球座標中拉普拉斯算子(Laplacian)解出氫分子離子及分子電荷及電流密度函數、鍵距及能量。 H (1/ p ) can react with protons and two H (1/ p ) can react to form H 2 (1/ p ) + and H 2 (1/ p ), respectively. Under the constraint of no radiation, the Laplacian operator (Laplacian) solves the hydrogen molecular ion and molecular charge and current density function, bond distance and energy.

在長球分子軌道之各焦點上具有+pe 之球心電場的氫分子離子之總能量E T The total energy E T of the hydrogen molecular ion having a spherical electric field of + pe at each focus of the long-sphere molecular orbital is

其中p 為整數,c 為真空中光速,且μ為減少之核質量。在長球分子軌道之各焦點上具有+pe 之球心電場的氫分子之總能量為Where p is an integer, c is the speed of light in vacuum, and μ is the reduced nuclear mass. The total energy of a hydrogen molecule having a spherical electric field of + pe at each focus of the long-sphere molecular orbital is

氫分子H 2 (1/p )之鍵解離能E D 為相應氫原子總能量與E T 之間的差The bond dissociation energy E D of the hydrogen molecule H 2 (1/ p ) is the difference between the total energy of the corresponding hydrogen atom and E T

E D =E (2H (1/p ))-E T  (15) E D = E (2 H (1/ p ))- E T (15)

其中among them

E (2H (1/p ))=-p 2 27.20eV  (16) E (2 H (1/ p ))=- p 2 27.20 eV (16)

E D 由方程式(15-16)及(14)所示: E D is shown by equations (15-16) and (14):

催化產物氣體之NMR提供對理論上預測之H 2 (1/4)化學位移的明確檢驗。一般而言,預測H 2 (1/p )之1 H NMR共振由於橢圓座標中分數半徑而在H 21 H NMR共振之高磁場,其中電子顯著更接近核。針對H 2 (1/p )預測之位移H 2 位移與對H 2 (1/p )而言視p =整數>1而定之項的和所示:The NMR of the catalytic product gas provides a clear test of the theoretically predicted H 2 (1/4) chemical shift. In general, the 1 H NMR resonance of H 2 (1/ p ) is predicted to be a high magnetic field at 1 H NMR resonance of H 2 due to the fractional radius in the elliptical coordinates, where the electrons are significantly closer to the nucleus. Displacement predicted for H 2 (1/ p ) The sum of the terms of H 2 displacement and H 2 (1/ p ) depends on p = integer > 1:

其中對於H 2 而言,p =0。實驗絕對H 2 氣相共振位移-28.0ppm與預測絕對氣相位移-28.01ppm(方程式(19))極為一致。Wherein for H 2 , p =0. The experimental absolute H 2 gas phase resonance shift of -28.0 ppm is in good agreement with the predicted absolute gas phase shift of -28.01 ppm (equation (19)).

氫類型分子H 2 (1/p )自υ=0躍遷至υ=1的振動能量E vib The vibration energy E vib of the hydrogen type molecule H 2 (1/ p ) from υ = 0 to υ = 1 is

E vib =p 2 0.515902eV  (20) E vib = p 2 0.515902 eV (20)

其中p 為整數。氫類型分子H 2 (1/p )自J 躍遷至J +1的轉動能E rot Where p is an integer. The rotational energy E rot of the hydrogen type molecule H 2 (1/ p ) from J to J +1 is

其中p 為整數,I 為慣性矩。Where p is an integer and I is the moment of inertia.

轉動能之p 2 相依性由核間距之倒數p相依性及對慣性矩I 之相應影響產生。預測H 2 (1/p )之核間距2c '為The p 2 dependence of the rotational energy is produced by the reciprocal p-dependence of the nuclear spacing and the corresponding effect on the moment of inertia I. Predicting the nuclear spacing 2 c ' of H 2 (1/ p ) is

來自許多研究技術之資料強烈且一致指出氫可以比預先認為可能之能態低的能態存在。此資料證明此等稱為低能量氫之「小氫」較低能態及相應氫陰離子及分子低能量氫之存在。一些先前相關研究證明產生處於比傳統「基」(n =1)態能量低之分數量子態之氫的新穎原子氫反應之可能性,該等研究包括遠紫外線(EUV)光譜學、來自催化劑及氫陰離子產物之特徵發射、較低能量氫發射、化學形成之電漿、巴耳麥α譜線變寬、H 線粒子數反轉、升高電子溫度、不規則電漿餘輝持續時間、動力產生及分析新穎化合物。Data from many research techniques strongly and consistently indicate that hydrogen can exist in a state of energy that is lower than previously thought possible. This data demonstrates the existence of the lower energy states of the "small hydrogen" referred to as low-energy hydrogen and the presence of corresponding hydrogen anions and low-energy hydrogen. Some previous related studies have demonstrated the possibility of generating novel atomic hydrogen reactions in the fractional quantum states of energy lower than the traditional "base" ( n = 1) state, including far ultraviolet (EUV) spectroscopy, from catalysts and Characteristic emission of hydrogen anion product, lower energy hydrogen emission, chemically formed plasma, balm alpha line broadening, H line particle number inversion, elevated electron temperature, irregular plasma afterglow duration, power generation And analysis of novel compounds.

本發明之催化較低能量氫躍遷需要一種催化劑,該催化劑可呈未催化原子氫位能27.2eV 之整數m 吸熱化學反應之形式,接受來自原子H之能量,以引起躍遷。該吸熱催化劑反應可為一或多個電子自諸如原子或離子之物質電離(例如,對LiLi 2+ 而言,m =3),且可進一步包含鍵裂與一或多個電子自一或多種初始鍵成鍵體電離的協同反應(例如,對NaHNa 2+ +H 而言,m =2)。He + 滿足催化劑標準-焓變等於27.2eV 整數倍之化學或物理過程,因為其在54.417eV (為2.27.2eV )下電離。兩個氫原子亦可用作具有相同焓之催化劑。氫原子H (1/p )p =1,2,3,...137可進一步躍遷至由方程式(1)及(3)所示之較低能態,其中一原子躍遷由共振且非輻射地接受m ‧27.2eV 且伴隨位能對換之第二原子催化。由m ‧27.2eV 共振轉移至H (1/p' )而誘發之H (1/p )躍遷至H (1/(p +m ))之整個通用方程式由下式表示:The catalytic lower energy hydrogen transition of the present invention requires a catalyst which can take the form of an integral m endothermic chemical reaction having an uncatalyzed atomic hydrogen potential of 27.2 eV , accepting energy from atom H to cause a transition. The endothermic catalyst reaction may ionize one or more electrons from a substance such as an atom or an ion (for example, m = 3 for LiLi 2+ ), and may further comprise a bond splitting and one or more electrons from one Or a synergistic reaction of multiple initial bond-forming ligands (eg, m = 2 for NaHNa 2+ + H ). He + satisfies the catalyst standard - the chemical or physical process of enthalpy equal to an integral multiple of 27.2 eV because it ionizes at 54.417 eV (2.27.2 eV ). Two hydrogen atoms can also be used as the catalyst having the same enthalpy. The hydrogen atom H (1/ p ) p =1, 2, 3, ... 137 can further transition to the lower energy states shown by equations (1) and (3), where one atom transitions by resonance and non-radiation The ground accepts m ‧27.2 eV and the accompanying potential can be catalyzed by the second atom. The entire general equation for the H (1/ p ) transition to H (1/( p + m )) induced by m ‧27.2 eV resonance to H (1/ p' ) is represented by the following equation:

H (1/p ')+H (1/p )→H +H (1/(p +m ))+[2pm +m 2 -p '2 +1]‧13.6eV 。 (23) H (1 / p ') + H (1 / p) → H + H (1 / (p + m)) + [2 pm + m 2 - p' 2 +1] ‧13.6 eV. (twenty three)

氫原子可用作催化劑,其中對於一及兩個原子而言分別為m =1及m =2,充當另一者之催化劑。當極快H與分子相撞形成2H 時,兩原子催化劑2H 之速率可為高的,其中兩個原子共振且非輻射地接受來自碰撞對之第三氫原子的54.4eVA hydrogen atom can be used as a catalyst in which m = 1 and m = 2, respectively, for one or two atoms, acting as a catalyst for the other. When very fast H collides with the molecules to form 2 H , the rate of the two-atom catalyst 2 H can be high, wherein the two atoms resonate and non-radiatively accept 54.4 eV from the third hydrogen atom of the collision pair.

m =2下,催化劑He + 與2H 之產物為H (1/3),其快速反應,形成H (1/4)、接著形成分子低能量氫H 2 (1/4)作為較佳狀態。特定言之,在高氫原子濃度之狀況下,由方程式(23)所示之H (1/3)(p =3)進一步躍遷至H (1/4)(p +m =4)在H 作為催化劑(p' =1;m =1)下可為快速的:At m = 2, the product of the catalysts He + and 2 H is H (1/3), which reacts rapidly to form H (1/4), followed by formation of molecular low-energy hydrogen H 2 (1/4). status. Specifically, under the condition of high hydrogen atom concentration, H (1/3) ( p = 3) shown by equation (23) further transitions to H (1/4) ( p + m = 4) at H. as the catalyst; under (p '= 1 m = 1 ) can be fast:

與觀測結果一致,相應分子低能量氫H 2 (1/4)及低能量氫氫陰離子H - (1/4)為最終產物,此係因為p =4量子態具有超過四極之多極性,使得H (1/4)具有長理論壽命來進行進一步催化。Consistent with the observations, the corresponding molecules low-energy hydrogen H 2 (1/4) and low-energy hydrino hydride H - (1/4) are the final products, because the p = 4 quantum states have more than four polarities, making H (1/4) has a long theoretical lifetime for further catalysis.

預測非輻射能量轉移至催化劑He + 及2H 分別在氦-氫及氫電漿中對He + 離子能階充能且增加H 之電子激發溫度。對於兩種催化劑而言,中間物(方程式(6),m =2)具有氫原子半徑(對應於分母中之1)及等於質子球心電場3倍之球心電場,且為半徑為H 半徑1/3之相應穩態。當電子自氫原子半徑至1/3此距離之半徑徑向加速時,能量以特徵光發射或第三體動能釋放。發射可呈具有54.4eV (22.8nm)之邊界且延伸至較長波長的遠紫外線連續輻射形式。發射可呈具有54.4eV (22.8nm)之邊界且延伸至較長波長的遠紫外線連續輻射形式。或者,由於共振動能轉移而預測具有快H。預測第二連續譜帶由隨後催化產物(方程式(4-7)及(23))快速躍遷至態(其中原子氫接受來自之27.2eV )而產生。關於微波及輝光及分別提供催化劑He + 及2H 之氦-氫及單獨氫之脈衝釋放來記錄遠紫外線(EUV)光譜學及高解析度可見光譜學。對He + 離子線充能伴隨氫的添加而發生,且氫電漿之激發溫度在某些條件下極高。觀測到22.8nm與40.8nm下EUV連續譜,且觀測到顯著(>50eV)巴耳麥α譜線變寬。在收集自氦-氫、氫及水蒸氣輔助之氫電漿且溶於CDCl 3 之氣體上藉由溶液NMR在1.25ppm下觀測到H 2 (1/4)。It is predicted that the non-radiative energy is transferred to the catalysts He + and 2 H to charge the He + ion energy level in the helium-hydrogen and hydrogen plasma, respectively, and increase the electron excitation temperature of H. For both catalysts, intermediates (Equation (6), m = 2) has a hydrogen atom radius (corresponding to 1 in the denominator) and a spherical electric field equal to 3 times the proton spherical electric field, and It is the corresponding steady state with a radius of 1/3 of the radius H. When the electrons are radially accelerated from the radius of the hydrogen atom to a radius of 1/3 of this distance, the energy is released by the characteristic light emission or the third body kinetic energy. The emission can be in the form of far ultraviolet continuous radiation having a boundary of 54.4 eV (22.8 nm) and extending to longer wavelengths. The emission can be in the form of far ultraviolet continuous radiation having a boundary of 54.4 eV (22.8 nm) and extending to longer wavelengths. Or, it is predicted to have a fast H due to the transfer of the common vibration energy. Prediction of the second continuum band from subsequent catalytic products (Equation (4-7) and (23)) quickly jump to State (where atomic hydrogen accepts Produced by 27.2 eV ). Ultra-ultraviolet (EUV) spectroscopy and high-resolution visible spectroscopy were recorded for microwave and glow and pulsed release of helium-hydrogen and hydrogen alone to provide catalysts He + and 2H , respectively. The charge of He + ion line occurs with the addition of hydrogen, and the excitation temperature of the hydrogen plasma is extremely high under certain conditions. An EUV continuum at 22.8 nm and 40.8 nm was observed, and a significant (>50 eV) Barley alpha line broadening was observed. H 2 (1/4) was observed by solution NMR at 1.25 ppm on a gas collected from hydrazine-hydrogen, hydrogen and water vapor-assisted hydrogen plasma and dissolved in CDCl 3 .

類似地,Ar +Ar 2+ 之反應具有27.63eV 之淨反應焓,其在方程式(4-7)中相當於m =1。當Ar + 用作催化劑時,觀測到預測之其91.2nm及45.6nm連續譜以及其他特徵標誌:低能量氫躍遷、對催化劑激發態充能、快H及由溶液NMR在1.25ppm下觀測到的預測之氣體低能量氫產物H 2 (1/4)。考慮此等結果及氦電漿之結果,觀測到對於He + 催化劑而言臨限值在54.5eV (q =4)及40.8eV (q =3)下且對於Ar + 催化劑而言臨限值在27.2eV (q =2)及13.6eV (q =1)下的q ‧13.6eV 連續譜。在低能量氫躍遷至較低能態,引起寬光譜範圍內高能連續輻射的情況下,可能具有高得多之q 值。Similarly, the reaction of Ar + to Ar 2+ has a net reaction enthalpy of 27.63 eV , which corresponds to m =1 in the equation (4-7). When Ar + was used as a catalyst, the predicted 91.2 nm and 45.6 nm continuum and other signatures were observed: low energy hydrogen transition, charge to the excited state of the catalyst, fast H, and observed by solution NMR at 1.25 ppm. The predicted low energy hydrogen product H 2 (1/4). Taking into account these results and the results of the tantalum plasma, it is observed that for He + catalysts, the threshold is 54.5 eV ( q = 4) and 40.8 eV ( q = 3) and for the Ar + catalyst, the threshold is 27.2 eV ( q = 2) and q ‧13.6 eV continuum at 13.6 eV ( q =1). In the case of low energy hydrogen transitions to lower energy states, resulting in high energy continuous radiation over a wide spectral range, there may be a much higher q value.

在近來動力產生及產物表徵之研究中,將原子鋰及分子NaH 用作催化劑,此係因為其符合催化劑標準,即焓變等於原子氫位能27.2eV 之整數m 倍的化學或物理過程(例如,對於Li 而言,m =3;且對於NaH 而言,m =2)。使用化學產生之催化反應物,測試基於新穎鹼鹵化低能量氫氫化物化合物(MH *XM =Li或NaX =鹵素 )之相應低能量氫氫陰離子H - (1/4)及分子低能量氫H 2 (1/4)能階之閉合形式方程式的特定預測。In recent studies power generation and characterization of the product, the lithium atoms in the molecule and NaH as a catalyst, this catalyst system since it meets standards, i.e., the enthalpy change is equal to the potential energy of atomic hydrogen integer times m 27.2 eV of chemical or physical processes (e.g. , for Li , m = 3; and for NaH , m = 2). The corresponding low-energy hydrino hydride H - (1/4) and molecules based on the novel base halogenated low-energy hydrogen hydride compound ( MH * X ; M = Li or Na , X = halogen ) were tested using a chemically generated catalytic reactant. A specific prediction of the closed form equation of the low energy hydrogen H 2 (1/4) energy level.

首先,測試Li 催化劑。使用LiLiNH 2 作為原子鋰及氫原子源。使用水流分批熱量測定,1gLi 、0.5gLiNH 2 、10gLiBr 及15gPd /Al 2 O 3 之實測功率為約160W,能量平衡ΔH =-19.1kJ 。觀測到之能量平衡為基於已知化學之最大理論值的4.4倍。接著當於化學合成中使用動力反應混合物時,將阮尼鎳(Raney nickel)(R-Ni)用作解離器,其中LiBr 用作催化產物H (1/4)之吸氣劑,以形成LiH *X 以及捕集H 2 (1/4)於晶體中。ToF-SIM展示LiH *X 峰。LiH *BrLiH *I1 H MAS NMR展示與LiX 基質中H - (1/4)匹配的約-2.5ppm下巨大獨特高磁場共振。1.13ppm下之NMR峰與間隙H 2 (1/4)匹配,且在FTIR譜中在1989cm -1 下觀測到為普通H 2 轉動頻率42 倍的H 2 (1/4)轉動頻率。LiH *Br 晶體上記錄之XPS譜展示在約9.5eV及12.3eV下之峰,基於任何其他主要元素峰之缺乏,該等峰不可歸因於任何已知元素,但其與兩種化學環境中H - (1/4)之結合能匹配。高能過程之另一標誌為觀測到當原子Li 與原子氫一起存在時在低溫(例如,)及約1-2V/cm之極低電場強度下形成稱為共振轉移電漿或rt電漿之電漿。觀測到對應於極快HH 巴耳麥α線的時間相關性譜線變寬(>40eV)。First, the Li catalyst was tested. Li and LiNH 2 are used as a source of atomic lithium and hydrogen atoms. Using a water flow batch calorimetry, the measured power of 1 g Li , 0.5 g LiNH 2 , 10 g LiBr, and 15 g Pd / Al 2 O 3 was about 160 W, and the energy balance ΔH = -19.1 kJ . The observed energy balance is 4.4 times the maximum theoretical value of known chemistry. Next, when a kinetic reaction mixture is used in chemical synthesis, Raney nickel (R-Ni) is used as a dissociator, wherein LiBr is used as a getter for the catalytic product H (1/4) to form LiH. * X and capture H 2 (1/4) in the crystal. ToF-SIM displays the LiH * X peak. And LiH * Br LiH * I 1 H MAS NMR of LiX matrix display and H - (1/4) approximately matching the unique high -2.5ppm huge magnetic resonance. H 2 (1/4) NMR peaks match with a gap under the 1.13ppm, observed at 1989 cm -1 and the H 2 to the normal to rotate 42 times the rotation frequency of H 2 (1/4) frequency in the FTIR spectrum. The XPS spectra recorded on the LiH * Br crystals show peaks at about 9.5 eV and 12.3 eV, based on the lack of any other major elemental peaks, which are not attributable to any known elements, but which are compatible with H in both chemical environments. - The combination of (1/4) matches. Another indication of the high-energy process is the observation that when the atom Li is present along with the atomic hydrogen at low temperatures (for example, And a plasma called a resonance transfer plasma or an rt plasma is formed at an extremely low electric field strength of about 1-2 V/cm. The time-dependent spectral broadening (>40 eV) of the H- Barley alpha line corresponding to the very fast H was observed.

諸如MH 之包含氫及除氫以外至少一個元素M的本發明之化合物用作形成低能量氫之氫源及催化劑源。由M-H 鍵斷裂加上t 個電子自原子M 各自電離至連續能階,使得鍵能與t 個電子之電離能之總和為約m ‧27.2eV (其中m 為整數),來提供催化反應。一種此類催化系統包含鈉。NaH 鍵能為1.9245eV ,且Na 之第一及第二電離能分別為5.13908eV 及47.2864eV 。基於此等能量,NaH 分子可用作催化劑源及氫源,因為NaH 之鍵能加上NaNa 2 + 之二次電離(t =2)為54.35eV (2.27.2eV )。催化劑反應如以下所示:Such as MH to include hydrogen other than hydrogen and at least one compound of the present invention is used as the element M forming a hydrogen source and a catalyst of low energy source of hydrogen. The MH bond cleavage plus t electrons are each ionized from the atom M to a continuous energy level such that the sum of the bond energy and the ionization energy of the t electrons is about m ‧27.2 eV (where m is an integer) to provide a catalytic reaction. One such catalytic system comprises sodium. The NaH bond energy is 1.9245 eV , and the first and second ionization energies of Na are 5.13908 eV and 47.2864 eV, respectively . Based on this energy, the NaH molecule can be used as a catalyst source and a hydrogen source because the NaH bond plus Na to Na 2 + secondary ionization ( t = 2) is 54.35 eV (2.27.2 eV ). The catalyst reaction is as follows:

Na 2 + +2e - +HNaH +54.35eV  (26) Na 2 + +2 e - + HNaH +54.35 eV (26)

且總反應為And the total response is

產物H (1/3)快速反應形成H (1/4)、接著形成分子低能量氫H 2 (1/4),作為較佳狀態(方程式(24))。NaH 催化劑反應可為協同反應,因為NaH 鍵能、NaNa 2 + 之二次電離(t =2)及H 位能之總和為81.56eV (3.27.2eV )。催化劑反應如以下所示:The product H (1/3) reacts rapidly to form H (1/4), followed by formation of a molecular low-energy hydrogen H 2 (1/4), as a preferred state (Equation (24)). The NaH catalyst reaction can be a synergistic reaction because the sum of the NaH bond energy, the second ionization of Na to Na 2 + ( t = 2), and the H site energy is 81.56 eV (3.27.2 eV ). The catalyst reaction is as follows:

且總反應為And the total response is

其中H + fast 為具有至少13.6eV之動能的快氫原子。H - (1/4)形成穩定鹵氫化物且與由反應2H (1/4)→H 2 (1/4)及H - (1/4)+H +H 2 (1/4)形成之相應分子一起為有利產物。Wherein H + fast is a fast hydrogen atom having a kinetic energy of at least 13.6 eV. H - (1/4) to form a stable hydride and the halide from the reaction 2 H (1/4) → H 2 (1/4) and H - (1/4) + H + → H 2 (1/4) The corresponding molecules formed together are advantageous products.

氫化鈉通常呈由氣態氫與金屬鈉反應形成之離子晶狀化合物形式。且在氣態中,鈉包含具有74.8048kJ/mol之鍵能的共價Na 2 分子。發現當將NaH (s )在氦氛圍下以極慢升溫速率(0.1℃/min)加熱以形成NaH (g )時,由差示掃描熱量測定(DSC)在高溫下觀測到由方程式(25-27)所示之所預測放熱反應。為實現高功率,設計一種極大地增加NaH (g )形成之量及速率之化學系統。由生成熱計算之NaOHNaNa 2 ONaH (s )之反應釋放ΔH =-44.7kJ/mol NaOHSodium hydride is typically in the form of an ionic crystalline compound formed by the reaction of gaseous hydrogen with sodium metal. And, in the gaseous state, comprising sodium Na 2 molecule having 74.8048kJ / mol of covalent bond energy. It was found that when NaH ( s ) was heated at a very slow heating rate (0.1 °C/min) under a helium atmosphere to form NaH ( g ), it was observed by differential scanning calorimetry (DSC) at a high temperature by equation (25- 27) The predicted exothermic reaction shown. To achieve high power, a chemical system is designed that greatly increases the amount and rate of NaH ( g ) formation. The reaction of NaOH generated from the generation of heat and Na to Na 2 O and NaH ( s ) releases Δ H = -44.7 kJ / mol NaOH :

NaOH +2NaNa 2 O +NaH (s ) ΔH =-44.7kJ /mole NaOH 。 (31) NaOH +2 Na → Na 2 O + NaH (s) Δ H = -44.7 kJ / mole NaOH. (31)

此放熱反應可推導出NaH (g )之形成且用以推導由方程式(25-27)所示之完全放熱反應。在原子氫存在下的再生反應為This exothermic reaction can be derived from the formation of NaH ( g ) and used to derive the complete exothermic reaction as shown by equation (25-27). The regeneration reaction in the presence of atomic hydrogen is

Na 2 O +HNaOH +Na  ΔH =-11.6kJ /mole NaOH  (32) Na 2 O + HNaOH + Na Δ H = -11.6 kJ / mole NaOH (32)

NaHNa +H (1/3) ΔH =-10,500kJ /mole H  (33) NaHNa + H (1/3) Δ H = -10,500 kJ / mole H (33)

and

NaHNa +H (1/4) ΔH =-19,700kJ /mole H  (34) NaHNa + H (1/4) Δ H = -19,700 kJ / mole H (34)

NaH 以獨特方式實現高動力學,因為該催化劑反應取決於固有H 之釋放,該固有H 同時進行躍遷形成H (1/3),進一步反應形成H (1/4)。在氦氛圍下在極慢升溫速率(0.1℃/min)下對離子NaH 執行高溫差示掃描熱量測定(DSC),以增加分子NaH 形成之量。在640℃至825℃之溫度範圍內觀測到-177kJ/mol NaH 之新穎放熱效應。為獲得高功率,將具有約100m 3 /g 之表面積的R-Ni表面塗上NaOH 且使之與Na 金屬反應形成NaH 。使用水流分批熱量測定,當與Na 金屬反應時,自15g R-Ni之實測功率為約0.5kW,能量平衡為ΔH =-36kJ ,而來自R-Ni起始物質R-NiAl合金之能量平衡為。觀測到之NaH 反應能量平衡為-1.6×104 kJ/mol H 2 ,超過-241.8kJ/mol H 2 燃燒焓66倍。在NaOH 摻雜增至0.5wt%的情況下,使用R-Ni介金屬之Al 置換Na 金屬作為還原劑來產生NaH 催化劑。當加熱至60℃時,15g複合催化劑材料無需添加劑來釋放11.7kJ過剩能量及產生0.25kW之功率。關於溶於DMF-d7之產物氣體的溶液NMR展示H 2 (1/4)在1.2ppm下。 NaH in a unique way to achieve high dynamics, since the catalytic reaction of H depends on the inherent release, which simultaneously transitions form inherently H H (1/3), is further reacted to form H (1/4). High temperature differential scanning calorimetry (DSC) was performed on the ionized NaH at a very slow heating rate (0.1 °C/min) under a helium atmosphere to increase the amount of molecular NaH formation. A novel exothermic effect of -177 kJ/mol NaH was observed in the temperature range of 640 ° C to 825 ° C. To achieve high power, the surface of R-Ni having a surface area of about 100 m 3 / g is coated with NaOH and reacted with Na metal to form NaH . Using a water flow batch calorimetry, when reacted with Na metal, the measured power from 15 g R-Ni is about 0.5 kW, the energy balance is ΔH = -36 kJ , and the energy from the R-Ni starting material R-NiAl alloy. Balanced to . The observed NaH reaction energy balance was -1.6 × 10 4 kJ/mol H 2 , which exceeded the -241.8 kJ/mol H 2 combustion enthalpy 66 times. In the case where the NaOH doping is increased to 0.5 wt%, the Al- substituted Na metal is used as a reducing agent to form a NaH catalyst. When heated to 60 ° C, 15 g of the composite catalyst material did not require additives to release 11.7 kJ of excess energy and produce 0.25 kW of power. The solution NMR of the product gas dissolved in DMF-d7 showed H 2 (1/4) at 1.2 ppm.

ToF-SIM展示低能量氫化鈉NaH x 峰。NaH *BrNaH *Cl1 H MAS NMR譜展示分別在-3.6ppm及-4ppm下與H - (1/4)匹配之巨大獨特高磁場共振及1.1ppm下與H 2 (1/4)匹配之NMR峰。來自NaCl 與固體酸KHSO 4 之反應、作為唯一氫源之NaH *Cl 包含兩種分數氫狀態。在-3.97ppm下觀測到H - (1/4)NMR峰,且H - (1/3)峰亦存在於-3.15ppm下。分別在1.15ppm下及1.7ppm下觀測到相應H 2 (1/4)及H 2 (1/3)峰。溶於DMF-d7之NaH*F1 H NMR展示分別在1.2ppm及-3.86ppm下的經分離H 2 (1/4)及H - (1/4),其中任何固體基質效應之缺乏或可能替代分配證實固體NMR歸屬。對NaH *Br 記錄之XPS譜展示在約9.5eV及12.3eV下與由LiH *BrKH *I 產生之結果匹配的H - (1/4)峰;然而,低能量氫化鈉展示在缺乏鹵化物峰的情況下另外具有6eV下H - (1/3)XPS峰的兩種分數氫狀態。亦自使用12.5keV電子束激發之H 2 (1/4)觀測到能量為普通H 2 能量42 倍之預測轉動躍遷。ToF-SIM displays low energy sodium hydride NaH x peaks. The 1 H MAS NMR spectrum of NaH * Br and NaH * Cl shows a huge unique high magnetic field resonance with H - (1/4) at -3.6 ppm and -4 ppm, respectively, and H 2 (1/4) at 1.1 ppm. Matched NMR peaks. NaCl from the reaction with a solid acid KHSO 4, the hydrogen as the sole source of NaH * Cl comprising two hydrino states. An H - (1/4) NMR peak was observed at -3.77 ppm, and the H - (1/3) peak was also present at -3.15 ppm. The corresponding H 2 (1/4) and H 2 (1/3) peaks were observed at 1.15 ppm and 1.7 ppm, respectively. 1 H NMR of NaH* F dissolved in DMF-d7 showed separation of H 2 (1/4) and H - (1/4) at 1.2 ppm and -3.66 ppm, respectively, with any lack of solid matrix effect or It is possible to substitute the distribution to confirm the solid NMR assignment. XPS NaH * Br of the recording of the spectrum appear at about 9.5eV and 12.3eV match the result of the LiH * Br and KH * I of H - (1/4) peak; however, show a low energy in the absence of sodium hydride halide In the case of the peak, there are two additional hydrino states of the H - (1/3) XPS peak at 6 eV. 12.5keV grouped using the ordinary electron beam excitation energy 42 H 2 H 2 times the prediction (1/4) observed energy of rotational transitions.

諸如NMR位移、ToF-SIM質量、XPS結合能、FTIR及發射譜之此等資料表徵且鑑別包含本發明之一態樣的催化劑系統之低能量氫產物。Such materials as NMR shift, ToF-SIM mass, XPS binding energy, FTIR and emission spectra characterize and identify low energy hydrogen products comprising a catalyst system of one aspect of the invention.

I.低能量氫I. Low energy hydrogen

具有如以下所示之結合能的氫原子a hydrogen atom having a binding energy as shown below

(其中p為大於1之整數,較佳2至137)為本發明之H催化反應產物。原子、離子或分子之結合能(亦稱為電離能)為自該原子、離子或分子移除一個電子所必需的能量。具有方程式(35)中所示之結合能的氫原子在下文中稱為「低能量氫原子」或「低能量氫」。具有半徑(其中a H 為普通氫原子之半徑且p 為整數)之低能量氫的名稱為。具有半徑a H 之氫原子在下文中稱為「普通氫原子」或「一般氫原子」。普通原子氫特徵為其具有13.6eV之結合能。(wherein p is an integer greater than 1, preferably 2 to 137) is the H catalytic reaction product of the present invention. The binding energy (also known as ionization energy) of an atom, ion or molecule is the energy necessary to remove an electron from that atom, ion or molecule. The hydrogen atom having the binding energy shown in the equation (35) is hereinafter referred to as "low-energy hydrogen atom" or "low-energy hydrogen". With radius The name of the low-energy hydrogen (where a H is the radius of a common hydrogen atom and p is an integer) is . A hydrogen atom having a radius a H is hereinafter referred to as "ordinary hydrogen atom" or "general hydrogen atom". Ordinary atomic hydrogen is characterized by its binding energy of 13.6 eV.

低能量氫係由普通氫原子與具有以下淨反應焓之適當催化劑反應形成Low-energy hydrogen is formed by the reaction of a common hydrogen atom with a suitable catalyst having the following net reaction enthalpy

m ‧27.2eV  (36) m ‧27.2 eV (36)

其中m 為整數。咸信當淨反應焓更緊密地與m ‧27.2eV 匹配時催化速率增加。已發現淨反應焓在m ‧27.2eV ±10%、較佳±5%內之催化劑適於大部分應用。Where m is an integer. The catalytic rate increases when the net reaction 焓 is more closely matched to m ‧27.2 eV . Catalysts with a net reaction enthalpy of m ‧27.2 eV ±10%, preferably ±5% have been found to be suitable for most applications.

此催化自氫原子釋放能量,伴隨氫原子尺寸r n =na H 相應減小。舉例而言,將H (n =1)催化成H (n =1/2)釋放40.8eV ,且氫半徑自a H 減至。藉由t 個電子各自自原子電離至連續能階,使得t 個電子電離能之總和為約m ‧27.2eV (其中m 為整數),來提供催化系統。This catalysis releases energy from the hydrogen atoms with a corresponding decrease in hydrogen atom size r n = na H . For example, catalyzing H ( n =1) to H ( n = 1/2) releases 40.8 eV and the hydrogen radius is reduced from a H to . The catalytic system is provided by ionizing each of the t electrons from the atom to a continuous energy level such that the sum of the t electron energies is about m ‧27.2 eV (where m is an integer).

上文(方程式(6-9))所示之該等催化系統的另一實例包含金屬鋰。鋰的第一及第二電離能分別為5.39172eV 及75.64018eV 。因而LiLi 2+ 之二次電離(t =2)反應具有81.0319eV 之淨反應焓,此相當於方程式(36)中m =3。Another example of such catalytic systems as shown above (Equation (6-9)) comprises metallic lithium. The first and second ionization energies of lithium are 5.391172 eV and 75.64018 eV, respectively . Thus the secondary ionization ( t = 2) reaction of Li to Li 2+ has a net reaction enthalpy of 81.0319 eV , which corresponds to m = 3 in equation (36).

Li 2+ +2e -L i (m )+81.0319eV  (38) Li 2+ +2 e -L i ( m )+81.0319 eV (38)

且總反應為And the total response is

在另一實施例中,催化系統包含銫。銫的第一及第二電離能分別為3.89390eV 及23.15745eV 。因而CsCs 2+ 之二次電離(t =2)反應具有27.05135eV 之淨反應焓,此相當於方程式(36)中m =1。In another embodiment, the catalytic system comprises ruthenium. The first and second ionization energies of the crucible are 3.89390 eV and 23.15745 eV, respectively . Thus the second ionization ( t = 2) reaction of Cs to Cs 2+ has a net reaction enthalpy of 27.05135 eV , which corresponds to m =1 in equation (36).

Cs 2+ +2e-Cs (m )+27.05135eV  (41) Cs 2+ +2e -Cs ( m )+27.05135 eV (41)

且總反應為And the total response is

另一催化系統包含金屬鉀。鉀的第一、第二及第三電離能分別為4.34066eV 、31.63eV 、45.806eV 。因而KK 3+ 之三次電離(t =3)反應具有81.7767eV 之淨反應焓,此相當於方程式(36)中m =3。Another catalytic system contains potassium metal. The first, second and third ionization energies of potassium are 4.34406 eV , 31.63 eV and 45.806 eV , respectively. Thus the three ionization ( t = 3) reaction of K to K 3+ has a net reaction enthalpy of 81.7767 eV , which corresponds to m = 3 in equation (36).

K 3+ +3e -K (m )+81.7426eV  (44) K 3+ +3 e -K ( m )+81.7426 eV (44)

且總反應為And the total response is

作為動力源,催化期間放出之能量遠大於因供給催化劑所丟失之能量。如與習知化學反應相比,釋放之能量為巨大的。舉例而言,當氫氣與氧氣進行燃燒以形成水時As a power source, the energy released during the catalysis is much greater than the energy lost by the supply of the catalyst. The energy released is enormous compared to conventional chemical reactions. For example, when hydrogen and oxygen are burned to form water

已知水之生成焓為每一氫原子ΔH f =-286kJ /mol 或1.48eV 。相比之下,進行催化之各(n =1)普通氫原子釋放40.8eV 之淨焓。此外,可發生進一步催化轉變:,等。一旦催化開始,則低能量氫以稱為歧化之過程進一步自動催化。此機制類似於無機離子催化之歧化。但由於焓與m‧27.2eV 匹配更佳,所以低能量氫催化之反應速率將高於無機離子催化劑。It is known that the formation of water is Δ H f = -286 kJ / mol or 1.48 eV per hydrogen atom. In contrast, each of the ( n = 1) ordinary hydrogen atoms catalyzed releases a net enthalpy of 40.8 eV . In addition, further catalytic transitions can occur: ,Wait. Once the catalysis begins, the low energy hydrogen is further autocatalyzed in a process known as disproportionation. This mechanism is similar to the disproportionation of inorganic ion catalysis. However, due to better match the enthalpy m‧27.2 eV, the hydrogen catalytic reaction rate is higher than the low energy inorganic ion catalyst.

本發明之低能量氫氫陰離子可由電子源與低能量氫(亦即,具有約之結合能的氫原子,其中p 為大於1之整數)反應來形成。低能量氫氫陰離子由H - (n =1/p )或H - (1/p )表示:The low energy hydrino hydride anion of the present invention can be made from an electron source with low energy hydrogen (ie, having about The binding energy of a hydrogen atom, of which And p is an integer greater than 1) to form a reaction. Low-energy hydrino hydrides are represented by H - ( n =1/ p ) or H - (1/ p ):

低能量氫氫陰離子不同於包含普通氫核及兩個具有約0.8eV結合能之電子的普通氫陰離子。後者在下文中稱為「普通氫陰離子」或「一般氫陰離子」。低能量氫氫陰離子包含包括氕、氘或氚之氫核及兩個不可區別之在根據方程式(49-50)之結合能下的電子。The low energy hydrino hydride is different from the conventional hydride anion comprising a common hydrogen nucleus and two electrons having a binding energy of about 0.8 eV. The latter is hereinafter referred to as "ordinary hydrogen anion" or "general hydrogen anion". The low energy hydrino hydride ion comprises a hydrogen nucleus comprising ruthenium, osmium or iridium and two indistinguishable electrons at a binding energy according to equation (49-50).

低能量氫氫陰離子之結合能可由以下公式表示:The binding energy of low-energy hydrino hydrides can be expressed by the following formula:

其中p 為大於1之整數,s =1/2,為圓周率,為約化蒲郎克常數,μ 0 為真空磁導率,m e 為電子質量,μ e 為由所示之低電子質量,其中m p 為質子質量,a H 為氫原子半徑,a 0 為波耳半徑,且e 為基本電荷。半徑如以下所示Where p is an integer greater than 1, s = 1/2, is the pi, To approximate the langk constant, μ 0 is the vacuum permeability, m e is the electron mass, and μ e is the The low electron mass shown, where m p is the proton mass, a H is the hydrogen atom radius, a 0 is the Boolean radius, and e is the base charge. The radius is as shown below

p 而變之低能量氫氫陰離子H - (n =1/p )之結合能展示於表1中,其中p 為整數。With p becomes low energy hydrogen hydride ions H - (n = 1 / p ) of the binding energy are shown in Table 1, wherein p is an integer.

表1.隨p 而變之低能量氫氫陰離子H - (n =1/p )之代表性結合能,方程式(49)Table 1. p becomes the low energy hydrogen with hydride ions H - (n = 1 / p ) representative of the binding energy, the equation (49)

根據本發明,提供具有根據方程式(49-50)之結合能的低能量氫氫陰離子(H- ),該結合能在p =2至23時大於普通氫陰離子結合能(約0.75eV)且在p =24(H- )時小於普通氫陰離子結合能。對於方程式(49-50)中p =2至p =24而言,氫陰離子結合能分別為3、6.6、11.2、16.7、22.8、29.3、36.1、42.8、49.4、55.5、61.0、65.6、69.2、71.6、72.4、71.6、68.8、64.0、56.8、47.1、34.7、19.3及0.69eV。本文中亦提供包含該新穎氫陰離子之例示性組合物。According to the present invention, there is provided a low energy hydrino hydride (H - ) having a binding energy according to the equation (49-50), which is greater than the ordinary hydride anion binding energy (about 0.75 eV) at p = 2 to 23 and When p = 24 (H - ), it is smaller than the ordinary hydrogen anion binding energy. For p = 2 to p = 24 in equation (49-50), the hydride anion binding energies are 3, 6.6, 11.2, 16.7, 22.8, 29.3, 36.1, 42.8, 49.4, 55.5, 61.0, 65.6, 69.2, respectively. 71.6, 72.4, 71.6, 68.8, 64.0, 56.8, 47.1, 34.7, 19.3 and 0.69 eV. Exemplary compositions comprising the novel hydrogen anion are also provided herein.

亦提供包含一或多種低能量氫氫陰離子及一或多種其他元素之例示性化合物。此類化合物稱為「低能量氫氫化物化合物」。Exemplary compounds comprising one or more low energy hydrino hydride anions and one or more other elements are also provided. Such compounds are referred to as "low energy hydrogen hydride compounds."

普通氫物質特徵為以下結合能:(a)氫陰離子,0.754eV(「普通氫陰離子」);(b)氫原子(「普通氫原子」),13.6eV;(c)雙原子氫分子,15.3eV(「普通氫分子」);(d)氫分子離子,16.3eV(「普通氫分子離子」);及(e),22.6eV(「普通三氫分子離子」)。本文中,關於氫之形式,「一般」與「普通」同義。Ordinary hydrogen species are characterized by the following binding energies: (a) hydride anion, 0.754 eV ("ordinary hydride anion"); (b) hydrogen atom ("ordinary hydrogen atom"), 13.6 eV; (c) diatomic hydrogen molecule, 15.3 eV ("ordinary hydrogen molecule"); (d) hydrogen molecular ion, 16.3 eV ("ordinary hydrogen molecular ion"); and (e) , 22.6 eV ("Ordinary trihydrogen molecular ion"). In this paper, "general" is synonymous with "ordinary" with respect to the form of hydrogen.

根據本發明之另一實施例,提供包含至少一種諸如以下之結合能增加之氫物質的化合物:(a)具有約、諸如在約0.9至1.1倍之範圍內之結合能的氫原子,其中p為2至137之整數;(b)具有約結合能、諸如在約0.9至1.1倍結合能之範圍內之結合能的氫陰離子(H - ),其中p為2至24之整數;(c)(1/p );(d)具有約、諸如在約0.9至1.1倍之範圍內之結合能的三低能量氫分子離子(1/p ),其中p為2至137之整數;(e)具有約、諸如約0.9至1.1倍之範圍內之結合能的二低能量氫,其中p為2至137之整數;(f)具有約、諸如約0.9至1.1倍之範圍內之結合能的二低能量氫分子離子,其中p為整數,較佳2至137之整數。According to another embodiment of the present invention, there is provided a compound comprising at least one hydrogen species such as increased in binding energy: (a) having about , such as at about 0.9 to 1.1 times a hydrogen atom of a binding energy in the range, wherein p is an integer from 2 to 137; (b) has a binding energy , such as at about 0.9 to 1.1 times the binding energy a hydrogen anion ( H - ) in the range of binding energy, wherein p is an integer from 2 to 24; (c) (1/ p ); (d) has an approximation , such as at about 0.9 to 1.1 times Three low-energy hydrogen molecular ions with bound energy (1/ p ), where p is an integer from 2 to 137; (e) has an approximation , such as about 0.9 to 1.1 times a two-low energy hydrogen of binding energy within the range, wherein p is an integer from 2 to 137; (f) has about , such as about 0.9 to 1.1 times A two-low energy hydrogen molecular ion having a binding energy within the range, wherein p is an integer, preferably an integer from 2 to 137.

根據本發明之另一實施例,提供包含至少一種諸如以下之結合能增加之氫物質的化合物:(a)具有約According to another embodiment of the present invention, there is provided a compound comprising at least one hydrogen species such as increased in binding energy: (a) having about

諸如約0.9至1.1倍Such as about 0.9 to 1.1 times

量的二低能量氫分子離子,其中p 為整數,h為約化蒲郎克常數,m e 為電子質量,c 為真空中光速,且μ為減少之核質量;及(b)具有約A quantity of two low-energy hydrogen molecular ions, where p is an integer, h is a reduced gram-macron constant, m e is the electron mass, c is the speed of light in vacuum, and μ is the reduced nuclear mass; and (b) has about

諸如約0.9至1.1倍Such as about 0.9 to 1.1 times

之總能量的二低能量氫分子,其中p 為整數且a 0 為波耳半徑。Two low energy hydrogen molecules of total energy, where p is an integer and a 0 is the radius of the wave.

根據化合物包含結合能增加之帶負電氫物質的本發明之一實施例,該化合物進一步包含一或多種陽離子,諸如質子、普通或普通According to one embodiment of the invention comprising a negatively charged hydrogen species having increased binding energy, the compound further comprises one or more cations, such as protons, Or ordinary .

本文中提供用於製備包含至少一種低能量氫氫陰離子之化合物的方法。該等化合物在下文中稱為「低能量氫氫化物化合物」。該方法包含使原子氫與具有約之淨反應焓的催化劑反應(其中m為大於1之整數,較佳小於400之整數)產生結合能增加之具有約之結合能的氫原子,其中p 為整數,較佳2至137之整數。另一催化產物為能量。結合能增加之氫原子可與電子源反應,產生結合能增加之氫陰離子。結合能增加之氫陰離子可與一或多種陽離子反應,產生包含至少一種結合能增加之氫陰離子之化合物。Methods for preparing compounds comprising at least one low energy hydrino hydride anion are provided herein. These compounds are hereinafter referred to as "low energy hydrogen hydride compounds". The method comprises causing atomic hydrogen to have an The catalyst reaction of the net reaction enthalpy (where m is an integer greater than 1, preferably less than 400) produces an increase in binding energy The binding energy of a hydrogen atom, wherein p is an integer, preferably an integer of 2-137. Another catalytic product is energy. The hydrogen atom with increased binding energy can react with the electron source to produce a hydrogen anion with increased binding energy. The hydride anion which is increased in binding energy can react with one or more cations to produce a compound comprising at least one hydrogen anion having increased binding energy.

目標新穎氫組合物可包含:(a)結合能滿足以下條件之至少一種中性、陽性或陰性氫物質(下文中「結合能增加之氫物質」):(i)結合能大於相應普通氫物質之結合能,或(ii)結合能大於任何氫物質之結合能,對於任何氫物質而言相應普通氫物質由於在周圍條件(標準溫度及壓力,STP)下普通氫物質結合能小於熱能故不穩定或未觀測到;或為陰性;及(b)至少一種其他元素。本發明之化合物在下文中稱為「結合能增加之氫化合物」。The novel novel hydrogen composition may comprise: (a) a combination of at least one neutral, positive or negative hydrogen species (hereinafter referred to as "hydrogen species with increased binding energy") which satisfies the following conditions: (i) the binding energy is greater than the corresponding ordinary hydrogen species The binding energy, or (ii) the binding energy is greater than the binding energy of any hydrogen species. For any hydrogen species, the corresponding ordinary hydrogen species is less than the thermal energy due to the combination of common hydrogen species under ambient conditions (standard temperature and pressure, STP). Stable or unobserved; or negative; and (b) at least one other element. The compound of the present invention is hereinafter referred to as "a hydrogen compound having an increased binding energy".

在上下文中「其他元素」意謂除結合能增加之氫物質以外的元素。因此,其他元素可為普通氫物質或除氫以外的任何元素。在一組化合物中,其他元素與結合能增加之氫物質為中性的。在另一組化合物中,其他元素與結合能增加之氫物質帶電,使得其他元素提供形成中性化合物之平衡電荷。前一組化合物特徵為分子及配位鍵;後一組特徵為離子鍵。In the context of "other elements" means elements other than hydrogen species that can be combined with increased energy. Therefore, other elements may be ordinary hydrogen species or any element other than hydrogen. In a group of compounds, other elements and hydrogen species with increased binding energy are neutral. In another group of compounds, other elements are charged with hydrogen species with increased binding energy such that other elements provide an equilibrium charge for the formation of a neutral compound. The former group of compounds are characterized by molecules and coordinate bonds; the latter group of features are ionic bonds.

亦提供包含以下之新穎化合物及分子離子:(a)具有滿足以下條件之總能量之至少一種中性、陽性或陰性氫物質(下文中「結合能增加之氫物質」):(i)總能量大於相應普通氫物質之總能量,或(ii)總能量大於任何氫物質之總能量,對於任何氫物質而言相應普通氫物質由於在周圍條件下普通氫物質之總能量小於熱能故不穩定或未觀測到;或為陰性;及(b)至少一種其他元素。Novel compounds and molecular ions are also provided which comprise: (a) at least one neutral, positive or negative hydrogen species having a total energy (hereinafter referred to as "hydrogen species with increased binding energy"): (i) total energy Greater than the total energy of the corresponding ordinary hydrogen species, or (ii) the total energy is greater than the total energy of any hydrogen species. For any hydrogen species, the corresponding ordinary hydrogen species is unstable due to the total energy of the ordinary hydrogen species under ambient conditions being less than the thermal energy. Not observed; or negative; and (b) at least one other element.

氫物質之總能量為自氫物質移除所有電子之能量之總和。根據本發明之氫物質具有大於相應普通氫物質之總能量的總能量。即使總能量增加之氫物質之某些實施例可能具有比相應普通氫物質之第一電子結合能小的第一電子結合能,根據本發明之總能量增加之氫物質亦稱為「結合能增加之氫物質」。舉例而言,p =24之方程式(49-50)之氫陰離子具有比普通氫陰離子之第一結合能小的第一結合能,而p =24之方程式(49-50)之氫陰離子之總能量遠大於相應普通氫陰離子之總能量。The total energy of the hydrogen species is the sum of the energy of all electrons removed from the hydrogen species. The hydrogen species according to the invention have a total energy greater than the total energy of the corresponding common hydrogen species. Even though some embodiments of the total energy-increasing hydrogen species may have a first electron binding energy that is less than the first electron binding energy of the corresponding ordinary hydrogen species, the total energy increased hydrogen species according to the present invention is also referred to as "increase in binding energy. Hydrogen substance". For example, the hydride anion of equation (49-50) of p = 24 has a first binding energy that is less than the first binding energy of a common hydride anion, and the total hydride anion of equation (49-50) of p = 24 The energy is much greater than the total energy of the corresponding common hydrogen anion.

本文中亦提供包含以下之新穎化合物及分子離子:(a)具有滿足以下條件之結合能之複數種中性、陽性或陰性氫物質(下文中「結合能增加之氫物質」)(i)結合能大於相應普通氫物質之結合能,或(ii)結合能大於任何氫物質之結合能,對於任何氫物質而言相應普通氫物質由於在周圍條件下普通氫物質結合能小於熱能故不穩定或未觀測到;或為陰性;及(b)視情況選用之另一元素。本發明之化合物在下文中稱為「結合能增加之氫化合物」。Also provided herein are novel compounds and molecular ions comprising: (a) a plurality of neutral, positive or negative hydrogen species having a binding energy that satisfies the following conditions (hereinafter "hydrogen species with increased binding energy") (i) binding It can be greater than the binding energy of the corresponding ordinary hydrogen species, or (ii) the binding energy is greater than the binding energy of any hydrogen species. For any hydrogen species, the corresponding ordinary hydrogen species is unstable due to the lower binding energy of common hydrogen species under ambient conditions. Not observed; or negative; and (b) another element selected as appropriate. The compound of the present invention is hereinafter referred to as "a hydrogen compound having an increased binding energy".

結合能增加之氫物質可由使一或多種低能量氫原子與電子、低能量氫原子、含有至少一種該等結合能增加之氫物質的化合物及除結合能增加之氫物質以外的至少一種其他原子、分子或離子中之一或多者反應來形成。The binding energy-increasing hydrogen species may be composed of one or more low-energy hydrogen atoms and electrons, low-energy hydrogen atoms, a compound containing at least one of the hydrogen species added by the binding energy, and at least one other atom other than the hydrogen species having increased binding energy. One or more of the molecules or ions react to form.

亦提供包含以下之新穎化合物及分子離子:(a)具有滿足以下條件之總能量之複數種中性、陽性或陰性氫物質(下文中「結合能增加之氫物質」)(i)總能量大於普通分子氫之總能量,或(ii)總能量大於任何氫物質之總能量,對於任何氫物質而言相應普通氫物質由於在周圍條件下普通氫物質總能量小於熱能而不穩定或未觀測到;或為陰性;及(b)視情況選用之另一元素。本發明之化合物在下文中稱為「結合能增加之氫化合物」。Novel compounds and molecular ions are also provided which comprise: (a) a plurality of neutral, positive or negative hydrogen species having a total energy (hereinafter referred to as "hydrogen species with increased binding energy") (i) total energy greater than The total energy of ordinary molecular hydrogen, or (ii) the total energy is greater than the total energy of any hydrogen species. For any hydrogen species, the corresponding ordinary hydrogen species is unstable or unobservable because the total energy of ordinary hydrogen species is less than thermal energy under ambient conditions. Or negative; and (b) another element selected as appropriate. The compound of the present invention is hereinafter referred to as "a hydrogen compound having an increased binding energy".

在一實施例中,提供包含至少一種選自以下之結合能增加之氫物質的化合物:(a)具有根據方程式(49-50)對p =2至23而言比普通氫陰離子結合能(約0.8eV)大且對於p =24而言比普通氫陰離子結合能小之結合能的氫陰離子(「結合能增加之氫陰離子」或「低能量氫氫陰離子」);(b)具有大於普通氫原子結合能(約13.6eV)之結合能的氫原子(「結合能增加之氫原子」或「低能量氫」);(c)具有大於約15.3eV之第一結合能的氫分子(「結合能增加之氫分子」或「二低能量氫」);及(d)具有大於約16.3eV之結合能的分子氫離子(「結合能增加之分子氫離子」或「二低能量氫分子離子」);In one embodiment, there is provided a compound comprising at least one hydrogen species selected from the group consisting of: (a) having a binding energy to a common hydrogen anion for p = 2 to 23 according to equation (49-50) 0.8eV) a hydrogen anion having a binding energy smaller than that of a common hydrogen anion for p = 24 ("hydrogen anion with increased binding energy" or "low energy hydrogen hydride"); (b) having a larger than ordinary hydrogen a hydrogen atom that binds to an atomic binding energy (about 13.6 eV) ("a hydrogen atom with increased binding energy" or "low energy hydrogen"); (c) a hydrogen molecule having a first binding energy greater than about 15.3 eV ("combination a hydrogen molecule that can be increased or two low-energy hydrogens; and (d) a molecular hydrogen ion having a binding energy greater than about 16.3 eV ("molecular hydrogen ion with increased binding energy" or "two low-energy hydrogen molecule ion");

II.動力反應器及系統II. Power reactor and system

根據本發明之另一實施例,提供用於產生能量及較低能量氫物質之氫催化劑反應器。如圖1中所示,氫催化劑反應器70包含一含有能量反應混合物74之容器72、一熱交換器80及一功率變換器,諸如蒸汽產生器82及渦輪機90。在一實施例中,催化包含使來自來源76之原子氫與催化劑78反應,形成較低能量氫「低能量氫」且產生動力。當包含氫及催化劑之反應混合物反應形成較低能量氫時,熱交換器80吸收由催化反應釋放之熱。熱交換器與蒸汽產生器82交換熱量,蒸汽產生器82吸收來自交換器80之熱量且產生蒸汽。能量反應器70進一步包含渦輪機90,渦輪機90接收來自蒸汽產生器82之蒸汽且向發電機100提供機械動力,發電機100將蒸汽能轉化為電能,電能可由負載110接收,產生功或功耗。In accordance with another embodiment of the present invention, a hydrogen catalyst reactor for producing energy and lower energy hydrogen species is provided. As shown in FIG. 1, hydrogen catalyst reactor 70 includes a vessel 72 containing an energy reaction mixture 74, a heat exchanger 80, and a power converter, such as steam generator 82 and turbine 90. In one embodiment, catalyzing comprises reacting atomic hydrogen from source 76 with catalyst 78 to form a lower energy hydrogen "low energy hydrogen" and generating power. When the reaction mixture comprising hydrogen and the catalyst reacts to form lower energy hydrogen, heat exchanger 80 absorbs the heat released by the catalytic reaction. The heat exchanger exchanges heat with a steam generator 82 that absorbs heat from the exchanger 80 and produces steam. The energy reactor 70 further includes a turbine 90 that receives steam from the steam generator 82 and provides mechanical power to the generator 100 that converts steam energy into electrical energy that can be received by the load 110 to produce work or power consumption.

在一實施例中,能量反應混合物74包含能量釋放物質76,諸如經由供應通道62供應之燃料。反應混合物可包含氫同位素原子源或分子氫同位素源及共振移除約m ‧27.2eV (其中m 為整數,較佳小於400之整數)以形成較低能量原子氫之催化劑78之來源,其中藉由使氫與催化劑接觸,進行形成較低能態氫之反應。催化劑可呈熔融、液體、氣體或固體狀態。催化以諸如熱的形式釋放能量,且形成以下至少一者:較低能量氫同位素原子、較低能量氫分子、氫陰離子及較低能量氫化合物。因此,該動力單元亦包含較低能量氫化學反應器。In an embodiment, the energy reaction mixture 74 includes an energy release material 76, such as fuel supplied via a supply passage 62. The reaction mixture may comprise a hydrogen isotope atom source or a molecular hydrogen isotope source and a source of catalyst 78 that removes about m ‧27.2 eV (where m is an integer, preferably less than 400) to form a lower energy atomic hydrogen catalyst, wherein The reaction to form lower energy hydrogen is carried out by contacting hydrogen with the catalyst. The catalyst can be in a molten, liquid, gaseous or solid state. The catalysis releases energy in a form such as heat and forms at least one of a lower energy hydrogen isotope atom, a lower energy hydrogen molecule, a hydrogen anion, and a lower energy hydrogen compound. Therefore, the power unit also contains a lower energy hydrogen chemical reactor.

氫源可為氫氣、水解離(包括熱解離)、水電解、來自氫化物之氫或來自金屬-氫溶液之氫。在另一實施例中,混合物74之分子氫解離催化劑使能量釋放物質76之分子氫解離成原子氫。該等解離催化劑或解離器亦可吸收氫、氘或氚原子及/或分子,且包括例如以下金屬之元素、化合物、合金或混合物:貴金屬,諸如鈀及鉑;耐火金屬,諸如鉬及鎢;過渡金屬,諸如鎳及鈦;及內過渡金屬,諸如鈮及鋯。解離器較佳具有高表面積,諸如於Al2 O3 、SiO2 或其組合上諸如Pt、Pd、Ru、Ir、Re或Rh之貴金屬或Ni。The hydrogen source can be hydrogen, hydrolyzed (including thermal dissociation), water electrolyzed, hydrogen from hydride or hydrogen from a metal-hydrogen solution. In another embodiment, the molecular hydrogen dissociation catalyst of mixture 74 dissociates the molecular hydrogen of energy release material 76 into atomic hydrogen. The dissociation catalyst or dissociator may also absorb hydrogen, helium or neon atoms and/or molecules and include, for example, elements, compounds, alloys or mixtures of the following metals: noble metals such as palladium and platinum; refractory metals such as molybdenum and tungsten; Transition metals such as nickel and titanium; and internal transition metals such as lanthanum and zirconium. The dissociator preferably has a high surface area such as a noble metal such as Pt, Pd, Ru, Ir, Re or Rh or Ni on Al 2 O 3 , SiO 2 or a combination thereof.

在一實施例中,藉由t 個電子自原子或離子電離至連續能階,使得t 個電子電離能之總和為約m ‧27.2eV (其中t 及m各為整數)來提供催化。催化亦可由參與離子之間的t 個電子轉移來提供。t 個電子自一離子轉移至另一離子提供淨反應焓,其中供電子之離子之t 個電子電離能之總和減去受電子之離子之t 個電子電離能等於約m ‧27.2eV ,其中tm 各為整數。在另一實施例中,催化劑包含原子M 與氫結合之MH ,諸如NaH ,且由M-H 鍵能與t 個電子電離能之總和來提供m ‧27.2eV 之焓。In one embodiment, by t electrons from the ionized atoms or ions to the continuous energy level, so that the ionization of t electrons is approximately the sum of the energy to provide a catalytic m ‧27.2 eV (where t and m are each an integer). Catalysis can also be provided by t electron transfer between participating ions. transfer of t electrons from one ion to another ion provides a net enthalpy of reaction, wherein the sum of t electrons for ionization energy of electrons ions minus the ionization of t electrons by ions of electron energy equal to about m ‧27.2 eV, where t And m are each an integer. In another embodiment, the catalyst comprises MH , such as NaH , in which the atom M is combined with hydrogen, and provides a enthalpy of m ‧27.2 eV from the sum of the MH bond energy and the t electron ionization energies.

在一實施例中,催化劑源包含經由催化劑供應通道61供應之催化物質78,該催化物質78通常提供約加上或減去1eV 之淨焓。催化劑包含接受來自原子氫及低能量氫之能量的原子、離子、分子及低能量氫。在實施例中,催化劑可包含至少一種選自分子A1H、BiH、ClH、CoH、GeH、InH、NaH、RuH、SbH、SeH、SiH、SnH、C 2N 2O 2 、CO 2NO 2NO 3 及原子或離子Li、Be、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Se、Kr、Rb、Sr、Nb、Mo、Pd、Sn、Te、Cs、Ce、Pr、Sm、Gd、Dy、Pb、Pt、Kr、2K +He +Ti 2+Na +Rb +Sr +Fe 3+Mo 2+Mo 4+In 3+He +Ar +Xe +Ar 2+H +Ne +H + 的物質。In one embodiment, the catalyst source comprises a catalytic material 78 supplied via a catalyst supply channel 61, which catalytic material 78 typically provides about Add or subtract the net 1 of 1 eV . The catalyst contains atoms, ions, molecules, and low energy hydrogen that accept energy from atomic hydrogen and low energy hydrogen. In an embodiment, the catalyst may comprise at least one member selected from the group consisting of molecules A1H, BiH, ClH, CoH, GeH, InH, NaH, RuH, SbH, SeH, SiH, SnH, C 2 , N 2 , O 2 , C O 2 , NO 2 and NO 3 and the atoms or ions Li, Be, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Kr, Rb, Sr, Nb, Mo, Pd , Sn, Te, Cs, Ce, Pr, Sm, Gd, Dy, Pb, Pt, Kr, 2 K + , He + , Ti 2+ , Na + , Rb + , Sr + , Fe 3+ , Mo 2+ , Mo 4+ , In 3+ , He + , Ar + , Xe + , Ar 2+ and H + and Ne + and H + .

在動力系統之一實施例中,熱由具有熱交換介質之熱交換器移除。熱交換器可為水冷壁且介質可為水。熱可直接轉移用於空間加熱及過程加熱。或者,諸如水之熱交換器介質進行相變,諸如轉化成蒸汽。此轉化可發生在蒸汽產生器中。蒸汽可用以在諸如蒸汽渦輪機及產生器之熱機中發電。In one embodiment of the power system, heat is removed by a heat exchanger having a heat exchange medium. The heat exchanger can be a water wall and the medium can be water. Heat can be transferred directly for space heating and process heating. Alternatively, a heat exchanger medium such as water undergoes a phase change, such as conversion to steam. This conversion can occur in the steam generator. Steam can be used to generate electricity in a heat engine such as a steam turbine and generator.

根據本發明用於使燃料再循環或再生之產生氫催化劑能量及較低能量氫物質之反應器5的一實施例展示於圖2中,且包含:一鍋爐10,其含有可為氫源、催化劑源及視情況存在之可汽化溶劑之混合物的燃料反應混合物11;氫源12;蒸汽管及蒸汽產生器13;一功率變換器,諸如渦輪機14;一水冷凝器16;一補水源17;一燃料再循環器18;及氫-二低能量氫氣體分離器19。在步驟1中,包含催化劑源及氫源之燃料(諸如呈氣體、液體、固體或包含多相之非均勻混合物的燃料)反應形成低能量氫及較低能量氫產物。在步驟2中,用過燃料經再加工以再次供應鍋爐10,從而維持熱力發電。鍋爐10中產生之熱在管及蒸汽產生器13中形成蒸汽,傳遞至渦輪機14,又藉由供給產生器動力來發電。在步驟3中,由水冷凝器16使水冷凝。任何水流失可由水源17補充以完成循環,從而維持熱至電之能量轉換。在步驟4中,可移除較低能量氫產物,諸如低能量氫氫化物化合物及二低能量氫氣體,且未反應氫可返回至燃料再循環器18或氫源12中,以添加回用過燃料中來補充再循環燃料。氣體產物與未反應氫可由氫-二低能量氫氣體分離器19分離。可使用燃料再循環器18分離及移除任何產物低能量氫氫化物化合物產物。可在鍋爐中或鍋爐外部進行加工且將燃料返回。因此,系統可進一步包含至少一種氣體及塊狀物輸送機以移動反應物及產物,實現用過燃料移除、再生及再供應。在低能量氫形成中消耗之氫添加物在燃料再加工期間自來源12添加且可包含再循環之未消耗氫。再循環燃料維持熱電產生以驅動動力裝置發電。An embodiment of a reactor 5 for producing hydrogen catalyst energy and lower energy hydrogen species for recycling or regenerating fuel according to the present invention is shown in FIG. 2 and includes: a boiler 10 containing a source of hydrogen, a fuel reaction mixture 11 of a mixture of a catalyst source and optionally a vaporizable solvent; a hydrogen source 12; a steam tube and a steam generator 13; a power converter such as a turbine 14; a water condenser 16; a water supply source 17; a fuel recycler 18; and a hydrogen-two low energy hydrogen gas separator 19. In step 1, a fuel comprising a source of catalyst and a source of hydrogen, such as a gas, a liquid, a solid, or a fuel comprising a heterogeneous mixture of phases, reacts to form a low energy hydrogen and a lower energy hydrogen product. In step 2, the used fuel is reprocessed to supply the boiler 10 again, thereby maintaining thermal power generation. The heat generated in the boiler 10 forms steam in the tubes and steam generators 13, passes to the turbines 14, and is also powered by the supply generator. In step 3, the water is condensed by a water condenser 16. Any water loss can be supplemented by water source 17 to complete the cycle, thereby maintaining a heat to electricity energy conversion. In step 4, lower energy hydrogen products, such as low energy hydrogen hydride compounds and two low energy hydrogen gases, may be removed, and unreacted hydrogen may be returned to fuel recycler 18 or hydrogen source 12 for added reuse. The fuel is added to supplement the recycled fuel. The gaseous product and unreacted hydrogen may be separated by a hydrogen-two low energy hydrogen gas separator 19. Any product low energy hydrogen hydride compound product can be separated and removed using fuel recycler 18. Processing can be done in the boiler or outside the boiler and the fuel can be returned. Accordingly, the system can further include at least one gas and mass conveyor to move reactants and products for spent fuel removal, regeneration, and resupply. The hydrogen additive consumed in the formation of low energy hydrogen is added from source 12 during fuel reprocessing and may include recycled unconsumed hydrogen. The recirculated fuel maintains thermoelectric generation to drive the power plant to generate electricity.

反應器可以氫添加及分離及添加或替代之連續模式運行,以阻遏最小程度之反應物降解。或者,反應燃料由產物連續再生。在後一流程之一實施例中,反應混合物包含可產生進一步反應形成低能量氫之原子或分子催化劑與原子氫之反應物的物質,且由催化劑及原子氫之產生所形成的產物物質可至少由使該等產物與氫反應之步驟再生。在一實施例中,反應器包含一移動床反應器,該移動床反應器可進一步包含流化反應器部分,其中連續供應反應物且移除副產物且使反應物再生且返回至反應器中。在一實施例中,當使反應物再生時,收集較低能量氫產物,諸如低能量氫氫化物化合物或二低能量氫分子。此外,在反應物再生期間,低能量氫氫陰離子可形成其他化合物或轉化為二低能量氫分子。The reactor can be operated in a continuous mode of hydrogen addition and separation and addition or replacement to resist minimal degradation of the reactants. Alternatively, the reaction fuel is continuously regenerated from the product. In one embodiment of the latter process, the reaction mixture comprises a material which produces a reactant for further reaction to form a low energy hydrogen atom or molecular catalyst and atomic hydrogen, and the product material formed by the catalyst and atomic hydrogen can be at least The step of reacting the products with hydrogen is regenerated. In an embodiment, the reactor comprises a moving bed reactor, the moving bed reactor may further comprise a fluidized reactor section, wherein the reactants are continuously supplied and the byproducts are removed and the reactants are regenerated and returned to the reactor . In one embodiment, a lower energy hydrogen product, such as a low energy hydrogen hydride compound or a two low energy hydrogen molecule, is collected as the reactants are regenerated. In addition, low energy hydrino hydride anions may form other compounds or be converted to two low energy hydrogen molecules during reactant regeneration.

反應器可進一步包含諸如藉由若存在溶劑則蒸發溶劑來分離產物混合物之組份的分離器。分離器可包含例如篩子以藉由諸如尺寸之物理性質差異來機械分離。分離器亦可為利用混合物組份之密度差的分離器,諸如漩渦分離器。舉例而言,可基於在諸如加壓惰性氣體之合適介質中的密度差以及藉由離心力來分離選自碳、諸如Eu之金屬及諸如KBr之無機產物之群中的至少兩者。組份分離亦可基於介電常數及荷電率(chargeability)之差異。舉例而言,碳與金屬可基於施加靜電電荷至前者且藉由電場自混合物移除來分離。在混合物之一或多種組份具有磁性的狀況下,可使用磁體實現分離。可將混合物在單獨或與一或多種篩子組合之一系列強磁體上攪動,以基於磁性粒子對磁體之更強附著或吸引及兩類粒子之尺寸差異中的至少一者引起分離。在使用篩子及外加磁場之一實施例中,後者添加除重力以外之額外力以經由篩子吸出較小磁性粒子,而混合物之其他粒子由於其尺寸較大而保留在篩子上。The reactor may further comprise a separator such as a component that separates the product mixture by evaporating the solvent if a solvent is present. The separator may comprise, for example, a sieve to mechanically separate by physical differences such as size. The separator may also be a separator that utilizes the difference in density of the components of the mixture, such as a vortex separator. For example, at least two of a group selected from the group consisting of carbon, a metal such as Eu, and an inorganic product such as KBr can be separated based on a difference in density in a suitable medium such as a pressurized inert gas and by centrifugal force. Component separation can also be based on differences in dielectric constant and chargeability. For example, carbon and metal can be separated based on the application of an electrostatic charge to the former and removal from the mixture by an electric field. In the case where one or more of the components of the mixture are magnetic, separation can be achieved using a magnet. The mixture can be agitated on a series of strong magnets, either alone or in combination with one or more screens, to cause separation based on at least one of stronger attachment or attraction of the magnetic particles to the magnets and a difference in size between the two types of particles. In one embodiment using a screen and an applied magnetic field, the latter adds additional force in addition to gravity to draw smaller magnetic particles through the screen, while other particles of the mixture remain on the screen due to their larger size.

反應器可進一步包含基於不同相變或反應來分離一或多種組份之分離器。在一實施例中,相變包含使用加熱器熔融,且藉由此項技術中已知之方法,諸如重力過濾、使用加壓氣體輔助之過濾、離心及藉由應用真空使液體與固體分離。反應可包含諸如氫化物分解之分解或形成氫化物之反應,且可分別藉由使相應金屬熔融、接著將其分離及藉由機械分離氫化物粉末實現分離。後者(藉由機械分離)可藉由篩選來實現。在一實施例中,相變或反應可產生所需反應物或中間物。在某些實施例中,包括任何所需分離步驟之再生可發生在反應器內部或外部。The reactor may further comprise a separator that separates one or more components based on different phase changes or reactions. In one embodiment, the phase change comprises melting using a heater and separating the liquid from the solid by methods known in the art, such as gravity filtration, filtration using a pressurized gas assist, centrifugation, and by applying a vacuum. The reaction may include a reaction such as decomposition of hydride decomposition or formation of a hydride, and separation may be achieved by melting the respective metal, then separating it, and mechanically separating the hydride powder. The latter (by mechanical separation) can be achieved by screening. In one embodiment, a phase change or reaction can produce the desired reactant or intermediate. In certain embodiments, regeneration including any desired separation steps can occur inside or outside the reactor.

藉由應用常規實驗,可應用熟習此項技術者已知之其他方法來進行本發明之分離。一般而言,機械分離可分成四組:沈降、離心分離、過濾及篩選。在一實施例中,由篩選與使用分類器中之至少一者實現粒子分離。可在起始物質中選擇粒子尺寸及形狀以實現所需產物分離。Other methods known to those skilled in the art can be employed to carry out the separation of the present invention by employing routine experimentation. In general, mechanical separation can be divided into four groups: sedimentation, centrifugation, filtration, and screening. In an embodiment, particle separation is achieved by at least one of screening and using a classifier. The particle size and shape can be selected among the starting materials to achieve the desired product separation.

動力系統可進一步包含催化劑冷凝器以由將表面溫度控制於比反應電池溫度低的值下之溫度控制器來維持催化劑蒸氣壓。表面溫度維持在提供所需催化劑蒸氣壓之所需值下。在一實施例中,催化劑冷凝器為單元中之管柵極(tube grid)。在使用熱交換器之一實施例中,可控制傳熱介質之流動速率在使冷凝器維持於比主要熱交換器低之所需溫度下的速率下。在一實施例中,工作介質為水,且冷凝器中流動速率比水冷壁中流動速率高,使得冷凝器處於較低之所需溫度下。獨立的工作介質流可重新組合且轉移用於空間加熱及過程加熱或用於轉化成蒸汽。The power system can further include a catalyst condenser to maintain the catalyst vapor pressure by a temperature controller that controls the surface temperature to a lower value than the temperature of the reaction cell. The surface temperature is maintained at the desired value to provide the desired vapor pressure of the catalyst. In one embodiment, the catalyst condenser is a tube grid in the unit. In one embodiment using a heat exchanger, the flow rate of the heat transfer medium can be controlled at a rate that maintains the condenser at a desired temperature lower than the primary heat exchanger. In one embodiment, the working medium is water and the flow rate in the condenser is higher than the flow rate in the water wall such that the condenser is at a lower desired temperature. The separate working medium streams can be recombined and transferred for space heating and process heating or for conversion to steam.

本發明之單元包含本文中所揭示之催化劑、反應混合物、方法及系統,其中特定單元用作反應器及至少一個活化、引發、擴展及/或維持反應及使反應物再生之組件。根據本發明,單元包含至少一種催化劑或催化劑源、至少一種原子氫源及一容器。熟習此項技術者已知該等單元及系統之運作。本發明之電解池能量反應器(諸如共熔鹽電解池、電漿電解反應器、障壁電極反應器、RF電漿反應器、加壓氣體能量反應器、氣體放電能量反應器(較佳脈衝放電且更佳脈衝壓縮電漿放電)、微波電池能量反應器及輝光放電電池與微波及/或RF電漿反應器之組合)包含:氫源;催化劑或反應物之固體、熔融、液體、氣體及非均勻來源之一,其在任何此等狀態下均由反應物之間的反應引起低能量氫反應;反應物或至少含有氫及催化劑之容器,其中藉由使氫與催化劑接觸或藉由使MH 催化劑反應,發生形成較低能量氫之反應;及視情況存在之用於移除較低能量氫產物之組件。在一實施例中,形成較低能態氫之反應由氧化反應推動。氧化反應可藉由接受來自催化劑之電子與使由接受來自原子氫之能量而形成之高電荷陽離子中和中的至少一者提高形成低能量氫之反應速率。因此,此等單元可以提供此類氧化反應之方式運作。在一實施例中,電解或電漿池可在陽極提供氧化反應,其中由諸如鼓泡之方法提供的氫與催化劑反應,經由參與氧化反應形成低能量氫。Units of the present invention comprise the catalysts, reaction mixtures, methods and systems disclosed herein, wherein the particular unit is used as a reactor and at least one component that activates, initiates, expands, and/or sustains the reaction and regenerates the reactants. According to the invention, the unit comprises at least one catalyst or catalyst source, at least one atomic hydrogen source and a vessel. The operation of such units and systems is known to those skilled in the art. The electrolytic cell energy reactor of the present invention (such as a eutectic salt electrolytic cell, a plasma electrolytic reactor, a barrier electrode reactor, an RF plasma reactor, a pressurized gas energy reactor, a gas discharge energy reactor (preferably a pulse discharge) And better pulse compression plasma discharge), microwave battery energy reactor and combination of glow discharge battery and microwave and / or RF plasma reactor) include: hydrogen source; catalyst or reactant solid, molten, liquid, gas and One of the non-uniform sources, which in any of these states, causes a low-energy hydrogen reaction by the reaction between the reactants; a reactant or a vessel containing at least hydrogen and a catalyst, wherein hydrogen is contacted with the catalyst or by The MH catalyst reacts to form a reaction that forms lower energy hydrogen; and optionally, components for removing lower energy hydrogen products. In one embodiment, the reaction to form lower energy hydrogen is promoted by an oxidation reaction. The oxidation reaction can increase the rate of reaction to form low energy hydrogen by accepting electrons from the catalyst and at least one of neutralizing the highly charged cations formed by the energy from the atomic hydrogen. Thus, such units can operate in a manner that provides such an oxidation reaction. In one embodiment, the electrolysis or plasma bath can provide an oxidation reaction at the anode wherein hydrogen provided by a process such as bubbling reacts with the catalyst to form low energy hydrogen via participation in the oxidation reaction.

在液體燃料之一實施例中,電池在溶劑分解速率相對於與電池動力有關之溶劑再生動力可忽略的溫度下運作。在溫度低於由更多習知方法(諸如使用蒸汽循環之方法)可獲得令人滿意之能量轉換效率所在之溫度的狀況下,可使用較低沸點工作介質。在另一實施例中,工作介質溫度可使用熱泵來增加。因此,可使用在高於周圍之溫度下運作的電池供應空間加熱及過程加熱,其中使用諸如熱泵之組件使工作介質溫度增加。在溫度足夠高的情況下,可發生液體至氣體之相變,且氣體可用於壓力容積(PV)功。PV功可包含供給產生器動力來產生電。接著可冷凝介質,且經冷凝之工作介質可返回至反應器單元中,以在動力循環中再加熱及再循環。In one embodiment of the liquid fuel, the battery operates at a temperature at which the rate of solvent decomposition is negligible relative to the solvent regenerative power associated with battery power. Lower boiling working media can be used where the temperature is below the temperature at which a satisfactory energy conversion efficiency can be obtained by more conventional methods, such as using a steam cycle. In another embodiment, the working medium temperature can be increased using a heat pump. Thus, battery supply space heating and process heating operating at temperatures above ambient can be used, with components such as heat pumps increasing the temperature of the working medium. In the case of a sufficiently high temperature, a liquid to gas phase change can occur and the gas can be used for pressure volume (PV) work. PV work can include supplying generator power to generate electricity. The medium can then be condensed and the condensed working medium can be returned to the reactor unit for reheating and recirculation in the power cycle.

在反應器之一實施例中,使包含液相及固相之非均勻催化劑混合物流經反應器。流動可藉由泵送來實現。混合物可為漿狀物。可在熱區中加熱混合物以引起氫催化成低能量氫,從而釋放熱以維持熱區。可使產物流出熱區,且可由該等產物再生反應混合物。在另一實施例中,非均勻混合物之至少一種固體可藉由重力給料流入反應器中。溶劑可單獨或與一或多種固體組合流入反應器中。反應混合物可包含解離器、高表面積(HSA)物質、R-Ni、Ni、NaH、Na、NaOH及溶劑之群中之至少一者。In one embodiment of the reactor, a heterogeneous catalyst mixture comprising a liquid phase and a solid phase is passed through the reactor. Flow can be achieved by pumping. The mixture can be a slurry. The mixture can be heated in a hot zone to cause hydrogen to catalyze into low energy hydrogen, thereby releasing heat to maintain the hot zone. The product can be passed out of the hot zone and the reaction mixture can be regenerated from the products. In another embodiment, at least one solid of the heterogeneous mixture can be fed into the reactor by gravity feed. The solvent can be introduced into the reactor either alone or in combination with one or more solids. The reaction mixture can comprise at least one of a dissociator, a high surface area (HSA) species, a population of R-Ni, Ni, NaH, Na, NaOH, and a solvent.

在一實施例中,將一或多種反應物、較佳鹵素源、鹵素氣體、氧源或溶劑注入其他反應物之混合物中。控制注入以使自形成低能量氫之反應過剩之能量及動力最佳化。注入時電池溫度及注射速率可經控制以實現最佳化。可使用熟習工藝過程之技術者已知之方法控制其他過程參數及混合以使進一步最佳化。In one embodiment, one or more reactants, preferably a halogen source, a halogen gas, a source of oxygen, or a solvent are injected into a mixture of other reactants. The injection is controlled to optimize the excess energy and power from the reaction to form low energy hydrogen. The battery temperature and injection rate at the time of injection can be controlled to optimize. Other process parameters and mixing can be controlled to further optimize using methods known to those skilled in the art.

對於能量轉換而言,各類型電池可與熱能或電漿至機械動力或電力之任何已知之變換器連接,該等變換器包括例如熱機、蒸汽或氣體渦輪系統、斯特林引擎(Sterling engine)或熱離子或熱電變換器。其他電漿變換器包含磁鏡磁流體動力學功率變換器、電漿動力學功率變換器、磁旋管、光子束微波功率變換器、電荷漂移動力機或光電變換器。在一實施例中,電池包含至少一個內燃機汽缸。For energy conversion, each type of battery can be connected to any known transducer of thermal energy or plasma to mechanical power or power, including, for example, a heat engine, a steam or gas turbine system, a Sterling engine. Or a hot ion or thermoelectric converter. Other plasma transformers include a magnetic mirror magnetohydrodynamic power converter, a plasma dynamics power converter, a magnetic coil, a photon beam microwave power converter, a charge drift power machine, or a photoelectric transducer. In an embodiment, the battery includes at least one internal combustion engine cylinder.

III.氫氣電池及固體、液體及非均勻燃料反應器III. Hydrogen batteries and solid, liquid and non-uniform fuel reactors

根據本發明之一實施例,用於產生低能量氫及動力之反應器可採取反應器電池的形式。本發明之反應器展示於圖3中。由催化劑之催化反應提供反應物低能量氫。催化可以氣相或固體或液體狀態進行。According to one embodiment of the invention, a reactor for producing low energy hydrogen and power may take the form of a reactor cell. The reactor of the present invention is shown in Figure 3. The reactants provide a low energy hydrogen of the reactants. Catalysis can be carried out in the gas phase or in a solid or liquid state.

圖3之反應器包含一反應容器207,該反應容器207具有能夠含有真空或超過大氣壓之壓力的腔室200。與腔室200連通之氫源221經由供氫通道242傳遞氫至腔室。控制器222經定位以控制壓力及氫經由供氫通道242進入容器之流量。壓力感測器223監測容器中之壓力。使用真空泵256經由真空管線257抽空腔室。The reactor of Figure 3 includes a reaction vessel 207 having a chamber 200 that can contain a vacuum or a pressure in excess of atmospheric pressure. A hydrogen source 221 in communication with the chamber 200 transfers hydrogen to the chamber via the hydrogen supply passage 242. Controller 222 is positioned to control the flow of pressure and hydrogen into the vessel via hydrogen supply passage 242. Pressure sensor 223 monitors the pressure in the container. The cavity is evacuated via vacuum line 257 using vacuum pump 256.

在一實施例中,催化以氣相進行。藉由維持電池溫度在高溫下,高溫又決定催化劑之蒸氣壓,可使催化劑為氣體。原子及/或分子氫反應物亦維持在可處於任何壓力範圍內之所需壓力下。在一實施例中,壓力小於大氣壓,較佳在約10毫托(millitorr)至約100托之範圍內。在另一實施例中,藉由維持諸如金屬源之催化劑源與諸如金屬氫化物之相應氫化物的混合物在維持於所需運作溫度下之電池中來確定壓力。In one embodiment, the catalysis is carried out in the gas phase. The catalyst can be made a gas by maintaining the battery temperature at a high temperature, which in turn determines the vapor pressure of the catalyst. The atomic and/or molecular hydrogen reactants are also maintained at the desired pressure which can be in any pressure range. In one embodiment, the pressure is less than atmospheric pressure, preferably in the range of from about 10 millitorr to about 100 Torr. In another embodiment, the pressure is determined by maintaining a mixture of a catalyst source such as a metal source and a corresponding hydride such as a metal hydride in a battery maintained at the desired operating temperature.

用於產生低能量氫原子之合適催化劑源250可置放於催化劑儲集器295中,且可藉由加熱形成氣態催化劑。反應容器207具有將氣態催化劑自催化劑儲集器295傳遞至反應室200之催化劑供應通道241。或者,催化劑可置放於反應容器內部之抗化學腐蝕敞口容器,諸如舟皿中。A suitable catalyst source 250 for generating low energy hydrogen atoms can be placed in the catalyst reservoir 295 and can be formed by heating to form a gaseous catalyst. The reaction vessel 207 has a catalyst supply passage 241 that transfers a gaseous catalyst from the catalyst reservoir 295 to the reaction chamber 200. Alternatively, the catalyst can be placed in a chemically resistant open container, such as a boat, inside the reaction vessel.

氫源可為氫氣及分子氫。氫可由分子氫解離催化劑解離成原子氫。該等解離催化劑或解離器包括例如阮尼鎳(R-Ni)、貴金屬及於載體上之貴金屬。貴金屬可為Pt、Pd、Ru、Ir及Rh,且載體可為Ti、Nb、Al2 O3 、SiO2 及其組合中之至少一者。其他解離器為可包含氫溢出催化劑之於碳上之Pt或Pd、鎳纖維墊、Pd薄片、Ti海綿狀物、電鍍於Ti或Ni海綿狀物或墊上之Pt或Pd、TiH、鉑黑及鈀黑、耐火金屬(諸如鉬及鎢)、過渡金屬(諸如鎳及鈦)、內過渡金屬(諸如鈮及鋯)及熟習此項技術者已知之其他該等物質。在一實施例中,氫在Pt或Pd上解離。Pt或Pd可塗布在諸如鈦或Al2 O3 之載體材料上。在另一實施例中,解離器為耐火金屬,諸如鎢或鉬,且解離物質可藉由溫度控制組件230維持在高溫下,該溫度控制組件230可採取如圖3中以橫截面展示之加熱旋管的形式。加熱旋管由電源225供以動力。解離物質較佳維持在電池運作溫度下。解離器可進一步在高於電池溫度之溫度下運作以更有效地解離,且高溫可防止催化劑冷凝在解離器上。氫解離器亦可由諸如280之由電源285供以動力之熱燈絲提供。The hydrogen source can be hydrogen and molecular hydrogen. Hydrogen can be dissociated into atomic hydrogen by a molecular hydrogen dissociation catalyst. The dissociation catalysts or dissociaters include, for example, Raney Nickel (R-Ni), precious metals, and noble metals on a support. The noble metal may be Pt, Pd, Ru, Ir, and Rh, and the carrier may be at least one of Ti, Nb, Al 2 O 3 , SiO 2 , and a combination thereof. Other dissociators are Pt or Pd, nickel fiber mats, Pd flakes, Ti sponges, Pt or Pd, TiH, platinum black, and electroplated on Ti or Ni sponges or mats, which may include a hydrogen overflow catalyst on carbon. Palladium black, refractory metals (such as molybdenum and tungsten), transition metals (such as nickel and titanium), internal transition metals (such as cerium and zirconium), and other such materials known to those skilled in the art. In one embodiment, hydrogen dissociates on Pt or Pd. Pt or Pd may be coated on a support material such as titanium or Al 2 O 3 . In another embodiment, the dissociator is a refractory metal, such as tungsten or molybdenum, and the dissociated material can be maintained at a high temperature by temperature control assembly 230, which can take the heating as shown in cross-section in FIG. The form of the coil. The heating coil is powered by a power source 225. The dissociated material is preferably maintained at the operating temperature of the battery. The dissociator can further operate at temperatures above the battery temperature to dissociate more efficiently, and the high temperature prevents the catalyst from condensing on the dissociator. The hydrogen dissociator can also be provided by a hot filament such as 280 powered by a power source 285.

在一實施例中,發生氫解離,使得解離氫原子與氣態催化劑接觸,產生低能量氫原子。藉由使用由電源272供以動力之催化劑儲集器加熱器298控制催化劑儲集器295之溫度,將催化劑蒸氣壓維持在所需壓力下。當催化劑含於反應器內部之舟皿中時,藉由調整舟皿電源來控制催化劑舟皿之溫度,將催化劑蒸氣壓維持在所需值。由電源225供以動力之加熱旋管230可將電池溫度控制在所需運作溫度下。該電池(稱為滲透電池)可進一步包含一內部反應室200及一外部氫儲集器290,使得可藉由氫擴散穿過分隔兩腔室之壁291來對電池供氫。可由加熱器控制壁的溫度以控制擴散速率。擴散速率可藉由控制氫儲集器中之氫壓力而進一步控制。In one embodiment, hydrogen dissociation occurs such that the dissociated hydrogen atoms are in contact with the gaseous catalyst, producing a low energy hydrogen atom. The catalyst vapor pressure is maintained at the desired pressure by controlling the temperature of the catalyst reservoir 295 using a catalyst reservoir heater 298 powered by a power source 272. When the catalyst is contained in a boat inside the reactor, the temperature of the catalyst boat is controlled by adjusting the power of the boat to maintain the catalyst vapor pressure at a desired value. A heating coil 230 powered by a power source 225 controls the battery temperature to the desired operating temperature. The battery (referred to as an osmotic battery) can further include an internal reaction chamber 200 and an external hydrogen reservoir 290 such that hydrogen can be supplied to the battery by diffusion of hydrogen through the walls 291 separating the two chambers. The temperature of the wall can be controlled by a heater to control the rate of diffusion. The rate of diffusion can be further controlled by controlling the pressure of hydrogen in the hydrogen reservoir.

為維持催化劑壓力在所需程度下,可密封將滲透作為氫源之電池。或者,電池在各入口或出口處進一步包含高溫閥,使得接觸反應氣體混合物之閥維持在所需溫度下。電池可進一步包含一吸氣器或收集器255以選擇性地收集較低能量氫物質及/或結合能增加之氫化合物,且可進一步包含一用於釋放二低能量氫氣體產物之選擇閥206。To maintain the catalyst pressure to the desired extent, the battery that will permeate as a source of hydrogen can be sealed. Alternatively, the battery further includes a high temperature valve at each inlet or outlet such that the valve contacting the reactive gas mixture is maintained at the desired temperature. The battery may further include an aspirator or collector 255 to selectively collect lower energy hydrogen species and/or a combination of increased hydrogen compounds, and may further comprise a selector valve 206 for releasing the two low energy hydrogen gas products. .

在一實施例中,藉由用加熱器230加熱,使諸如固體燃料或非均勻催化劑燃料混合物之反應物260在容器200中反應。另外添加之反應物(諸如至少一種放熱反應物,較佳具有快速動力學)可經由控制閥232及連接233流入電池200中。所添加之反應物可為鹵素源、鹵素、氧源或溶劑。反應物260可包含與添加之反應物反應的物質。舉例而言,可添加鹵素以與反應物260形成鹵化物,或可添加氧源至反應物260中以形成氧化物。In one embodiment, reactant 260, such as a solid fuel or a heterogeneous catalyst fuel mixture, is reacted in vessel 200 by heating with heater 230. Additional reactants, such as at least one exothermic reactant, preferably having fast kinetics, can flow into the battery 200 via control valve 232 and connection 233. The reactant added may be a halogen source, a halogen, an oxygen source or a solvent. Reactant 260 can comprise a material that reacts with the added reactants. For example, a halogen may be added to form a halide with reactant 260, or an oxygen source may be added to reactant 260 to form an oxide.

催化劑可為以下之群中之至少一者:原子鋰、鉀或銫、NaH分子、2H及低能量氫原子,其中催化包含歧化反應。藉由將電池溫度維持在約500-1000℃之範圍內,可使鋰催化劑為氣體。電池較佳維持在約500-750℃之範圍內。電池壓力可維持在小於大氣壓,較佳在約10毫托至約100托之範圍內。最佳地,催化劑壓力與氫壓力中之至少一者藉由維持催化劑金屬與相應氫化物(諸如鋰與氫化鋰、鉀與氫化鉀、鈉與氫化鈉及銫與氫化銫)之混合物在維持於所需運作溫度下之電池中來確定。氣相中之催化劑可包含來自金屬或金屬鋰源之鋰原子。鋰催化劑較佳維持在由約500-1000℃之運作溫度範圍內之金屬鋰與氫化鋰之混合物決定的壓力下,且最佳維持在使電池在約500-750℃之運作溫度範圍內的壓力下。在其他實施例中,K、Cs及Na替代Li,其中催化劑為原子K、原子Cs及分子NaH。The catalyst may be at least one of the group consisting of lithium, potassium or cesium, NaH molecules, 2H and low energy hydrogen atoms, wherein the catalysis comprises a disproportionation reaction. The lithium catalyst can be a gas by maintaining the battery temperature in the range of about 500-1000 °C. The battery is preferably maintained in the range of about 500-750 °C. The battery pressure can be maintained at less than atmospheric pressure, preferably in the range of from about 10 millitorr to about 100 Torr. Most preferably, at least one of the catalyst pressure and the hydrogen pressure is maintained by maintaining a mixture of the catalyst metal and the corresponding hydride such as lithium and lithium hydride, potassium and potassium hydride, sodium and sodium hydride, and hydrazine and hydrazine hydride. Determine the battery at the required operating temperature. The catalyst in the gas phase may comprise lithium atoms from a metal or metal lithium source. The lithium catalyst is preferably maintained at a pressure determined by a mixture of metallic lithium and lithium hydride in an operating temperature range of about 500-1000 ° C, and is preferably maintained at a pressure within the operating temperature range of about 500-750 ° C. under. In other embodiments, K, Cs, and Na are substituted for Li, wherein the catalyst is atom K, atom Cs, and molecular NaH.

在包含催化劑儲集器或舟皿之氣體電池反應器之一實施例中,氣體Na、NaH催化劑或諸如Li、K及Cs蒸氣之氣態催化劑維持在電池中相對於作為電池蒸氣源之儲集器或舟皿中之蒸氣過熱的條件下。在一實施例中,過熱蒸氣減少催化劑冷凝在氫解離器或下文揭示之金屬及金屬氫化物分子中之至少一者的解離器上。在包含Li作為儲集器或舟皿之催化劑的一實施例中,儲集器或舟皿維持在使Li汽化的溫度下。H2 可維持在低於在儲集器溫度下形成顯著莫耳分數之LiH之壓力的壓力下。實現此條件之壓力及溫度可由此項技術中已知之既定等溫線下H2 壓力對LiH莫耳分數之數據曲線來確定。在一實施例中,含有解離器之電池反應室在較高溫度下運作,使得Li不冷凝在壁或解離器上。H2 可自儲集器流至電池中以增加催化劑輸送速率。諸如自催化劑儲集器流至電池且接著流出電池為一種移除低能量氫產物以防止反應之低能量氫產物抑制的方法。在其他實施例中,K、Cs及Na替代Li,其中催化劑為原子K、原子Cs及分子NaH。In one embodiment of a gas cell reactor comprising a catalyst reservoir or a boat, the gas Na, NaH catalyst or a gaseous catalyst such as Li, K and Cs vapor is maintained in the battery relative to the reservoir as a battery vapor source Or under the condition that the steam in the boat is overheated. In one embodiment, the superheated vapor reduction catalyst is condensed on a dissociator of at least one of a hydrogen dissociator or a metal and metal hydride molecule disclosed below. In an embodiment comprising a catalyst comprising Li as a reservoir or boat, the reservoir or boat is maintained at a temperature at which Li is vaporized. H 2 can be maintained at a pressure below the pressure of LiH which forms a significant molar fraction at the reservoir temperature. Pressure and temperature conditions to achieve the H 2 pressure is determined on the molar fractions of LiH curve data may be known in the art of isotherms established. In one embodiment, the cell reaction chamber containing the dissociator operates at a higher temperature such that Li does not condense on the wall or dissociator. H 2 may flow from the reservoir to the battery to increase the delivery rate of the catalyst. Flowing from the catalyst reservoir to the cell and then out of the cell is a method of removing low energy hydrogen products to prevent inhibition of the low energy hydrogen product of the reaction. In other embodiments, K, Cs, and Na are substituted for Li, wherein the catalyst is atom K, atom Cs, and molecular NaH.

自氫源向反應供氫。舉例而言,藉由自氫儲集器滲透來提供氫。氫儲集器之壓力可在10托至10,000托、較佳100托至1000托之範圍內且最佳為約大氣壓。電池可在約100℃至3000℃之溫度、較佳約100℃至1500℃之溫度及最佳約500℃至800℃之溫度下運作。Hydrogen is supplied to the reaction from a hydrogen source. For example, hydrogen is supplied by permeation from a hydrogen reservoir. The pressure of the hydrogen reservoir may range from 10 Torr to 10,000 Torr, preferably from 100 Torr to 1000 Torr, and most preferably at about atmospheric pressure. The battery can be operated at a temperature of from about 100 ° C to 3000 ° C, preferably from about 100 ° C to 1500 ° C, and most preferably from about 500 ° C to 800 ° C.

氫源可來自所添加之氫化物分解。藉由滲透供應H2 之電池設計為包含置放於密封容器內之內部金屬氫化物的電池,其中原子H在高溫下滲出。容器可包含Pd、Ni、Ti或Nb。在一實施例中,將氫化物置放於密封管,諸如含有氫化物之Nb管中且在兩端以諸如Swagelock之密封件密封。在密封狀況下,氫化物可為鹼金屬或鹼土金屬氫化物。或者,在此狀況以及內部氫化物試劑之狀況下,氫化物可為以下之群中之至少一者:生理食鹽水氫化物、氫化鈦、氫化釩、氫化鈮及氫化鉭、氫化鋯及氫化鉿、稀土金屬氫化物、氫化釔及氫化鈧、過渡元素氫化物、介金屬氫化物(intermetalic hydride)及其合金。The hydrogen source can be decomposed from the added hydride. The battery supplied by permeating the H 2 is designed as a battery containing an internal metal hydride placed in a sealed container in which the atom H oozes at a high temperature. The container may contain Pd, Ni, Ti or Nb. In one embodiment, the hydride is placed in a sealed tube, such as a Nb tube containing hydride, and sealed at both ends with a seal such as a Swagelock. In the sealed condition, the hydride may be an alkali metal or alkaline earth metal hydride. Alternatively, in this case and the condition of the internal hydride reagent, the hydride may be at least one of the following groups: physiological saline hydride, titanium hydride, vanadium hydride, hydrazine hydride and hydrazine hydride, zirconium hydride and hydrazine hydride. , rare earth metal hydrides, hydrazine hydride and hydrazine hydride, transition element hydrides, intermetalic hydrides and alloys thereof.

在一實施例中,氫化物及基於各氫化物分解溫度之運作溫度±200℃係選自以下所列項中之至少一者:稀土金屬氫化物以及約800℃之運作溫度;氫化鑭以及約700℃之運作溫度;氫化釓以及約750℃之運作溫度;氫化釹以及約750℃之運作溫度;氫化釔以及約800℃之運作溫度;氫化鈧以及約800℃之運作溫度;氫化鐿以及約850-900℃之運作溫度;氫化鈦以及約450℃之運作溫度;氫化鈰以及約950℃之運作溫度;氫化鐠以及約700℃之運作溫度;氫化鋯-氫化鈦(50%/50%)以及約600℃之運作溫度;鹼金屬/鹼金屬氫化物混合物,諸如Rb/RbH或K/KH,以及約450℃之運作溫度;及鹼土金屬/鹼土金屬氫化物混合物,諸如Ba/BaH2 ,以及約900-1000℃之運作溫度。In one embodiment, the hydride and the operating temperature based on each hydride decomposition temperature ± 200 ° C are selected from at least one of the following: a rare earth metal hydride and an operating temperature of about 800 ° C; Operating temperature of 700 ° C; hydrazine hydride and operating temperature of about 750 ° C; hydrazine hydride and operating temperature of about 750 ° C; hydrazine hydride and operating temperature of about 800 ° C; hydrazine hydride and operating temperature of about 800 ° C; Operating temperature of 850-900 ° C; titanium hydride and operating temperature of about 450 ° C; hydrazine hydride and operating temperature of about 950 ° C; hydrazine hydride and operating temperature of about 700 ° C; zirconium hydride - titanium hydride (50% / 50%) And an operating temperature of about 600 ° C; an alkali metal/alkali metal hydride mixture such as Rb/RbH or K/KH, and an operating temperature of about 450 ° C; and an alkaline earth metal/alkaline earth metal hydride mixture such as Ba/BaH 2 , And an operating temperature of about 900-1000 ° C.

氣態金屬可包含雙原子共價分子。本發明之目標係提供原子催化劑,諸如Li以及K及Cs。因此,反應器可進一步包含金屬分子(「MM」)及金屬氫化物分子(「MH」)中之至少一者之解離器。催化劑源、H2 源及MM、MH及HH之解離器(其中M為原子催化劑)較佳相匹配以在例如溫度及反應物濃度之所需電池條件下運作。在使用H2 之氫化物源的狀況下,在一實施例中,其分解溫度在產生所需催化劑蒸氣壓之溫度範圍內。在氫源自氫儲集器滲透至反應室的狀況下,用於連續運作之較佳催化劑源為Sr及Li金屬,因為在發生滲透的溫度下其各自蒸氣壓可在0.01至100托之所需範圍內。在滲透電池之其他實施例中,電池在允許滲透之高溫下運作,隨後將電池溫度降至維持揮發性催化劑之蒸氣壓在所需壓力下的溫度。The gaseous metal can comprise a diatomic covalent molecule. The object of the present invention is to provide atomic catalysts such as Li and K and Cs. Accordingly, the reactor may further comprise a dissociator of at least one of a metal molecule ("MM") and a metal hydride molecule ("MH"). Catalyst source, H 2 source and MM, MH and the remover solution HH (where M is an atom of the catalyst) is preferably matched to the operating condition of the battery at a desired temperature, for example, and the concentration of the reaction. In the case of using H 2 of the hydride source, in an embodiment, in which the decomposition temperature to produce the desired vapor pressure within the temperature range of the catalyst. In the case where hydrogen is derived from the hydrogen reservoir permeating into the reaction chamber, the preferred catalyst sources for continuous operation are Sr and Li metals, since their respective vapor pressures can range from 0.01 to 100 Torr at the temperature at which the permeation occurs. Need to be within range. In other embodiments of the osmotic battery, the battery operates at a high temperature that allows permeation, and then the battery temperature is reduced to a temperature that maintains the vapor pressure of the volatile catalyst at the desired pressure.

在氣體電池之一實施例中,解離器包含自來源產生催化劑及H的組份。表面催化劑,諸如於Ti上之Pt或單獨或於諸如Ti之基材上之Pd、銥或銠亦可用作催化劑與氫原子組合之分子的解離器。該解離器較佳具有高表面積,諸如Pt/Al2 O3 或Pd/Al2 O3In one embodiment of the gas cell, the dissociator comprises a component that produces a catalyst and H from the source. A surface catalyst such as Pt on Ti or Pd, ruthenium or osmium alone or on a substrate such as Ti can also be used as a dissociator for molecules in which a catalyst is combined with a hydrogen atom. The dissociator preferably has a high surface area such as Pt/Al 2 O 3 or Pd/Al 2 O 3 .

H2 源亦可為氫氣。在此實施例中,可監測及控制壓力。此在催化劑及催化劑源分別諸如K或Cs金屬及LiNH2 的情況下係可能的,因為該等物質在低溫下具有揮發性,允許使用高溫閥。LiNH2 亦降低Li電池之需要運作溫度且腐蝕性較小,從而允許在電漿及長絲電池(其中長絲用作氫解離器)之狀況下使用饋通長期運作。The H 2 source can also be hydrogen. In this embodiment, the pressure can be monitored and controlled. This is possible in the case of catalysts and catalyst sources such as K or Cs metals and LiNH 2 , respectively, since these materials are volatile at low temperatures, allowing the use of high temperature valves. LiNH 2 also reduces the required operating temperature of the Li battery and is less corrosive, allowing long-term operation of the feedthrough in the presence of plasma and filament batteries where the filaments are used as hydrogen dissociators.

具有NaH作為催化劑之氣體電池氫反應器之其他實施例在反應器電池中包含長絲以及解離器及在儲集器中包含Na。H2 可流經儲集器至主要腔室中。可藉由控制氣體流動速率、H2 壓力及Na蒸氣壓來控制動力。後者(Na蒸氣壓)可藉由控制儲集器溫度來控制。在另一實施例中,低能量氫反應由使用外加熱器加熱引起且由解離器提供原子H。Other embodiments of a gas cell hydrogen reactor having NaH as a catalyst comprise filaments and a dissociator in the reactor cell and Na in the reservoir. H 2 can flow through the reservoir into the main chamber. The power can be controlled by controlling the gas flow rate, the H 2 pressure, and the Na vapor pressure. The latter (Na vapor pressure) can be controlled by controlling the reservoir temperature. In another embodiment, the low energy hydrogen reaction is caused by heating using an external heater and the atom H is provided by the dissociator.

可藉由此項技術中已知之方法(諸如機械攪拌或混合)攪動反應混合物。攪動系統可包含一或多個壓電轉導器。各壓電轉導器可提供超音波攪動。可使反應電池振動且其進一步含有攪動元件,諸如不鏽鋼球或鎢球,使該等球振動以攪動反應混合物。在另一實施例中,機械攪動包含球磨。亦可使用此等方法、較佳藉由球磨來混合反應物。The reaction mixture can be agitated by methods known in the art, such as mechanical agitation or mixing. The agitation system can include one or more piezoelectric transducers. Each piezoelectric transducer provides ultrasonic agitation. The reaction cell can be vibrated and it further contains agitation elements, such as stainless steel balls or tungsten balls, which are vibrated to agitate the reaction mixture. In another embodiment, the mechanical agitation comprises a ball mill. These methods can also be used, preferably by ball milling to mix the reactants.

在一實施例中,藉由機械攪動(諸如用攪動元件振動、超音波攪動及球磨中之至少一者)形成催化劑。諸如超音波之音波的機械撞擊或壓縮可引起反應物反應或物理變化,引起催化劑、較佳NaH分子形成。反應混合物可包含或可不包含溶劑。反應物可為固體,諸如固體NaH,對其進行機械攪動而形成NaH分子。或者,反應混合物可包含液體。混合物可具有至少一種Na物質。Na物質可為液體混合物之組份,或其可為溶解狀態。在一實施例中,藉由高速攪拌金屬於溶劑(諸如醚、烴、氟化烴、芳族或雜環芳族溶劑)中之懸浮液使金屬鈉分散。溶劑溫度可保持恰好在金屬熔點以上。In one embodiment, the catalyst is formed by mechanical agitation, such as by at least one of agitation element vibration, ultrasonic agitation, and ball milling. Mechanical impact or compression of sound waves, such as ultrasonic waves, can cause reactant reactions or physical changes that cause the formation of catalysts, preferably NaH molecules. The reaction mixture may or may not contain a solvent. The reactants can be solids, such as solid NaH, which are mechanically agitated to form NaH molecules. Alternatively, the reaction mixture can comprise a liquid. The mixture can have at least one Na species. The Na material can be a component of a liquid mixture, or it can be in a dissolved state. In one embodiment, the sodium metal is dispersed by rapidly stirring a suspension of the metal in a solvent such as an ether, a hydrocarbon, a fluorinated hydrocarbon, an aromatic or a heterocyclic aromatic solvent. The solvent temperature can be kept just above the melting point of the metal.

IV.燃料類型IV. Fuel type

本發明之一實施例係針對一種燃料,其包含至少一氫源與維持氫催化形成低能量氫之催化劑源的呈可能各相混合物之氣相、液相及固相中之至少一相的反應混合物。本文中所給出之固體及液體燃料之反應物及反應亦為包含各相混合物之非均勻燃料的反應物及反應。An embodiment of the present invention is directed to a fuel comprising at least one hydrogen source and at least one of a gas phase, a liquid phase, and a solid phase of a mixture of possible phases in which a source of hydrogen catalyzed to form a low energy hydrogen is maintained. mixture. The reactants and reactions of the solid and liquid fuels given herein are also the reactants and reactions of the non-homogeneous fuel comprising the mixture of phases.

本發明之一目標係提供諸如Li以及K及Cs之原子催化劑及分子催化劑NaH。金屬形成雙原子共價分子。因此,在固體燃料、液體燃料及非均勻燃料實施例中,反應物包含可使用金屬催化劑M可逆地形成且分解或反應以提供諸如Li或NaH之催化劑的合金、錯合物、錯合物源、混合物、懸浮液及溶液。在另一實施例中,催化劑源與原子氫源中之至少一者進一步包含至少一種反應以形成催化劑與原子氫中之至少一者的反應物。在另一實施例中,反應混合物包含NaH催化劑或NaH催化劑源或諸如Li或K之其他催化劑,該等催化劑可經由反應混合物之一或多種反應物或物質反應形成或可藉由物理轉化形成。轉化可用合適溶劑進行溶劑化。One object of the present invention is to provide an atomic catalyst such as Li and K and Cs and a molecular catalyst NaH. The metal forms a diatomic covalent molecule. Thus, in solid fuel, liquid fuel, and non-homogeneous fuel embodiments, the reactants comprise alloys, complexes, and complex sources that can be reversibly formed using a metal catalyst M and decomposed or reacted to provide a catalyst such as Li or NaH. , mixtures, suspensions and solutions. In another embodiment, at least one of the catalyst source and the atomic hydrogen source further comprises at least one reaction to form a reactant of at least one of the catalyst and the atomic hydrogen. In another embodiment, the reaction mixture comprises a NaH catalyst or a NaH catalyst source or other catalyst such as Li or K, which may be formed via one or more reactants or materials of the reaction mixture or may be formed by physical transformation. The conversion can be solvated with a suitable solvent.

反應混合物可進一步包含促進表面上催化反應之固體。諸如NaH之催化劑或催化劑源可塗布在表面上。可藉由諸如球磨之方法將諸如活性碳、TiC、WC、R-Ni之載體與NaH混合來實現塗布。反應混合物可包含非均勻催化劑或非均勻催化劑源。在一實施例中,藉由微濕法、較佳藉由使用諸如醚之非質子性溶劑,將諸如NaH之催化劑塗布於諸如活性碳、TiC、WC或聚合物之載體上。載體亦可包含無機化合物,諸如鹼鹵化物,較佳NaF與HNaF2 中之至少一者,其中NaH用作催化劑且使用氟化溶劑。The reaction mixture may further comprise a solid that promotes a catalytic reaction on the surface. A catalyst such as NaH or a catalyst source can be coated on the surface. Coating can be achieved by mixing a carrier such as activated carbon, TiC, WC, R-Ni with NaH by a method such as ball milling. The reaction mixture can comprise a heterogeneous catalyst or a source of non-homogeneous catalyst. In one embodiment, a catalyst such as NaH is coated onto a support such as activated carbon, TiC, WC or polymer by a microwetting process, preferably by using an aprotic solvent such as an ether. Vectors may also include inorganic compounds such as alkali halides, with the preferred NaF HNaF 2 in at least one of which the catalyst is used as NaH and using a fluorinated solvent.

在液體燃料之一實施例中,反應混合物包含催化劑源、催化劑、氫源及催化劑溶劑中之至少一者。在其他實施例中,本發明之固體燃料及液體燃料進一步包含兩者之組合且亦進一步包含氣相。使用諸如催化劑及原子氫及其來源之呈多相之反應物來催化稱為非均勻反應混合物,且燃料稱為非均勻燃料。因此,燃料包含至少為轉變成低能量氫(由方程式(35)給出之狀態)之氫源與引起轉變之催化劑源的反應混合物,反應物為液相、固相及氣相中之至少一者。使用來自反應物之不同相之催化劑來催化在此項技術中一般稱為非均勻催化,其為本發明之一實施例。非均勻催化劑提供發生化學反應之表面且構成本發明之實施例。本文中所給出之固體及液體燃料之反應物及反應亦為非均勻燃料之反應物及反應。In one embodiment of the liquid fuel, the reaction mixture comprises at least one of a catalyst source, a catalyst, a hydrogen source, and a catalyst solvent. In other embodiments, the solid fuels and liquid fuels of the present invention further comprise a combination of the two and further comprise a gas phase. A heterogeneous reaction mixture, such as a catalyst and atomic hydrogen and its source, is used to catalyze a heterogeneous reaction mixture, and the fuel is referred to as a non-homogeneous fuel. Accordingly, the fuel comprises at least a reaction mixture of a hydrogen source converted to low energy hydrogen (state given by equation (35)) and a catalyst source causing the conversion, the reactant being at least one of a liquid phase, a solid phase, and a gas phase. By. Catalysts from different phases of the reactants are used to catalyze what is generally referred to in the art as non-homogeneous catalysis, which is an embodiment of the invention. The heterogeneous catalyst provides a surface upon which a chemical reaction takes place and constitutes an embodiment of the invention. The reactants and reactions of the solid and liquid fuels given herein are also reactants and reactions of non-homogeneous fuels.

對於本發明之任何燃料而言,可藉由諸如機械混合之方法或藉由球磨將諸如NaH之催化劑或催化劑源與反應混合物之其他組份、諸如載體(諸如HSA物質)混合。在所有狀況下,可添加額外氫以維持形成低能量氫之反應。氫氣可在任何所需壓力下,較佳在0.1至200atm之範圍內。替代性氫源包含以下之群中之至少一者:NH4 X(X為陰離子,較佳鹵離子)、NaBH4 、NaAlH4 、硼烷及金屬氫化物,諸如鹼金屬氫化物、鹼土金屬氫化物(較佳MgH2 )及稀土金屬氫化物(較佳LaH2 及GdH2 )。For any of the fuels of the present invention, a catalyst such as NaH or a catalyst source may be mixed with other components of the reaction mixture, such as a support such as an HSA material, by methods such as mechanical mixing or by ball milling. In all cases, additional hydrogen may be added to sustain the reaction to form low energy hydrogen. Hydrogen can be at any desired pressure, preferably in the range of from 0.1 to 200 atm. The alternative hydrogen source comprises at least one of the group consisting of NH 4 X (X is an anion, preferably a halide), NaBH 4 , NaAlH 4 , borane, and a metal hydride such as an alkali metal hydride, an alkaline earth metal hydrogenation. (preferably MgH 2 ) and rare earth metal hydride (preferably LaH 2 and GdH 2 ).

A.載體A. Carrier

在某些實施例中,本發明之固體、液體及非均勻燃料包含載體。該載體包含具體針對其功能之性質。舉例而言,在載體充當電子受體或管道的狀況下,載體較佳具有導電性。另外,在載體使反應物分散之狀況下,載體較佳具有高表面積。在前一狀況下,諸如HSA載體之載體可包含導電聚合物,諸如活性碳、石墨烯及可為大分子之雜環多環芳烴。雖然碳較佳可包含活性碳(AC),但亦可包含其他形式,諸如中孔碳、玻璃碳、焦炭、石墨碳、具有重量%為0.1至5wt%之解離器金屬(諸如Pt或Pd)之碳、具有較佳一至十碳層且更佳三層之過渡金屬粉末及金屬或合金塗布之碳,較佳奈米粉末,諸如較佳Ni、Co及Mn中之至少一者之過渡金屬塗布的碳。金屬可插入碳。在插入金屬為Na且催化劑為NaH之狀況下,較佳Na插入飽和。載體較佳具有高表面積。可用作載體之有機導電聚合物之常見類別為以下之群中之至少一者:聚(乙炔)、聚(吡咯)、聚(噻吩)、聚(苯胺)、聚(茀)、聚(3-烷基噻吩)、聚四硫富瓦烯、聚萘、聚(對苯硫醚)及聚(對伸苯基伸乙烯基)。此等線性主鏈聚合物通常在此項技術中已知為聚乙炔、聚苯胺等「黑色(black)」或「黑色素(melanin)」。載體可為混合共聚物,諸如聚乙炔、聚吡咯及聚苯胺之一。導電聚合物載體較佳為聚乙炔、聚苯胺及聚吡咯通常衍生物中之至少一者。其他載體包含除碳以外之其他元素,諸如導電聚合物聚硫雜氮((S-N)x )。In certain embodiments, the solid, liquid, and non-homogenous fuels of the present invention comprise a carrier. The vector contains properties specific to its function. For example, in the case where the carrier acts as an electron acceptor or conduit, the carrier preferably has electrical conductivity. Further, the carrier preferably has a high surface area in the case where the carrier disperses the reactants. In the former case, a carrier such as an HSA carrier may contain a conductive polymer such as activated carbon, graphene, and a heterocyclic polycyclic aromatic hydrocarbon which may be a macromolecule. Although the carbon may preferably comprise activated carbon (AC), it may also comprise other forms such as mesoporous carbon, vitreous carbon, coke, graphitic carbon, dissociator metal (such as Pt or Pd) having a weight % of 0.1 to 5% by weight. Carbon, a transition metal powder having preferably one to ten carbon layers and more preferably three layers, and a metal or alloy coated carbon, preferably a nano powder, such as a transition metal coated coating of at least one of Ni, Co and Mn. carbon. Metal can be inserted into carbon. In the case where the intercalation metal is Na and the catalyst is NaH, it is preferred that the Na insertion is saturated. The carrier preferably has a high surface area. A common class of organic conductive polymers that can be used as a carrier is at least one of the following groups: poly(acetylene), poly(pyrrole), poly(thiophene), poly(aniline), poly(茀), poly(3) -alkylthiophene), polytetrathiafulvalene, polynaphthalene, poly(p-phenylene sulfide) and poly(p-phenylenevinyl). Such linear backbone polymers are generally known in the art as "black" or "melanin" such as polyacetylene, polyaniline, and the like. The carrier can be a mixed copolymer such as one of polyacetylene, polypyrrole and polyaniline. The conductive polymer carrier is preferably at least one of polyacetylene, polyaniline and polypyrrole usual derivatives. Other carriers include other elements than carbon, such as the conductive polymer polythiazide ((SN) x ).

在另一實施例中,載體為半導體。載體可為第IV行元素,諸如碳、矽、鍺及α-灰錫。除諸如矽及鍺之元素物質外,半導體載體包含諸如砷化鎵及磷化銦之化合物物質或諸如矽鍺或砷化鋁之合金。在一實施例中,諸如矽及鍺晶體之物質的導電性可藉由在晶體生長時添加少量(例如1-10百萬分率)摻雜劑、諸如硼或磷來增強。摻雜半導體可磨成粉末,用作載體。In another embodiment, the carrier is a semiconductor. The support may be element IV, such as carbon, ruthenium, osmium, and alpha-gray tin. In addition to elemental materials such as ruthenium and osmium, the semiconductor carrier contains a compound material such as gallium arsenide and indium phosphide or an alloy such as ruthenium or aluminum arsenide. In one embodiment, the conductivity of a substance such as ruthenium and osmium crystals may be enhanced by the addition of a small amount (e.g., 1-10 parts per million) of dopant, such as boron or phosphorus, during crystal growth. The doped semiconductor can be ground into a powder and used as a carrier.

在某些實施例中,HSA載體為金屬,諸如過渡金屬、貴金屬、介金屬、稀土金屬、錒系金屬、鑭系金屬(較佳La、Pr、Nd及Sm之一)、Al、Ga、In、Tl、Sn、Pb、類金屬、Si、Ge、As、Sb、Te、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、鹼金屬、鹼土金屬及包含此群之至少兩種金屬或元素的合金,諸如鑭系合金,較佳LaNi5 及Y-Ni。載體可為貴金屬,諸如Pt、Pd、Au、Ir及Rh中之至少一者,或負載型貴金屬,諸如於鈦上之Pt或Pd(Pt/Ti或Pd/Ti)。In certain embodiments, the HSA support is a metal such as a transition metal, a noble metal, a meta-metal, a rare earth metal, a lanthanide metal, a lanthanide metal (preferably one of La, Pr, Nd, and Sm), Al, Ga, In , Tl, Sn, Pb, metalloid, Si, Ge, As, Sb, Te, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, an alkali metal, an alkaline earth metal, and an alloy containing at least two metals or elements of the group, such as a lanthanide alloy, preferably LaNi 5 and Y-Ni. The support may be a noble metal such as at least one of Pt, Pd, Au, Ir, and Rh, or a supported noble metal such as Pt or Pd (Pt/Ti or Pd/Ti) on titanium.

在其他實施例中,HSA物質包含以下至少一者:立方氮化硼、六方氮化硼、纖鋅礦型氮化硼粉末、雜金剛石(heterodiamond)、氮化硼奈米管、氮化矽、氮化鋁、氮化鈦(TiN)、氮化鋁鈦(TiAlN)、氮化鎢、塗有碳之金屬或合金(較佳奈米粉末,諸如具有較佳一至十碳層且更佳三層之Co、Ni、Fe、Mn及其他過渡金屬粉末中之至少一者)、金屬或合金塗布之碳(較佳奈米粉末,諸如過渡金屬、較佳Ni、Co及Mn中之至少一者塗布之碳)、碳化物(較佳粉末)、氧化鈹(BeO)粉末、稀土氧化物粉末(諸如La2 O3 、Zr2 O3 、Al2 O3 、鋁酸鈉)及碳(諸如芙、石墨烯或奈米管,較佳單壁)。In other embodiments, the HSA species comprises at least one of: cubic boron nitride, hexagonal boron nitride, wurtzite boron nitride powder, heterodiamond, boron nitride nanotube, tantalum nitride, Aluminum nitride, titanium nitride (TiN), titanium aluminum nitride (TiAlN), tungsten nitride, carbon coated metal or alloy (preferably nano powder, such as having a preferred one to ten carbon layer and more preferably three layers) At least one of Co, Ni, Fe, Mn, and other transition metal powders, metal or alloy coated carbon (preferably nanopowder, such as transition metal, preferably at least one of Ni, Co, and Mn coated carbon) ), carbide (preferably powder), cerium oxide (BeO) powder, rare earth oxide powder (such as La 2 O 3 , Zr 2 O 3 , Al 2 O 3 , sodium aluminate) and carbon (such as fluorene, graphene) Or a tube, preferably a single wall).

碳化物可包含一或多種鍵型:諸如碳化鈣(CaC2 )之鹽類、諸如碳化矽(SiC)及碳化硼(B4 C或BC3 )之共價化合物及諸如碳化鎢之填隙式化合物。碳化物可為諸如Au2 C2 、ZnC2 及CdC2 之炔化物或諸如Be2 C、碳化鋁(Al4 C3 )之甲基金屬化合物及A3 MC類型之碳化物,其中A主要為稀土金屬或過渡金屬,諸如Sc、Y、La-Na、Gd-Lu,且M為金屬或半金屬主族元素,諸如Al、Ge、In、Tl、Sn及Pb。具有離子之碳化物可包含以下至少一者:碳化物,其中陽離子M I 包含鹼金屬或造幣金屬之一;碳化物M II C 2 ,其中陽離子M II 包含鹼土金屬;及較佳碳化物,其中陽離子M III 包含Al、La、Pr或Tb。碳化物可包含除以外的離子,諸如YC2 、TbC2 、YbC2 、UC2 、Ce2 C3 、Pr2 C3 及Tb2 C3 之群之離子。碳化物可包含倍半碳化物,諸如Mg2 C3 、Sc3 C4 及Li4 C3 。碳化物可包含三元碳化物,諸如含有鑭系金屬及過渡金屬之碳化物,其可進一步包含C2 單元,諸如Ln 3 M (C 2 )2 其中M為Fe、Co、Ni、Ru、Rh、Os及Ir)、Dy12 Mn5 C15 、Ln3.67 FeC6Ln 3 Mn (C 2 )2 (Ln=Gd及Tb)及ScCrC2 。碳化物可進一步具有「中間」過渡金屬碳化物類別,諸如碳化鐵(Fe3 C或FeC2 :Fe)。碳化物可為至少一種來自以下之群之碳化物:鑭系(MC2 及M2 C3 ),諸如碳化鑭(LaC2 或La2 C3 );碳化釔;錒系碳化物;過渡金屬碳化物,諸如碳化鈧、碳化鈦(TiC)、碳化釩、碳化鉻、碳化錳及碳化鈷、碳化鈮、碳化鉬、碳化鉭、碳化鋯及碳化鉿。其他合適碳化物包含以下至少一者:Ln2 FeC4 、Sc3 CoC4 、Ln3 MC4 (M=Fe、Co、Ni、Ru、Rh、Os、Ir)、Ln3 Mn2 C6 、Eu3.16 NiC6 、ScCrC2 、Th2 NiC2 、Y2 ReC2 、Ln12 M5 C15 (M=Mn、Re)、YCoC、Y2 ReC2 及此項技術中已知之其他碳化物。The carbide may comprise one or more bond types: salts such as calcium carbide (CaC 2 ), covalent compounds such as lanthanum carbide (SiC) and boron carbide (B 4 C or BC 3 ), and interstitial such as tungsten carbide. Compound. The carbide may be an alkyne such as Au 2 C 2 , ZnC 2 and CdC 2 or a methyl metal compound such as Be 2 C, aluminum carbide (Al 4 C 3 ) and a carbide of the A 3 MC type, wherein A is mainly A rare earth metal or a transition metal such as Sc, Y, La-Na, Gd-Lu, and M is a metal or semi-metal main group element such as Al, Ge, In, Tl, Sn, and Pb. have The carbide of ions may comprise at least one of the following: carbide Wherein the cation M I comprises one of an alkali metal or a coin metal; the carbide M II C 2 wherein the cation M II comprises an alkaline earth metal; and a preferred carbide Wherein the cation M III comprises Al, La, Pr or Tb. Carbides can contain Ions other than ions such as YC 2 , TbC 2 , YbC 2 , UC 2 , Ce 2 C 3 , Pr 2 C 3 and Tb 2 C 3 . The carbide may comprise sesquicarbones such as Mg 2 C 3 , Sc 3 C 4 and Li 4 C 3 . The carbide may comprise a ternary carbide such as a carbide containing a lanthanide metal and a transition metal, which may further comprise a C 2 unit such as Ln 3 M ( C 2 ) 2 wherein M is Fe, Co, Ni, Ru, Rh Os and Ir), Dy 12 Mn 5 C 15 , Ln 3.67 FeC 6 , Ln 3 Mn ( C 2 ) 2 (Ln=Gd and Tb) and ScCrC 2 . The carbide may further have an "intermediate" transition metal carbide class, such as iron carbide (Fe 3 C or FeC 2 :Fe). The carbide may be at least one carbide from the group: lanthanide (MC 2 and M 2 C 3 ), such as lanthanum carbide (LaC 2 or La 2 C 3 ); lanthanum carbide; lanthanide carbide; transition metal carbonization Materials such as tantalum carbide, titanium carbide (TiC), vanadium carbide, chromium carbide, manganese carbide and cobalt carbide, tantalum carbide, molybdenum carbide, tantalum carbide, zirconium carbide and tantalum carbide. Other suitable carbides include at least one of the following: Ln 2 FeC 4 , Sc 3 CoC 4 , Ln 3 MC 4 (M=Fe, Co, Ni, Ru, Rh, Os, Ir), Ln 3 Mn 2 C 6 , Eu 3.16 NiC 6 , ScCrC 2 , Th 2 NiC 2 , Y 2 ReC 2 , Ln 12 M 5 C 15 (M=Mn, Re), YCoC, Y 2 ReC 2 and other carbides known in the art.

在一實施例中,載體為導電性碳化物,諸如TiC或WC及HfC、Mo2 C、TaC、YC2 、ZrC、Al4 C3 及B4 C。載體可為金屬硼化物,包括諸如MB2 硼化物。載體或HSA物質可為可導電之硼化物,較佳二維網狀硼化物,諸如MB2 ,其中M為諸如以下至少一者之金屬:Cr、Ti、Mg、Zr及Gd(CrB2 、TiB2 、MgB2 、ZrB2 、GdB2 )。In one embodiment, the support is a conductive carbide such as TiC or WC and HfC, Mo 2 C, TaC, YC 2 , ZrC, Al 4 C 3 and B 4 C. The support can be a metal boride including, for example, MB 2 boride. HSA carrier or the conductive material may be a boride, a preferred two-dimensional mesh boride, such as MB 2, wherein M is a metal, such as at least one of the following: Cr, Ti, Mg, Zr and Gd (CrB 2, TiB 2 , MgB 2 , ZrB 2 , GdB 2 ).

在碳-HSA物質之實施例,Na不插入碳載體中或藉由與碳反應而形成炔化物。在一實施例中,催化劑或催化劑源、較佳NaH併入諸如芙、碳奈米管及沸石之HSA物質內部。HSA物質可進一步包含石墨、石墨烯、類金剛石碳(DLC)、氫化類金剛石碳(HDLC)、金剛石粉末、石墨碳、玻璃碳及具有其他金屬(諸如Co、Ni、Mn、Fe、Y、Pd及Pt中之至少一者)之碳或包含其他元素之摻雜劑(諸如氟化碳,較佳氟化石墨、氟化金剛石或氟化四碳(C4 F))。HSA物質可經氟化物鈍化,諸如氟化物塗布之金屬或碳,或包含氟化物,諸如金屬氟化物,較佳鹼金屬或稀土金屬氟化物。In embodiments of the carbon-HSA material, Na is not inserted into the carbon support or forms an acetylide by reaction with carbon. In one embodiment, the catalyst or catalyst source, preferably NaH, is incorporated into the interior of the HSA material such as Fu, carbon nanotubes and zeolite. The HSA material may further comprise graphite, graphene, diamond-like carbon (DLC), hydrogenated diamond-like carbon (HDLC), diamond powder, graphitic carbon, vitreous carbon, and other metals (such as Co, Ni, Mn, Fe, Y, Pd). And at least one of Pt) or a dopant comprising other elements (such as a fluorinated carbon, preferably fluorinated graphite, fluorinated diamond or fluorinated tetracarbon (C 4 F)). The HSA species may be passivated by fluoride, such as a fluoride coated metal or carbon, or comprise a fluoride such as a metal fluoride, preferably an alkali metal or a rare earth metal fluoride.

具有巨大表面積之合適載體為活性碳。活性碳可藉由物理或化學活化來活化或再活化。前一活化可包含碳化或氧化,且後一活化可包含用化學物質浸漬。A suitable carrier having a large surface area is activated carbon. Activated carbon can be activated or reactivated by physical or chemical activation. The previous activation may comprise carbonization or oxidation, and the latter activation may comprise impregnation with a chemical.

反應混合物可進一步包含諸如聚合物載體之載體。聚合物載體可選自以下:聚(四氟乙烯),諸如TEFLONTM ;聚乙烯二茂鐵;聚苯乙烯;聚丙烯;聚乙烯;聚異戊二烯;聚(胺基磷氮烯);包含醚單元之聚合物,諸如聚乙二醇或聚氧化乙烯及聚丙二醇或聚氧化丙烯,較佳芳基醚;聚醚多元醇,諸如聚(四亞甲基醚)二醇(PTMEG,聚四氫呋喃、「Terathane」、「polyTHF」);聚乙烯甲醛;及來自環氧化物反應之聚合物,諸如聚氧化乙烯及聚氧化丙烯。在一實施例中,HSA包含氟。載體可包含以下之群中之至少一者:氟化有機分子、氟化烴、氟化烷氧基化合物及氟化醚。例示性氟化HSA為TEFLONTM 、TEFLONTM -PFA、聚氟乙烯、PVF、聚(偏二氟乙烯)、聚(偏二氟乙烯共六氟丙烯)及全氟烷氧基聚合物。The reaction mixture may further comprise a carrier such as a polymeric carrier. The polymeric carrier may be selected from the following: poly (tetrafluoroethylene), TEFLON TM such as; polyethylene ferrocene; polystyrene; polypropylene; polyethylene; polyisoprene; poly (phosphazene group); a polymer comprising an ether unit, such as polyethylene glycol or polyethylene oxide and polypropylene glycol or polypropylene oxide, preferably an aryl ether; a polyether polyol such as poly(tetramethylene ether) glycol (PTMEG, poly Tetrahydrofuran, "Terathane", "polyTHF"); polyethylene formaldehyde; and polymers derived from epoxide reactions such as polyethylene oxide and polypropylene oxide. In an embodiment, the HSA comprises fluorine. The carrier may comprise at least one of the group consisting of fluorinated organic molecules, fluorinated hydrocarbons, fluorinated alkoxylates, and fluorinated ethers. Exemplary fluorinated HSA as TEFLON TM, TEFLON TM -PFA, polyvinyl fluoride, PVF, poly (vinylidene fluoride), poly (vinylidene fluoride co hexafluoropropylene) and perfluoroalkoxy polymer.

B.固體燃料B. Solid fuel

固體燃料包含形成低能量氫之催化劑或催化劑源(諸如至少一種催化劑,諸如選自LiH、Li、NaH、Na、KH、K、RbH、Rb及CsH之催化劑)、原子氫源及至少一種以下各物:HSA載體、吸氣劑、分散劑及執行一或多種以下功能之其他固體化學反應物:(i)藉由進行反應,諸如在反應混合物之一或多個組份之間進行反應,或藉由反應混合物之至少一種組份進行物理或化學變化,反應物形成催化劑或原子氫;及(ii)反應物引發、擴展及維持形成低能量氫之催化反應。電池壓力較佳可在約1托至100大氣壓之範圍內。反應溫度較佳在約100℃至900℃之範圍內。本發明中給出之固體燃料之許多實例(包括包含溶劑及不包含溶劑之液體燃料反應混合物)並不意謂詳盡的。基於本發明,熟習此項技術者教示其他反應混合物。The solid fuel comprises a catalyst or catalyst source that forms low energy hydrogen (such as at least one catalyst such as a catalyst selected from the group consisting of LiH, Li, NaH, Na, KH, K, RbH, Rb, and CsH), an atomic hydrogen source, and at least one of the following An HSA carrier, a getter, a dispersant, and other solid chemical reactants that perform one or more of the following functions: (i) by performing a reaction, such as by reacting between one or more components of the reaction mixture, or Physical or chemical changes by at least one component of the reaction mixture, the reactants form a catalyst or atomic hydrogen; and (ii) the reactant initiates, expands, and maintains a catalytic reaction that forms low energy hydrogen. The battery pressure is preferably in the range of from about 1 Torr to 100 atm. The reaction temperature is preferably in the range of from about 100 °C to 900 °C. Many examples of solid fuels given in the present invention, including liquid fuel reaction mixtures comprising a solvent and no solvent, are not intended to be exhaustive. Other reaction mixtures are taught by those skilled in the art based on the present invention.

氫源可包含氫或氫化物及解離器,諸如Pt/Ti、氫化物化Pt/Ti、Pd、Pt或Ru/Al2 O3 、Ni、Ti或Nb粉末。HSA載體、吸氣劑及分散劑中之至少一者可包含以下之群中之至少一者:金屬粉末(諸如Ni、Ti或Nb粉末)、R-Ni、ZrO2 、Al2 O3 、NaX(X=F、Cl、Br、I)、Na2 O、NaOH及Na2 CO3 。在一實施例中,金屬催化由諸如Na物質源及H源形成NaH分子。金屬可為過渡金屬、貴金屬、介金屬、稀土金屬、鑭系金屬及錒系金屬以及諸如鋁及錫之其他金屬。The hydrogen source may comprise hydrogen or a hydride and a dissociator such as Pt/Ti, hydrided Pt/Ti, Pd, Pt or Ru/Al 2 O 3 , Ni, Ti or Nb powder. At least one of the HSA carrier, getter, and dispersant may comprise at least one of the group consisting of metal powders (such as Ni, Ti, or Nb powders), R-Ni, ZrO 2 , Al 2 O 3 , NaX (X=F, Cl, Br, I), Na 2 O, NaOH and Na 2 CO 3 . In one embodiment, the metal catalyzes the formation of NaH molecules from sources such as Na and H sources. The metals may be transition metals, noble metals, intermetallics, rare earth metals, lanthanide metals and lanthanide metals, and other metals such as aluminum and tin.

C.低能量氫反應活化劑C. Low energy hydrogen reaction activator

低能量氫反應可藉由一或多個其他化學反應活化或引發且擴展。此等反應可具有若干類別,諸如:(i)放熱反應,其為低能量氫反應提供活化能;(ii)偶合反應,其提供催化劑源或原子氫源中之至少一者以維持低能量氫反應;(iii)自由基反應,在一實施例中其在低能量氫反應期間用作來自催化劑之電子的受體;(iv)氧化還原反應,在一實施例中其在低能量氫反應期間用作來自催化劑之電子的受體;(v)交換反應,諸如陰離子交換,包括鹵離子、硫離子、氫離子、砷離子、氧離子、磷離子及氮離子交換,在一實施例中其促進催化劑在接受來自原子氫之能量時發生電離作用以形成低能量氫;及(vi)吸氣劑、載體或基質輔助之低能量氫反應,其可提供用於低能量氫反應之至少一種化學環境,用以傳遞電子以促進H催化劑功能,經歷可逆相或其他物理變化或其電子態變化,且結合較低能量氫產物以增加低能量氫反應之程度或速率中之至少一者。在一實施例中,反應混合物包含載體,較佳導電性載體,以起動活化反應。The low energy hydrogen reaction can be activated or initiated and expanded by one or more other chemical reactions. Such reactions can have several classes, such as: (i) an exothermic reaction that provides activation energy for a low energy hydrogen reaction; (ii) a coupling reaction that provides at least one of a catalyst source or an atomic hydrogen source to maintain low energy hydrogen a reaction; (iii) a free radical reaction, which in one embodiment acts as a acceptor for electrons from the catalyst during a low energy hydrogen reaction; (iv) a redox reaction, in one embodiment it is during a low energy hydrogen reaction Used as a receptor for electrons from the catalyst; (v) exchange reaction, such as anion exchange, including halide, sulfide, hydrogen, arsenic, oxygen, phosphorus and nitrogen ion exchange, which in one embodiment promotes The catalyst undergoes ionization upon receiving energy from atomic hydrogen to form low energy hydrogen; and (vi) a getter, carrier or matrix assisted low energy hydrogen reaction that provides at least one chemical environment for low energy hydrogen reactions Used to transfer electrons to promote H catalyst function, undergo reversible or other physical changes or changes in their electronic states, and combine lower energy hydrogen products to increase the extent or rate of low energy hydrogen reactions Of at least one. In one embodiment, the reaction mixture comprises a support, preferably an electrically conductive support, to initiate the activation reaction.

在一實施例中,使用諸如LiKNaH 之催化劑,藉由加速速率限制步驟、在催化劑藉由接受來自原子氫之非輻射共振能量轉移而電離時自催化劑移除電子形成低能量氫來以高速率形成低能量氫。藉由使用載體或HSA物質,諸如活性碳(AC)、Pt/C、Pd/C、TiC或WC,以分別分散諸如LiK 原子及NaH 分子之催化劑,LiK 之典型金屬形式可轉化為原子形式且NaH 之離子形式可轉化為分子形式。考慮到在與反應混合物之其他物質反應時的表面改質,載體較佳具有高表面積及導電性。引起原子氫轉變形成低能量氫之反應需要諸如LiKNaH 之催化劑及原子氫,其中NaH 用作協同反應中之催化劑及原子氫源。原子氫至催化劑之整數倍27.2eV 之非輻射能量轉移的反應步驟產生電離催化劑及自由電子,使反應由於電荷積聚而快速停止。諸如AC之載體亦可充當導電性電子受體,且添加包含氧化劑自由基或其來源之最終電子受體反應物至反應混合物中,以最終清除自形成低能量氫之催化劑反應釋放的電子。此外,可添加還原劑至反應混合物中以促進氧化反應。協同電子受體反應較佳為放熱反應以加熱反應物且提高速率。反應活化能及擴展可由快速、放熱、氧化或自由基反應,諸如O2CF 4MgAl 之反應提供,其中諸如CF x F 及O2 及O之自由基用以最終經由諸如AC之載體接受來自催化劑之電子。其他單獨或組合氧化劑或自由基源可選自以下之群:O2 、O3N 2 ONF 3 、M2 S2 O8 (M為鹼金屬)、S、CS2 及SO2 、MnI2 、EuBr2 、AgCl及電子受體反應部分中給出之其他氧化劑或自由基源。In one embodiment, a catalyst such as Li , K, and NaH is used to form low energy hydrogen from the catalyst by an acceleration rate limiting step, when the catalyst is ionized by accepting non-radiative resonance energy transfer from atomic hydrogen. Low energy hydrogen is formed at a high rate. A typical metal form of Li and K can be converted by using a carrier or an HSA substance such as activated carbon (AC), Pt/C, Pd/C, TiC or WC to separately disperse catalysts such as Li and K atoms and NaH molecules. The ionic form of the atomic form and NaH can be converted to a molecular form. The carrier preferably has a high surface area and electrical conductivity in view of surface modification upon reaction with other materials of the reaction mixture. The reaction causing the conversion of atomic hydrogen to form low-energy hydrogen requires a catalyst such as Li , K or NaH and atomic hydrogen, wherein NaH is used as a catalyst in a synergistic reaction and an atomic hydrogen source. The reaction step of non-radiative energy transfer of atomic hydrogen to an integral multiple of 27.2 eV of the catalyst produces an ionizing catalyst and free electrons, causing the reaction to quickly stop due to charge buildup. A carrier such as AC can also act as a conductive electron acceptor and add a final electron acceptor reactant comprising an oxidant radical or its source to the reaction mixture to ultimately scavenge electrons released from the reaction of the low energy hydrogen catalyst. Further, a reducing agent may be added to the reaction mixture to promote the oxidation reaction. The synergistic electron acceptor reaction is preferably an exothermic reaction to heat the reactants and increase the rate. The activation energy and expansion of the reaction can be provided by a rapid, exothermic, oxidative or free radical reaction, such as the reaction of O 2 or CF 4 with Mg or Al , wherein radicals such as CF x and F and O 2 and O are used to ultimately pass through, for example, AC. The carrier accepts electrons from the catalyst. Other oxidizing or free radical sources, alone or in combination, may be selected from the group consisting of O 2 , O 3 , N 2 O , NF 3 , M 2 S 2 O 8 (M is an alkali metal), S, CS 2 and SO 2 , MnI 2 , EuBr 2 , AgCl and other oxidant or free radical sources given in the electron acceptor reaction section.

氧化劑較佳接受至少兩個電子。相應陰離子可為S 2-(四硫乙二酸根)、。可接受來自催化期間二次電離之催化劑,諸如NaH及Li(方程式(25-27)及(37-39))的兩個電子。電子受體添加至反應混合物或反應器適用於本發明之所有電池實施例,諸如固體燃料及非均勻催化劑實施例以及電解池及電漿電池,諸如輝光放電、RF、微波及障壁電極電漿電池及以連續或脈衝模式運作之電漿電解池。電子導電型、較佳不起反應之載體(諸如AC)亦可添加至各個此等電池實施例之反應物中。微波電漿電池之一實施例包含氫解離器,諸如電漿腔室內部之金屬表面,以支撐氫原子。The oxidizing agent preferably accepts at least two electrons. The corresponding anion can be , S 2- , (tetrathiorutate), and . Catalysts from secondary ionization during the catalysis, such as NaH and Li (equations (25-27) and (37-39)), can be accepted. The addition of an electron acceptor to a reaction mixture or reactor is suitable for all battery embodiments of the invention, such as solid fuel and heterogeneous catalyst embodiments, as well as electrolytic cells and plasma batteries, such as glow discharge, RF, microwave, and barrier electrode plasma batteries. And a plasma electrolytic cell operating in continuous or pulsed mode. Electronically conductive, preferably non-reactive carriers such as AC may also be added to the reactants of each of these battery embodiments. One embodiment of a microwave plasma battery includes a hydrogen dissociator, such as a metal surface inside a plasma chamber, to support hydrogen atoms.

在實施例中,物質混合物、化合物或反應混合物之物質,諸如催化劑源、能量反應源(諸如金屬及氧源、鹵素源及自由基源中之至少一者)及載體可組合使用。化合物或反應混合物之物質的反應元素亦可組合使用。舉例而言,氟源或氯源可為Nx Fy 與Nx Cly 之混合物,或鹵素可混合於諸如化合物Nx Fy Clr 中。組合可由熟習此項技術者藉由常規實驗來確定。In embodiments, materials of the substance mixture, compound or reaction mixture, such as a catalyst source, an energy reaction source (such as at least one of a metal and oxygen source, a halogen source, and a free radical source) and a carrier may be used in combination. The reaction elements of the compound or the substance of the reaction mixture may also be used in combination. For example, the fluorine source or the chlorine source may be a mixture of N x F y and N x Cl y , or the halogen may be mixed in, for example, the compound N x F y Cl r . Combinations can be determined by routine experimentation by those skilled in the art.

a.放熱反應Exothermic reaction

在一實施例中,反應混合物包含催化劑源或催化劑(諸如NaH、K及Li中之至少一者)及氫源或氫及至少一種進行反應之物質。反應較佳完全放熱且較佳具有快速動力學,以便其為低能量氫催化劑反應提供活化能。反應可為氧化反應。合適氧化反應為包含氧之物質(諸如溶劑,較佳醚溶劑)與金屬(諸如Al、Ti、Be、Si、P、稀土金屬、鹼金屬及鹼土金屬中之至少一者)的反應。放熱反應更佳形成鹼金屬或鹼土金屬鹵化物、較佳MgF2 ,或Al、Si、P及稀土金屬之鹵化物。合適之鹵化物反應為包含鹵素之物質(諸如溶劑,較佳碳氟化合物溶劑)與金屬及金屬氫化物中之至少一者(諸如Al、稀土金屬、鹼金屬及鹼土金屬中之至少一者)的反應。金屬或金屬氫化物可為催化劑或催化劑源,諸如NaH、K或Li。反應混合物可至少包含NaH及分別具有產物NaCl及NaF之NaAlCl4 或NaAlF4 。反應混合物可至少包含NaH、具有產物NaF之含氟溶劑。In one embodiment, the reaction mixture comprises a catalyst source or catalyst (such as at least one of NaH, K, and Li) and a hydrogen source or hydrogen and at least one species that reacts. The reaction is preferably completely exothermic and preferably has rapid kinetics so that it provides activation energy for the low energy hydrogen catalyst reaction. The reaction can be an oxidation reaction. Suitable oxidation reactions are the reaction of a substance comprising oxygen, such as a solvent, preferably an ether solvent, with a metal such as at least one of Al, Ti, Be, Si, P, a rare earth metal, an alkali metal, and an alkaline earth metal. The exothermic reaction is more preferred to form an alkali metal or alkaline earth metal halide, preferably MgF 2 , or a halide of Al, Si, P and a rare earth metal. Suitable halides are reacted with a halogen-containing material (such as a solvent, preferably a fluorocarbon solvent) and at least one of a metal and a metal hydride (such as at least one of Al, a rare earth metal, an alkali metal, and an alkaline earth metal) Reaction. The metal or metal hydride can be a catalyst or a catalyst source such as NaH, K or Li. The reaction mixture may comprise at least NaH and NaAlCl 4 or NaAlF 4 having the products NaCl and NaF, respectively. The reaction mixture may comprise at least NaH, a fluorinated solvent having the product NaF.

一般而言,為低能量氫反應提供活化能之放熱反應的產物可為金屬氧化物或金屬鹵化物,較佳金屬氟化物。合適產物為Al2 O3 、M2 O3 (M=稀土金屬)、TiO2 、Ti2 O3 、SiO2 、PF3 或PF5 、AlF3 、MgF2 、MF3 (M=稀土金屬)、NaF、NaHF2 、KF、KHF2 、LiF及LiHF2 。在Ti進行放熱反應之一實施例中,催化劑為具有27.2eV之第二電離能的Ti2+ (方程式(5)中m=1)。反應混合物可包含以下至少兩者:NaH、Na、NaNH2 、NaOH、鐵氟龍(Teflon)、氟化碳及Ti源(諸如Pt/Ti或Pd/Ti)。在Al進行放熱反應之一實施例中,催化劑為在表2中給出之AlH。反應混合物可包含以下至少兩者:NaH、Al、碳粉末、碳氟化合物(較佳溶劑,諸如六氟苯或全氟庚烷)、Na、NaOH、Li、LiH、K、KH及R-Ni。較佳地,提供活化能之放熱反應之產物再生以形成用於形成低能量氫及釋放相應動力之另一循環的反應物。金屬氟化物產物較佳藉由電解而再生成金屬及氟氣。電解質可包含共晶混合物。金屬可經氫化物化且碳產物及任何CH 4 及烴產物可經氟化以分別形成初始金屬氫化物及碳氟化合物溶劑。In general, the product of the exothermic reaction that provides activation energy for the low energy hydrogen reaction can be a metal oxide or a metal halide, preferably a metal fluoride. Suitable products are Al 2 O 3 , M 2 O 3 (M = rare earth metal), TiO 2 , Ti 2 O 3 , SiO 2 , PF 3 or PF 5 , AlF 3 , MgF 2 , MF 3 (M = rare earth metal) , NaF, NaHF 2 , KF, KHF 2 , LiF and LiHF 2 . In one embodiment in which Ti is subjected to an exothermic reaction, the catalyst is Ti 2+ having a second ionization energy of 27.2 eV (m = 1 in the equation (5)). The reaction mixture may comprise at least two of: NaH, Na, NaNH 2 , NaOH, Teflon, carbon fluoride, and Ti sources such as Pt/Ti or Pd/Ti. In one embodiment where Al is subjected to an exothermic reaction, the catalyst is AlH given in Table 2. The reaction mixture may comprise at least two of: NaH, Al, carbon powder, fluorocarbon (preferably solvent such as hexafluorobenzene or perfluoroheptane), Na, NaOH, Li, LiH, K, KH and R- Ni. Preferably, the product of the exothermic reaction providing activation energy is regenerated to form a reactant for another cycle of forming low energy hydrogen and releasing corresponding power. The metal fluoride product preferably regenerates the metal and fluorine gas by electrolysis. The electrolyte can comprise a eutectic mixture. To form an initial metal may be a metal hydride and a solvent are fluorocarbons and hydrogenated physicochemical and any carbon product and CH 4 may be a fluorinated hydrocarbon product.

在活化低能量氫轉變反應之放熱反應的一實施例中,稀土金屬(M)、Al、Ti及Si之群中之至少一者氧化成相應氧化物,分別諸如M2 O3 、Al2 O3 、Ti2 O3 及SiO2 。氧化劑可為醚溶劑,諸如1,4-苯并二噁烷(BDO),且可進一步包含碳氟化合物,諸如六氟苯(HFB)或全氟庚烷,以加速氧化反應。在一例示性反應中,混合物包含NaH、活性碳、Si與Ti中之至少一者及BDO與HFB中之至少一者。在Si作為還原劑之狀況下,產物SiO2 可藉由在高溫下H2 還原或藉由與碳反應形成Si及CO及CO2 而再生成Si。形成低能量氫之反應混合物之某一實施例包含催化劑或催化劑源(諸如Na、NaH、K、KH、Li及LiH中之至少一者)、較佳具有快速動力學之活化H之催化反應以形成低能量氫的放熱反應物源或放熱反應物及載體。放熱反應物可包含氧源及與氧反應形成氧化物之物質。對於x及y為整數而言,氧源較佳為H2 O、O2 、H2 O2 、MnO2 、氧化物、碳氧化物(較佳CO或CO2 )、氮氧化物Nx Oy (諸如N2 O及NO2 )、硫氧化物Sx Oy (較佳諸如M2 Sx Oy 之氧化劑(M為鹼金屬),其視情況可與諸如銀離子之氧化催化劑一起使用)、Clx Oy (諸如Cl2 O及較佳來自NaClO2 之ClO2 )、濃酸及其混合物(諸如HNO2 、HNO3 、H2 SO4 、H2 SO3 、HCl及HF,較佳酸式硝鎓離子(NO 2 + ))、NaOCl、Ix Oy (較佳I2 O5 )、Px Oy 、Sx Oy 、無機化合物(諸如亞硝酸鹽、硝酸鹽、氯酸鹽、硫酸鹽、磷酸鹽、金屬氧化物(諸如氧化鈷)及催化劑之氧化物或氫氧化物(諸如NaOH)及陽離子為催化劑源(諸如Na、K及Li)之過氯酸鹽之一)之氧陰離子、有機化合物(諸如醚,較佳二甲氧基乙烷、二噁烷及1,4-苯并二噁烷(BDO)之一)之含氧官能基,且反應物質可包含稀土金屬(M)、Al、Ti及Si之群之至少一者,且相應氧化物分別為M2 O3 、Al2 O3 、Ti2 O3 及SiO2 。反應物質可包含以下之群至少一者之氧化物產物的金屬或元素:Al2 O3 氧化鋁、La2 O3 氧化鑭、MgO氧化鎂、Ti2 O3 氧化鈦、DY2 O3 氧化鏑、Er2 O3 氧化鉺、Eu2 O3 氧化銪、LiOH氫氧化鋰、Ho2 O3 氧化鈥、Li2 O氧化鋰、Lu2 O3 氧化鎦、Nb2 O5 氧化鈮、Nd2 O3 氧化釹、SiO2 氧化矽、Pr2 O3 氧化鐠、Sc2 O3 氧化鈧、SrSiO3 偏矽酸鍶、Sm2 O3 氧化釤、Tb2 O3 氧化鋱、Tm2 O3 氧化銩、Y2 O3 氧化釔及Ta2 O5 氧化鉭、B2 O3 氧化硼及氧化鋯。載體可包含碳,較佳活性碳。金屬或元素可為以下至少一者:Al、La、Mg、Ti、Dy、Er、Eu、Li、Ho、Lu、Nb、Nd、Si、Pr、Sc、Sr、Sm、Tb、Tm、Y、Ta、B、Zr、S、P、C及其氫化物。In an embodiment of the exothermic reaction for activating a low energy hydrogen shift reaction, at least one of the group of rare earth metals (M), Al, Ti, and Si is oxidized to a corresponding oxide, such as M 2 O 3 , Al 2 O, respectively. 3 , Ti 2 O 3 and SiO 2 . The oxidizing agent may be an ether solvent such as 1,4-benzodioxane (BDO), and may further contain a fluorocarbon such as hexafluorobenzene (HFB) or perfluoroheptane to accelerate the oxidation reaction. In an exemplary reaction, the mixture comprises at least one of NaH, activated carbon, Si and Ti, and at least one of BDO and HFB. In the case where Si is used as a reducing agent, the product SiO 2 can regenerate Si by reduction of H 2 at a high temperature or by reaction with carbon to form Si and CO and CO 2 . An embodiment of the reaction mixture forming low energy hydrogen comprises a catalyst or a catalyst source (such as at least one of Na, NaH, K, KH, Li, and LiH), preferably a catalytic reaction with rapid kinetic activation of H An exothermic reactant source or exothermic reactant and carrier that form low energy hydrogen. The exothermic reactant can comprise an oxygen source and a material that reacts with oxygen to form an oxide. For x and y as integers, the oxygen source is preferably H 2 O, O 2 , H 2 O 2 , MnO 2 , oxides, carbon oxides (preferably CO or CO 2 ), nitrogen oxides N x O y (such as N 2 O and NO 2 ), sulfur oxides S x O y (preferably an oxidizing agent such as M 2 S x O y (M is an alkali metal), which may optionally be used together with an oxidation catalyst such as silver ions ), Cl x O y (such as Cl 2 O and preferably ClO 2 from NaClO 2 ), concentrated acid and mixtures thereof (such as HNO 2 , HNO 3 , H 2 SO 4 , H 2 SO 3 , HCl and HF) Good acid nitroxide ( NO 2 + )), NaOCl, I x O y (preferably I 2 O 5 ), P x O y , S x O y , inorganic compounds (such as nitrite, nitrate, chlorine) One of perchlorates of acid salts, sulfates, phosphates, metal oxides (such as cobalt oxide) and catalyst oxides or hydroxides (such as NaOH) and cations as catalyst sources (such as Na, K and Li) An oxygen-containing functional group of an oxyanion, an organic compound such as an ether, preferably dimethoxyethane, dioxane, and one of 1,4-benzodioxane (BDO), and the reactive substance may comprise At least one of a group of rare earth metals (M), Al, Ti, and Si, and Oxide respectively M 2 O 3, Al 2 O 3, Ti 2 O 3 and SiO 2. The reaction material may comprise a metal or an element of an oxide product of at least one of the following groups: Al 2 O 3 alumina, La 2 O 3 cerium oxide, MgO magnesium oxide, Ti 2 O 3 titanium oxide, DY 2 O 3 cerium oxide. , Er 2 O 3 ruthenium oxide, Eu 2 O 3 ruthenium oxide, LiOH lithium hydroxide, Ho 2 O 3 ruthenium oxide, Li 2 O lithium oxide, Lu 2 O 3 ruthenium oxide, Nb 2 O 5 ruthenium oxide, Nd 2 O 3 cerium oxide, SiO 2 cerium oxide, Pr 2 O 3 cerium oxide, Sc 2 O 3 cerium oxide, SrSiO 3 bismuth bismuth citrate, Sm 2 O 3 cerium oxide, Tb 2 O 3 cerium oxide, Tm 2 O 3 cerium oxide , Y 2 O 3 yttrium oxide and Ta 2 O 5 yttrium oxide, B 2 O 3 boron oxide and zirconium oxide. The support may comprise carbon, preferably activated carbon. The metal or element may be at least one of the following: Al, La, Mg, Ti, Dy, Er, Eu, Li, Ho, Lu, Nb, Nd, Si, Pr, Sc, Sr, Sm, Tb, Tm, Y, Ta, B, Zr, S, P, C and their hydrides.

在另一實施例中,氧源可為以下至少一者:氧化物,諸如M2 O,其中M為鹼金屬,較佳Li2 O、Na2 O及K2 O;過氧化物,諸如M2 O2 ,其中M為鹼金屬,較佳Li2 O2 、Na2 O2 及K2 O2 ;及超氧化物,諸如MO2 ,其中M為鹼金屬,較佳Li2 O2 、Na2 O2 及K2 O2 。離子過氧化物可進一步包含Ca、Sr或Ba之過氧化物。In another embodiment, the source of oxygen may be at least one of: an oxide such as M 2 O, wherein M is an alkali metal, preferably Li 2 O, Na 2 O, and K 2 O; a peroxide such as M 2 O 2 , wherein M is an alkali metal, preferably Li 2 O 2 , Na 2 O 2 and K 2 O 2 ; and a superoxide such as MO 2 , wherein M is an alkali metal, preferably Li 2 O 2 , Na 2 O 2 and K 2 O 2 . The ionic peroxide may further comprise a peroxide of Ca, Sr or Ba.

在另一實施例中,氧源與較佳具有快速動力學之活化H形成低能量氫之催化反應的放熱反應物源或放熱反應物中之至少一者包含以下之群中之一或多者:MNO3 、MNO、MNO2 、M3 N、M2 NH、MNH2 、MX、NH3 、MBH4 、MAlH4 、M3 AlH6 、MOH、M2 S、MHS、MFeSi、M2 CO3 、MHCO3 、M2 SO4 、MHSO4 、M3 PO4 、M2 HPO4 、MH2 PO4 、M2 MoO4 、MNbO3 、M2 B4 O7 (四硼酸鋰)、MBO2 、M2 WO4 、MAlCl4 、MGaCl4 、M2 CrO4 、M2 Cr2 O7 、M2 TiO3 、MZrO3 、MAlO2 、MCoO2 、MGaO2 、M2 GeO3 、MMn2 O4 、M4 SiO4 、M2 SiO3 、MTaO3 、MCuCl4 、MPdCl4 、MVO3 、MIO3 、MFeO2 、MIO4 、MClO4 、MScOn 、MTiOn 、MVOn 、MCrOn 、MCr2 On 、MMn2 On 、MFeOn 、MCoOn 、MNiOn 、MNi2 On 、MCuOn 及MZnOn (其中M為Li、Na或K且n=1、2、3或4)、氧陰離子、強酸氧陰離子、氧化劑、分子氧化劑(諸如V2 O3 、I2 O5 、MnO2 、Re2 O7 、CrO3 、RuO2 、AgO、PdO、PdO2 、PtO、PtO2 、I2 O4 、I2 O5 、I2 O9 、SO2 、SO3 、CO2 、N2 O、NO、NO2 、N2 O3 、N2 O4 、N2 O5 、Cl2 O、ClO2 、Cl2 O3 、Cl2 O6 、Cl2 O7 、PO2 、P2 O3 及P2 O5 )、NH4 X(其中X為硝酸根或熟習此項技術者已知之其他合適陰離子,諸如包含F- 、Cl- 、Br- 、I- 、NO3 - 、NO2 - 、SO4 2- 、HSO4 - 、CoO2 - 、IO3 - 、IO4 - 、TiO3 - 、CrO4 - 、FeO2 - 、PO4 3- 、HPO4 2- 、H2 PO4 - 、VO3 - 、ClO4 - 及Cr2 O7 2- 及反應物之其他陰離子之群之一)。反應混合物可另外包含還原劑。在一實施例中,N2 O5 由反應物混合物之反應、諸如HNO3 與P2 O5 根據2P2 O5 +12 HNO3 至4H3 PO4 +6N2 O5 反應形成。In another embodiment, at least one of the exothermic reactant source or the exothermic reactant of the oxygen source and the catalytic reaction that preferably forms a low energy hydrogen with the fast kinetic activation H comprises one or more of the following groups : MNO 3 , MNO, MNO 2 , M 3 N, M 2 NH, MNH 2 , MX, NH 3 , MBH 4 , MAlH 4 , M 3 AlH 6 , MOH, M 2 S, MHS, MFeSi, M 2 CO 3 , MHCO 3 , M 2 SO 4 , MHSO 4 , M 3 PO 4 , M 2 HPO 4 , MH 2 PO 4 , M 2 MoO 4 , MNbO 3 , M 2 B 4 O 7 (lithium tetraborate), MBO 2 , M 2 WO 4 , MAlCl 4 , MGaCl 4 , M 2 CrO 4 , M 2 Cr 2 O 7 , M 2 TiO 3 , MZrO 3 , MAlO 2 , MCoO 2 , MGaO 2 , M 2 GeO 3 , MMn 2 O 4 , M 4 SiO 4 , M 2 SiO 3 , MTaO 3 , MCuCl 4 , MPdCl 4 , MVO 3 , MIO 3 , MFeO 2 , MIO 4 , MClO 4 , MScO n , MTiO n , MVO n , MCrO n , MCr 2 O n , MMn 2 O n , MFeO n , MCoO n , MNiO n , MNi 2 O n , MCuO n and MZnO n (where M is Li, Na or K and n=1, 2, 3 or 4), oxyanion, strong acid oxyanion, oxidant, the oxidant molecules (such as V 2 O 3, I 2 O 5, MnO 2, Re 2 O 7, CrO 3 RuO 2, AgO, PdO, PdO 2, PtO, PtO 2, I 2 O 4, I 2 O 5, I 2 O 9, SO 2, SO 3, CO 2, N 2 O, NO, NO 2, N 2 O 3 , N 2 O 4 , N 2 O 5 , Cl 2 O, ClO 2 , Cl 2 O 3 , Cl 2 O 6 , Cl 2 O 7 , PO 2 , P 2 O 3 and P 2 O 5 ), NH 4 X (wherein X is nitrate or other suitable anion known to those skilled in the art, such as comprising F - , Cl - , Br - , I - , NO 3 - , NO 2 - , SO 4 2- , HSO 4 - , CoO 2 - , IO 3 - , IO 4 - , TiO 3 - , CrO 4 - , FeO 2 - , PO 4 3- , HPO 4 2- , H 2 PO 4 - , VO 3 - , ClO 4 - and Cr 2 O 7 2- and one of the other anions of the reactants). The reaction mixture may additionally comprise a reducing agent. In one embodiment, N 2 O 5 is formed from a reaction of a reactant mixture, such as HNO 3 and P 2 O 5 according to 2P 2 O 5 +12 HNO 3 to 4H 3 PO 4 +6N 2 O 5 .

在氧或包含氧之化合物參與放熱反應的一實施例中,O2 可用作催化劑或催化劑源。氧分子鍵能為5.165eV,且氧原子之第一、第二及第三電離能分別為13.61806eV 、35.11730eV 及54.9355eV 反應O 2O +O 2+O 2O +O 3+ 及2O →2O + 分別提供約E h 2倍、4倍及1倍之淨焓,且包含藉由接受來自H之此等能量以引起低能量氫形成的形成低能量氫之催化劑反應。In one embodiment, the oxygen or oxygen containing compounds participating in an exothermic reaction, O 2 can be used as catalysts or catalyst source. The oxygen molecular bond energy is 5.165 eV, and the first, second and third ionization energies of the oxygen atoms are 13.61806 eV , 35.11730 eV and 54.9355 eV respectively. The reaction O 2O + O 2+ , O 2O + O 3+ And 2 O → 2 O + provide a net enthalpy of about 2 times, 4 times and 1 time of E h , respectively, and comprises a catalyst reaction for forming low energy hydrogen by accepting such energy from H to cause formation of low energy hydrogen.

另外,活化低能量氫反應之放熱反應源可為金屬合金形成反應,較佳藉由熔融Al而引發之Pd與Al之間的金屬合金形成反應。放熱反應較佳產生高能粒子以活化低能量氫形成反應。反應物可為熱原質或煙火組合物。在另一實施例中,可藉由在諸如在約1000-5000℃之範圍內、較佳在約1500-2500℃之範圍內的極高溫度下運作反應物來提供活化能。反應容器可包含高溫不鏽鋼合金、耐火金屬或合金、氧化鋁或碳。高反應物溫度可藉由加熱反應器或藉由放熱反應來實現。In addition, the exothermic reaction source for activating the low-energy hydrogen reaction may be a metal alloy forming reaction, preferably a metal alloy formed between Pd and Al which is initiated by melting Al. The exothermic reaction preferably produces energetic particles to activate the low energy hydrogen to form a reaction. The reactant can be a pyrogen or pyrotechnic composition. In another embodiment, the activation energy can be provided by operating the reactants at very high temperatures, such as in the range of about 1000-5000 °C, preferably in the range of about 1500-2500 °C. The reaction vessel may comprise a high temperature stainless steel alloy, a refractory metal or alloy, alumina or carbon. The high reactant temperature can be achieved by heating the reactor or by an exothermic reaction.

放熱反應物可包含鹵素、較佳氟或氯及與氟或氯反應以分別形成氟化物或氯化物之物質。合適氟源為碳氟化合物(諸如CF4 、六氟苯及十六氟庚烷)、氟化氙(諸如XeF2 、XeF4 及XeF6 )、Bx Xy (較佳BF3 、B2 F4 、BCl3 或BBr3 )、SFx (諸如氟矽烷)、氟化氮Nx Fy (較佳NF3 )、NF3 O、SbFx 、BiFx (較佳BiF5 )、Nx Cly (較佳NCl3 )、Sx Xy (較佳SCl2 或Sx Fy ,X為鹵素;x及y為整數,諸如SF4 、SF6 或S2 F10 )、氟化磷、M 2 S iF 6 (其中M為鹼金屬,諸如Na 2 SiF 6K 2 SiF 6 )、MSiF 6 (其中M為鹼土金屬,諸如MgSiF 6 )、GaF 3PF 5MPF 6 (其中M為鹼金屬)、MHF 2 (其中M為鹼金屬,諸如NaHF 2KHF 2 )、K 2 TaF 7KBF 4K 2 MnF 6K 2 ZrF 6 (其中期望可使用其他類似化合物,諸如具有另一鹼金屬或鹼土金屬取代、諸如Li、Na或K之一作為鹼金屬的化合物)。合適之氯源為氯氣、SbCl5 及碳氯化合物,諸如CCl4 及氯仿。反應物質可包含形成相應氟化物或氯化物之鹼金屬或鹼土金屬或氫化物、稀土金屬(M)、Al、Si、Ti及P之群中至少一者。反應物鹼金屬較佳對應於催化劑之鹼金屬,鹼土金屬氫化物為MgH2 ,稀土金屬為La,且Al為奈米粉末。載體可包含碳、較佳活性碳、中孔碳及用於Li離子電池中之碳。反應物可呈任何莫耳比率。反應物質與氟或氯較佳呈約如氟化物或氯化物之元素之化學計量比,催化劑過量,較佳呈與氟或氯反應之元素幾乎相同之莫耳比率,且載體過量。The exothermic reactant may comprise a halogen, preferably fluorine or chlorine, and a material which reacts with fluorine or chlorine to form a fluoride or chloride, respectively. Suitable fluorine sources are fluorocarbons (such as CF 4 , hexafluorobenzene and hexadecane heptane), cesium fluoride (such as XeF 2 , XeF 4 and XeF 6 ), B x X y (preferably BF 3 , B 2 ) F 4 , BCl 3 or BBr 3 ), SF x (such as fluorodecane), nitrogen fluoride N x F y (preferably NF 3 ), NF 3 O, SbF x , BiF x (preferably BiF 5 ), N x Cl y (preferably NCl 3 ), S x X y (preferably SCl 2 or S x F y , X is halogen; x and y are integers such as SF 4 , SF 6 or S 2 F 10 ), phosphorus fluoride M 2 S i F 6 (wherein M is an alkali metal such as Na 2 SiF 6 and K 2 SiF 6 ), MSiF 6 (wherein M is an alkaline earth metal such as MgSiF 6 ), GaF 3 , PF 5 , MPF 6 (wherein M is an alkali metal), MHF 2 (wherein M is an alkali metal such as NaHF 2 and KHF 2 ), K 2 TaF 7 , KBF 4 , K 2 MnF 6 and K 2 ZrF 6 (wherein other similar compounds are desired, such as A compound having another alkali metal or alkaline earth metal substitution such as one of Li, Na or K as an alkali metal). Suitable chlorine sources are chlorine, SbCl 5 and chlorocarbons such as CCl 4 and chloroform. The reactive species may comprise at least one of an alkali metal or alkaline earth metal or hydride, a group of rare earth metals (M), Al, Si, Ti, and P that form a corresponding fluoride or chloride. The alkali metal of the reactant preferably corresponds to the alkali metal of the catalyst, the alkaline earth metal hydride is MgH 2 , the rare earth metal is La, and Al is a nano powder. The support may comprise carbon, preferably activated carbon, mesoporous carbon, and carbon for use in a Li-ion battery. The reactants can be in any molar ratio. Preferably, the reactive species and fluorine or chlorine are in a stoichiometric ratio to an element such as a fluoride or chloride. The catalyst is present in excess, preferably in an almost identical molar ratio to the element which reacts with fluorine or chlorine, and in excess of the support.

放熱反應物可包含鹵素氣體(較佳氯或溴)或鹵素氣體源(諸如HF、HCl、HBr、HI,較佳CF4 或CCl4 )及與鹵素反應形成鹵化物之物質。鹵素源亦可為氧源,諸如Cx Oy Xr ,其中X為鹵素,且x、y及r為整數且為此項技術中已知。反應物質可包含形成相應鹵化物之鹼金屬或鹼土金屬或氫化物、稀土金屬、Al、Si及P之群中至少一者。反應物鹼金屬較佳對應於催化劑之鹼金屬,鹼土金屬氫化物為MgH2 ,稀土金屬為La,且Al為奈米粉末。載體可包含碳,較佳活性碳。反應物可呈任何莫耳比率。反應物質與鹵素較佳呈約相等化學計量比,催化劑過量,較佳呈與鹵素反應之元素幾乎相同之莫耳比率,且載體過量。在一實施例中,反應物包含:催化劑源或催化劑,諸如Na、NaH、K、KH、Li、LiH及H2 ;鹵素氣體,較佳氯氣或溴氣;Mg、MgH2 、稀土金屬(較佳La、Gd或Pr)、Al中之至少一者;及載體,較佳碳;諸如活性碳。The exothermic reactant may comprise a halogen gas (preferably chlorine or bromine) or a source of a halogen gas (such as HF, HCl, HBr, HI, preferably CF 4 or CCl 4 ) and a substance which reacts with the halogen to form a halide. The halogen source can also be a source of oxygen, such as C x O y X r , where X is a halogen, and x, y, and r are integers and are known in the art. The reactive species may comprise at least one of an alkali metal or alkaline earth metal or hydride, a rare earth metal, a group of Al, Si, and P that form a corresponding halide. The alkali metal of the reactant preferably corresponds to the alkali metal of the catalyst, the alkaline earth metal hydride is MgH 2 , the rare earth metal is La, and Al is a nano powder. The support may comprise carbon, preferably activated carbon. The reactants can be in any molar ratio. Preferably, the reactive species and the halogen are in about the same stoichiometric ratio, the catalyst is in excess, preferably in the molar ratio of the elements which react with the halogen, and the carrier is in excess. In one embodiment, the reactants comprise: a catalyst source or catalyst such as Na, NaH, K, KH, Li, LiH, and H 2 ; a halogen gas, preferably chlorine or bromine; Mg, MgH 2 , rare earth metals (compare At least one of La, Gd or Pr), Al; and a carrier, preferably carbon; such as activated carbon.

b.自由基反應b. Free radical reaction

在一實施例中,放熱反應為自由基反應,較佳鹵或氧自由基反應。鹵自由基源可為鹵素(較佳F2 或Cl2 )或碳氟化合物(較佳CF4 )。F自由基源為S2 F10 。包含鹵素氣體之反應混合物可進一步包含自由基引發劑。反應器可包含紫外光源以形成自由基、較佳鹵素自由基且更佳氯或氟自由基。自由基引發劑為此項技術中通常已知之自由基引發劑,諸如過氧化物、偶氮化合物及金屬離子源,諸如金屬鹽,較佳鹵化鈷,諸如作為Co2+ 源之CoCl2 或作為Fe2+ 源之FeSO4 。後者較佳與諸如H2 O2 或O2 之氧物質反應。自由基可為中性的。In one embodiment, the exothermic reaction is a free radical reaction, preferably a halogen or oxygen radical reaction. The halogen radical source can be a halogen (preferably F 2 or Cl 2 ) or a fluorocarbon (preferably CF 4 ). The source of F radicals is S 2 F 10 . The reaction mixture containing a halogen gas may further contain a radical initiator. The reactor may comprise an ultraviolet light source to form free radicals, preferably halogen radicals and more preferably chlorine or fluorine radicals. Free radical initiators are free radical initiators generally known in the art, such as peroxides, azo compounds, and sources of metal ions, such as metal salts, preferably cobalt halides, such as CoCl 2 as a Co 2+ source or as FeSO 4 of Fe 2+ source. The latter preferably reacts with an oxygen species such as H 2 O 2 or O 2 . Free radicals can be neutral.

氧源可包含原子氧源。氧可為單線態氧。在一實施例中,單線態氧由NaOCl與H2 O2 之反應形成。在一實施例中,氧源包含O2 且可進一步包含自由基源或自由基引發劑以擴展自由基反應,較佳O原子之自由基反應。自由基源或氧源可為臭氧或臭氧化物中之至少一者。在一實施例中,反應器包含臭氧源,諸如在氧中放電,以向反應混合物提供臭氧。The oxygen source can comprise an atomic oxygen source. Oxygen can be singlet oxygen. In one embodiment, singlet oxygen is formed by the reaction of NaOCl with H 2 O 2 . In one embodiment, the oxygen source comprises O 2 and may further comprise a source of free radicals or a free radical initiator to extend the free radical reaction, preferably a free radical reaction of the O atom. The source of free radicals or oxygen may be at least one of ozone or ozonide. In an embodiment, the reactor contains a source of ozone, such as in oxygen, to provide ozone to the reaction mixture.

自由基源或氧源可進一步包含以下至少一者:過氧化合物、過氧化物、H2 O2 、含有偶氮基之化合物、N2 O、NaOCl、芬頓試劑(Fenton's reagent)或類似試劑、OH自由基或其來源源、過氙酸根離子或其來源(諸如鹼金屬或鹼土金屬過氙酸鹽、較佳過氙酸鈉(Na4 XeO6 )或過氙酸鉀(K4 XeO6 )、四氧化氙(XeO4 )及過氙酸(H4 XeO6 ))及金屬離子來源(諸如金屬鹽)。金屬鹽可為以下至少一者:FeSO4 、AlCl3 、TiCl3 及較佳鹵化鈷,諸如作為Co2+ 源之CoCl2The radical source or the oxygen source may further comprise at least one of: a peroxy compound, a peroxide, H 2 O 2 , a compound containing an azo group, N 2 O, NaOCl, Fenton's reagent or the like. , OH radical or source thereof, perrhenate ion or source thereof (such as alkali metal or alkaline earth metal perrhenate, preferably sodium perrhenate (Na 4 XeO 6 ) or potassium perruthenate (K 4 XeO 6 ), osmium tetroxide (XeO 4 ) and pericylic acid (H 4 XeO 6 )) and sources of metal ions (such as metal salts). The metal salt may be at least one of FeSO 4 , AlCl 3 , TiCl 3 and a preferred cobalt halide such as CoCl 2 as a source of Co 2+ .

在一實施例中,諸如Cl之自由基由諸如NaH+MgH2 +諸如活性碳(AC)之載體+諸如Cl2 之鹵素氣體的反應混合物中諸如Cl2 之鹵素形成。自由基可由Cl2 與諸如CH4 之烴的混合物在諸如超過200℃之高溫下反應形成。鹵素可相對於烴莫耳過量。碳氯化合物產物及Cl自由基可與還原劑反應以提供用於形成低能量氫之活化能及途徑。可使用合成氣體(合成氣)及費歇爾-托羅普希反應(Fischer-Tropsch reaction)或藉由將碳直接氫還原成甲烷使碳產物再生。反應混合物可包含在諸如超過200℃之高溫下的O2 與Cl2 之混合物。混合物可反應形成Clx Oy (x及y為整數),諸如ClO、Cl2 O及ClO2 。反應混合物可包含可反應形成HCl之在諸如超過200℃之高溫下的H2 及Cl2 。反應混合物可包含可反應形成H2 O之在諸如超過50℃之略微高溫下的H2 及O2 及複合劑(諸如Pt/Ti、Pt/C或Pd/C)。複合劑可在諸如在超過1大氣壓範圍內、較佳在約2至100大氣壓之範圍內的高壓下運作。反應混合物可為非化學計量以利於自由基及單線態氧形成。系統可進一步包含紫外光或電漿源以形成自由基,諸如RF、微波或輝光放電、較佳高壓脈衝、電漿源。反應物可進一步包含催化劑以形成諸如Cl、O及H之原子自由基、單線態氧及臭氧中之至少一者。催化劑可為貴金屬,諸如Pt。在形成Cl自由基之一實施例中,Pt催化劑維持在超過氯化鉑分解溫度(諸如分別具有581℃、435℃及327℃之分解溫度的PtCl2 、PtCl3 及PtCl4 )之溫度下。在一實施例中,藉由將金屬鹵化物溶解於Pt、Pd或其鹵化物不可溶之合適溶劑中且移除溶液,可自包含金屬鹵化物之產物混合物回收Pt。可包含碳及Pt或Pd鹵化物之固體可經加熱以藉由相應鹵化物分解而形成碳上Pt或Pd。In one embodiment, a radical such as Cl is formed from a halogen such as Cl 2 in a reaction mixture such as NaH+MgH 2 + a carrier such as activated carbon (AC) + a halogen gas such as Cl 2 . The free radical may be formed by reacting a mixture of Cl 2 with a hydrocarbon such as CH 4 at a high temperature such as exceeding 200 °C. The halogen can be in excess relative to the hydrocarbon moles. The chlorocarbon product and Cl radical can be reacted with a reducing agent to provide an activation energy and pathway for the formation of low energy hydrogen. The carbon product can be regenerated using a synthesis gas (synthesis gas) and a Fischer-Tropsch reaction or by direct hydrogen reduction of carbon to methane. The reaction mixture may comprise a mixture of O 2 and Cl 2 at a high temperature such as over 200 °C. The mixture can be reacted to form Cl x O y (x and y are integers) such as ClO, Cl 2 O and ClO 2 . The reaction mixture may comprise H 2 and Cl 2 which are reactive to form HCl at elevated temperatures such as in excess of 200 °C. The reaction mixture may comprise H 2 and O 2 and a complexing agent (such as Pt/Ti, Pt/C or Pd/C) which are reactive to form H 2 O at a slightly elevated temperature such as above 50 °C. The compounding agent can be operated at a high pressure such as in the range of more than 1 atm, preferably about 2 to 100 atm. The reaction mixture can be non-stoichiometric to facilitate free radical and singlet oxygen formation. The system may further comprise an ultraviolet or plasma source to form free radicals, such as RF, microwave or glow discharge, preferably high voltage pulses, plasma sources. The reactant may further comprise a catalyst to form at least one of atomic radicals such as Cl, O and H, singlet oxygen, and ozone. The catalyst can be a precious metal such as Pt. In one embodiment in which Cl radicals are formed, the Pt catalyst is maintained at a temperature above the decomposition temperature of the platinum chloride, such as PtCl 2 , PtCl 3 , and PtCl 4 having decomposition temperatures of 581 ° C, 435 ° C, and 327 ° C, respectively. In one embodiment, Pt can be recovered from a product mixture comprising a metal halide by dissolving the metal halide in a suitable solvent in which Pt, Pd or its halide is insoluble and removing the solution. Solids which may comprise carbon and Pt or Pd halides may be heated to form Pt or Pd on the carbon by decomposition of the corresponding halide.

在一實施例中,N2 O、NO2 或NO氣體為添加之反應混合物。N2 O及NO2 可用作NO自由基源。在另一實施例中,NO自由基在電池中較佳藉由NH3 氧化而產生。反應可為NH3 與O2 在鉑或鉑-銠上在高溫下反應。NO、NO2 及N2 O可由已知之工業方法,諸如藉由哈柏法(Haber process)、接著奧斯特瓦爾德法(Ostwald process)產生。在一實施例中,例示性步驟順序為:In one embodiment, the N 2 O, NO 2 or NO gas is the added reaction mixture. N 2 O and NO 2 can be used as a source of NO radicals. In another embodiment, NO radical preferably by the NH 3 oxidation is generated in the battery. The reaction can be a reaction of NH 3 with O 2 on platinum or platinum-ruthenium at elevated temperatures. NO, NO 2 and N 2 O can be produced by known industrial processes, such as by the Haber process followed by the Ostwald process. In an embodiment, the exemplary sequence of steps is:

特定言之,哈柏法可用以在高溫及高壓下使用諸如含有某種氧化物之α鐵的催化劑由N2 及H2 產生NH3 。奧斯持瓦爾德法可用以在諸如熱鉑或鉑-銠催化劑之催化劑下將氨氧化成NO、NO2 及N2 O。可使用上文揭示之方法使鹼金屬硝酸鹽再生。In particular, the Haber process can be used to produce NH 3 from N 2 and H 2 using a catalyst such as alpha iron containing an oxide at elevated temperatures and pressures. The Oswaldwald process can be used to oxidize ammonia to NO, NO 2 and N 2 O under a catalyst such as a hot platinum or platinum-ruthenium catalyst. The alkali metal nitrate can be regenerated using the methods disclosed above.

系統及反應混合物可引發及維持燃燒反應以提供單線態氧與自由基中之至少一者。燃燒反應物可為非化學計量以利於與其他低能量氫反應物反應之自由基及單線態氧的形成。在一實施例中,抑制爆炸反應以利於長期穩定反應,或由合適反應物及莫耳比率引起爆炸反應以實現所需低能量氫反應速率。在一實施例中,電池包含至少一個內燃機汽缸。The system and reaction mixture can initiate and maintain a combustion reaction to provide at least one of singlet oxygen and free radicals. The combustion reactants can be non-stoichiometric to facilitate the formation of free radicals and singlet oxygen that react with other low energy hydrogen reactants. In one embodiment, the explosive reaction is inhibited to facilitate long-term stable reaction, or an explosive reaction is caused by a suitable reactant and molar ratio to achieve a desired low energy hydrogen reaction rate. In an embodiment, the battery includes at least one internal combustion engine cylinder.

c.電子受體反應c. Electron acceptor reaction

在一實施例中,反應混合物進一步包含電子受體。當形成低能量氫之催化反應期間能量自原子氫轉移至催化劑時,電子受體可充當自該催化劑電離之電子的接收劑。電子受體可為以下至少一者:導電聚合物或金屬載體、氧化劑(諸如第VI族元素、分子及化合物)、自由基、形成穩定自由基之物質及具有高電子親和力之物質,諸如鹵原子、O2 、C、CF1 、CF2 、CF3 或CF4 、Si、S、Px Sy 、CS2 、Sx Ny 及進一步包含O及H之此等化合物、Au、At、Alx Oy (x及y為整數)、較佳AlO2 (在一實施例中,其為在R-Ni下Al(OH)3 與Al反應之中間物)、ClO、Cl2 、F2 、AlO2 、B2 N、CrC2 、C2 H、CuCl2 、CuBr2 、MnX3 (X=鹵素)、MoX3 (X=鹵素)、NiX3 (X=鹵素)、RuF4 、RuF5 或RuF6 、ScX4 (X=鹵素)、WO3 及如熟習此項技術者已知之具有高電子親和力之其他原子及分子。在一實施例中,當催化劑藉由接受來自原子氫之非輻射共振能量轉移而電離時載體充當催化劑之電子受體。載體較佳為至少一種導電物質且形成穩定自由基。合適之該等載體為導電聚合物。載體可在宏觀結構上形成陰離子,諸如形成C6 離子之Li離子電池組之碳。在另一實施例中,載體為半導體,較佳經摻雜以提高導電性。反應混合物進一步包含自由基或其來源,諸如O、OH、O2 、O3 、H2 O2 、F、Cl及NO,其可用作催化期間由載體形成之自由基的清除劑。在一實施例中,諸如NO之自由基可與諸如鹼金屬之催化劑或催化劑源形成錯合物。在另一實施例中,載體具有不成對電子。載體可為順磁性的,諸如稀土元素或化合物,諸如Er2 O3 。在一實施例中,諸如Li、NaH、K、Rb或Cs之催化劑或催化劑源浸漬於諸如載體之電子受體中且添加反應混合物之其他組份。載體較佳為插入有NaH或Na之AC。In an embodiment, the reaction mixture further comprises an electron acceptor. When energy is transferred from the atomic hydrogen to the catalyst during the catalytic reaction to form low energy hydrogen, the electron acceptor can act as a acceptor for electrons ionized from the catalyst. The electron acceptor may be at least one of a conductive polymer or a metal carrier, an oxidizing agent (such as a Group VI element, a molecule and a compound), a radical, a substance forming a stable radical, and a substance having a high electron affinity such as a halogen atom. , O 2 , C, CF 1 , CF 2 , CF 3 or CF 4 , Si, S, P x S y , CS 2 , S x N y and such compounds further comprising O and H, Au, At, Al x O y (x and y are integers), preferably AlO 2 (in one embodiment, it is an intermediate in which Al(OH) 3 reacts with Al under R-Ni), ClO, Cl 2 , F 2 , AlO 2 , B 2 N, CrC 2 , C 2 H, CuCl 2 , CuBr 2 , MnX 3 (X=halogen), MoX 3 (X=halogen), NiX 3 (X=halogen), RuF 4 , RuF 5 or RuF 6 , ScX 4 (X = halogen), WO 3 and other atoms and molecules known to those skilled in the art having high electron affinity. In one embodiment, the support acts as an electron acceptor for the catalyst when the catalyst is ionized by accepting non-radiative resonance energy transfer from atomic hydrogen. The support is preferably at least one electrically conductive substance and forms a stable free radical. Suitable such carriers are electrically conductive polymers. The carrier may form an anion at the macro structure, such as the formation of carbon ions Li C 6 ion battery packs. In another embodiment, the carrier is a semiconductor, preferably doped to increase conductivity. The reaction mixture further comprises free radicals or sources thereof such as O, OH, O 2 , O 3 , H 2 O 2 , F, Cl and NO, which act as scavengers for the free radicals formed by the support during the catalysis. In one embodiment, a free radical such as NO can form a complex with a catalyst such as an alkali metal or a source of catalyst. In another embodiment, the carrier has unpaired electrons. The support can be paramagnetic, such as a rare earth element or compound, such as Er 2 O 3 . In one embodiment, a catalyst or catalyst source such as Li, NaH, K, Rb or Cs is immersed in an electron acceptor such as a support and the other components of the reaction mixture are added. The carrier is preferably an AC in which NaH or Na is inserted.

d.氧化還原反應d. redox reaction

在一實施例中,低能量氫反應由氧化還原反應活化。在一例示性實施例中,反應混合物包含以下之群中之至少兩種物質:催化劑、氫源、氧化劑、還原劑及載體。反應混合物亦可包含路易斯酸(Lewis acid),諸如第13族三鹵化物,較佳AlCl3 、BF3 、BCl3 及BBr3 中之至少一者。在某些實施例中,各反應混合物包含至少一種選自以下種類之組份(i)-(iii)的物質:(i)選自Li、LiH 、K、KHNaH 、Rb、RbH、Cs及CsH之催化劑;(ii)選自氫氣、氫氣源或氫化物之氫源;(iii)及選自以下之氧化劑:金屬化合物,諸如鹵化物、磷化物、硼化物、氧化物、氫氧化物、矽化物、氮化物、砷化物、硒化物、碲化物、銻化物、碳化物、硫化物、氫化物、碳酸鹽、碳酸氫鹽、硫酸鹽、硫酸氫鹽、磷酸鹽、磷酸氫鹽、磷酸二氫鹽、硝酸鹽、亞硝酸鹽、過錳酸鹽、氯酸鹽、過氯酸鹽、亞氯酸鹽、過亞氯酸鹽、次氯酸鹽、溴酸鹽、過溴酸鹽、亞溴酸鹽、過亞溴酸鹽、碘酸鹽、過碘酸鹽、亞碘酸鹽、過亞碘酸鹽、鉻酸鹽、重鉻酸鹽、碲酸鹽、硒酸鹽、砷酸鹽、矽酸鹽、硼酸鹽、氧化鈷、氧化碲及其他氧陰離子(諸如鹵素、P、B、Si、N、As、S、Te、Sb、C、S、P、Mn、Cr、Co及Te之氧陰離子)之金屬化合物,其中該金屬較佳包含過渡金屬、Sn、Ga、In、鹼金屬或鹼土金屬;氧化劑進一步包含:鉛化合物,諸如鹵化鉛;鍺化合物,諸如鹵化物、氧化物或硫化物,諸如GeF2 、GeCl2 、GeBr2 、GeI2 、GeO、GeP、GeS、GeI4 及GeCl4 ;碳氟化合物,諸如CF 4 或ClCF3 ;碳氯化合物,諸如CCl40 2MNO 3MClO 4MO 2NF 3 ;N2 O;NO;NO2 ;硼-氮化合物,諸如B3 N3 H6 ;含硫化合物,諸如SF6SSO 2 、SO3 、S2 O5 Cl2 、F5 SOF、M2 S2 O8 、Sx Xy (諸如S2 Cl2 、SCl2 、S2 Br2 或S2 F2 )、CS2 、SOx Xy (諸如SOCl2 、SOF2 、SO2 F2 或SOBr2 );Xx X'y ,諸如ClF5 ;Xx X'y Oz ,諸如ClO2 F、ClO2 F2 、ClOF3 、ClO3 F及ClO2 F3 ;硼-氮化合物,諸如B3 N3 H6 ;Se;Te;Bi;As;Sb;Bi;TeXx ,較佳TeF4 、TeF6 ;TeOx ,較佳TeO2 或TeO3 ;SeXx ,較佳SeF6 ;SeOx ,較佳SeO2 或SeO3 ;碲氧化物、鹵化物或其他碲化合物,諸如TeO2 、TeO3 、Te(OH)6 、TeBr2 、TeCl2 、TeBr4 、TeCl4 、TeF4 、TeI4 、TeF6 、CoTe或NiTe;硒氧化物、鹵化物、硫化物或其他硒化合物,諸如SeO2 、SeO3 、Se2 Br2 、Se2 Cl2 、SeBr4 、SeCl4 、SeF4 、SeF6 、SeOBr2 、SeOCl2 、SeOF2 、SeO2 F2 、SeS2 、Se2 S6 、Se4 S4 或Se6 S2 ;P;P2 O5 ;P2 S5 ;Px Xy ,諸如PF3 、PCl3 、PBr3 、PI3 、PF5 、PCl5 、PBr4 F或PCl4 F;POx Xy ,諸如POBr3 、POI3 、POCl3 或POF3 ;PSx Xy (M 為鹼金屬,x、y及z為整數,X及X'為鹵素)諸如PSBr3 、PSF3 、PSCl3 ;磷-氮化合物,諸如P3 N5 、(Cl2 PN)3 、(Cl2 PN)4 或(Br2 PN)x ;砷氧化物、鹵化物、硫化物、硒化物或碲化物或其他砷化合物,諸如AlAs、As2 I4 、As2 Se、As4 S4 、AsBr3 、AsCl3 、AsF3 、AsI3 、As2 O3 、As2 Se3 、As2 S3 、As2 Te3 、AsCl5 、AsF5 、As2 O5 、As2 Se5 或As2 S5 ;銻氧化物、鹵化物、硫化物、硫酸鹽、硒化物、砷化物或其他銻化合物,諸如SbAs、SbBr3 、SbCl3 、SbF3 、SbI3 、Sb2 O3 、SbOCl、Sb2 Se3 、Sb2 (SO4 )3 、Sb2 S3 、Sb2 Te3 、Sb2 O4 、SbCl5 、SbF5 、SbCl2 F3 、Sb2 O5 或Sb2 S5 ;鉍氧化物、鹵化物、硫化物、硒化物或其他鉍化合物,諸如BiAsO4 、BiBr3 、BiCl3 、BiF3 、BiF5 、Bi(OH)3 、BiI3 、Bi2 O3 、BiOBr、BiOCl、BiOI、Bi2 Se3 、Bi2 S3 、Bi2 Te3 或Bi2 O4 ;SiCl4 、SiBr4 ;金屬氧化物、氫氧化物或鹵化物,諸如過渡金屬鹵化物,諸如CrCl3 、ZnF2 、ZnBr2 、ZnI2 、MnCl2 、MnBr2 、MnI2 、CoBr2 、CoI2 、CoCl2 、NiCl2 、NiBr2 、NiF2 、FeF2 、FeCl2 、FeBr2 、FeCl3 、TiF3 、CuBr、CuBr2 、VF3 及CuCl2 ;金屬鹵化物,諸如SnF2 、SnCl2 、SnBr2 、SnI2 、SnF4 、SnCl4 、SnBr4 、SnI4 、InF、InCl、InBr、InI、AgCl、AgI、AlF3 、AlBr3 、AlI3 、YF3 、CdCl2 、CdBr2 、CdI2 、InCl3 、ZrCl4 、NbF5 、TaCl5 、MoCl3 、MoCl5 、NbCl5 、AsCl3 、TiBr4 、SeCl2 、SeCl4 、InF3 、InCl3 、PbF4 、TeI4 、WCl6 、OsCl3 、GaCl3 、PtCl3 、ReCl3 、RhCl3 、RuCl3 ;金屬氧化物或氫氧化物,諸如Y2 O3 、FeO、Fe2 O3 或NbO、NiO、Ni2 O3 、SnO、SnO2 、Ag2 O、AgO、Ga2 O、As2 O3 、SeO2 、TeO2 、In(OH)3 、Sn(OH)2 、In(OH)3 、Ga(OH)3 及Bi(OH)3 ;CO2 ;As2 Se3 ;SF6 ;S;SbF3 ;CF4 ;NF3 ;過錳酸鹽,諸如KMnO4 及NaMnO4 ;P2 O5 ;硝酸鹽,諸如LiNO3 、NaNO3 及KNO3 ;及鹵化硼,諸如BBr3 及BI3 ;第13族鹵化物,較佳鹵化銦,諸如InBr2 、InCl2 及InI3 ;鹵化銀,較佳AgCl或AgI;鹵化鉛;鹵化鎘;鹵化鋯;較佳過渡金屬氧化物、硫化物或鹵化物(Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu或Zn與F、Cl、Br或I);第二或第三過渡系列鹵化物(較佳YF3 )、氧化物、硫化物(較佳Y2 S3 )或氫氧化物(較佳Y、Zr、Nb、Mo、Tc、Ag、Cd、Hf、Ta、W、Os之氫氧化物),在鹵化物之狀況下諸如NbX3 、NbX5 或TaX5 ;金屬硫化物,諸如Li2 S、ZnS、FeS、NiS、MnS、Cu2 S、CuS及SnS;鹼土金屬鹵化物,諸如BaBr2 、BaCl2 、BaI2 、SrBr2 、SrI2 、CaBr2 、CaI2 、MgBr2 或MgI2 ;稀土金屬鹵化物,諸如EuBr3 、LaF3 、LaBr3 、CeBr3 、GdF3 、GdBr3 ,較佳呈II態,諸如CeI2 、EuF2 、EuCl2 、EuBr2 、EuI2 、DyI2 、NdI2 、SmI2 、YbI2 及TmI2 之彼等II態鹵化物;金屬硼化物,諸如硼化銪;MB2 硼化物,諸如CrB2 、TiB2 、MgB2 、ZrB2 及GdB2 ;鹼金屬鹵化物,諸如LiCl、RbCl或CsI;及金屬磷化物,諸如Ca3 P2 ;貴金屬鹵化物、氧化物、硫化物,諸如PtCl2 、PtBr2 、PtI2 、PtCl4 、PdCl2 、PbBr2 及PbI2 ;稀土金屬硫化物,諸如CeS,其他合適稀土金屬硫化物為La及Gd之硫化物;金屬及陰離子,諸如Na2 TeO4 、Na2 TeO3 、Co(CN)2 、CoSb、CoAs、Co2 P、CoO、CoSe、CoTe、NiSb、NiAs、NiSe、Ni2 Si、MgSe;稀土金屬碲化物,諸如EuTe;稀土金屬硒化物,諸如EuSe;稀土金屬氮化物,諸如EuN;金屬氮化物,諸如AlN、GdN及Mg3 N2 ;含有至少兩個來自氧及不同鹵原子之群之原子的化合物,諸如F2 O、Cl2 O、ClO2 、Cl2 O6 、Cl2 O7 、ClF、ClF3 、ClOF3 、ClF5 、ClO2 F、ClO2 F3 、ClO3 F、BrF3 、BrF5 、I2 O5 、IBr、ICl、ICl3 、IF、IF3 、IF5 、IF7 ;及金屬第二或第三過渡系列鹵化物,諸如OsF6 、PtF6 或IrF6 ;鹼金屬化合物,諸如鹵化物、氧化物或硫化物;及可在還原後形成金屬,諸如鹼金屬、鹼土金屬、過渡金屬、稀土金屬、第13族金屬(較佳In)及第14族金屬(較佳Sn)之化合物;金屬氫化物,諸如稀土金屬氫化物、鹼土金屬氫化物或鹼金屬氫化物,其中當氧化劑為氫化物、較佳金屬氫化物時催化劑或催化劑源可為諸如鹼金屬之金屬。合適氧化劑為金屬鹵化物、硫化物、氧化物、氫氧化物、硒化物及磷化物,諸如鹼土金屬鹵化物(諸如BaBr2 、BaCl2 、BaI2 、CaBr2 、MgBr2 或MgI2 )、稀土金屬鹵化物(諸如EuBr2 、EuBr3 、EuF3 、LaF3 、GdF3 、GdBr3 、LaF3 、LaBr3 、CeBr3 )、第二或第三系列過渡金屬鹵化物(諸如YF3 )、金屬硼化物(諸如Cr B2 或TiB2 )、鹼金屬鹵化物(諸如LiCl、RbCl或CsI)、金屬硫化物(諸如Li2 S、ZnS、Y2 S3 、FeS、MnS、Cu2 S、CuS及Sb2 S5 )、金屬磷化物(諸如Ca3 P2 )、過渡金屬鹵化物(諸如CrCl3 、ZnF2 、ZnBr2 、ZnI2 、MnCl2 、MnBr2 、MnI2 、CoBr2 、CoI2 、CoCl2 、NiBr2 、NiF2 、FeF2 、FeCl2 、FeBr2 、TiF3 、CuBr、VF3 及CuCl2 )、金屬鹵化物(諸如SnBr2 、SnI2 、InF、InCl、InBr、InI、AgCl、AgI、A1I3 、YF3 、CdCl2 、CdBr2 、CdI2 、InCl3 、ZrCl4 、NbF5 、TaCl5 、MoCl3 、MoCl5 、NbCl5 、AsCl3 、TiBr4 、SeCl2 、SeCl4 、InF3 、PbF4 及TeI4 )、金屬氧化物或氫氧化物(諸如Y2 O3 、FeO、NbO、In(OH)3 、As2 O3 、SeO2 、TeO2 、BI3 、CO2 、As2 Se3 )、金屬氮化物(諸如Mg3 N2 或AlN)、金屬磷化物(諸如Ca3 P2 、SF6 、S、SbF3 、CF4 、NF3 、KMnO4 、NaMnO4 、P2 O5 、LiNO3 、NaNO3 、KNO3 )及金屬硼化物(諸如BBr3 )。合適氧化劑包括以下所列項中之至少一者:BaBr2 、BaCl2 、EuBr2 、EuF3 、YF3 、CrB2 、TiB2 、LiCl、RbCl、CsI、Li2 S、ZnS、Y2 S3 、Ca3 P2 、MnI2 、CoI2 、NiBr2 、ZnBr2 、FeBr2 、SnI2 、InCl、AgCl、Y2 O3 、TeO2 、CO2 、SF6 、S、CF4 、NaMnO4 、P2 O5 、LiNO3 。合適氧化劑包括以下所列項中之至少一者:EuBr2 、BaBr2 、CrB2 、MnI2 及AgCl。合適硫化物氧化劑包含Li2 S、ZnS及Y2 S3 中之至少一者。在某些實施例中,氧化物氧化劑為Y2 O3In one embodiment, the low energy hydrogen reaction is activated by a redox reaction. In an exemplary embodiment, the reaction mixture comprises at least two of the following groups: a catalyst, a source of hydrogen, an oxidizing agent, a reducing agent, and a carrier. The reaction mixture may also comprise a Lewis acid such as a Group 13 trihalide, preferably at least one of AlCl 3 , BF 3 , BCl 3 and BBr 3 . In certain embodiments, each reaction mixture comprises at least one member selected from the group consisting of components (i)-(iii): (i) selected from the group consisting of Li, LiH , K, KH , NaH , Rb, RbH, Cs And a catalyst of CsH; (ii) a hydrogen source selected from hydrogen, a hydrogen source or a hydride; (iii) and an oxidant selected from the group consisting of metal compounds such as halides, phosphides, borides, oxides, hydroxides , telluride, nitride, arsenide, selenide, telluride, telluride, carbide, sulfide, hydride, carbonate, bicarbonate, sulfate, hydrogen sulfate, phosphate, hydrogen phosphate, phosphoric acid Dihydrogen salts, nitrates, nitrites, permanganates, chlorates, perchlorates, chlorites, perchlorates, hypochlorites, bromates, perbromates, Bromide, perbromate, iodate, periodate, iodate, periodate, chromate, dichromate, citrate, selenate, arsenate Salt, citrate, borate, cobalt oxide, cerium oxide and other oxyanions (such as halogen, P, B, Si, N, As, S, Te, Sb, C, S, P, Mn, C a metal compound of r, Co and Te oxyanion, wherein the metal preferably comprises a transition metal, Sn, Ga, In, an alkali metal or an alkaline earth metal; the oxidizing agent further comprises: a lead compound such as a lead halide; a bismuth compound such as a halogenated compound was oxides or sulfides, such as GeF 2, GeCl 2, GeBr 2 , GeI 2, GeO, GeP, GeS, GeI 4 and GeCl 4; fluorocarbons, such as CF 4 or ClCF 3; carbon chlorine compounds such as CCl 4 ; 0 2 ; MNO 3 ; MClO 4 ; MO 2 ; NF 3 ; N 2 O; NO; NO 2 ; boron-nitrogen compounds such as B 3 N 3 H 6 ; sulfur-containing compounds such as SF 6 , S , SO 2 , SO 3 , S 2 O 5 Cl 2 , F 5 SOF, M 2 S 2 O 8 , S x X y (such as S 2 Cl 2 , SCl 2 , S 2 Br 2 or S 2 F 2 ), CS 2 , SO x X y (such as SOCl 2 , SOF 2 , SO 2 F 2 or SOBr 2 ); X x X' y , such as ClF 5 ; X x X' y O z , such as ClO 2 F, ClO 2 F 2 , ClOF 3 , ClO 3 F and ClO 2 F 3 ; boron-nitrogen compounds such as B 3 N 3 H 6 ; Se; Te; Bi; As; Sb; Bi; TeX x , preferably TeF 4 , TeF 6 ; TeO x , preferably TeO 2 or TeO 3 ; SeX x , preferably SeF 6 ; SeO x , Or preferably SeO 2 SeO 3; tellurium oxide, tellurium halides or other compounds, such as TeO 2, TeO 3, Te ( OH) 6, TeBr 2, TeCl 2, TeBr 4, TeCl 4, TeF 4, TeI 4 , TeF 6, CoTe or NITE; selenium oxides, halides, selenium sulfide or other compounds, such as SeO 2, SeO 3, Se 2 Br 2, Se 2 Cl 2, SeBr 4, SeCl 4, SeF 4, SeF 6 , SeOBr 2, SeOCl 2, SeOF 2, SeO 2 F 2, SeS 2, Se 2 S 6, Se 4 S 4 or Se 6 S 2; P; P 2 O 5; P 2 S 5; P x X y, Such as PF 3 , PCl 3 , PBr 3 , PI 3 , PF 5 , PCl 5 , PBr 4 F or PCl 4 F; PO x X y , such as POBr 3 , POI 3 , POCl 3 or POF 3 ; PS x X y ( M is an alkali metal, x, y and z are integers, X and X' are halogens) such as PSBr 3 , PSF 3 , PSCl 3 ; phosphorus-nitrogen compounds such as P 3 N 5 , (Cl 2 PN) 3 , (Cl 2 PN) 4 or (Br 2 PN) x ; arsenic oxides, halides, sulfides, selenides or tellurides or other arsenic compounds such as AlAs, As 2 I 4 , As 2 Se, As 4 S 4 , AsBr 3 , AsCl 3 , AsF 3 , AsI 3 , As 2 O 3 , As 2 Se 3 , As 2 S 3 , As 2 Te 3 , AsCl 5 , AsF 5 , As 2 O 5 , As 2 Se 5 or As 2 S 5 ; bismuth oxides, halides, sulfides, sulfates, selenides, arsenides or other antimony compounds such as SbAs, SbBr 3 , SbCl 3 , SbF 3 , SbI 3 , Sb 2 O 3 , SbOCl, Sb 2 Se 3 , Sb 2 (SO 4 ) 3 , Sb 2 S 3 , Sb 2 Te 3 , Sb 2 O 4 , SbCl 5 , SbF 5 , SbCl 2 F 3 , Sb 2 O 5 or Sb 2 S 5 ; cerium oxide, halide, sulfide, selenide or other cerium compound such as BiAsO 4 , BiBr 3 , BiCl 3 , BiF 3 , BiF 5 , Bi(OH 3 , BiI 3 , Bi 2 O 3 , BiOBr, BiOCl, BiOI, Bi 2 Se 3 , Bi 2 S 3 , Bi 2 Te 3 or Bi 2 O 4 ; SiCl 4 , SiBr 4 ; metal oxides, hydroxides Or a halide such as a transition metal halide such as CrCl 3 , ZnF 2 , ZnBr 2 , ZnI 2 , MnCl 2 , MnBr 2 , MnI 2 , CoBr 2 , CoI 2 , CoCl 2 , NiCl 2 , NiBr 2 , NiF 2 , FeF 2 , FeCl 2 , FeBr 2 , FeCl 3 , TiF 3 , CuBr, CuBr 2 , VF 3 and CuCl 2 ; metal halides such as SnF 2 , SnCl 2 , SnBr 2 , SnI 2 , SnF 4 , SnCl 4 , SnBr 4, SnI 4, InF, InCl , InBr InI, AgCl, AgI, AlF 3 , AlBr 3, AlI 3, YF 3, CdCl 2, CdBr 2, CdI 2, InCl 3, ZrCl 4, NbF 5, TaCl 5, MoCl 3, MoCl 5, NbCl 5, AsCl 3 , TiBr 4 , SeCl 2 , SeCl 4 , InF 3 , InCl 3 , PbF 4 , TeI 4 , WCl 6 , OsCl 3 , GaCl 3 , PtCl 3 , ReCl 3 , RhCl 3 , RuCl 3 ; metal oxide or hydroxide , such as Y 2 O 3 , FeO, Fe 2 O 3 or NbO, NiO, Ni 2 O 3 , SnO, SnO 2 , Ag 2 O, AgO, Ga 2 O, As 2 O 3 , SeO 2 , TeO 2 , In (OH) 3 , Sn(OH) 2 , In(OH) 3 , Ga(OH) 3 and Bi(OH) 3 ; CO 2 ; As 2 Se 3 ; SF 6 ; S; SbF 3 ; CF 4 ; NF 3 Permanganate, such as KMnO 4 and NaMnO 4 ; P 2 O 5 ; nitrates such as LiNO 3 , NaNO 3 and KNO 3 ; and boron halides such as BBr 3 and BI 3 ; Group 13 halides; Indium halides, such as InBr 2 , InCl 2 and InI 3 ; silver halides, preferably AgCl or AgI; lead halides; cadmium halides; zirconium halides; preferred transition metal oxides, sulfides or halides (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu or Zn with F, Cl, Br or I); second or third transition series Compound (preferably YF 3), oxides, sulfides (preferably Y 2 S 3) or hydroxide (preferably Y, Zr, Nb, Mo, Tc, Ag, Cd, Hf, Ta, W, Os of Hydroxide), such as NbX 3 , NbX 5 or TaX 5 in the case of halides; metal sulfides such as Li 2 S, ZnS, FeS, NiS, MnS, Cu 2 S, CuS and SnS; alkaline earth metal halides such BaBr 2, BaCl 2, BaI 2 , SrBr 2, SrI 2, CaBr 2, CaI 2, MgBr 2 or MgI 2; rare earth metal halides, such as EuBr 3, LaF 3, LaBr 3 , CeBr 3, GdF 3, GdBr 3, the preferred form of state II, such as CeI 2, EuF 2, EuCl 2 , EuBr 2, EuI 2, DyI 2, NdI 2, SmI 2, YbI their halide form II of 2 and 2 TmI; metal boride , such as lanthanum boride; MB 2 boride such as CrB 2 , TiB 2 , MgB 2 , ZrB 2 and GdB 2 ; alkali metal halides such as LiCl, RbCl or CsI; and metal phosphides such as Ca 3 P 2 ; noble metal halides, oxides, sulfides, such as PtCl 2, PtBr 2, PtI 2 , PtCl 4, PdCl 2, PbBr 2 and PbI 2; rare earth metal sulfides, such as CeS, rare earth metal sulfides other suitable Sulfides of La and Gd; metals and anions such as Na 2 TeO 4 , Na 2 TeO 3 , Co(CN) 2 , CoSb, CoAs, Co 2 P, CoO, CoSe, CoTe, NiSb, NiAs, NiSe, Ni 2 Si, MgSe; rare earth metal telluride such as EuTe; rare earth metal selenide such as EuSe; rare earth metal nitride such as EuN; metal nitrides such as AlN, GdN and Mg 3 N 2 ; containing at least two from oxygen and a compound of an atom of a group of different halogen atoms, such as F 2 O, Cl 2 O, ClO 2 , Cl 2 O 6 , Cl 2 O 7 , ClF, ClF 3 , ClOF 3 , ClF 5 , ClO 2 F, ClO 2 F 3 , ClO 3 F, BrF 3 , BrF 5 , I 2 O 5 , IBr, ICl, ICl 3 , IF, IF 3 , IF 5 , IF 7 ; and metal second or third transition series halides, such as OsF 6 , PtF 6 or IrF 6 ; an alkali metal compound such as a halide, an oxide or a sulfide; and a metal which can be formed after reduction, such as an alkali metal, an alkaline earth metal, a transition metal, a rare earth metal, a Group 13 metal (preferably In And a compound of a Group 14 metal (preferably Sn); a metal hydride such as a rare earth metal hydride, an alkaline earth metal hydride or an alkali metal hydrogenation The catalyst or catalyst source may be a metal such as an alkali metal when the oxidant is a hydride, preferably a metal hydride. Suitable oxidizing agents are metal halides, sulfides, oxides, hydroxides, selenides and phosphides, such as alkaline earth metal halides (such as BaBr 2 , BaCl 2 , BaI 2 , CaBr 2 , MgBr 2 or MgI 2 ), rare earths Metal halides (such as EuBr 2 , EuBr 3 , EuF 3 , LaF 3 , GdF 3 , GdBr 3 , LaF 3 , LaBr 3 , CeBr 3 ), second or third series of transition metal halides (such as YF 3 ), metals Borides (such as C r B 2 or TiB 2 ), alkali metal halides (such as LiCl, RbCl or CsI), metal sulfides (such as Li 2 S, ZnS, Y 2 S 3 , FeS, MnS, Cu 2 S, CuS and Sb 2 S 5 ), metal phosphides (such as Ca 3 P 2 ), transition metal halides (such as CrCl 3 , ZnF 2 , ZnBr 2 , ZnI 2 , MnCl 2 , MnBr 2 , MnI 2 , CoBr 2 , CoI) 2 , CoCl 2 , NiBr 2 , NiF 2 , FeF 2 , FeCl 2 , FeBr 2 , TiF 3 , CuBr, VF 3 and CuCl 2 ), metal halides (such as SnBr 2 , SnI 2 , InF, InCl, InBr, InI) , AgCl, AgI, A1I 3, YF 3, CdCl 2, CdBr 2, CdI 2, InCl 3, ZrCl 4, NbF 5, TaCl 5, MoCl 3, MoCl 5, NbCl 5, AsCl 3, TiBr 4, SeCl 2 , SeCl 4 , InF 3 , PbF 4 and TeI 4 ), metal oxides or hydroxides (such as Y 2 O 3 , FeO, NbO, In(OH) 3 , As 2 O 3 , SeO 2 , TeO 2 , BI 3 , CO 2 , As 2 Se 3 ), metal nitrides (such as Mg 3 N 2 or AlN), metal phosphides (such as Ca 3 P 2 , SF 6 , S, SbF 3 , CF 4 , NF 3 , KMnO) 4 , NaMnO 4 , P 2 O 5 , LiNO 3 , NaNO 3 , KNO 3 ) and metal borides (such as BBr 3 ). Suitable oxidizing agents include at least one of the following: BaBr 2 , BaCl 2 , EuBr 2 , EuF 3 , YF 3 , CrB 2 , TiB 2 , LiCl, RbCl, CsI, Li 2 S, ZnS, Y 2 S 3 , Ca 3 P 2 , MnI 2 , CoI 2 , NiBr 2 , ZnBr 2 , FeBr 2 , SnI 2 , InCl, AgCl, Y 2 O 3 , TeO 2 , CO 2 , SF 6 , S, CF 4 , NaMnO 4 , P 2 O 5 , LiNO 3 . Suitable oxidizing agents include at least one of the following: EuBr 2 , BaBr 2 , CrB 2 , MnI 2, and AgCl. Suitable sulfide oxidants include at least one of Li 2 S, ZnS, and Y 2 S 3 . In certain embodiments, the oxide oxidant is Y 2 O 3 .

在其他實施例中,各反應混合物包含至少一種選自上述以下種類之組份(i)-(iii)之物質且進一步包含(iv)至少一種選自以下之還原劑:金屬,諸如鹼金屬、鹼土金屬、過渡金屬、第二及第三系列過渡金屬及稀土金屬及鋁。還原劑較佳為來自以下之群之還原劑:AlMgMgH 2Si 、La、B、Zr及Ti粉末及H2In other embodiments, each reaction mixture comprises at least one material selected from the group consisting of components (i)-(iii) of the above categories and further comprising (iv) at least one reducing agent selected from the group consisting of metals, such as alkali metals, Alkaline earth metals, transition metals, second and third series of transition metals and rare earth metals and aluminum. The reducing agent is preferably a reducing agent from the group consisting of Al , Mg , MgH 2 , Si , La, B, Zr and Ti powders and H 2 .

在其他實施例中,各反應混合物包含至少一種選自上述以下種類之組份(i)-(iv)之物質且進一步包含(v)載體,諸如選自AC、1% Pt/碳或Pd/碳(Pt/C、Pd/C)及碳化物(較佳TiC或WC)之導電性載體。In other embodiments, each reaction mixture comprises at least one material selected from the group consisting of components (i)-(iv) of the above categories and further comprises (v) a carrier such as selected from the group consisting of AC, 1% Pt/carbon or Pd/ Conductive carrier of carbon (Pt/C, Pd/C) and carbide (preferably TiC or WC).

雖然反應物可呈任何莫耳比率,但其較佳呈約相等之莫耳比率。While the reactants may be in any molar ratio, they preferably have about the same molar ratio.

包含(i)催化劑或催化劑源、(ii)氫源、(iii)氧化劑、(iv)還原劑及(v)載體之合適反應系統包含NaH或KH作為催化劑或催化劑源及H來源,BaBr2 、BaCl2 、MgBr2 、MgI2 、CaBr2 、EuBr2 、EuF3 、YF3 、CrB2 、TiB2 、LiCl、RbCl、CsI、Li2 S、ZnS、Y2 S3 、Ca3 P2 、MnI2 、CoI2 、NiBr2 、ZnBr2 、FeBr2 、SnI2 、InCl、AgCl、Y2 O3 、TeO2 、CO2 、SF6 、S、CF4 、NaMnO4 、P2 O5 、LiNO3 之一作為氧化劑,Mg或MgH2 作為還原劑(其中MgH2 亦可用作H來源),及AC、TiC或WC作為載體。在鹵化錫為氧化劑之狀況下,Sn產物可用作催化機制中還原劑與導電性載體中之至少一者。Suitable reaction systems comprising (i) a catalyst or catalyst source, (ii) a hydrogen source, (iii) an oxidizing agent, (iv) a reducing agent and (v) a carrier comprise NaH or KH as a catalyst or catalyst source and a source of H, BaBr 2 , BaCl 2 , MgBr 2 , MgI 2 , CaBr 2 , EuBr 2 , EuF 3 , YF 3 , CrB 2 , TiB 2 , LiCl, RbCl, CsI, Li 2 S, ZnS, Y 2 S 3 , Ca 3 P 2 , MnI 2 , CoI 2 , NiBr 2 , ZnBr 2 , FeBr 2 , SnI 2 , InCl, AgCl, Y 2 O 3 , TeO 2 , CO 2 , SF 6 , S, CF 4 , NaMnO 4 , P 2 O 5 , LiNO 3 One serves as an oxidizing agent, Mg or MgH 2 as a reducing agent (wherein MgH 2 can also be used as a source of H), and AC, TiC or WC as a carrier. In the case where the tin halide is an oxidizing agent, the Sn product can be used as at least one of a reducing agent and a conductive carrier in the catalytic mechanism.

在包含(i)催化劑或催化劑源、(ii)氫源、(iii)氧化劑及(iv)載體之另一合適反應系統中,包含NaH或KH作為催化劑或催化劑源及H來源,EuBr2 、BaBr2 、CrB2 、MnI2 及AgCl之一作為氧化劑,及AC、TiC或WC作為載體。雖然反應物可呈任何莫耳比率,但其較佳呈約相等之莫耳比率。In another suitable reaction system comprising (i) a catalyst or catalyst source, (ii) a hydrogen source, (iii) an oxidant, and (iv) a support, NaH or KH is included as a catalyst or catalyst source and H source, EuBr 2 , BaBr 2. One of CrB 2 , MnI 2 and AgCl is used as an oxidizing agent, and AC, TiC or WC is used as a carrier. While the reactants may be in any molar ratio, they preferably have about the same molar ratio.

催化劑、氫源、氧化劑、還原劑及載體可呈任何所需莫耳比率。在具有反應物,包含KH或NaH之催化劑、包含CrB2 、AgCl2 及來自鹼土金屬、過渡金屬或稀土金屬鹵化物之群之金屬鹵化物、較佳溴化物或碘化物(諸如EuBr2 、BaBr2 及MnI2 )中之至少一者之氧化劑、包含Mg或MgH2 之還原劑及包含AC、TiC或WC之載體的一實施例中,莫耳比率大致相同。稀土金屬鹵化物可由相應鹵素與金屬或鹵化氫(諸如HBr)直接反應而形成。二鹵化物可藉由H2 還原由三鹵化物來形成。The catalyst, hydrogen source, oxidant, reducing agent and carrier can be in any desired molar ratio. a metal halide, preferably a bromide or iodide (such as EuBr 2 , BaBr) having a reactant, a catalyst comprising KH or NaH, comprising CrB 2 , AgCl 2 and a group derived from an alkaline earth metal, a transition metal or a rare earth metal halide. In one embodiment of the oxidizing agent of at least one of 2 and MnI 2 ), the reducing agent comprising Mg or MgH 2 , and the carrier comprising AC, TiC or WC, the molar ratio is substantially the same. The rare earth metal halide can be formed by direct reaction of the corresponding halogen with a metal or a hydrogen halide such as HBr. The dihalide can be formed from the trihalide by reduction of H 2 .

其他氧化劑為具有高偶極矩或形成具有高偶極矩之中間物的物質。在催化反應期間,具有高偶極矩之物質較佳易於接受來自催化劑之電子。該等物質可具有高電子親和力。在一實施例中,電子受體具有半填滿或約半填滿電子殼層,諸如分別具有半填滿sp3 、3d及4f殼層之Sn、Mn及Gd或Eu化合物。後一類型代表性氧化劑為對應於以下之金屬:LaF3 、LaBr3 、GdF3 、GdCl3 、GdBr3 、EuBr2 、EuI2 、EuCl2 、EuF2 、EuBr3 、EuI3 、EuCl3 及EuF3 。在一實施例中,氧化劑包含較佳具有高氧化態之非金屬(諸如P、S、Si及C中之至少一者)之化合物,且進一步包含具有高負電性之原子,諸如F、Cl或O中之至少一者。在另一實施例中,氧化劑包含具有低氧化態(諸如II態)之金屬(諸如Sn與Fe中之至少一者)之化合物且進一步包含具有低負電性之原子,諸如Br或I中之至少一者。帶一個負電荷之離子(諸如)優於帶兩個負電荷之離子(諸如)。在一實施例中,氧化劑包含諸如金屬鹵化物之化合物,該金屬鹵化物對應於具有低熔點之金屬以便其可作為反應產物熔融且自電池移除。低熔點金屬之合適氧化劑為In、Ga、Ag及Sn之鹵化物。雖然反應物可呈任何莫耳比率,但其較佳呈約相等之莫耳比率。Other oxidants are materials that have a high dipole moment or form an intermediate with a high dipole moment. During the catalytic reaction, materials having a high dipole moment are preferably susceptible to accepting electrons from the catalyst. These materials can have high electron affinity. In one embodiment, the electron acceptor has a semi-filled or approximately half-filled electron shell such as Sn, Mn, and Gd or Eu compounds each having a half-filled sp 3 , 3d, and 4f shell. The latter type of representative oxidizing agent is a metal corresponding to LaF 3 , LaBr 3 , GdF 3 , GdCl 3 , GdBr 3 , EuBr 2 , EuI 2 , EuCl 2 , EuF 2 , EuBr 3 , EuI 3 , EuCl 3 and EuF 3 . In one embodiment, the oxidizing agent comprises a compound preferably having a non-metal (such as at least one of P, S, Si, and C) in a high oxidation state, and further comprising an atom having a high electronegativity, such as F, Cl, or At least one of O. In another embodiment, the oxidizing agent comprises a compound having a low oxidation state (such as the II state) of a metal (such as at least one of Sn and Fe) and further comprising an atom having a low electronegativity, such as at least Br or I One. a negatively charged ion (such as ) better than ions with two negative charges (such as or ). In one embodiment, the oxidizing agent comprises a compound such as a metal halide corresponding to a metal having a low melting point such that it can be melted as a reaction product and removed from the battery. Suitable oxidizing agents for the low melting point metals are halides of In, Ga, Ag and Sn. While the reactants may be in any molar ratio, they preferably have about the same molar ratio.

在一實施例中,反應混合物包含:(i)催化劑或催化劑源,其包含來自第I族元素之金屬或氫化物;(ii)氫源,諸如氫氣或氫氣來源或氫化物;(iii)氧化劑,其包含含有至少一種來自第13族、第14族、第15族、第16族及第17族、較佳選自F、Cl、Br、I、B、C、N、O、Al、Si、P、S、Se及Te之群之元素的原子或離子或化合物;(iv)還原劑,其包含元素或氫化物,較佳一或多種選自Mg、MgH2 、Al、Si、B、Zr及稀土金屬(諸如La)之元素或氫化物;及(v)載體,其較佳具有導電性且較佳不與反應混合物之其他物質反應形成另一化合物。合適載體較佳包含碳,諸如AC、石墨烯、用金屬浸漬之碳(諸如Pt/C或Pd/C)及碳化物(較佳TiC或WC)。In one embodiment, the reaction mixture comprises: (i) a catalyst or catalyst source comprising a metal or hydride from a Group I element; (ii) a hydrogen source such as a hydrogen or hydrogen source or hydride; (iii) an oxidant Containing at least one from Group 13, Group 14, Group 15, Group 16, and 17, preferably selected from the group consisting of F, Cl, Br, I, B, C, N, O, Al, Si An atom or ion or compound of an element of the group of P, S, Se and Te; (iv) a reducing agent comprising an element or a hydride, preferably one or more selected from the group consisting of Mg, MgH 2 , Al, Si, B, Zr and an element or hydride of a rare earth metal such as La; and (v) a support which preferably has electrical conductivity and preferably does not react with other materials of the reaction mixture to form another compound. Suitable supports preferably comprise carbon such as AC, graphene, carbon impregnated with a metal such as Pt/C or Pd/C, and carbides (preferably TiC or WC).

在一實施例中,反應混合物包含:(i)催化劑或催化劑源,其包含來自第I族元素之金屬或氫化物;(ii)氫源,諸如氫氣或氫氣來源或氫化物;(iii)氧化劑,其包含鹵化物、氧化物或硫化物化合物,較佳金屬鹵化物、氧化物或硫化物,更佳來自第IA族、第IIA族、第3d族、第4d族、第5d族、第6d族、第7d族、第8d族、第9d族、第10d族、第11d族、第12d族及鑭系元素之元素的鹵化物,且最佳過渡金屬鹵化物或鑭系鹵化物;(iv)還原劑,其包含元素或氫化物,較佳一或多種選自Mg、MgH2 、Al、Si、B、Zr及稀土金屬(諸如La)之元素或氫化物;及(v)載體,其較佳具有導電性且較佳不與反應混合物之其他物質反應形成另一化合物。合適載體較佳包含碳,諸如AC、用金屬浸漬之碳(諸如Pt/C或Pd/C)及碳化物,較佳TiC或WC。In one embodiment, the reaction mixture comprises: (i) a catalyst or catalyst source comprising a metal or hydride from a Group I element; (ii) a hydrogen source such as a hydrogen or hydrogen source or hydride; (iii) an oxidant Which comprises a halide, an oxide or a sulfide compound, preferably a metal halide, an oxide or a sulfide, more preferably from Group IA, Group IIA, Group 3d, Group 4d, Group 5d, Day 6d a halide of an element of Group 7, 7d, 8d, 9d, 10d, 11d, 12d and a lanthanide element, and an optimum transition metal halide or lanthanide halide; a reducing agent comprising an element or a hydride, preferably one or more elements or hydrides selected from the group consisting of Mg, MgH 2 , Al, Si, B, Zr and rare earth metals (such as La); and (v) a carrier It is preferably electrically conductive and preferably does not react with other materials of the reaction mixture to form another compound. Suitable supports preferably comprise carbon, such as AC, carbon impregnated with a metal (such as Pt/C or Pd/C) and carbides, preferably TiC or WC.

e.交換反應、熱可逆反應及再生e. Exchange reaction, thermoreversible reaction and regeneration

在一實施例中,氧化劑與還原劑、催化劑源及催化劑中之至少一者可進行可逆反應。在一實施例中,氧化劑為鹵化物,較佳金屬鹵化物,更佳過渡金屬、錫、銦、鹼金屬、鹼土金屬及稀土金屬鹵化物中之至少一者,最佳稀土金屬鹵化物。可逆反應較佳為鹵化物交換反應。反應能量較佳為低的,使得在周圍溫度與3000℃之間、較佳周圍溫度與1000℃之間的溫度下鹵化物可在氧化劑與還原劑、催化劑源及催化劑中之至少一者之間可逆交換。反應平衡可移位以驅動低能量氫反應。可藉由溫度變化或反應濃度或比率變化而移位。反應可藉由添加氫來維持。在一代表性反應中,交換為In one embodiment, the oxidant can be reversibly reacted with at least one of a reducing agent, a catalyst source, and a catalyst. In one embodiment, the oxidizing agent is a halide, preferably a metal halide, more preferably at least one of a transition metal, tin, indium, an alkali metal, an alkaline earth metal, and a rare earth metal halide, and an optimum rare earth metal halide. The reversible reaction is preferably a halide exchange reaction. The reaction energy is preferably low such that the halide can be at least between the oxidant and the reducing agent, the catalyst source, and the catalyst at a temperature between ambient temperature and 3000 ° C, preferably between ambient temperature and 1000 ° C. Reversible exchange. The reaction equilibrium can be shifted to drive a low energy hydrogen reaction. It can be displaced by a change in temperature or a change in reaction concentration or ratio. The reaction can be maintained by the addition of hydrogen. In a representative reaction, the exchange is

其中n1 、n2 、x及y為整數,X為鹵素,且Mox 為氧化劑之金屬,Mred/cat 為還原劑、催化劑源及催化劑中之至少一者的金屬。在一實施例中,一或多種反應物為氫化物且除鹵化物交換外,反應進一步包含可逆氫化物交換。除其他反應條件(諸如溫度及反應物濃度)外,可逆反應亦可藉由控制氫壓力來控制。一例示性反應為Wherein n 1 , n 2 , x and y are integers, X is a halogen, and M ox is a metal of an oxidizing agent, and M red/cat is a metal of at least one of a reducing agent, a catalyst source and a catalyst. In one embodiment, the one or more reactants are hydrides and in addition to the halide exchange, the reaction further comprises a reversible hydride exchange. In addition to other reaction conditions (such as temperature and reactant concentration), the reversible reaction can also be controlled by controlling the hydrogen pressure. An exemplary response is

在一實施例中,氧化劑(諸如鹼金屬鹵化物、鹼土金屬鹵化物或稀土金屬鹵化物,較佳RbCl、BaBr2 、BaCl2 、EuX2 或GdX3 ,其中X為鹵素或硫,最佳EuBr2 )與催化劑或催化劑源(較佳NaH或KH)及視情況存在之還原劑(較佳Mg或MgH2 )反應,形成Mox 或Mox H2 及催化劑之鹵化物或硫化物,諸如NaX或KX。可藉由選擇性地移除催化劑或催化劑源及視情況存在之還原劑,使稀土金屬鹵化物再生。在一實施例中,Mox H2 可熱分解且藉由諸如抽吸之方法移除氫氣。鹵化物交換(方程式(54-55))形成催化劑之金屬。金屬可以熔融液體或蒸發或昇華氣體形式移除,留下金屬鹵化物,諸如鹼土金屬或稀土金屬鹵化物。液體可例如由諸如離心之方法或由加壓惰性氣體流移除。若適當,催化劑或催化劑源可再氫化以使初始反應物再生,該等初始反應物與稀土金屬鹵化物及載體重新組合至最初混合物中。在Mg或MgH2 用作還原劑之狀況下,可藉由添加H2 形成氫化物,使氫化物熔融及移除液體,首先將Mg移除。在X=F之一實施例中,藉由與稀土金屬(諸如EuH2 )進行F交換,可將MgF2 產物轉化為MgH2 ,其中連續移除熔融MgH2 。反應可在高壓H2 下進行以利於MgH2 之形成及選擇性移除。還原劑可經再氫化且添加至其他再生反應物中以形成初始反應混合物。在另一實施例中,交換反應在氧化劑之金屬硫化物或氧化物與還原劑、催化劑源及催化劑中之至少一者之間進行。各類型之一例示性系統為1.66g KH+1g Mg+2.74g Y2 S3 +4g AC及1g NaH+1g Mg+2.26g Y2 O3 +4g AC。In one embodiment, an oxidizing agent (such as an alkali metal halide, an alkaline earth metal halide or a rare earth metal halide, preferably RbCl, BaBr 2 , BaCl 2 , EuX 2 or GdX 3 , wherein X is halogen or sulfur, preferably EuBr 2 ) reacting with a catalyst or catalyst source (preferably NaH or KH) and optionally a reducing agent (preferably Mg or MgH 2 ) to form a halide or sulfide of Mox or Mox H 2 and a catalyst, such as NaX Or KX. The rare earth metal halide can be regenerated by selectively removing the catalyst or catalyst source and optionally a reducing agent. In an embodiment, M ox H 2 is thermally decomposable and the hydrogen is removed by a method such as suction. Halide exchange (Equation (54-55)) forms the metal of the catalyst. The metal can be removed in the form of a molten liquid or an evaporated or sublimed gas leaving a metal halide such as an alkaline earth metal or a rare earth metal halide. The liquid can be removed, for example, by a method such as centrifugation or by a pressurized inert gas stream. If appropriate, the catalyst or catalyst source can be rehydrogenated to regenerate the initial reactants, which are recombined with the rare earth metal halide and support into the initial mixture. In the case where Mg or MgH 2 is used as a reducing agent, Mg can be first removed by adding H 2 to form a hydride, melting the hydride and removing the liquid. X = F in one embodiment, performed by the rare earth metals (such as EuH 2) F exchange, the product may be converted to MgF 2 MgH 2, wherein the continuous removal of molten MgH 2. The reaction can be carried out under high pressure H 2 to facilitate the formation and selective removal of MgH 2 . The reducing agent can be rehydrogenated and added to other regeneration reactants to form the initial reaction mixture. In another embodiment, the exchange reaction is carried out between at least one of a metal sulfide or oxide of the oxidant and a reducing agent, a catalyst source, and a catalyst. One exemplary system of each type is 1.66 g KH + 1 g Mg + 2.74 g Y 2 S 3 + 4 g AC and 1 g NaH + 1 g Mg + 2.26 g Y 2 O 3 + 4 g AC.

催化劑、催化劑源或還原劑之選擇性移除可為連續的,其中催化劑、催化劑源或還原劑可至少部分再循環於反應器內。反應器可進一步包含一蒸餾器或回流組件以移除催化劑(諸如圖4之蒸餾器34)、催化劑源或還原劑且使其返回至電池中。視情況其可經氫化或進一步反應且可回收此產物。反應溫度可在兩個極端之間循環,以藉由平衡移位使反應物連續再循環。在一實施例中,系統熱交換器具有使電池溫度在高值與低值之間快速變化以使平衡來回移位、從而擴展低能量氫反應之能力。The selective removal of the catalyst, catalyst source or reducing agent can be continuous wherein the catalyst, catalyst source or reducing agent can be at least partially recycled to the reactor. The reactor may further comprise a distiller or reflux assembly to remove the catalyst (such as distiller 34 of Figure 4), the catalyst source or reducing agent and return it to the battery. It may be hydrogenated or further reacted as appropriate and the product may be recovered. The reaction temperature can be cycled between the two extremes to continuously recycle the reactants by equilibrium shifting. In one embodiment, the system heat exchanger has the ability to rapidly vary the battery temperature between high and low values to shift the balance back and forth, thereby expanding the low energy hydrogen reaction.

再生反應可包含與添加物質(諸如氫)之催化反應。在一實施例中,催化劑及H之來源為KH且氧化劑為EuBr2 。熱驅動之再生反應可為The regeneration reaction may comprise a catalytic reaction with an added substance such as hydrogen. In one embodiment, the source of the catalyst and H is KH and the oxidant is EuBr 2 . The heat-driven regeneration reaction can be

2KBr+Eu至EuBr2 +2K (56)2KBr+Eu to EuBr 2 +2K (56)

or

2KBr+EuH2 至EuBr2 +2KH。 (57)2KBr+EuH 2 to EuBr 2 +2KH. (57)

或者,H2 可用作分別諸如KH及EuBr2 之催化劑或催化劑源及氧化劑的再生催化劑:Alternatively, H 2 can be used as a regenerative catalyst for catalysts or catalyst sources such as KH and EuBr 2 and oxidants, respectively:

3KBr+1/2H2 +EuH2 至EuBr3 +3KH。 (58)3KBr+1/2H 2 +EuH 2 to EuBr 3 +3KH. (58)

此外,EuBr2 藉由H2 還原EuBr3 而形成。一可能途徑為Further, EuBr 2 is formed by reducing EuBr 3 by H 2 . One possible route is

EuBr3 +1/2H2 至EuBr2 +HBr。 (59)EuBr 3 + 1/2H 2 to EuBr 2 + HBr. (59)

HBr可再循環:HBr can be recycled:

HBr+KH至KBr+H2  (60)HBr+KH to KBr+H 2 (60)

其中總反應式為:The total reaction formula is:

2KBr+EuH2 至EuBr2 +2KH。 (61)2KBr+EuH 2 to EuBr 2 +2KH. (61)

熱驅動之再生反應速率可藉由使用熟習此項技術者已知之具有較低能量之不同途徑來增加:The rate of regenerative reaction of the heat drive can be increased by using different pathways known to those skilled in the art having lower energy:

2KBr+H2 +Eu至EuBr2 +2KH (62)2KBr+H 2 +Eu to EuBr 2 +2KH (62)

3KBr+3/2H2 +Eu至EuBr3 +3KH或 (63)3KBr+3/2H 2 +Eu to EuBr 3 +3KH or (63)

EuBr3 +1/2H2 至EuBr2 +HBr。 (64)EuBr 3 + 1/2H 2 to EuBr 2 + HBr. (64)

方程式(62)給出之反應為可能的,因為在H2 存在下金屬與相應氫化物之間存在平衡,諸如The reaction given by equation (62) is possible because there is a balance between the metal and the corresponding hydride in the presence of H 2 , such as

。 (65) . (65)

反應途徑可包含熟習此項技術者已知之具有較低能量之中間步驟,諸如The reaction pathway may comprise intermediate steps known to those skilled in the art having lower energy, such as

2KBr+Mg+H2 至MgBr2 +2KH及 (66)2KBr+Mg+H 2 to MgBr 2 +2KH and (66)

MgBr2 +Eu+H2 至EuBr2 +MgH2 。 (67)MgBr 2 +Eu+H 2 to EuBr 2 +MgH 2 . (67)

KH或K金屬可以熔融液體或蒸發或昇華氣體形式移除,留下金屬鹵化物,諸如鹼土金屬或稀土金屬鹵化物。液體可由諸如離心之方法或由加壓惰性氣體流移除。在其他實施例中,另一催化劑或催化劑源(諸如NaH、LiH、RbH、CsH、Na、Li、Rb、Cs)可取代KH或K,且氧化劑可包含另一金屬鹵化物,諸如另一稀土金屬鹵化物或鹼土金屬鹵化物,較佳BaCl2 或BaBr2The KH or K metal can be removed in the form of a molten liquid or an evaporating or sublimating gas, leaving a metal halide such as an alkaline earth metal or a rare earth metal halide. The liquid can be removed by methods such as centrifugation or by a pressurized inert gas stream. In other embodiments, another catalyst or catalyst source (such as NaH, LiH, RbH, CsH, Na, Li, Rb, Cs) may be substituted for KH or K, and the oxidant may comprise another metal halide, such as another rare earth. A metal halide or an alkaline earth metal halide, preferably BaCl 2 or BaBr 2 .

在其他實施例中,熱可逆反應包含其他交換反應,較佳在各自包含至少一種金屬原子之兩種物質之間的交換反應。交換可在催化劑之金屬(諸如鹼金屬)與交換搭配物(諸如氧化劑)之金屬之間進行。交換亦可在氧化劑與還原劑之間進行。交換物質可為陰離子,諸如鹵離子、氫離子、氧離子、硫離子、氮離子、硼離子、碳離子、矽離子、砷離子、硒離子、碲離子、磷離子、硝酸根、硫氫根、碳酸根、硫酸根、硫酸氫根、磷酸根、磷酸氫根、磷酸二氫根、過氯酸根、鉻酸根、重鉻酸根、鈷酸根及熟習此項技術者已知之其他氧陰離子及陰離子。至少一種交換搭配物可包含鹼金屬、鹼土金屬、過渡金屬、第二系列過渡金屬、第三系列過渡金屬、貴金屬、稀土金屬、Al、Ga、In、Sn、As、Se及Te。合適之交換陰離子為鹵離子、氧離子、硫離子、氮離子、磷離子及硼離子。用於交換之合適金屬為鹼金屬(較佳Na或K)、鹼土金屬(較佳Mg或Ba)及稀土金屬(較佳Eu或Dy),各呈金屬或氫化物形式。下文中給出例示性催化劑反應物及例示性交換反應。此等反應並不意謂為詳盡的且熟習此項技術者將知曉其他實例。In other embodiments, the thermally reversible reaction comprises other exchange reactions, preferably exchange reactions between two materials each comprising at least one metal atom. The exchange can take place between the metal of the catalyst, such as an alkali metal, and the metal of the exchange partner, such as an oxidant. Exchange can also be carried out between the oxidant and the reducing agent. The exchange substance may be an anion such as a halide, a hydrogen ion, an oxygen ion, a sulfur ion, a nitrogen ion, a boron ion, a carbon ion, a helium ion, an arsenic ion, a selenium ion, a phosphonium ion, a phosphorus ion, a nitrate, a hydrogen sulfide, Carbonate, sulfate, hydrogen sulfate, phosphate, hydrogen phosphate, dihydrogen phosphate, perchlorate, chromate, dichromate, cobaltate, and other oxygen anions and anions known to those skilled in the art. The at least one exchange partner may comprise an alkali metal, an alkaline earth metal, a transition metal, a second series of transition metals, a third series of transition metals, a noble metal, a rare earth metal, Al, Ga, In, Sn, As, Se, and Te. Suitable exchange anions are halides, oxygen ions, sulfur ions, nitrogen ions, phosphorus ions and boron ions. Suitable metals for exchange are alkali metals (preferably Na or K), alkaline earth metals (preferably Mg or Ba) and rare earth metals (preferably Eu or Dy), each in the form of a metal or hydride. Exemplary catalyst reactants and exemplary exchange reactions are given below. Such reactions are not intended to be exhaustive and those skilled in the art will be aware of other examples.

■4g AC3-3+1g Mg+1.66g KH+2.5g DyI2 ,Ein:135.0kJ,dE:6.1kJ,TSC:無,Tmax:403℃,理論能量為1.89kJ,增益為3.22倍,■4g AC3-3+1g Mg+1.66g KH+2.5g DyI 2 , Ein: 135.0kJ, dE: 6.1kJ, TSC: none, Tmax: 403°C, theoretical energy 1.89kJ, gain 3.22 times.

■4g AC3-3+1g Mg+1g NaH+2.09g EuF3 ,Ein:185.1kJ,dE:8.0kJ,TSC:無,Tmax:463℃,理論能量為1.69kJ,增益為4.73倍,■4g AC3-3+1g Mg+1g NaH+2.09g EuF 3 , Ein: 185.1kJ, dE: 8.0kJ, TSC: none, Tmax: 463°C, theoretical energy is 1.69kJ, gain is 4.73 times,

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+CrB2 3.7gm,Ein:317kJ,dE:19kJ,無TSC,Tmax為約340℃,理論能量為吸熱0.05kJ,增益無限,■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+CrB 2 3.7gm, Ein:317kJ, dE:19kJ, no TSC, Tmax is about 340°C, theoretical energy is 0.05kJ, and the gain is unlimited.

■用掉0.70g TiB2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-4)。能量增益為5.1kJ,但未觀測到電池溫度突增。最大電池溫度為431℃,理論能量為0。■ 0.70 g of TiB 2 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (AC3-4) were used. The energy gain was 5.1 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 431 ° C and the theoretical energy is zero.

■用掉0.42g LiCl、1.66g KH、1g Mg粉末及4g AC3-4。能量增益為5.4kJ,但未觀測到電池溫度突增。最大電池溫度為412℃,理論能量為0,增益無限。■ 0.42 g of LiCl, 1.66 g of KH, 1 g of Mg powder and 4 g of AC3-4 were used. The energy gain was 5.4 kJ, but no battery temperature spike was observed. The maximum battery temperature is 412 ° C, the theoretical energy is 0, and the gain is infinite.

■1.21g RbCl、1.66g KH、1g Mg粉末及4g AC3-4,能量增益為6.0kJ,但未觀測到電池溫度突增。最大電池溫度為442℃,理論能量為0。■ 1.21 g RbCl, 1.66 g KH, 1 g Mg powder, and 4 g AC3-4, the energy gain was 6.0 kJ, but no battery temperature jump was observed. The maximum battery temperature is 442 ° C and the theoretical energy is zero.

■4g AC3-5+1g Mg+1.66g KH+0.87g LiBr;Ein:146.0kJ;dE:6.24kJ;TSC:未觀測到;Tmax:439℃,理論上吸熱,■4g AC3-5+1g Mg+1.66g KH+0.87g LiBr; Ein: 146.0kJ; dE: 6.24kJ; TSC: not observed; Tmax: 439°C, theoretically endothermic,

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+YF3 7.3gm;Ein:320kJ;dE:17kJ;無TSC,Tmax為約340℃;能量增益約為4.5X(X為約0.74kJ*5=3.7kJ),■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+YF 3 7.3gm; Ein: 320kJ; dE: 17kJ; no TSC, Tmax is about 340°C; energy gain is about 4.5X (X is about 0.74kJ*) 5=3.7kJ),

■NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+BaBr2 14.85gm(乾燥);Ein:328kJ;dE:16kJ;無TSC,Tmax為約320℃;能量增益為160X(X為約0.02kJ*5=0.1kJ),■NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+BaBr 2 14.85gm (dry); Ein: 328kJ; dE: 16kJ; no TSC, Tmax is about 320°C; energy gain is 160X (X is about 0.02kJ) *5=0.1kJ),

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+BaCl2 10.4gm;Ein:331kJ;dE:18kJ,無TSC,Tmax為約320℃。能量增益為約6.9X(X為約0.52×5=2.6kJ)■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+BaCl 2 10.4gm; Ein: 331kJ; dE: 18kJ, no TSC, Tmax is about 320°C. The energy gain is about 6.9X (X is about 0.52 x 5 = 2.6kJ)

█NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+MgI2 13.9gm;Ein:315kJ;dE:16kJ,無TSC,Tmax為約340℃。能量增益為約1.8X(X為約1.75×5=8.75kJ)█NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+MgI 2 13.9gm; Ein: 315kJ; dE: 16kJ, no TSC, Tmax is about 340°C. The energy gain is about 1.8X (X is about 1.75×5=8.75kJ)

▇4g AC3-2+1g Mg+1g NaH+0.97g ZnS;Ein:132.1kJ;dE:7.5kJ;TSC:無;Tmax:370℃,理論能量為1.4kJ,增益為5.33倍,▇4g AC3-2+1g Mg+1g NaH+0.97g ZnS; Ein: 132.1kJ; dE: 7.5kJ; TSC: none; Tmax: 370°C, theoretical energy 1.4kJ, gain 5.33 times,

■2.74g Y2 S3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為5.2kJ,但未觀測到電池溫度突增。最大電池溫度為444℃,理論能量為0.41kJ,增益為12.64倍,■ 2.74 g of Y 2 S 3 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 5.2 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 444 ° C, the theoretical energy is 0.41 kJ, and the gain is 12.64 times.

■4g AC3-5+1g Mg+1.66g KH+1.82g Ca3 P2 ;Ein:133.0kJ;dE:5.8kJ;TSC:無;Tmax:407℃,理論上吸熱,增益無限。■ 4g AC3-5+1g Mg+1.66g KH+1.82g Ca 3 P 2 ; Ein: 133.0kJ; dE: 5.8kJ; TSC: none; Tmax: 407°C, theoretically endothermic, gain infinite.

■20g AC3-5+5g Mg+8.3g KH+9.1g Ca3 P2 ,Ein:282.1kJ,dE:18.1kJ,TSC:無,Tmax:320℃,理論上吸熱,增益無限。■20g AC3-5+5g Mg+8.3g KH+9.1g Ca 3 P 2 , Ein: 282.1kJ, dE: 18.1kJ, TSC: none, Tmax: 320°C, theoretically endothermic, gain infinite.

在一實施例中,熱再生反應系統包含:(i)至少一種選自NaH及KH之催化劑或催化劑源;(ii)至少一種選自NaH、KH及MgH2 之氫源;(iii)至少一種選自以下之氧化劑:鹼土金屬鹵化物,諸如BaBr2 、BaCl2 、BaI2 、CaBr2 、MgBr2 或MgI2 ;稀土金屬鹵化物,諸如EuBr2 、EuBr3 、EuF3 、DyI2 、LaF3 或GdF3 ;第二或第三系列過渡金屬鹵化物,諸如YF3 ;金屬硼化物,諸如CrB2 或TiB2 ;鹼金屬鹵化物,諸如LiCl、RbCl或CsI;金屬硫化物,諸如Li2 S、ZnS或Y2 S3 ;金屬氧化物,諸如Y2 O3 ;及金屬磷化物,諸如Ca3 P2 ;(iv)至少一種選自Mg及MgH2 之還原劑;及(v)選自AC、TiC及WC之載體。In one embodiment, the thermal regeneration reaction system comprises: (i) at least one catalyst or catalyst source selected from the group consisting of NaH and KH; (ii) at least one hydrogen source selected from the group consisting of NaH, KH, and MgH 2 ; (iii) at least one An oxidizing agent selected from the group consisting of alkaline earth metal halides such as BaBr 2 , BaCl 2 , BaI 2 , CaBr 2 , MgBr 2 or MgI 2 ; rare earth metal halides such as EuBr 2 , EuBr 3 , EuF 3 , DyI 2 , LaF 3 Or GdF 3 ; a second or third series of transition metal halides such as YF 3 ; a metal boride such as CrB 2 or TiB 2 ; an alkali metal halide such as LiCl, RbCl or CsI; a metal sulfide such as Li 2 S , ZnS or Y 2 S 3 ; a metal oxide such as Y 2 O 3 ; and a metal phosphide such as Ca 3 P 2 ; (iv) at least one reducing agent selected from Mg and MgH 2 ; and (v) selected from Carrier of AC, TiC and WC.

f.吸氣劑、載體或基質輔助之低能量氫反應f. getter, carrier or matrix assisted low energy hydrogen reaction

在另一實施例中,交換反應為吸熱反應。在此類實施例中,金屬化合物可用作低能量氫反應之有利載體或基質或產物之吸氣劑中之至少一者以提高低能量氫反應速率。下文中給出例示性催化劑反應物及例示性載體、基質或吸氣劑。此等反應並不意謂為詳盡的且熟習此項技術者將知曉其他實例。In another embodiment, the exchange reaction is an endothermic reaction. In such embodiments, the metal compound can be used as an advantageous carrier for a low energy hydrogen reaction or as a getter for a matrix or product to increase the rate of low energy hydrogen reaction. Exemplary catalyst reactants and exemplary carriers, matrices or getters are given below. Such reactions are not intended to be exhaustive and those skilled in the art will be aware of other examples.

■4g AC3-5+1g Mg+1.66g KH+2.23g Mg3 As2 ,Ein:139.0kJ,dE:6.5kJ,TSC:無,Tmax:393℃,理論上吸熱,增益無限。■4g AC3-5+1g Mg+1.66g KH+2.23g Mg 3 As 2 , Ein: 139.0kJ, dE: 6.5kJ, TSC: none, Tmax: 393°C, theoretically endothermic, gain infinite.

■20g AC3-5+5g Mg+8.3g KH+11.2g Mg3 As2 ,Ein:298.6kJ,dE:21.8kJ,TSC:無,Tmax:315℃,理論上吸熱,增益無限。■20g AC3-5+5g Mg+8.3g KH+11.2g Mg 3 As 2 , Ein: 298.6kJ, dE: 21.8kJ, TSC: none, Tmax: 315°C, theoretically endothermic, gain infinite.

■1"大容量電池中1.01g Mg3 N2 、1.66g KH、1g Mg粉末及4g AC3-4,能量增益為5.2kJ,但未觀測到電池溫度突增。最大電池溫度為401℃,理論能量為0,增益無限。■ 1.01g Mg 3 N 2 , 1.66g KH, 1g Mg powder and 4g AC3-4 in a 1" large-capacity battery, the energy gain is 5.2kJ, but no sudden increase in battery temperature is observed. The maximum battery temperature is 401 °C, theory The energy is 0 and the gain is infinite.

■1"大容量電池中0.41g AlN、1.66g KH、1g Mg粉末及4g AC3-5,能量增益為4.9kJ,但未觀測到電池溫度突增。最大電池溫度為407℃,理論上吸熱。■ In a 1" large-capacity battery, 0.41 g of AlN, 1.66 g of KH, 1 g of Mg powder, and 4 g of AC3-5, the energy gain was 4.9 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature was 407 ° C, theoretically endothermic.

在一實施例中,熱再生反應系統包含至少兩種選自(i)-(v)之組份:(i)至少一種選自NaH、KH及MgH2 之催化劑或催化劑源;(ii)至少一種選自NaH及KH之氫源;(iii)至少一種選自諸如Mg3 As2 之金屬砷化物及諸如Mg3 N2 或AlN之金屬氮化物的氧化劑、基質、第二載體或吸氣劑;(iv)至少一種選自Mg及MgH2 之還原劑;及(v)至少一種選自AC、TiC或WC之載體。In one embodiment, the thermal regeneration reaction system comprises at least two components selected from the group consisting of (i)-(v): (i) at least one catalyst or catalyst source selected from the group consisting of NaH, KH, and MgH 2 ; (ii) at least a hydrogen source selected from the group consisting of NaH and KH; (iii) at least one oxidant selected from a metal arsenide such as Mg 3 As 2 and a metal nitride such as Mg 3 N 2 or AlN, a matrix, a second carrier or a getter (iv) at least one reducing agent selected from the group consisting of Mg and MgH 2 ; and (v) at least one carrier selected from the group consisting of AC, TiC or WC.

D.液體燃料:有機及熔融溶劑系統D. Liquid fuels: organic and molten solvent systems

其他實施例包含熔融固體,諸如含於腔室200中之熔鹽或液體溶劑。藉由在高於液體溶劑沸點之溫度下運作該電池,可使溶劑汽化。諸如催化劑之反應物可溶解或懸浮於溶劑中,或形成催化劑及H之反應物可懸浮或溶解於溶劑中。汽化溶劑可作為具有催化劑之氣體,以增加形成低能量氫之氫催化劑反應的速率。熔融固體或汽化溶劑可藉由用加熱器230施熱來維持。反應混合物可進一步包含固體載體,諸如HSA物質。由於熔融固體、液體或氣體溶劑與催化劑及氫(諸如K或Li加上H或NaH)相互作用,所以反應可發生在表面上。在使用非均勻催化劑之一實施例中,混合物之溶劑可增加催化劑反應速率。Other embodiments include molten solids, such as molten salts or liquid solvents contained in chamber 200. The solvent can be vaporized by operating the battery at a temperature above the boiling point of the liquid solvent. The reactant such as a catalyst may be dissolved or suspended in a solvent, or the reactant forming the catalyst and H may be suspended or dissolved in a solvent. The vaporizing solvent can be used as a gas having a catalyst to increase the rate of reaction of the hydrogen catalyst forming low energy hydrogen. The molten solid or vaporized solvent can be maintained by heating with a heater 230. The reaction mixture may further comprise a solid support, such as an HSA material. The reaction can occur on the surface due to the interaction of the molten solid, liquid or gaseous solvent with the catalyst and hydrogen such as K or Li plus H or NaH. In one embodiment using a heterogeneous catalyst, the solvent of the mixture can increase the rate of catalyst reaction.

在包含氫氣之實施例中,H2 可鼓泡穿過溶液。在另一實施例中,將電池加壓以增加經溶解H2 之濃度。在另一實施例中,較佳以高速且在約有機溶劑沸點及約無機溶劑熔點之溫度下攪拌反應物。In an embodiment of the hydrogen containing, H 2 can be bubbled through the solution. In another embodiment, the cell was pressurized to increase the concentration of dissolved H 2. In another embodiment, the reactants are preferably stirred at a high speed and at a temperature of about the boiling point of the organic solvent and about the melting point of the inorganic solvent.

有機溶劑反應混合物可較佳在約26℃至400℃之溫度範圍內、更佳在約100℃至300℃之範圍內加熱。無機溶劑混合物可加熱至高於溶劑為液體時所處之溫度且低於引起NaH分子全部分解之溫度的溫度。The organic solvent reaction mixture may preferably be heated at a temperature ranging from about 26 ° C to 400 ° C, more preferably from about 100 ° C to 300 ° C. The inorganic solvent mixture can be heated to a temperature above the temperature at which the solvent is a liquid and below a temperature at which the NaH molecule is completely decomposed.

a.有機溶劑a. organic solvent

有機溶劑可包含一或多個藉由添加官能基而可改質成其他溶劑的部分。該等部分可包含以下至少一者:烴,諸如烷烴、環烷烴、烯烴、環烯烴、炔烴、芳烴、雜環烴及其組合;醚;鹵化烴(氟化烴、氯化烴、溴化烴、碘化烴),較佳氟化烴;胺;硫醚;腈;磷醯胺(例如,OP(N(CH3 )2 )3 );及胺基磷氮烯。該等基團可包含以下至少一者:烷基、環烷基、烷氧羰基、氰基、胺甲醯基、含有C、O、N、S之雜環、磺酸基、胺磺醯基、烷氧基磺醯基、膦酸基、羥基、鹵素、烷氧基、烷硫基、醯氧基、芳基、烯基、脂族基團、醯基、羧基、胺基、氰基烷氧基、重氮、羧基烷基羧醯胺基、烯硫基、氰基烷氧羰基、胺甲醯基烷氧羰基、烷氧基羰基胺基、氰基烷基胺基、烷氧羰基烷基胺基、磺酸基烷基胺基、烷基胺磺醯基烷基胺基、氧離子基、羥基烷基、羧基烷基羰氧基、氰基烷基、羧基烷硫基、芳基胺基、雜芳基胺基、烷氧羰基、烷基羰氧基、氰基烷氧基、烷氧羰基烷氧基、胺甲醯基烷氧基、胺甲醯基烷基羰氧基、磺酸基烷氧基、硝基、烷氧基芳基、鹵芳基、胺基芳基、烷基胺基芳基、甲苯基、烯基芳基、烯丙基芳基、烯氧基芳基、烯丙氧基芳基、氰基芳基、胺甲醯基芳基、羧基芳基、烷氧基羰基芳基、烷基羰氧基芳基、磺酸基芳基、烷氧基磺酸基芳基、胺磺醯基芳基及硝基芳基。基團較佳包含以下至少一者:烷基、環烷基、烷氧基、氰基、含有C、O、N、S之雜環、磺酸基、膦酸基、鹵素、烷氧基、烷硫基、芳基、烯基、脂族基團、醯基、烷基胺基、烯硫基、芳基胺基、雜芳基胺基、鹵芳基、胺基芳基、烷基胺基芳基、烯基芳基、烯丙基芳基、烯氧基芳基、烯丙氧基芳基及氰基芳基。The organic solvent may comprise one or more moieties that can be modified to other solvents by the addition of functional groups. The moieties can comprise at least one of: hydrocarbons such as alkanes, cycloalkanes, alkenes, cyclic alkenes, alkynes, aromatics, heterocyclic hydrocarbons, and combinations thereof; ethers; halogenated hydrocarbons (fluorinated hydrocarbons, chlorinated hydrocarbons, brominated Hydrocarbon, iodide hydrocarbon), preferably fluorinated hydrocarbon; amine; thioether; nitrile; phosphoniumamine (for example, OP(N(CH 3 ) 2 ) 3 ); and aminophosphazene. The group may comprise at least one of the group consisting of an alkyl group, a cycloalkyl group, an alkoxycarbonyl group, a cyano group, an amine carbaryl group, a heterocyclic ring containing C, O, N, S, a sulfonic acid group, an amine sulfonyl group. , alkoxysulfonyl, phosphonic acid, hydroxy, halogen, alkoxy, alkylthio, decyloxy, aryl, alkenyl, aliphatic, fluorenyl, carboxy, amine, cyanoalkane Oxyl, diazo, carboxyalkyl carboxylamido, alkenylthio, cyanoalkoxycarbonyl, aminecarboxyalkyloxycarbonyl, alkoxycarbonylamino, cyanoalkylamino, alkoxycarbonyl Amino, sulfonylalkylamino, alkylamine sulfonylalkylamine, oxyalkyl, hydroxyalkyl, carboxyalkylcarbonyloxy, cyanoalkyl, carboxyalkylthio, aryl Amino, heteroarylamine, alkoxycarbonyl, alkylcarbonyloxy, cyanoalkoxy, alkoxycarbonylalkoxy, aminecarboxyalkyloxy, aminecarakialkylcarbonyloxy, Sulfosylalkoxy, nitro, alkoxyaryl, haloaryl, aminoaryl, alkylaminoaryl, tolyl, alkenylaryl, allylaryl, alkenyloxy Base, allyloxyaryl, cyanoaryl, amine Mercaptoaryl, carboxyaryl, alkoxycarbonylaryl, alkylcarbonyloxyaryl, sulfonylaryl, alkoxysulfonylaryl, aminsulfonylaryl and nitroaryl . The group preferably comprises at least one of the group consisting of an alkyl group, a cycloalkyl group, an alkoxy group, a cyano group, a heterocyclic ring containing C, O, N, S, a sulfonic acid group, a phosphonic acid group, a halogen, an alkoxy group, Alkylthio, aryl, alkenyl, aliphatic, fluorenyl, alkylamino, alkylthio, arylamino, heteroarylamino, haloaryl, aminoaryl, alkylamine Alkaryl, alkenylaryl, allylaryl, alkenyloxy, allyloxyaryl and cyanoaryl.

在包含液體溶劑之一實施例中,催化劑NaH為至少一種反應混合物組份且由反應混合物形成。反應混合物可進一步包含以下之群中之至少一者:NaH、Na、NH3 、NaNH2 、Na2 NH、Na3 N、H2 O、NaOH、NaX(X為陰離子,較佳鹵離子)、NaBH4 、NaAlH4 、Ni、鉑黑、鈀黑、R-Ni、摻雜Na物質(諸如Na、NaOH及NaH中之至少一者)之R-Ni、HSA載體、吸氣劑、分散劑、氫源(諸如H2 )及氫解離器。在其他實施例中,Li、K、Rb或Cs替代Na。在一實施例中,溶劑具有鹵素官能基,較佳氟。合適反應混合物包含六氟苯與八氟萘中之至少一者,將其添加至諸如NaH之催化劑中且與諸如活性碳、氟聚合物或R-Ni之載體混合。在一實施例中,反應混合物包含一或多種來自以下之群之物質:Na、NaH、溶劑、較佳氟化溶劑及HSA物質。用於再生之合適氟化溶劑為CF4 。對於氟化溶劑及NaH催化劑而言合適之載體或HSA物質為NaF。在一實施例中,反應混合物至少包含NaH、CF4 及NaF。其他基於氟之載體或吸氣劑包含:M 2 SiF 6 ,其中M為鹼金屬,諸如NaSiF 6K 2 SiF 6MSiF 6 ,其中M為鹼土金屬,諸如MgSiF 6GaF 3PF 5MPF 6 ,其中M為鹼金屬;MHF 2 ,其中M為鹼金屬,諸如NaHF 2KHF 2K 2 TaF 7KBF 4K 2 MnF 6K 2 ZrF 6 ,其中期望可使用其他類似化合物,諸如具有另一鹼金屬或鹼土金屬取代、諸如Li、Na或K之一作為鹼金屬的化合物。In one embodiment comprising a liquid solvent, the catalyst NaH is at least one reaction mixture component and is formed from the reaction mixture. The reaction mixture may further comprise at least one of the group consisting of NaH, Na, NH 3 , NaNH 2 , Na 2 NH, Na 3 N, H 2 O, NaOH, NaX (X is an anion, preferably a halide), R-Ni, HSA carrier, getter, dispersant, NaBH 4 , NaAlH 4 , Ni, platinum black, palladium black, R-Ni, doped Na substance (such as at least one of Na, NaOH and NaH) A hydrogen source such as H 2 and a hydrogen dissociator. In other embodiments, Li, K, Rb, or Cs replaces Na. In one embodiment, the solvent has a halogen functional group, preferably fluorine. A suitable reaction mixture comprises at least one of hexafluorobenzene and octafluoronaphthalene, which is added to a catalyst such as NaH and mixed with a carrier such as activated carbon, fluoropolymer or R-Ni. In one embodiment, the reaction mixture comprises one or more of the following groups: Na, NaH, a solvent, preferably a fluorinated solvent, and an HSA material. A suitable fluorinated solvent for regeneration is CF 4 . Suitable carriers or HSA materials for fluorinated solvents and NaH catalysts are NaF. In one embodiment, the reaction mixture comprises at least NaH, CF 4 and NaF. Other fluorine-based carriers or getters include: M 2 SiF 6 , wherein M is an alkali metal such as NaSiF 6 and K 2 SiF 6 ; MSiF 6 , wherein M is an alkaline earth metal such as MgSiF 6 , GaF 3 , PF 5 ; MPF 6 , wherein M is an alkali metal; MHF 2 , wherein M is an alkali metal such as NaHF 2 and KHF 2 ; K 2 TaF 7 , KBF 4 , K 2 MnF 6 and K 2 ZrF 6 , wherein other similar compounds are expected to be used For example, a compound having another alkali metal or alkaline earth metal substitution, such as one of Li, Na or K, as an alkali metal.

b.無機溶劑b. Inorganic solvent

在另一實施例中,反應混合物包含至少一種無機溶劑。溶劑可另外包含熔融無機化合物,諸如熔鹽。無機溶劑可為熔融NaOH。在一實施例中,反應混合物包含催化劑、氫源及催化劑之無機溶劑。催化劑可為NaH分子、Li及K中之至少一者。溶劑可為熔融或熔化鹽或共熔物中之至少一者,諸如鹼金屬鹵化物及鹼土金屬鹵化物之群之熔鹽中的至少一者。NaH催化劑反應混合物之無機溶劑可包含諸如NaCl與KCl之鹼金屬鹵化物之混合物的低熔點共熔物。溶劑可為低熔點鹽,較佳Na鹽,諸如NaI(660℃)、NaAlCl4 (160℃)、NaAlF4 及與NaMX4 屬同一類別之具有比NaX更穩定之金屬鹵化物的化合物(其中M為金屬且X為鹵素)中之至少一者。反應混合物可進一步包含諸如R-Ni之載體。In another embodiment, the reaction mixture comprises at least one inorganic solvent. The solvent may additionally contain a molten inorganic compound such as a molten salt. The inorganic solvent can be molten NaOH. In one embodiment, the reaction mixture comprises a catalyst, a source of hydrogen, and an inorganic solvent of the catalyst. The catalyst can be at least one of NaH molecules, Li and K. The solvent may be at least one of a molten or molten salt or a eutectic, such as at least one of an alkali metal halide and a molten salt of a group of alkaline earth metal halides. The inorganic solvent of the NaH catalyst reaction mixture may comprise a low melting point eutectic such as a mixture of an alkali metal halide of NaCl and KCl. The solvent may be a low melting salt, preferably a Na salt such as NaI (660 ° C), NaAlCl 4 (160 ° C), NaAlF 4 and a compound of the same class as NaMX 4 having a metal halide which is more stable than NaX (wherein M) At least one of a metal and X is a halogen. The reaction mixture may further comprise a carrier such as R-Ni.

Li催化劑反應混合物之無機溶劑可包含諸如LiCl與KCl之鹼金屬鹵化物之混合物的低熔點共熔物。熔鹽溶劑可包含對NaH穩定之基於氟之溶劑。LaF3 熔點為1493℃且NaF熔點為996℃。視情況具有其他氟化物之合適比率的球磨混合物包含對NaH穩定且較佳在600℃-700℃之範圍內熔融的氟化物-鹽溶劑。在熔鹽實施例中,反應混合物包含NaH+鹽混合物,諸如NaF-KF-LiF(11.5-42.0-46.5)MP=454℃,或NaH+鹽混合物,諸如LiF-KF(52%-48%)MP=492℃。The inorganic solvent of the Li catalyst reaction mixture may comprise a low melting point eutectic such as a mixture of an alkali metal halide of LiCl and KCl. The molten salt solvent may comprise a fluorine-based solvent that is stable to NaH. LaF 3 has a melting point of 1493 ° C and a NaF melting point of 996 ° C. The ball mill mixture having a suitable ratio of other fluorides as appropriate comprises a fluoride-salt solvent which is stable to NaH and preferably melts in the range of from 600 °C to 700 °C. In the molten salt embodiment, the reaction mixture comprises a NaH+ salt mixture such as NaF-KF-LiF (11.5-42.0-46.5) MP = 454 °C, or a NaH+ salt mixture such as LiF-KF (52%-48%) MP= 492 ° C.

V.再生系統及反應V. Regeneration system and reaction

根據本發明用於使燃料再循環或再生之系統的示意圖展示於圖4中。在一實施例中,低能量氫反應之副產物包含金屬鹵化物MX,較佳NaX或KX。此外燃料再循環器18(圖4)包含一將諸如NaX之無機化合物與載體分離之分離器21。在一實施例中,分離器或其組件包含一基於物質密度差進行分離之移位或旋風分離器22。另一分離器或其組件包含一磁力分離器23,其中諸如鎳或鐵之磁性粒子由磁體抽出,而諸如MX之非磁性物質流過分離器。在另一實施例中,分離器或其組件包含一含有溶解或懸浮至少一種組份程度超過溶解或懸浮另一組份之程度以允許分離之組份溶劑洗滌液25的差異產物溶解或懸浮系統24,且可進一步包含一化合物回收系統26,諸如溶劑蒸發器27及化合物收集器28。或者,回收系統包含一沈澱器29及一化合物乾燥器及收集器30。在一實施例中,來自圖2中所示之渦輪機14及水冷凝器16的廢熱用以加熱蒸發器27與乾燥器30中之至少一者(圖4)。用於再循環器18(圖4)之任何其他階段之熱可包含此廢熱。A schematic of a system for recycling or regenerating fuel in accordance with the present invention is shown in FIG. In one embodiment, the by-product of the low energy hydrogen reaction comprises a metal halide MX, preferably NaX or KX. Further, the fuel recycler 18 (Fig. 4) includes a separator 21 that separates an inorganic compound such as NaX from a carrier. In one embodiment, the separator or component thereof includes a displacement or cyclone separator 22 that is separated based on the difference in material density. The other separator or component thereof includes a magnetic separator 23 in which magnetic particles such as nickel or iron are extracted by a magnet, and a non-magnetic substance such as MX flows through the separator. In another embodiment, the separator or component thereof comprises a differential product dissolution or suspension system comprising dissolved or suspended at least one component to the extent that the other component is dissolved or suspended to allow separation of the component solvent wash 25 24, and may further comprise a compound recovery system 26, such as solvent evaporator 27 and compound collector 28. Alternatively, the recovery system includes a precipitator 29 and a compound dryer and collector 30. In one embodiment, waste heat from turbine 14 and water condenser 16 shown in FIG. 2 is used to heat at least one of evaporator 27 and dryer 30 (FIG. 4). The heat for any other stage of the recycler 18 (Fig. 4) may contain this waste heat.

燃料再循環器18(圖4)進一步包含一電解器31,其將回收之MX電解成金屬及鹵素氣體或其他鹵化產物或鹵化物。在一實施例中,電解較佳在動力反應器36內自熔體,諸如共熔體發生。電解氣體及金屬產物分別單獨收集在易揮發氣體收集器32及金屬收集器33中,在金屬混合物之狀況下該金屬收集器33可進一步包含金屬蒸餾器或分離器34。若初始反應物為氫化物,則藉由氫化反應器35將金屬氫化,該氫化反應器35包含一能夠使壓力小於、超過及等於大氣壓之電池36、一供金屬及氫化物用之入口及出口37、一供氫氣用之入口38及其閥39、一氫氣供應40、一出氣口41及其閥42、一泵43、一加熱器44及壓力與溫度計量表45。在一實施例中,氫供應40包含一具有氫氣及氧氣分離器之水性電解器。經分離金屬產物在鹵化反應器46中至少部分鹵化,該鹵化反應器46包含一能夠使壓力小於、超過及等於大氣壓之電池47、一供碳用之入口及供鹵化產物用之出口48、一供氟氣用之入口49及其閥50、一鹵素氣體供應51、一出氣口52及其閥53、一泵54、一加熱器55及壓力與溫度計量表56。反應器較佳亦含有催化劑及其他反應物以引起金屬57變成具有所需氧化態及化學計量之鹵化物作為產物。金屬或金屬氫化物、金屬鹵化物、載體及其他初始反應物中之至少兩者在混合器58中混合後再循環至鍋爐10,以進行另一動力產生循環。The fuel recycler 18 (Fig. 4) further includes an electrolyzer 31 that electrolyzes the recovered MX into a metal and a halogen gas or other halogenated product or halide. In one embodiment, electrolysis preferably occurs in the power reactor 36 from a melt, such as a co-melt. The electrolysis gas and the metal product are separately collected in the volatile gas collector 32 and the metal collector 33, and the metal collector 33 may further include a metal distiller or separator 34 in the case of the metal mixture. If the initial reactant is a hydride, the metal is hydrogenated by a hydrogenation reactor 35 comprising a battery 36 capable of making the pressure less than, above and equal to atmospheric pressure, and an inlet and outlet for the metal and hydride. 37. An inlet 38 for hydrogen supply and its valve 39, a hydrogen supply 40, an outlet 41 and its valve 42, a pump 43, a heater 44 and a pressure and temperature meter 45. In one embodiment, the hydrogen supply 40 comprises an aqueous electrolyzer having a hydrogen and oxygen separator. The separated metal product is at least partially halogenated in a halogenation reactor 46. The halogenation reactor 46 comprises a battery 47 capable of making the pressure less than, greater than, and equal to atmospheric pressure, an inlet for carbon supply, and an outlet 48 for the halogenated product. The inlet 49 for fluorine gas and its valve 50, a halogen gas supply 51, an air outlet 52 and its valve 53, a pump 54, a heater 55 and a pressure and temperature meter 56. The reactor preferably also contains a catalyst and other reactants to cause the metal 57 to become a product having the desired oxidation state and stoichiometric amount of halide. At least two of the metal or metal hydride, metal halide, support, and other initial reactants are combined in mixer 58 and recycled to boiler 10 for another power generation cycle.

在例示性低能量氫及再生反應中,反應混合物包含NaH催化劑、Mg、MnI2 及載體(活性碳、WC或TiC)。在一實施例中,放熱反應來源為金屬氫化物被MnI2 氧化之反應,諸如In an exemplary low energy hydrogen and regeneration reaction, the reaction mixture comprises a NaH catalyst, Mg, MnI 2, and a support (activated carbon, WC or TiC). In one embodiment, the exothermic reaction source is a reaction in which a metal hydride is oxidized by MnI 2 , such as

2KH +MnI 2 →2KI +Mn +H 2  (86)2 KH + MnI 2 → 2 KI + Mn + H 2 (86)

Mg +MnI 2MgI 2 +Mn 。 (87) Mg + MnI 2MgI 2 + Mn . (87)

KI及MgI2 可自熔鹽電解成I2 、K及Mg。熔融電解可使用唐斯電解池(Downs cell)或經修改之唐斯電解池來執行。Mn可使用機械分離器及視情況選用之篩子來分離。未反應之Mg或MgH2 可藉由熔融且藉由分離固相與液相來分離。供電解用之碘化物可來自用諸如脫氧水之合適溶劑沖洗反應產物。溶液可經過濾以移除諸如AC之載體及視情況存在之過渡金屬。可將固體離心,且較佳使用來自動力系統之廢熱來乾燥。或者,可藉由熔融、接著分離液相與固相來分離鹵化物。在另一實施例中,較輕之AC一開始可由諸如旋渦分離之方法與其他反應產物分離。K與Mg不可混溶,且可用較佳來自H2 O電解之氫氣將諸如K之經分離金屬氫化。金屬碘化物可由與經分離金屬或與未與AC分離之金屬進行已知之反應而形成。在一實施例中,Mn與HI反應,形成MnI2 及H2 ,H2 再循環且與I2 反應,形成HI。在其他實施例中,其他金屬、較佳過渡金屬替代Mn。另一還原劑(諸如A1)可替代Mg。另一鹵化物、較佳氯化物可替代碘化物。LiH、KH、RbH或CsH可替代NaH。KI and MgI 2 can be electrolyzed from molten salts to I 2 , K and Mg. Melt electrolysis can be performed using a Downs cell or a modified Downs cell. Mn can be separated using a mechanical separator and optionally a sieve. Unreacted Mg or MgH 2 can be separated by melting and by separating the solid phase from the liquid phase. The iodide for electrolysis may be derived from rinsing the reaction product with a suitable solvent such as deoxygenated water. The solution can be filtered to remove a carrier such as AC and, if appropriate, a transition metal. The solid can be centrifuged and preferably dried using waste heat from a power system. Alternatively, the halide can be separated by melting, followed by separation of the liquid phase from the solid phase. In another embodiment, the lighter AC can be separated from other reaction products by a process such as vortex separation. K is immiscible with Mg, and the separated metal such as K can be hydrogenated with hydrogen preferably from H 2 O electrolysis. The metal iodide can be formed by a known reaction with a separated metal or with a metal that is not separated from the AC. In one embodiment, Mn is reacted with HI to form MnI 2 and H 2 , and H 2 is recycled and reacted with I 2 to form HI. In other embodiments, other metals, preferably transition metals, replace Mn. Another reducing agent such as A1 can be substituted for Mg. Another halide, preferably a chloride, can be substituted for the iodide. LiH, KH, RbH or CsH can replace NaH.

在例示性低能量氫及再生反應中,反應混合物包含NaH催化劑、Mg、AgCl及載體活性碳。在一實施例中,放熱反應來源為金屬氫化物被AgCl氧化之反應,諸如In an exemplary low energy hydrogen and regeneration reaction, the reaction mixture comprises a NaH catalyst, Mg, AgCl, and a carrier activated carbon. In one embodiment, the source of the exothermic reaction is a reaction in which the metal hydride is oxidized by AgCl, such as

KH +AgClKCl +Ag +1/2H 2  (88) KH + AgClKCl + Ag +1/2 H 2 (88)

Mg +2AgClMgCl 2 +2Ag 。 (89) Mg +2 AgClMgCl 2 +2 Ag . (89)

KCl及MgCl2 可自熔鹽電解成Cl2 、K及Mg。熔融電解可使用唐斯電解池或經修改之唐斯電解池來執行。Ag可使用機械分離器及視情況選用之篩子來分離。未反應之Mg或MgH2 可藉由熔融且藉由分離固相與液相來分離。供電解用之氯化物可由用諸如脫氧水之合適溶劑沖洗反應產物而獲得。溶液可經過濾以移除諸如AC之載體及視情況存在之金屬Ag。可將固體離心,且較佳使用來自動力系統之廢熱來乾燥。或者,可藉由熔融、接著分離液相與固相來分離鹵化物。在另一實施例中,較輕之AC最初可藉由諸如旋渦分離之方法與其他反應產物分離。K與Mg不可混溶,且可用較佳來自H2 O電解之氫氣將諸如K之經分離金屬氫化。金屬氯化物可藉由與經分離金屬或與未與AC分離之金屬進行已知之反應而形成。在一實施例中,Ag與Cl2 反應,形成AgCl,且H2 再循環且與I2 反應,形成HI。在其他實施例中,其他金屬、較佳過渡金屬或In替代Ag。另一還原劑(諸如Al)可替代Mg。另一鹵化物、較佳氯化物可替代碘化物。LiH、KH、RbH或CsH可替代NaH。KCl and MgCl 2 can be electrolyzed from the molten salt into Cl 2 , K and Mg. Melt electrolysis can be performed using a Towns cell or a modified Towns cell. Ag can be separated using a mechanical separator and, optionally, a sieve. Unreacted Mg or MgH 2 can be separated by melting and by separating the solid phase from the liquid phase. The chloride for electrolysis can be obtained by rinsing the reaction product with a suitable solvent such as deoxygenated water. The solution can be filtered to remove a carrier such as AC and metal Ag as the case may be. The solid can be centrifuged and preferably dried using waste heat from a power system. Alternatively, the halide can be separated by melting, followed by separation of the liquid phase from the solid phase. In another embodiment, the lighter AC may initially be separated from other reaction products by methods such as vortex separation. K is immiscible with Mg, and the separated metal such as K can be hydrogenated with hydrogen preferably from H 2 O electrolysis. Metal chlorides can be formed by known reactions with separated metals or with metals that are not separated from AC. In one embodiment, Ag reacts with Cl 2 to form AgCl, and H 2 is recycled and reacts with I 2 to form HI. In other embodiments, other metals, preferably transition metals or In, replace Ag. Another reducing agent such as Al can be substituted for Mg. Another halide, preferably a chloride, can be substituted for the iodide. LiH, KH, RbH or CsH can replace NaH.

在一實施例中,反應混合物由低能量氫反應產物再生。在例示性低能量氫及再生反應中,固體燃料反應混合物包含KH或NaH催化劑、Mg或MgH2 及鹼土金屬鹵化物(諸如BaBr2 )及載體(活性碳、WC或較佳TiC)。在一實施例中,放熱反應來源為金屬氫化物或金屬被BaBr2 氧化之反應,諸如In one embodiment, the reaction mixture is regenerated from a low energy hydrogen reaction product. In an exemplary low energy hydrogen and regeneration reaction, the solid fuel reaction mixture comprises a KH or NaH catalyst, Mg or MgH 2 and an alkaline earth metal halide (such as BaBr 2 ) and a support (activated carbon, WC or preferably TiC). In one embodiment, the source of the exothermic reaction is a metal hydride or a reaction in which the metal is oxidized by BaBr 2 , such as

2KH +Mg +BaBr 2 →2KBr +Ba +MgH 2  (90)2 KH + Mg + BaBr 2 → 2 KBr + Ba + MgH 2 (90)

2NaH +Mg +BaBr 2 →2NaBr +Ba +MgH 2 。 (91)2 NaH + Mg + BaBr 2 → 2 NaBr + Ba + MgH 2 . (91)

Ba、鎂、MgH2 、NaBr及KBr之熔點分別為727℃、650℃、327℃、747℃及734℃。因此,藉由在視情況添加H2 下維持MgH2 、優先熔融MgH2 且將液體與反應產物混合物分離,可將MgH2 與鋇及任何Ba-Mg介金屬分離。其視情況可熱分解成Mg。接著可將剩餘反應產物添加至電解熔體中。固體載體及Ba沈澱形成較佳可分離層。或者,Ba可藉由熔融而以液體形式分離。接著可將NaBr或KBr電解,形成鹼金屬及Br2 。後者(Br2 )與Ba反應,形成BaBr2 。或者,Ba為陽極,且在陽極室中直接形成BaBr2 。鹼金屬在電解之後可經氫化或在電解期間藉由在陰極室中H2 鼓泡而在此室中形成。接著,MgH2 或Mg、NaH或KH、BaBr2 及載體重調為反應混合物。在其他實施例中,另一鹼土金屬鹵化物替代BaBr2 ,較佳為BaCl2 。在另一實施例中,在不進行電解下可發生再生反應,此係因為反應物與產物之間的能量差小。由方程式(90-91)給出之反應可藉由改變反應條件、諸如溫度或氫壓力而逆轉。或者,可選擇性地移除諸如K或Na之熔融或揮發性物質,以驅動反應倒退,以再生可進一步反應且添加回電池中形成初始反應混合物的反應物或物質。在另一實施例中,揮發性物質可不斷回流以維持催化劑或催化劑源(諸如NaH、KH、Na或K)與初始氧化劑(諸如鹼土金屬鹵化物或稀土金屬鹵化物)之間的可逆反應。在一實施例中,使用蒸餾器(諸如圖4中所示之蒸餾器34)實現回流。在另一實施例中,可改變諸如溫度或氫壓力之反應條件以逆轉反應。在此狀況下,反應最初向形成低能量氫及反應混合物產物之正向進行。接著除較低能量氫以外之產物轉化為初始反應物。此可藉由改變反應條件且可能添加或移除至少部分與最初使用或形成之產物或反應物相同之產物或反應物或其他產物或反應物來執行。因此,正反應與再生反應交替循環進行。可添加氫以替代在形成低能量氫中消耗之氫。在另一實施例中,維持諸如高溫之反應條件,其中可逆反應經最佳化,使得正反應與逆反應均以實現所需、較佳最大低能量氫形成速率之方式發生。The melting points of Ba, Mg, MgH 2 , NaBr and KBr are 727 ° C, 650 ° C, 327 ° C, 747 ° C and 734 ° C, respectively. Thus, by addition of H 2 optionally in maintaining of MgH 2, the priority of MgH 2 and the molten liquid is separated from the reaction product mixture, may be any of MgH 2 and barium Ba-Mg intermetallic separated. It can be thermally decomposed into Mg as appropriate. The remaining reaction product can then be added to the electrolytic melt. The solid support and Ba precipitate form a preferred separable layer. Alternatively, Ba may be separated in liquid form by melting. NaBr or KBr then be electrolyzed to form an alkali metal and Br 2. The latter (Br 2 ) reacts with Ba to form BaBr 2 . Alternatively, Ba is an anode and BaBr 2 is formed directly in the anode chamber. The alkali metal can be formed in this chamber after hydrogenation or by bubbling H 2 in the cathode chamber during electrolysis. Next, MgH 2 or Mg, NaH or KH, BaBr 2 and the carrier are re-adjusted to the reaction mixture. In other embodiments, another alkaline earth metal halide replaces BaBr 2 , preferably BaCl 2 . In another embodiment, the regeneration reaction can occur without electrolysis because the energy difference between the reactants and the product is small. The reaction given by equation (90-91) can be reversed by changing the reaction conditions, such as temperature or hydrogen pressure. Alternatively, a molten or volatile material such as K or Na can be selectively removed to drive the reaction back to regenerate the reactants or materials that can be further reacted and added back to the cell to form the initial reaction mixture. In another embodiment, the volatile material can be continuously refluxed to maintain a reversible reaction between the catalyst or catalyst source (such as NaH, KH, Na or K) and the initial oxidant (such as an alkaline earth metal halide or a rare earth metal halide). In one embodiment, reflux is achieved using a distiller such as distiller 34 shown in FIG. In another embodiment, reaction conditions such as temperature or hydrogen pressure can be varied to reverse the reaction. In this case, the reaction is initially carried out to the direction in which the low energy hydrogen and the reaction mixture product are formed. The product other than the lower energy hydrogen is then converted to the initial reactant. This can be performed by varying the reaction conditions and possibly adding or removing at least a portion of the product or reactant or other product or reactant that is identical to the product or reactant originally used or formed. Therefore, the positive reaction and the regeneration reaction are alternately cycled. Hydrogen can be added to replace the hydrogen consumed in forming low energy hydrogen. In another embodiment, reaction conditions such as high temperatures are maintained, wherein the reversible reaction is optimized such that both positive and negative reactions occur in a manner that achieves a desired, preferably maximum, low energy hydrogen formation rate.

在例示性低能量氫及再生反應中,固體燃料反應混合物包含NaH催化劑、Mg、FeBr2 及載體活性碳。在一實施例中,放熱反應來源為金屬氫化物被FeBr2 氧化之反應,諸如In an exemplary low energy and hydrogen in the regeneration reaction, the reaction mixture comprising the solid fuel NaH catalyst, Mg, FeBr 2 and the carrier activated carbon. In one embodiment, the source of the exothermic reaction is a reaction in which the metal hydride is oxidized by FeBr 2 , such as

2NaH +FeBr 2 →2NaBr +Fe +H 2  (92)2 NaH + FeBr 2 →2 NaBr + Fe + H 2 (92)

Mg +FeBr 2MgBr 2 +Fe 。 (93) Mg + FeBr 2MgBr 2 + Fe . (93)

NaBr及MgBr2 可自熔鹽電解成Br2 、Na及 Mg。熔融電解可使用唐斯電解池或經修改之唐斯電解池來執行。Fe具有鐵磁性且可使用機械分離器及視情況選用之篩子磁性分離。在另一實施例中,鐵磁性Ni可替代Fe。未反應之Mg或MgH2 可藉由熔融且藉由分離固相與液相來分離。供電解用之溴化物可由用諸如脫氧水之合適溶劑沖洗反應產物而獲得。溶液可經過濾以移除諸如AC之載體及視情況存在之過渡金屬。可將固體離心,且較佳使用來自動力系統之廢熱來乾燥。或者,可藉由熔融、接著分離液相與固相來分離鹵化物。在另一實施例中,較輕之AC最初可由諸如旋渦分離之方法與其他反應產物分離。Na與Mg不可混溶,且可用較佳來自H2 O電解之氫氣將諸如Na之經分離金屬氫化。金屬溴化物可由與經分離金屬或與未與AC分離之金屬進行已知之反應而形成。在一實施例中,Fe與HBr反應,形成FeBr2 及H2 ,H2 再循環且與Br2 反應,形成HBr。在其他實施例中,其他金屬、較佳過渡金屬替代Fe。另一還原劑(諸如Al)可替代Mg。另一鹵化物、較佳氯化物可替代溴化物。LiH、KH、RbH或CsH可替代NaH。NaBr and MgBr 2 can be electrolyzed from a molten salt into Br 2 , Na and Mg. Melt electrolysis can be performed using a Towns cell or a modified Towns cell. Fe is ferromagnetic and can be magnetically separated using a mechanical separator and, optionally, a sieve. In another embodiment, ferromagnetic Ni can be substituted for Fe. Unreacted Mg or MgH 2 can be separated by melting and by separating the solid phase from the liquid phase. The bromide for electrolysis can be obtained by rinsing the reaction product with a suitable solvent such as deoxygenated water. The solution can be filtered to remove a carrier such as AC and, if appropriate, a transition metal. The solid can be centrifuged and preferably dried using waste heat from a power system. Alternatively, the halide can be separated by melting, followed by separation of the liquid phase from the solid phase. In another embodiment, the lighter AC may initially be separated from other reaction products by methods such as vortex separation. Na is immiscible with Mg, and the separated metal such as Na can be hydrogenated with hydrogen preferably from H 2 O electrolysis. The metal bromide can be formed by a known reaction with a separated metal or with a metal that is not separated from the AC. In one embodiment, Fe reacts with HBr to form FeBr 2 and H 2 , and H 2 is recycled and reacted with Br 2 to form HBr. In other embodiments, other metals, preferably transition metals, replace Fe. Another reducing agent such as Al can be substituted for Mg. Another halide, preferably a chloride, can be substituted for the bromide. LiH, KH, RbH or CsH can replace NaH.

在例示性低能量氫及再生反應中,固體燃料反應混合物包含KH或NaH催化劑、Mg或MgH2 、SnBr2 及載體(活性碳、WC或TiC)。在一實施例中,放熱反應來源為金屬氫化物或金屬被SnBr2 氧化之反應,諸如In an exemplary low energy and hydrogen in the regeneration reaction, the reaction mixture comprising the solid fuel the catalyst NaH or KH, Mg or MgH 2, SnBr 2 and a carrier (active carbon, the WC or TiC). In one embodiment, the exothermic reaction source is a metal hydride or a reaction in which the metal is oxidized by SnBr 2 , such as

2KH +SnBr 2 →2KBr +Sn +H 2  (94)2 KH + SnBr 2 → 2 KBr + Sn + H 2 (94)

2NaH +SnBr 2 →2NaBr +Sn +H 2  (95)2 NaH + SnBr 2 → 2 NaBr + Sn + H 2 (95)

Mg +SnBr 2MgBr 2 +Sn 。 (96) Mg + SnBr 2MgBr 2 + Sn . (96)

錫、鎂、MgH2 、NaBr及KBr之熔點分別為119℃、650℃、327℃、747℃及734℃。如在合金相圖中所給出,對於約5wt% Mg而言,錫-鎂合金將在超過諸如400℃之溫度下熔融。在一實施例中,藉由使金屬及合金熔融且分離液相與固相,將金屬錫及鎂及合金與載體及鹵化物分離。合金可與H2 在形成MgH2 固體及金屬錫之溫度下反應。可分離固相與液相,得到MgH2 及錫。MgH2 可熱分解成Mg及H2 。或者,在選擇性地將任何未反應之Mg及任何Sn-Mg合金轉化為固體MgH2 及液體錫之溫度下,可原位添加H2 至反應產物中。可選擇性地移除錫。接著可加熱MgH2 且以液體形式將其移除。接著鹵化物可由諸如以下之方法自載體移除:(1)熔融且分離各相;(2)基於密度差進行旋渦分離,其中諸如WC之緻密載體為較佳;或(3)基於尺寸差異篩選。或者,鹵化物可溶於合適溶劑中,且由諸如過濾之方法分離液相與固相。可蒸發液體且接著鹵化物可自熔體電解為不可混溶且各自分離之金屬Na或K與可能Mg。在另一實施例中,藉由使用由鹵化鈉電解再生之金屬Na還原鹵化物、較佳與低能量氫反應器中形成相同之鹵化物,形成K。此外,自電解熔體收集諸如Br2 之鹵素氣體,且與經分離Sn反應,形成SnBr2 ,SnBr2 再循環,與NaH或KH及Mg或MgH2 一起進行低能量氫反應之另一循環,其中氫化物藉由用氫氣氫化而形成。在一實施例中,形成HBr且HBr與Sn反應,形成SnBr2 。HBr可由Br2 與H2 反應形成,或在電解期間藉由在陽極H2 鼓泡而形成,後者具有降低電解能量之優點。在其他實施例中,另一金屬替代Sn,較佳為過渡金屬,且另一鹵化物可替代Br,諸如I。The melting points of tin, magnesium, MgH 2 , NaBr and KBr are 119 ° C, 650 ° C, 327 ° C, 747 ° C and 734 ° C, respectively. As given in the alloy phase diagram, for about 5 wt% Mg, the tin-magnesium alloy will melt at temperatures in excess of, for example, 400 °C. In one embodiment, the metal tin and magnesium and the alloy are separated from the support and the halide by melting the metal and alloy and separating the liquid phase from the solid phase. The alloy can be reacted with H 2 at a temperature at which MgH 2 solids and tin metal are formed. The solid phase and the liquid phase can be separated to obtain MgH 2 and tin. MgH 2 can be thermally decomposed into Mg and H 2 . Alternatively, the selectively any unreacted Mg, and any of the Sn-Mg alloy into a solid MgH 2 and the temperature of the liquid tin, H 2 may be added in situ to the reaction product. The tin can be selectively removed. The MgH 2 can then be heated and removed in liquid form. The halide can then be removed from the support by methods such as: (1) melting and separating the phases; (2) vortex separation based on density differences, wherein a dense carrier such as WC is preferred; or (3) screening based on size differences . Alternatively, the halide can be dissolved in a suitable solvent and the liquid phase and solid phase separated by methods such as filtration. The liquid can be evaporated and then the halide can be electrolyzed from the melt to an immiscible and separately separated metal Na or K and possibly Mg. In another embodiment, K is formed by reducing the halide using a metal Na regenerated by sodium halide electrolysis, preferably forming the same halide as in a low energy hydrogen reactor. Further, a halogen gas such as Br 2 is collected from the electrolytic melt, and reacted with the separated Sn to form SnBr 2 , SnBr 2 is recycled, and another cycle of low-energy hydrogen reaction is performed together with NaH or KH and Mg or MgH 2 , Wherein the hydride is formed by hydrogenation with hydrogen. In one embodiment, forming HBr and HBr react with Sn, forming SnBr 2. HBr can be formed by the reaction of Br 2 with H 2 or by bubbling at the anode H 2 during electrolysis, which has the advantage of reducing the electrolysis energy. In other embodiments, another metal replaces Sn, preferably a transition metal, and another halide can replace Br, such as I.

在另一實施例中,在初始步驟,所有反應產物均與HBr水溶液反應,且濃縮溶液以使SnBr2 自MgBr2 及KBr溶液沈澱。可使用其他合適溶劑及分離方法來分離該等鹽。接著MgBr2 及KBr電解成Mg及K。或者,首先使用機械法或藉由溶劑選擇法移除Mg或MgH2 ,使得僅KBr需要電解。在一實施例中,Sn以熔體形式自固體MgH2 移除,固體MgH2 可在低能量氫反應期間或之後藉由添加H2 而形成。接著將MgH2 或Mg、KBr及載體添加至電解熔體中。載體由於粒徑大而沈降至沈積區。MgH2 及KBr形成熔體之一部分且基於密度來分離。Mg與K不可混溶,且K亦形成獨立相,使得Mg與K單獨收集。陽極可為Sn,使得K、Mg及SnBr2 為電解產物。陽極可為液體錫,或液體錫可噴射在陽極上以與溴反應且形成SnBr2 。在此狀況下,用於再生之能量間隙為化合物間隙對與兩電極上元素產物對應之較高元素間隙。在另一實施例中,反應物包含KH、載體及SnI2 或SnBr2 。Sn可以液體形式移除,且諸如KX及載體之剩餘產物可添加至電解熔體中,其中載體基於密度而分離。在此狀況下,諸如WC之緻密載體為較佳。In another embodiment, in the initial step, all of the reaction products are reacted with an aqueous solution of HBr, and the solution is concentrated to precipitate SnBr 2 from the MgBr 2 and KBr solutions. Other suitable solvents and separation methods can be used to separate the salts. MgBr 2 and KBr are then electrolyzed to Mg and K. Alternatively, Mg or MgH 2 is first removed using mechanical methods or by solvent selection such that only KBr requires electrolysis. In one embodiment, Sn is removed from the solid MgH 2 as a melt, and the solid MgH 2 may be formed by adding H 2 during or after the low energy hydrogen reaction. MgH 2 or Mg, KBr and a carrier are then added to the electrolytic melt. The carrier settles to the deposition zone due to the large particle size. MgH 2 and KBr form part of the melt and are separated based on density. Mg and K are immiscible, and K also forms a separate phase, so that Mg and K are collected separately. The anode can be Sn such that K, Mg and SnBr 2 are electrolysis products. Tin anode may be a liquid, or a liquid tin may be sprayed on the anode is formed to react with bromine and SnBr 2. In this case, the energy gap for regeneration is the higher element gap of the compound gap pair corresponding to the elemental product on the two electrodes. In another embodiment, the reactant comprises KH, a support, and SnI 2 or SnBr 2 . Sn can be removed in liquid form, and the remaining products such as KX and the support can be added to the electrolytic melt, wherein the support is separated based on density. In this case, a dense carrier such as WC is preferred.

反應物可包含氧化合物以形成氧化物產物,諸如催化劑或催化劑源之氧化物(諸如NaH、Li或K之氧化物)及還原劑之氧化物(諸如Mg、MgH2 、Al、Ti、B、Zr或La之氧化物)。在一實施例中,藉由使氧化物與酸、諸如氫鹵酸、較佳鹽酸反應,形成相應鹵化物,諸如氯化物,使反應物再生。在一實施例中,氧化碳物質(諸如碳酸鹽、碳酸氫鹽)、羧酸物質(諸如乙二酸或乙二酸鹽)可經金屬或金屬氫化物還原。較佳地,Li、K、Na、LiH、KH、NaH、Al、Mg及MgH2 中之至少一者與包含碳及氧之物質反應,且形成相應金屬氧化物或氫氧化物及碳。各相應金屬可由電解再生。電解可使用諸如共熔混合物中之熔鹽來執行。可使用鹵素氣體電解產物(諸如氯氣)形成相應酸,諸如HCl,作為再生循環之一部分。可藉由使鹵素氣體與氫氣反應且視情況將鹵化氫氣體溶解於水中,形成氫鹵酸HX。氫氣較佳由水電解形成。氧可為低能量氫反應混合物之反應物,或可反應形成低能量氫反應混合物之氧的來源。使氧化物低能量氫反應產物與酸反應之步驟可包含用酸沖洗產物以形成包含金屬鹽之溶液。在一實施例中,低能量氫反應混合物及相應產物混合物包含載體,諸如碳,較佳活性碳。藉由將金屬氧化物溶解於酸的水溶液中,可使金屬氧化物與載體分離。因此,可用酸沖洗產物,且可進一步過濾,以分離反應混合物之組份。可藉由使用熱、較佳來自動力系統之廢熱蒸發,將水移除,且諸如金屬氯化物之鹽可添加至電解混合物中,形成金屬及鹵素氣體。在一實施例中,任何甲烷或烴產物可重新形成氫及視情況存在之碳或二氧化碳。或者,將甲烷與氣體產物混合物分離且作為商業產品出售。在另一實施例中,甲烷可由此項技術中已知之方法、諸如費歇爾-托羅普希反應形成其他烴類產品。藉由添加干擾氣體,諸如惰性氣體,且藉由維持不利條件,諸如降低之氫壓力或溫度,可抑制甲烷之形成。The reactants may comprise an oxygen compound to form an oxide product, such as an oxide of a catalyst or catalyst source (such as an oxide of NaH, Li or K) and an oxide of a reducing agent (such as Mg, MgH 2 , Al, Ti, B, Zr or La oxide). In one embodiment, the reactants are regenerated by reacting an oxide with an acid, such as a hydrohalic acid, preferably hydrochloric acid, to form a corresponding halide, such as a chloride. In one embodiment, the oxidized carbon species (such as carbonates, bicarbonates), carboxylic acid species (such as oxalic acid or oxalate) can be reduced by metal or metal hydride. Preferably, at least one of Li, K, Na, LiH, KH, NaH, Al, Mg, and MgH 2 reacts with a substance comprising carbon and oxygen, and forms a corresponding metal oxide or hydroxide and carbon. Each respective metal can be regenerated by electrolysis. Electrolysis can be performed using a molten salt such as in a eutectic mixture. A halogen gas electrolysis product, such as chlorine, can be used to form the corresponding acid, such as HCl, as part of the regeneration cycle. The hydrohalic acid HX can be formed by reacting a halogen gas with hydrogen and optionally dissolving a hydrogen halide gas in water. Hydrogen is preferably formed by electrolysis of water. Oxygen can be the reactant of a low energy hydrogen reaction mixture or a source of oxygen that can react to form a low energy hydrogen reaction mixture. The step of reacting the oxide low energy hydrogen reaction product with an acid can comprise rinsing the product with an acid to form a solution comprising the metal salt. In one embodiment, the low energy hydrogen reaction mixture and the corresponding product mixture comprise a support, such as carbon, preferably activated carbon. The metal oxide can be separated from the support by dissolving the metal oxide in an aqueous acid solution. Thus, the product can be rinsed with an acid and can be further filtered to separate the components of the reaction mixture. Water can be removed by the use of heat, preferably waste heat evaporation from the power system, and a salt such as a metal chloride can be added to the electrolytic mixture to form a metal and a halogen gas. In one embodiment, any methane or hydrocarbon product may reform hydrogen and optionally carbon or carbon dioxide. Alternatively, the methane is separated from the gaseous product mixture and sold as a commercial product. In another embodiment, methane can be formed into other hydrocarbon products by methods known in the art, such as the Fischer-Tropsch reaction. The formation of methane can be suppressed by the addition of interfering gases, such as inert gases, and by maintaining adverse conditions, such as reduced hydrogen pressure or temperature.

在另一實施例中,金屬氧化物直接由共熔混合物電解。諸如MgO之氧化物可與水反應,形成氫氧化物,諸如Mg(OH)2 。在一實施例中,氫氧化物被還原。還原劑可為鹼金屬或氫化物,諸如Na或NaH。產物氫氧化物可如熔鹽直接電解。低能量氫反應產物、諸如鹼金屬氫氧化物亦可用作商業產品且獲得相應鹵化物。接著鹵化物可經電解為鹵素氣體及金屬。鹵素氣體可用作商用工業煤氣。可用較佳水電解之氫氣將金屬氫化,且提供給反應器,作為低能量氫反應混合物之一部分。In another embodiment, the metal oxide is electrolyzed directly from the eutectic mixture. An oxide such as MgO can react with water to form a hydroxide such as Mg(OH) 2 . In one embodiment, the hydroxide is reduced. The reducing agent can be an alkali metal or a hydride such as Na or NaH. The product hydroxide can be directly electrolyzed as a molten salt. Low energy hydrogen reaction products, such as alkali metal hydroxides, can also be used as commercial products and the corresponding halides are obtained. The halide can then be electrolyzed into a halogen gas and a metal. Halogen gas can be used as a commercial industrial gas. The metal can be hydrogenated with hydrogen, preferably water electrolyzed, and supplied to the reactor as part of a low energy hydrogen reaction mixture.

可使用熟習此項技術者已知之方法及系統,自包含相應化合物、較佳NaOH或Na2 O之產物再生還原劑,諸如鹼金屬。一方法包含在諸如共熔混合物之混合物中電解。在另一實施例中,還原產物可包含至少某些氧化物,諸如還原金屬氧化物(例如,MgO)。氫氧化物或氧化物可溶於諸如鹽酸之弱酸中,形成相應鹽,諸如NaCl或MgCl2 。用酸處理亦可為無水反應。氣體可在低壓下流動。可用產物還原劑(諸如鹼金屬或鹼土金屬)處理鹽,形成初始還原劑。在一實施例中,第二還原劑為鹼土金屬,較佳Ca,其中NaCl或MgCl2 還原成金屬Na或Mg。回收CaCl2 副產物且亦使其再循環。在替代性實施例中,在高溫下用H2 還原氧化物。Using familiar methods and systems known to the art, from the corresponding compound comprising, preferably NaOH or Na 2 O of a reducing agent regeneration products, such as alkali metal. A method comprises electrolysis in a mixture such as a eutectic mixture. In another embodiment, the reduced product may comprise at least some oxides, such as a reduced metal oxide (eg, MgO). The hydroxide or oxide is soluble in a weak acid such as hydrochloric acid to form the corresponding salt, such as NaCl or MgCl 2 . Treatment with an acid may also be an anhydrous reaction. The gas can flow at low pressure. The salt can be treated with a product reducing agent such as an alkali metal or alkaline earth metal to form an initial reducing agent. In one embodiment, the second reducing agent is an alkaline earth metal, preferably Ca, wherein the NaCl or MgCl 2 is reduced to the metal Na or Mg. The CaCl 2 by -product is recovered and also recycled. In an alternative embodiment, the oxide reduction with H 2 at high temperature.

在例示性低能量氫及再生反應中,反應混合物包含NaH催化劑、MgH2 、O2 及載體活性碳。在一實施例中,放熱反應來源為金屬氫化物被O2 氧化之反應,諸如In an exemplary low energy hydrogen, and regeneration reaction, the reaction mixture containing the catalyst NaH, MgH 2, O 2, and an activated carbon carrier. In one embodiment, the source of the exothermic reaction is a reaction in which the metal hydride is oxidized by O 2 , such as

MgH 2 +O 2Mg (OH )2  (97) MgH 2 + O 2Mg ( OH ) 2 (97)

MgH 2 +1.5O 2 +CMgCO 3 +H 2  (98) MgH 2 +1.5 O 2 + CMgCO 3 + H 2 (98)

NaH +3/2O 2 +CNaHCO 3  (99) NaH +3/2 O 2 + CNaHCO 3 (99)

2NaH +O 2 →2NaOH 。 (100)2 NaH + O 2 → 2 NaOH . (100)

任何MgO產物可藉由與水反應而轉變為氫氧化物Any MgO product can be converted to hydroxide by reaction with water

MgO +H 2 OMg (OH )2。  (101) MgO + H 2 OMg ( OH ) 2 . (101)

鈉或鎂之碳酸鹽、碳酸氫鹽及包含碳及氧之其他物質可用Na或NaH還原:Sodium or magnesium carbonates, bicarbonates, and other materials containing carbon and oxygen can be reduced with Na or NaH:

NaH +Na 2 CO 3 →3NaOH +C +1/H 2  (102) NaH + Na 2 CO 3 →3 NaOH + C +1/ H 2 (102)

NaH +1/3MgCO 3NaOH +1/3C +1/3Mg 。 (103) NaH +1/3 MgCO 3 → NaOH +1/3 C +1/3 Mg. (103)

使用Na或NaH可將Mg(OH)2 還原成Mg:Reduction of Mg(OH) 2 to Mg using Na or NaH:

2Na +Mg (OH )2 →2NaOH +Mg 。 (104)2 Na + Mg ( OH ) 2 → 2 NaOH + Mg . (104)

接著NaOH可直接自熔體電解成金屬Na及NaH及O 2 。可使用卡斯納法(Castner process)。用於鹼性溶液之合適陰極及陽極為鎳。陽極亦可為碳、貴金屬(諸如Pt)、載體(諸如塗有諸如Pt之貴金屬之Ti)或尺寸穩定型陽極。在另一實施例中,藉由與HCl反應,NaOH轉化為NaCl,其中NaCl電解氣體Cl2 可與來自水電解之H2 反應,形成HCl。熔融NaCl電解可使用唐斯電解池或經修改之唐斯電解池來執行。或者,HCl可由氯鹼電解產生。用於此電解之NaCl水溶液可由用鹽酸水溶液沖洗反應產物而獲得。可過濾溶液,以移除諸如AC之載體,可將載體離心且較佳使用來自動力系統之廢熱乾燥。The NaOH can then be electrolyzed directly from the melt to metal Na and NaH and O 2 . The Castner process can be used. Suitable cathodes and anodes for alkaline solutions are nickel. The anode can also be carbon, a noble metal such as Pt, a support such as Ti coated with a noble metal such as Pt, or a dimensionally stable anode. In another embodiment, by reaction with HCl, NaOH into NaCl, NaCl electrolysis where gas may be Cl 2 H 2 from the electrolysis of water with the reaction to form HCl. Molten NaCl electrolysis can be performed using a Downs electrolytic cell or a modified Downs electrolytic cell. Alternatively, HCl can be produced by chloralkali electrolysis. The aqueous NaCl solution used for this electrolysis can be obtained by washing the reaction product with an aqueous solution of hydrochloric acid. The solution can be filtered to remove a carrier such as AC, and the carrier can be centrifuged and preferably dried using waste heat from a power system.

在一實施例中,反應步驟包含:(1)用鹽酸水溶液沖洗產物,由諸如氫氧化物、氧化物及碳酸鹽之物質形成金屬氯化物;(2)藉由使用水煤氣變換反應及費歇爾-托羅普希反應進行H2 還原,將任何釋出之CO2 轉化為水及C,其中C作為載體而在步驟10再循環且水可用於步驟1、4或5;(3)過濾及乾燥諸如AC之載體,其中乾燥可包括離心之步驟;(4)將水電解為H2 及O2 ,以供應步驟8至10;(5)由NaCl水溶液之電解,視情況形成H2 及HCl,以供應步驟1及9;(6)分離且乾燥金屬氯化物;(7)將金屬氯化物之熔體電解為金屬及氯;(8)藉由Cl2 與H2 反應,形成HCl,以供應步驟1;(9)藉由與氫反應,將任何金屬氫化,形成相應起始反應物;及(10)在添加來自步驟4之O2 下或使用自大氣分離之O2 形成初始反應混合物。In one embodiment, the reaction step comprises: (1) rinsing the product with an aqueous solution of hydrochloric acid, forming a metal chloride from a substance such as a hydroxide, an oxide, and a carbonate; (2) by using a water gas shift reaction and Fischer - the toropsch reaction is carried out for H 2 reduction, converting any released CO 2 to water and C, wherein C is recycled as a carrier in step 10 and water can be used in steps 1, 4 or 5; (3) filtration and Drying a carrier such as AC, wherein drying may include a step of centrifuging; (4) electrolyzing water to H 2 and O 2 to supply steps 8 to 10; (5) electrolyzing from an aqueous NaCl solution, optionally forming H 2 and HCl to supply step 1 and 9; (6) separated and dried metal chlorides; (7) of a metal chloride electrolysis of the melt and a metal chloride; (8) by reaction of Cl 2 with H 2 to form HCl, to Supply step 1; (9) hydrogenating any metal to form a corresponding starting reactant by reacting with hydrogen; and (10) forming an initial reaction mixture by adding O 2 from step 4 or using O 2 separated from the atmosphere .

在另一實施例中,氧化鎂與氫氧化鎂中之至少一者自熔體電解成Mg及O2 。熔體可為NaOH熔體,其中亦可電解Na。在一實施例中,諸如碳酸鹽及碳酸氫鹽之碳氧化物可分解成CO與CO2 中之至少一者,其可添加至反應混合物中作為氧來源。或者,諸如CO2 及CO之碳氧化物物質可由氫還原成碳及水。CO2 及CO可由水煤氣變換反應及費歇爾-托羅普希反應還原。In another embodiment, at least one of magnesium oxide and magnesium hydroxide is electrolyzed from the melt to Mg and O 2 . The melt can be a NaOH melt in which Na can also be electrolyzed. In one embodiment, such as carbonates and bicarbonates of carbon oxides may be decomposed into CO and CO 2 for at least one of which may be added to the reaction mixture as an oxygen source. Alternatively, carbon oxide species such as CO 2 and CO may be reduced to hydrogen and water by hydrogen. CO 2 and CO can be reduced by a water gas shift reaction and a Fischer-Tropsch reaction.

在例示性低能量氫及再生反應中,反應混合物包含NaH催化劑、MgH2 、CF4 及載體活性碳。在一實施例中,放熱反應來源為金屬氫化物被CF4 氧化之反應,諸如In an exemplary low energy hydrogen, and regeneration reaction, the reaction mixture containing the catalyst NaH, MgH 2, CF 4 and activated carbon carrier. In one embodiment, the source of the exothermic reaction is a reaction in which the metal hydride is oxidized by CF 4 , such as

2MgH 2 +CF 4C +2MgF 2 +2H 2  (105)2 MgH 2 + CF 4C +2 MgF 2 +2 H 2 (105)

2MgH 2 +CF 4CH 4 +2MgF 2  (106)2 MgH 2 + CF 4CH 4 +2 MgF 2 (106)

4NaH +CF 4C +4NaF +2H 2  (107)4 NaH + CF 4C +4 NaF +2 H 2 (107)

4NaH +CF 4CH 4 +4NaF 。 (108)4 NaH + CF 4CH 4 +4 NaF . (108)

NaF及MgF2 可由可另外包含HF之熔鹽電解成F2 、Na及Mg。Na與Mg不可混溶,且可用較佳來自H2 O電解之氫氣將經分離金屬氫化。氟氣可與碳及任何CH4 反應產物反應,使CF4 再生。或者及較佳,電解池之陽極包含碳,且維持電流及電解條件,使得CF4 為陽極電解產物。MgF 2 and NaF may be additionally comprising HF into the molten salt electrolysis F 2, Na, and Mg. Na is immiscible with Mg, and the separated metal can be hydrogenated with hydrogen preferably from H 2 O electrolysis. Fluorine gas can be reacted with carbon and any CH 4 reaction product to regenerate CF 4 . Alternatively and preferably, the anode of the electrolytic cell contains carbon and maintains current and electrolysis conditions such that CF 4 is the anodic electrolysis product.

在例示性低能量氫及再生反應中,反應混合物包含NaH催化劑、MgH2 、P2 O5 (P4 O10 )及載體活性碳。在一實施例中,放熱反應來源為金屬氫化物被P2 O5 氧化之反應,諸如In an exemplary low energy hydrogen, and regeneration reaction, the reaction mixture containing the catalyst NaH, MgH 2, P 2 O 5 (P 4 O 10) and a carrier of activated carbon. In one embodiment, the source of the exothermic reaction is a reaction in which the metal hydride is oxidized by P 2 O 5 , such as

5MgH 2 +P 2 O 5 →5MgO +2P +5H 2  (109) 5 MgH 2 + P 2 O 5 → 5 MgO +2 P +5 H 2 (109)

5NaH +P 2 O 5 →5NaOH +2P 。 (110)5 NaH + P 2 O 5 → 5 NaOH + 2 P . (110)

藉由在O2 中燃燒,可使磷轉化為P2 O5 Phosphorus can be converted to P 2 O 5 by burning in O 2

2P +2.5O 2P 2 O 5 。 (111)2 P +2.5 O 2P 2 O 5 . (111)

藉由與水反應,可使MgO產物轉化為氫氧化物Converting MgO products to hydroxides by reaction with water

MgO +H 2 OMg (OH )2 。 (112) MgO + H 2 OMg ( OH ) 2 . (112)

使用Na或NaH可將Mg(OH)2 還原成Mg:Reduction of Mg(OH) 2 to Mg using Na or NaH:

2Na +Mg (0H )2 →2NaOH +Mg 。 (113)2 Na + Mg ( 0H ) 2 → 2 NaOH + Mg . (113)

接著NaOH可直接自熔體電解成金屬Na及NaH及O 2 ,或藉由與HCl反應,可轉化為NaCl,其中NaCl電解氣體Cl2 可與來自水電解之H2 反應,形成HCl。在實施例中,藉由與較佳來自水電解之H2 反應,可將諸如Na及Mg之金屬轉化為相應氫化物。The NaOH can then be directly electrolyzed from the melt to metal Na and NaH and O 2 , or can be converted to NaCl by reaction with HCl, wherein the NaCl electrolysis gas Cl 2 can react with H 2 from water electrolysis to form HCl. In an embodiment, preferably by reaction with H 2 from the electrolysis of water, can be converted to a metal, such as Na and Mg of the respective hydrides.

在例示性低能量氫及再生反應中,固體燃料反應混合物包含NaH催化劑、MgH2 、NaNO3 及載體活性碳。在一實施例中,放熱反應來源為金屬氫化物被NaNO3 氧化之反應,諸如In an exemplary low energy and hydrogen in the regeneration reaction, the reaction mixture comprising the solid fuel the catalyst NaH, MgH 2, NaNO 3, and an activated carbon carrier. In one embodiment, the source of the exothermic reaction is a reaction in which the metal hydride is oxidized by NaNO 3 , such as

NaNO 3 +NaH +CNa 2 CO 3 +1/2N 2 +1/2H 2  (114) NaNO 3 + NaH + CNa 2 CO 3 +1/2 N 2 +1/2 H 2 (114)

NaNO 3 +1/2H 2 +2NaH →3NaOH +1/2N 2  (115) NaNO 3 +1/2 H 2 +2 NaH →3 NaOH +1/2 N 2 (115)

NaNO 3 +3MgH 2 →3MgO +NaH +1/2N 2 +5/2H 2 。 (116) NaNO 3 +3 MgH 2 →3 MgO + NaH +1/2 N 2 +5/2 H 2 . (116)

鈉或鎂之碳酸鹽、碳酸氫鹽及包含碳及氧之其他物質可用Na或NaH還原:Sodium or magnesium carbonates, bicarbonates, and other materials containing carbon and oxygen can be reduced with Na or NaH:

NaH +Na 2 CO 3 →3NaOH +C +1/H 2  (117) NaH + Na 2 CO 3 →3 NaOH + C +1/ H 2 (117)

NaH +1/3MgCO 3NaOH +1/3C +1/3Mg 。 (118) NaH +1/3 MgCO 3 → NaOH +1/3 C +1/3 Mg. (118)

碳酸鹽亦可由水性介質分解成氫氧化物及CO2 Carbonates can also be decomposed into hydroxides and CO 2 from aqueous media.

Na 2 CO 3 +H 2 O →2NaOH +CO 2 。 (119) Na 2 CO 3 + H 2 O → 2 NaOH + CO 2 . (119)

使用水煤氣變換反應及費歇爾-托羅普希反應,藉由H2 還原,可使釋出之CO2 反應形成水及CUsing the water gas shift reaction and the Fischer-Tropsch reaction, the released CO 2 can be reacted to form water and C by H 2 reduction.

CO 2 +H 2CO +H 2 O  (120) CO 2 + H 2CO + H 2 O (120)

CO +H 2C +H 2 O 。 (121) CO + H 2C + H 2 O . (121)

藉由與水反應,可使MgO產物轉化為氫氧化物Converting MgO products to hydroxides by reaction with water

MgO +H 2 OMg (OH )2 。 (122) MgO + H 2 OMg ( OH ) 2 . (122)

使用Na或NaH可將Mg(OH)2 還原成Mg:Reduction of Mg(OH) 2 to Mg using Na or NaH:

2Na +Mg (OH )2 →2NaOH +Mg 。 (123)2 Na + Mg ( OH ) 2 → 2 NaOH + Mg . (123)

可使用熟習此項技術者已知之方法使鹼金屬硝酸鹽再生。在一實施例中,可由已知之工業方法、諸如由哈柏法、接著奧斯持瓦爾德法產生NO2 。在一實施例中,例示性步驟順序為:The alkali metal nitrate can be regenerated using methods known to those skilled in the art. In one embodiment, the industry by known methods, such as by the Haber process, followed by Oslo NO 2 generated Wald holding method. In an embodiment, the exemplary sequence of steps is:

特定言之,哈柏法可用以在高溫及高壓下使用諸如含有某種氧化物之α鐵的催化劑由N2 及H2 產生NH3 。奧斯特瓦爾德法可用以在諸如熱鉑或鉑-銠催化劑之催化劑下將氨氧化成NO2 。熱量可為來自動力系統之廢熱。NO2 可溶於水中,形成硝酸,硝酸與NaOH、Na2 CO3 或NaHCO3 反應,形成硝酸鈉。接著剩餘NaOH可直接自熔體電解成金屬Na及NaH及O 2 ,或藉由與HCl反應,可轉化為NaCl,其中NaCl電解氣體Cl2 可與來自水電解之H2 反應,形成HCl。在實施例中,藉由與較佳來自水電解之H2 反應,可將諸如Na及Mg之金屬轉化為相應氫化物。在其他實施例中,Li及K替代Na。In particular, the Haber process can be used to produce NH 3 from N 2 and H 2 using a catalyst such as alpha iron containing an oxide at elevated temperatures and pressures. Ostwald method may be used to heat, such as platinum or platinum - rhodium catalyst of the catalyst to the ammoxidation NO 2. The heat can be waste heat from the power system. NO 2 is soluble in water to form nitric acid, which reacts with NaOH, Na 2 CO 3 or NaHCO 3 to form sodium nitrate. The remaining NaOH can then be directly electrolyzed from the melt to metal Na and NaH and O 2 , or converted to NaCl by reaction with HCl, wherein the NaCl electrolysis gas Cl 2 can react with H 2 from water electrolysis to form HCl. In an embodiment, preferably by reaction with H 2 from the electrolysis of water, can be converted to a metal, such as Na and Mg of the respective hydrides. In other embodiments, Li and K replace Na.

在例示性低能量氫及再生反應中,反應混合物包含NaH催化劑、MgH2 、SF6 及載體活性碳。在一實施例中,放熱反應來源為金屬氫化物被SF6 氧化之反應,諸如In an exemplary low energy hydrogen, and regeneration reaction, the reaction mixture containing the catalyst NaH, MgH 2, SF 6 and a carrier of activated carbon. In one embodiment, the source of the exothermic reaction is a reaction in which the metal hydride is oxidized by SF 6 , such as

4MgH 2 +SF 6 →3MgF 2 +4H 2 +MgS  (125)4 MgH 2 + SF 6 →3 MgF 2 +4 H 2 + MgS (125)

7NaH +SF 6 →6NaF +3H 2 +NaHS 。 (126)7 NaH + SF 6 → 6 NaF +3 H 2 + NaHS . (126)

NaF及MgF2 及硫化物可由可另外包含HF之熔鹽電解成Na及Mg。氟電解氣體可與硫化物反應,形成可由動力移除之SF6 氣體。可由此項技術中已知之方法、諸如低溫蒸餾、薄膜分離或層析,使用諸如分子篩之介質,使SF6 與F2 分離。NaHS在350℃下熔融且可為熔融電解混合物之一部分。任何MgS產物均可與Na反應,形成NaHS,其中反應可在電解期間原位發生。S及金屬可為電解期間所形成之產物。或者,金屬可為少數,以便形成更穩定之氟化物,或可添加F2 ,形成氟化物。NaF and MgF 2 and sulfide may be electrolyzed into Na and Mg from a molten salt which may additionally contain HF. The fluorine electrolysis gas can react with the sulfide to form an SF 6 gas that can be removed by power. SF 6 can be separated from F 2 by methods known in the art, such as cryogenic distillation, membrane separation or chromatography, using a medium such as a molecular sieve. NaHS melts at 350 ° C and can be part of a molten electrolysis mixture. Any MgS product can react with Na to form NaHS, where the reaction can occur in situ during electrolysis. S and the metal may be products formed during electrolysis. Alternatively, the metal may be a few, so as to form the more stable fluoride may be added, or F 2, forms a fluoride.

3MgH 2 +SF 6 →3MgF 2+3H 2 +S  (127)3 MgH 2 + SF 6 →3 MgF 2+3 H 2 + S (127)

6NaH +SF 6→6NaF +3H 2 +S 。 (128)6 NaH + SF 6→6 NaF +3 H 2 + S . (128)

NaF及MgF2 可由可另外包含HF之熔鹽電解成F2 、Na及Mg。Na與Mg不可混溶,且可用較佳由H2 O電解補充之氫氣將經分離金屬氫化。氟氣可與硫反應,使SF6 再生。NaF and MgF 2 can be electrolyzed into F 2 , Na and Mg by a molten salt which may additionally contain HF. Na is immiscible with Mg, and the separated metal can be hydrogenated with hydrogen preferably replenished by H 2 O electrolysis. Fluorine gas can react with sulfur to regenerate SF 6 .

在例示性低能量氫及再生反應中,反應混合物包含NaH催化劑、MgH2 、NF3 及載體活性碳。在一實施例中,放熱反應來源為金屬氫化物被NF3 氧化之反應,諸如In an exemplary low energy hydrogen, and regeneration reaction, the reaction mixture containing the catalyst NaH, MgH 2, NF 3 and the activated carbon carrier. In one embodiment, the source of the exothermic reaction is a reaction in which the metal hydride is oxidized by NF 3 , such as

3MgH 2 +2NF 3 →3MgF 2 +3H 2 +N 2  (129)3 MgH 2 +2 NF 3 →3 MgF 2 +3 H 2 + N 2 (129)

6MgH 2 +2NF 3 →3MgF 2 +Mg 3 N 2 +6H 2  (130)6 MgH 2 +2 NF 3 →3 MgF 2 + Mg 3 N 2 +6 H 2 (130)

3NaH +NF 3 →3NaF +1/2N 2 +1.5H 2 。 (131)3 NaH + NF 3 → 3 NaF + 1/2 N 2 + 1.5 H 2 . (131)

NaF及MgF2 可由可另外包含HF之熔鹽電解成F2 、Na及Mg。Mg 3 N 2 至MgF2 之轉化可發生在熔體中。Na與Mg不可混溶,且可用較佳來自H2 O電解之氫氣將經分離金屬氫化。氟氣可與NH3 較佳在銅包裝反應器中反應,形成NF3 。氨可由哈柏法產生。或者,NF3 可由NH4 F在無水HF中電解而形成。NaF and MgF 2 can be electrolyzed into F 2 , Na and Mg by a molten salt which may additionally contain HF. The conversion of Mg 3 N 2 to MgF 2 can occur in the melt. Na is immiscible with Mg, and the separated metal can be hydrogenated with hydrogen preferably from H 2 O electrolysis. Preferably, the fluorine gas may be NH 3 in the reaction with the copper packaging reactor, forming NF 3. Ammonia can be produced by the Haber method. Alternatively, NF 3 can be formed by electrolysis of NH 4 F in anhydrous HF.

在例示性低能量氫及再生反應中,固體燃料反應混合物包含NaH催化劑、MgH2 、Na2 S2 O8 及載體活性碳。在一實施例中,放熱反應來源為金屬氫化物被Na2 S2 O8 氧化之反應,諸如In an exemplary low energy and hydrogen in the regeneration reaction, the reaction mixture comprising the solid fuel the catalyst NaH, MgH 2, Na 2 S 2 O 8 and a carrier of activated carbon. In one embodiment, the source of the exothermic reaction is a reaction in which the metal hydride is oxidized by Na 2 S 2 O 8 , such as

8MgH 2 +Na 2 S 2 0 8 →2MgS +2NaOH +6MgO +6H 2  (132)8 MgH 2 + Na 2 S 2 0 8 →2 MgS +2 NaOH +6 MgO +6 H 2 (132)

7MgH 2 +Na 2 S 2 O 8 +C →2MgS +Na 2 CO 3 +5MgO +7H 2  (133)7 MgH 2 + Na 2 S 2 O 8 + C →2 MgS + Na 2 CO 3 +5 MgO +7 H 2 (133)

10NaH +Na 2 S 2 O 8 →2Na 2 S +8NaOH +H 2  (134)10 NaH + Na 2 S 2 O 8 →2 Na 2 S +8 NaOH + H 2 (134)

9NaH +Na 2 S 2 O 8 +C →2Na 2 S +Na 2 CO 3 +5NaOH +2H 2 。 (135)9 NaH + Na 2 S 2 O 8 + C → 2 Na 2 S + Na 2 CO 3 + 5 NaOH + 2 H 2 . (135)

可藉由與水反應,使任何MgO產物轉化為氫氧化物Any MgO product can be converted to hydroxide by reaction with water

MgO +H 2 OMg (OH )2 。 (136) MgO + H 2 OMg ( OH ) 2 . (136)

鈉或鎂之碳酸鹽、碳酸氫鹽及包含碳及氧之其他物質可用Na或NaH還原:Sodium or magnesium carbonates, bicarbonates, and other materials containing carbon and oxygen can be reduced with Na or NaH:

N aH +Na 2 CO 3 →3NaOH +C +1/H 2  (137) N aH + Na 2 CO 3 →3 NaOH + C +1/ H 2 (137)

NaH +1/3MgCO 3NaOH +1/3C +1/3Mg 。 (138) NaH +1/3 MgCO 3 → NaOH +1/3 C +1/3 Mg. (138)

MgS可在氧中燃燒,水解,與Na交換,形成硫酸鈉,且電解成Na 2 S 2 O 8 MgS can be burned in oxygen, hydrolyzed, exchanged with Na to form sodium sulfate, and electrolyzed to Na 2 S 2 O 8

2MgS +10H 2 O +2NaOHNa 2 S 2 O 8 +2Mg (OH )2 +9H 2 。 (139)2 MgS +10 H 2 O +2 NaOHNa 2 S 2 O 8 +2 Mg ( OH ) 2 +9 H 2 . (139)

Na2 S可在氧中燃燒,水解成硫酸鈉,且電解形成Na 2 S 2 O 8 Na 2 S can be burned in oxygen, hydrolyzed to sodium sulfate, and electrolyzed to form Na 2 S 2 O 8

2Na 2 S +10H 2 ONa 2 S 2 O 8 +2NaOH +9H 2 。 (140)2 Na 2 S +10 H 2 ONa 2 S 2 O 8 +2 NaOH +9 H 2 . (140)

使用Na或NaH可將Mg(OH)2 還原成Mg:Reduction of Mg(OH) 2 to Mg using Na or NaH:

2Na +Mg (OH )2 →2NaOH +Mg 。 (141)2 Na + Mg ( OH ) 2 → 2 NaOH + Mg . (141)

接著NaOH可直接自熔體電解成金屬Na及NaH及O 2 ,或藉由與HCl反應,可轉化為NaCl,其中NaCl電解氣體Cl2 可與來自水電解之H2 反應,形成HCl。The NaOH can then be directly electrolyzed from the melt to metal Na and NaH and O 2 , or can be converted to NaCl by reaction with HCl, wherein the NaCl electrolysis gas Cl 2 can react with H 2 from water electrolysis to form HCl.

在例示性低能量氫及再生反應中,固體燃料反應混合物包含NaH催化劑、MgH2 、S及載體活性碳。在一實施例中,放熱反應來源為金屬氫化物被S氧化之反應,諸如In an exemplary low energy and hydrogen in the regeneration reaction, the reaction mixture comprising the solid fuel the catalyst NaH, MgH 2, S and a carrier of activated carbon. In one embodiment, the source of the exothermic reaction is a reaction in which the metal hydride is oxidized by S, such as

MgH 2 +SMgS +H 2  (142) MgH 2 + SMgS + H 2 (142)

2NaH +SNa 2 S +H 2 。 (143)2 NaH + SNa 2 S + H 2 . (143)

藉由與水反應,可使硫化鎂轉化為氫氧化物Converting magnesium sulfide to hydroxide by reaction with water

MgS +2H 2 OMg (OH )2 +H 2 S 。 (144) MgS +2 H 2 OMg ( OH ) 2 + H 2 S . (144)

H2 S可在高溫下分解或用以將SO2 轉化為S。藉由燃燒及水解,可使硫化鈉轉化為氫氧化物H 2 S can be decomposed at high temperatures or used to convert SO 2 to S. Sodium sulfide can be converted to hydroxide by combustion and hydrolysis

使用Na或NaH可將Mg(OH)2 還原成Mg:Reduction of Mg(OH) 2 to Mg using Na or NaH:

2Na +Mg (OH )2 →2NaOH +Mg 。 (146)2 Na + Mg ( OH ) 2 → 2 NaOH + Mg . (146)

接著NaOH可直接自熔體電解成金屬Na及NaH及O 2 ,或藉由與HCl反應,可轉化為NaCl,其中NaCl電解氣體Cl2 可與來自水電解之H2 反應,形成HCl。SO2 可在高溫下使用H2 來還原The NaOH can then be directly electrolyzed from the melt to metal Na and NaH and O 2 , or can be converted to NaCl by reaction with HCl, wherein the NaCl electrolysis gas Cl 2 can react with H 2 from water electrolysis to form HCl. SO 2 can be reduced using H 2 at high temperatures

SO 2 +2H 2 S →3S +2H 2 O 。 (147) SO 2 +2 H 2 S →3 S +2 H 2 O . (147)

在實施例中,藉由與較佳來自水電解之H2 反應,可將諸如Na及Mg之金屬轉化為相應氫化物。在其他實施例中,S及金屬可藉由自熔體電解而再生。In an embodiment, preferably by reaction with H 2 from the electrolysis of water, can be converted to a metal, such as Na and Mg of the respective hydrides. In other embodiments, S and metal can be regenerated by electrolysis from the melt.

在例示性低能量氫及再生反應中,反應混合物包含NaH催化劑、MgH2 、N2 O及載體活性碳。在一實施例中,放熱反應來源為金屬氫化物被N2 O氧化之反應,諸如In an exemplary low energy hydrogen, and regeneration reaction, the reaction mixture containing the catalyst NaH, MgH 2, N 2 O and active carbon support. In one embodiment, the source of the exothermic reaction is a reaction in which the metal hydride is oxidized by N 2 O, such as

4MgH 2 +N 2 OMgO +Mg 3 N 2 +4H 2  (148)4 MgH 2 + N 2 OMgO + Mg 3 N 2 +4 H 2 (148)

NaH +3N 2 O +CNaHCO 3 +3N 2 +1/2H 2 。 (149) NaH +3 N 2 O + CNaHCO 3 +3 N 2 +1/2 H 2 . (149)

藉由與水反應,可使MgO產物轉化為氫氧化物Converting MgO products to hydroxides by reaction with water

MgO +H 2 OMg (OH )2 。 (150)氮化鎂亦可水解成氫氧化鎂: MgO + H 2 OMg ( OH ) 2 . (150) Magnesium nitride can also be hydrolyzed to magnesium hydroxide:

Mg 3 N 2 +6H 2 O →3Mg (OH )2 +3H 2 +N 2 。 (151) Mg 3 N 2 +6 H 2 O →3 Mg ( OH ) 2 +3 H 2 + N 2 . (151)

鈉之碳酸鹽、碳酸氫鹽及包含碳及氧之其他物質可用Na或NaH還原:Sodium carbonate, bicarbonate and other substances containing carbon and oxygen can be reduced with Na or NaH:

NaH +Na 2 CO 3 →3NaOH +C +1/H 2 。 (152) NaH + Na 2 CO 3 →3 NaOH + C +1/ H 2 . (152)

使用Na或NaH可將Mg(OH)2 還原成Mg:Reduction of Mg(OH) 2 to Mg using Na or NaH:

2Na +Mg (OH )2 →2NaOH +Mg 。 (153)2 Na + Mg ( OH ) 2 → 2 NaOH + Mg . (153)

接著NaOH可直接自熔體電解成金屬Na及NaH及O 2 ,或藉由與HCl反應,可轉化為NaCl,其中NaCl電解氣體Cl2 可與來自水電解之H2 反應,形成HCl。氧化由哈柏法產生之氨(方程式(124))且控制溫度以利於N2 O產生,使N2 O與穩定狀態反應產物混合物之其他氣體分離。The NaOH can then be directly electrolyzed from the melt to metal Na and NaH and O 2 , or can be converted to NaCl by reaction with HCl, wherein the NaCl electrolysis gas Cl 2 can react with H 2 from water electrolysis to form HCl. Ammonia (equation (124)) by the Haber process of oxidation and facilitate the control of the temperature produced N 2 O, N 2 O and that the steady state of the reaction mixture was separated from the other gaseous products.

在例示性低能量氫及再生反應中,反應混合物包含NaH催化劑、MgH2 、Cl2 及載體,諸如活性碳、WC或TiC。反應器可進一步包含高能光、較佳紫外光來源以使Cl2 解離,引發低能量氫反應。在一實施例中,放熱反應來源為金屬氫化物被Cl2 氧化之反應,諸如In the illustrated embodiment hydrogen, and low energy regeneration reaction, the reaction mixture containing the catalyst NaH, MgH 2, Cl 2 and a carrier, such as activated carbon, the WC or TiC. The reactor may further comprise high-energy light, preferably ultraviolet light source so that the dissociation Cl 2, low energy hydrogen reaction initiator. In one embodiment, the source of the exothermic reaction is a reaction in which the metal hydride is oxidized by Cl 2 , such as

2NaH +Cl 2 →2NaCl +H 2  (154)2 NaH + Cl 2 →2 NaCl + H 2 (154)

MgH 2 +Cl 2MgCl 2 +H 2 。 (155) MgH 2 + Cl 2MgCl 2 + H 2 . (155)

NaCl及MgCl2 可自熔鹽電解成Cl2 、Na及Mg。熔融NaCl電解可使用唐斯電解池或經修改之唐斯電解池來執行。用於此電解之NaCl可由用水溶液沖洗反應產物而獲得。可過濾溶液,以移除諸如AC之載體,可將載體離心且較佳使用來自動力系統之廢熱乾燥。Na與Mg不可混溶,且可用較佳來自H2 O電解之氫氣將經分離金屬氫化。一例示性結果如下:NaCl and MgCl 2 can be electrolyzed from molten salts to Cl 2 , Na and Mg. Molten NaCl electrolysis can be performed using a Downs electrolytic cell or a modified Downs electrolytic cell. The NaCl used for this electrolysis can be obtained by rinsing the reaction product with an aqueous solution. The solution can be filtered to remove a carrier such as AC, and the carrier can be centrifuged and preferably dried using waste heat from a power system. Na is immiscible with Mg, and the separated metal can be hydrogenated with hydrogen preferably from H 2 O electrolysis. An illustrative result is as follows:

■4g WC+1g MgH2 +1g NaH+0.01mol Cl2 ,用紫外燈引發以使Cl2 解離為Cl,Ein:162.9kJ,dE:16.0kJ,TSC:23-42℃,Tmax:85℃,理論能量為7.10kJ,增益為2.25倍。■ 4g WC+1g MgH 2 +1g NaH+0.01mol Cl 2 , initiated by UV lamp to dissociate Cl 2 into Cl, Ein: 162.9kJ, dE: 16.0kJ, TSC: 23-42°C, Tmax: 85°C, The theoretical energy is 7.10 kJ and the gain is 2.25 times.

可藉由電解,使包含催化劑或催化劑源(諸如NaH、K或Li或其氫化物)、還原劑(諸如鹼金屬或氫化物,較佳Mg、MgH2 或Al)及氧化劑(諸如NF3 )之反應物再生。金屬氟化物產物較佳藉由電解而再生成金屬及氟氣。電解質可包含共熔混合物。混合物可進一步包含HF。NF3 可由NH4 F在無水HF中電解而再生。在另一實施例中,NH3 與F2 在諸如銅包裝反應器之反應器中反應。F2 可藉由電解使用尺寸穩定型陽極或碳陽極使用利於F2 產生之條件來產生。藉由使S與F2 反應,可使SF6 再生。可在低能量氫反應中形成之任何金屬氮化物可藉由至少一種以下方法再生:熱分解、H2 還原、氧化成氧化物或氫氧化物及反應生成鹵化物、接著電解及在金屬鹵化物熔融電解期間與鹵素氣體反應。NCl3 可由氨與氯氣反應或由銨鹽(諸如NH4 Cl)與氯氣反應而形成。氯氣可由氯化物鹽(諸如來自產物反應混合物之氯化物鹽)電解產生。NH3 可使用哈柏法來形成,其中氫可來自較佳水之電解。在一實施例中,藉由使NH3 與銨鹽(諸如NH4 Cl)中之至少一者與氯氣反應,在反應器中原位形成NCl3 。在一實施例中,可藉由使BiF3 與由金屬氟化物電解形成之F2 反應,使BiF5 再生。The catalyst or catalyst source (such as NaH, K or Li or its hydride), a reducing agent (such as an alkali metal or hydride, preferably Mg, MgH 2 or Al) and an oxidant (such as NF 3 ) may be included by electrolysis. The reactants are regenerated. The metal fluoride product preferably regenerates the metal and fluorine gas by electrolysis. The electrolyte can comprise a eutectic mixture. The mixture may further comprise HF. NF 3 can be regenerated by electrolysis of NH 4 F in anhydrous HF. In another embodiment, NH 3 and F 2 in the reaction, such as a reactor of the reactor in a copper package. F 2 can be produced by electrolysis using a dimensionally stable anode or a carbon anode using conditions conducive to F 2 production. SF 6 can be regenerated by reacting S with F 2 . Any metal nitride that can be formed in a low-energy hydrogen reaction can be regenerated by at least one of the following methods: thermal decomposition, H 2 reduction, oxidation to an oxide or hydroxide, and reaction to form a halide, followed by electrolysis and in a metal halide. Reacts with the halogen gas during the melt electrolysis. NCl 3 may be formed by reacting ammonia with chlorine or by reacting an ammonium salt such as NH 4 Cl with chlorine. Chlorine gas can be produced by electrolysis of a chloride salt such as a chloride salt from a product reaction mixture. NH 3 can be formed using the Haber process, in which hydrogen can be derived from electrolysis of preferred water. In one embodiment, by making NH 3 with an ammonium salt (such as NH 4 Cl) in the reaction with at least one chlorine, NCl 3 formed in situ in the reactor. In one embodiment, by making BiF 3 may be reacted with a metal fluoride F is formed of electrolytic 2, BiF 5 so that regeneration.

在氧或鹵素之來源視情況用作放熱活化反應之反應物的一實施例中,氧化物或鹵化物產物較佳由電解再生。電解質可包含共熔混合物,諸如Al2 O3 與Na3 AlF6 ;MgF2 、NaF與HF;Na3 AlF6 ;NaF、SiF4 與HF;及AlF3 、NaF與HF之混合物。SiF4 電解成Si及F2 可來自鹼金屬氟化物共熔混合物。因為Mg與Na具有低可混溶性,所以可在熔體相將其分離。因為Al與Na具有低可混溶性,所以可在熔體相將其分離。在另一實施例中,電解產物可由蒸餾來分離。在另一實施例中,藉由與C及Cl2 反應,形成CO及TiCl4 ,TiCl4 進一步與Mg反應,形成Ti及MgCl2 ,可使Ti2 O3 再生。可藉由電解使Mg及Cl2 再生。在MgO為產物之狀況下,可藉由皮金法(Pidgeon process)使Mg再生。在一實施例中,使MgO與Si反應,形成SiO2 及Mg氣體,使Mg氣體冷凝。產物SiO2 可藉由在高溫下進行H2 還原或藉由與碳反應形成Si及CO及CO2 而再生成Si。在另一實施例中,藉由使用諸如在熔融氯化鈣中電解固體氧化物之方法電解,使Si再生。在一實施例中,藉由電解氧化使諸如鹼金屬氯酸鹽或過氯酸鹽之氯酸鹽或過氯酸鹽再生。鹽水可電解氧化成氯酸鹽及過氯酸鹽。In one embodiment where the source of oxygen or halogen is used as a reactant for the exothermic activation reaction, the oxide or halide product is preferably regenerated by electrolysis. The electrolyte may comprise a eutectic mixture such as Al 2 O 3 and Na 3 AlF 6 ; MgF 2 , NaF and HF; Na 3 AlF 6 ; NaF, SiF 4 and HF; and a mixture of AlF 3 , NaF and HF. Electrolysis of SiF 4 into Si and F 2 can be derived from an alkali metal fluoride eutectic mixture. Since Mg and Na have low miscibility, they can be separated in the melt phase. Since Al and Na have low miscibility, they can be separated in the melt phase. In another embodiment, the electrolysis product can be separated by distillation. In another embodiment, CO and TiCl 4 are formed by reaction with C and Cl 2 , and TiCl 4 is further reacted with Mg to form Ti and MgCl 2 to regenerate Ti 2 O 3 . Mg and Cl 2 can be regenerated by electrolysis. In the case where MgO is a product, Mg can be regenerated by the Pidgeon process. In one embodiment, MgO is reacted with Si to form SiO 2 and Mg gas, and the Mg gas is condensed. The product SiO 2 can be regenerated by performing H 2 reduction at a high temperature or by reacting with carbon to form Si and CO and CO 2 . In another embodiment, Si is regenerated by electrolysis using a method such as electrolysis of solid oxides in molten calcium chloride. In one embodiment, a chlorate or perchlorate such as an alkali metal chlorate or perchlorate is regenerated by electrolytic oxidation. The brine can be electrolytically oxidized to chlorate and perchlorate.

為使反應物再生,可在與反應物或產物混合物分離後,藉由稀酸移除可形成之金屬載體上的任何氧化物塗層。在另一實施例中,藉由氧化物與碳反應產生碳化物,同時釋放出一氧化碳或二氧化碳。To regenerate the reactants, any oxide coating on the metal support that can be formed can be removed by dilute acid after separation from the reactant or product mixture. In another embodiment, the carbide is reacted with carbon to produce a carbide while releasing carbon monoxide or carbon dioxide.

在反應混合物包含溶劑之狀況下,藉由使用蒸發來移除溶劑或藉由在保留固體下過濾或離心,可使溶劑與待再生之其他反應物或產物分離。在存在諸如鹼金屬之其他揮發性組份的狀況下,可藉由加熱至適當高溫使得該等組份蒸發,來選擇性地移除該等組份。舉例而言,藉由蒸餾來收集諸如金屬Na之金屬且剩下諸如碳之載體。Na可再氫化成NaH且在添加溶劑下返回至碳,以再生反應混合物。亦可單獨再生經分離固體,諸如R-Ni。藉由暴露於0.1至300atm之範圍內之壓力下的氫氣中,可將經分離R-Ni氫化。The solvent may be separated from other reactants or products to be regenerated by removing the solvent using evaporation or by filtering or centrifuging under the retained solids, in the case where the reaction mixture contains a solvent. In the presence of other volatile components such as alkali metals, the components can be selectively removed by heating to a suitable elevated temperature to cause the components to evaporate. For example, a metal such as metal Na is collected by distillation and a carrier such as carbon remains. Na can be rehydrogenated to NaH and returned to the carbon with added solvent to regenerate the reaction mixture. The isolated solid, such as R-Ni, can also be regenerated separately. The isolated R-Ni can be hydrogenated by exposure to hydrogen at a pressure in the range of 0.1 to 300 atm.

在形成低能量氫之催化劑反應期間溶劑分解的狀況下,可使溶劑再生。舉例而言,DMF之分解產物可為二甲胺、一氧化碳、甲酸、甲酸鈉及甲醛。在一實施例中,藉由二甲胺與一氧化碳在甲醇中催化反應或甲酸甲酯與二甲胺反應,來產生二甲基甲醯胺。亦可藉由使二甲胺與甲酸反應來製備二甲基甲醯胺。The solvent can be regenerated in the case where the solvent is decomposed during the reaction of the catalyst forming low-energy hydrogen. For example, the decomposition products of DMF may be dimethylamine, carbon monoxide, formic acid, sodium formate, and formaldehyde. In one embodiment, dimethylformamide is produced by catalytic reaction of dimethylamine with carbon monoxide in methanol or by reaction of methyl formate with dimethylamine. Dimethylformamide can also be prepared by reacting dimethylamine with formic acid.

在一實施例中,例示性醚溶劑可由反應混合物之產物再生。較佳地,反應混合物及條件經選擇,使得相對於形成低能量氫之速率,醚反應速率最小化,以便任何醚降解相對於由低能量氫反應產生之能量而言為微不足道的。因此,可視需要在移除醚降解產物下將醚添加回去。或者,醚及反應條件可經選擇,使得可分離醚反應產物且使醚再生。In one embodiment, an exemplary ether solvent can be regenerated from the product of the reaction mixture. Preferably, the reaction mixture and conditions are selected such that the rate of ether reaction is minimized relative to the rate at which low energy hydrogen is formed, so that any ether degradation is negligible relative to the energy produced by the low energy hydrogen reaction. Therefore, the ether can be added back as needed to remove the ether degradation product. Alternatively, the ether and reaction conditions can be selected such that the ether reaction product can be separated and the ether regenerated.

一實施例包含以下至少一者:HSA為氟化物,HSA為金屬及溶劑經氟化。金屬氟化物可為反應產物。金屬及氟氣可由電解產生。電解質可包含氟化物,諸如NaF、MgF2 、AlF3 或LaF3 ,且可另外包含降低氟化物熔點之至少一種其他物質(諸如HF)及其他鹽,諸如美國專利第5,427,657號中揭示之物質。過量HF可溶解LaF3 。電極可為碳,諸如石墨,且亦可形成碳氟化合物作為所需降解產物。在一實施例中,經碳塗布之金屬或合金、較佳奈米粉末(諸如碳塗布之Co、Ni、Fe、其他過渡金屬粉末或合金)及金屬塗布之碳、較佳奈米粉末(諸如經過渡金屬或合金塗布之碳,較佳Ni、Co、Fe及Mn中之至少一者塗布之碳)中之至少一者包含磁性粒子。藉由使用磁體,可使磁性粒子與混合物(諸如諸如NaF之氟化物與碳之混合物)分離。所收集之粒子可再循環,作為形成低能量氫之反應混合物之一部分。An embodiment comprises at least one of the following: HSA is a fluoride, HSA is a metal, and the solvent is fluorinated. The metal fluoride can be the reaction product. Metal and fluorine gas can be produced by electrolysis. The electrolyte may comprise a fluoride such as NaF, MgF 2 , AlF 3 or LaF 3 , and may additionally comprise at least one other substance (such as HF) which lowers the melting point of the fluoride, and other salts, such as those disclosed in U.S. Patent No. 5,427,657. Excess HF can dissolve LaF 3 . The electrode can be carbon, such as graphite, and can also form fluorocarbons as desired degradation products. In one embodiment, a carbon coated metal or alloy, preferably a nanopowder powder (such as carbon coated Co, Ni, Fe, other transition metal powders or alloys) and a metal coated carbon, preferably a nanopowder powder (such as a transition) At least one of the metal or alloy coated carbon, preferably at least one of Ni, Co, Fe, and Mn coated carbon, comprises magnetic particles. The magnetic particles can be separated from the mixture (such as a mixture of fluoride and carbon such as NaF) by using a magnet. The collected particles can be recycled as part of a reaction mixture that forms low energy hydrogen.

在一實施例中,藉由分離產物,接著電解,自包含NaF 之產物再生催化劑或催化劑源(諸如NaH)及氟化溶劑。分離NaF 之方法可為用具有低沸點之極性溶劑沖洗混合物,接著進行一或多次過濾及蒸發,產生NaF 固體。電解可為熔鹽電解。熔鹽可為混合物,諸如共熔混合物。混合物較佳包含如此項技術中已知之NaFHF 。可自電解收集金屬鈉及氟氣。Na可與H反應,形成NaH。氟氣可與烴反應,形成可用作溶劑之氟化烴。可使HF氟化產物返回至電解混合物中。或者,烴及碳產物(分別諸如苯及石墨碳)可經氟化且返回至反應混合物中。可藉由此項技術中已知之方法將碳裂化成具有較低熔點之較小氟化碎片,以用作溶劑。溶劑可包含混合物。氟化程度可用作控制氫催化反應速率之方法。在一實施例中,藉由使用碳電極電解熔融氟化物鹽、較佳鹼金屬氟化物或藉由使二氧化碳與氟氣反應,來產生CF 4 。任何CF 4 及烴類產物亦可氟化成CF 4 及碳氟化合物。In one embodiment, the catalyst or catalyst source (such as NaH) and the fluorinated solvent are regenerated from the product comprising NaF by separating the product, followed by electrolysis. The method of separating NaF may be to rinse the mixture with a polar solvent having a low boiling point, followed by one or more filtrations and evaporation to produce a NaF solid. Electrolysis can be molten salt electrolysis. The molten salt can be a mixture, such as a eutectic mixture. The mixture preferably comprises NaF and HF as are known in the art. Metal sodium and fluorine gas can be collected by electrolysis. Na can react with H to form NaH. The fluorine gas can react with the hydrocarbon to form a fluorinated hydrocarbon that can be used as a solvent. The HF fluorinated product can be returned to the electrolysis mixture. Alternatively, hydrocarbons and carbon products (such as benzene and graphitic carbon, respectively) can be fluorinated and returned to the reaction mixture. The carbon can be cracked into smaller fluorinated fragments having a lower melting point by methods known in the art for use as a solvent. The solvent may comprise a mixture. The degree of fluorination can be used as a method of controlling the rate of hydrogen catalytic reaction. In one embodiment, using a carbon electrode by electrolysis of a molten fluoride salt, preferably an alkali metal fluoride, or by reaction of carbon dioxide with fluorine gas to produce CF 4. Any CF 4 and hydrocarbon products can also be fluorinated to CF 4 and fluorocarbons.

合適經氟化HSA物質及將碳氟化以形成該等HSA物質之方法可為此項技術中已知之物質及方法,諸如美國專利第3,929,920號、美國專利第3,925,492號、美國專利第3,925,263號及美國專利第4,886,921號中揭示之物質及方法。其他方法包含:如美國專利第4,139,474號中揭示之製備聚一氟化二碳;如美國專利第4,447,663號中揭示之使碳連續氟化之方法;如美國專利第4,423,261號中揭示的產生主要包含由公式(C2 F)n 表示之聚一氟化二碳之石墨氟化物的方法;如美國專利第3,925,263號中揭示之製備聚一氟化碳之方法;如美國專利第3,872,032號中揭示之製備石墨氟化物之方法;如美國專利第4,243,615號中揭示之製備聚一氟化二碳之方法;如美國專利第4,438,086號中揭示的藉由碳與氟氣之間的接觸反應來製備石墨氟化物之方法;如美國專利第3,929,918號中揭示之氟化石墨之合成;如美國專利第3,925,492號中揭示之製備聚一氟化碳之方法;及如Lagow等人,J. C. S. Dalton,1268(1974)揭示之提供石墨-氟化學物質之新合成方法的機制,其中文獻中揭示之物質包含HSA物質。考慮到氟氣之腐蝕,可採用蒙乃爾合金(Monel)金屬、鎳、鋼或銅作為反應器之一種材料。碳物質包括非晶碳(諸如碳黑、石油焦、石油瀝青煤焦及木炭),及結晶碳(諸如天然石墨、石墨烯及人造石墨),芙及奈米管,較佳單壁奈米管。Na較佳不插入碳載體中或形成炔化物。該等碳物質可以各種形式使用。雖然一般粉狀碳物質較佳具有不超過50微米之平均粒徑,但更大平均粒徑亦為合適的。除粉狀碳物質外,其他形式亦為合適的。碳物質可呈塊、球形、條形及纖維之形式。反應可在選自流化床型反應器、旋轉窯型反應器及盤式塔型反應器之反應器中進行。Suitable methods for fluorinating HSA materials and for fluorinating carbon to form such HSA materials are those known in the art, such as U.S. Patent No. 3,929,920, U.S. Patent No. 3,925,492, U.S. Patent No. 3,925,263, The materials and methods disclosed in U.S. Patent No. 4,886,921. Other methods include: the preparation of a polyfluorinated dicarbon as disclosed in U.S. Patent No. 4,139,474; the disclosure of the disclosure of the disclosure of U.S. Patent No. 4,447,663; A method of preparing a polyfluorinated two-carbon graphite fluoride represented by the formula (C 2 F) n ; a method of preparing a polyfluorocarbon as disclosed in U.S. Patent No. 3,925,263; A method of preparing a graphite fluoride; a method of preparing a polyfluorinated dicarbon as disclosed in U.S. Patent No. 4,243,615; the preparation of graphite fluoride by a contact reaction between carbon and fluorine gas as disclosed in U.S. Patent No. 4,438,086 A method of preparing a fluorinated graphite as disclosed in U.S. Patent No. 3,929,918; a method of preparing a polyfluorocarbon as disclosed in U.S. Patent No. 3,925,492; and, as Lagow et al., JCS Dalton, 1268 (1974). A mechanism for providing a novel synthesis method for graphite-fluorochemicals is disclosed, wherein the materials disclosed in the literature contain HSA species. In consideration of the corrosion of fluorine gas, Monel metal, nickel, steel or copper may be used as a material of the reactor. Carbon materials include amorphous carbon (such as carbon black, petroleum coke, petroleum pitch coal char and charcoal), and crystalline carbon (such as natural graphite, graphene and artificial graphite), Fu and nano tubes, preferably single-walled nanotubes . Preferably, Na is not inserted into the carbon support or forms an acetylide. These carbon materials can be used in various forms. Although the general powdery carbon material preferably has an average particle diameter of not more than 50 μm, a larger average particle diameter is also suitable. In addition to powdered carbon, other forms are also suitable. The carbon material can be in the form of blocks, spheres, strips and fibers. The reaction can be carried out in a reactor selected from the group consisting of a fluidized bed type reactor, a rotary kiln type reactor, and a tray column type reactor.

在另一實施例中,使用添加劑使氟化碳再生。亦可藉由無機反應物(諸如CoF3 )在電池外部或原位使碳氟化。反應混合物可進一步包含無機氟化反應物來源,諸如Co、CoF、CoF2 及CoF3 之一,該無機氟化反應物來源可添加至反應器中且再生,或其可在電池運作期間由形成低能量氫之反應混合物及可能另一試劑(諸如氟氣)在視情況存在之氟化催化金屬(諸如Pt或Pd)下形成。添加劑可為可形成NH4 F之NH3 。碳與烴中之至少一者可與NH4 F反應而氟化。在一實施例中,反應混合物進一步包含HNaF2 ,HNaF2 可與碳反應而使碳氟化。碳氟化合物可原位或在低能量氫反應器外部形成。碳氟化合物可用作溶劑或HSA物質。In another embodiment, an additive is used to regenerate the fluorinated carbon. Also by the inorganic reactant (such as CoF 3) outside the cell or in situ carbon fluoride. The reaction mixture may further comprise an inorganic fluorinated reactant source, such as one of Co, CoF, CoF 2 and CoF 3 , which may be added to the reactor and regenerated, or it may be formed during operation of the battery The reaction mixture of low energy hydrogen and possibly another reagent, such as fluorine gas, is formed under the fluorinated catalytic metal (such as Pt or Pd) as the case may be. The additive may be NH 3 which forms NH 4 F. At least one of carbon and hydrocarbon can be fluorinated by reaction with NH 4 F. In one embodiment, the reaction mixture further comprises HNaF 2, HNaF 2 may be reacted with the carbon-carbon fluoride. The fluorocarbon can be formed in situ or external to the low energy hydrogen reactor. Fluorocarbons can be used as solvents or HSA materials.

在溶劑、載體或吸氣劑中之至少一者包含氟的一實施例中,在使溶劑或載體為氟化有機物的狀況下,產物可能包含碳,以及催化劑金屬之氟化物,諸如NaHF2 及NaF。此係除可放出或收集之較低能量氫產物(諸如分子低能量氫氣體)外可獲得之產物。使用F2 ,可將碳蝕刻為CF4 氣體,CF4 氣體可用作發電反應之另一循環中的反應物。NaF與NaHF2 之剩餘產物可電解成Na及F2 。Na可與氫反應,形成NaH,且F2 可用以蝕刻碳產物。NaH、剩餘NaF及CF4 可組合以進行形成低能量氫之發電反應之另一循環。在其他實施例中,Li、K、Rb或Cs可替代Na。In an embodiment wherein at least one of the solvent, carrier or getter comprises fluorine, the product may comprise carbon, and a fluoride of the catalyst metal, such as NaHF 2 , in the case where the solvent or support is a fluorinated organic. NaF. This is a product obtainable other than a lower energy hydrogen product (such as a molecular low energy hydrogen gas) that can be evolved or collected. Using F 2, may be carbon etch gas is CF 4, CF 4 gas may be used in another cycle power generation reaction of the reactants. The remaining product of NaF and NaHF 2 can be electrolyzed to Na and F 2 . Na can react with hydrogen to form NaH, and F 2 can be used to etch the carbon product. NaH, NaF and residual CF 4 may be combined to form another cycle power generation reaction of the low-energy hydrogen. In other embodiments, Li, K, Rb or Cs may be substituted for Na.

VI.其他液體及非均勻燃料實施例VI. Other Liquid and Non-Uniform Fuel Examples

在本發明中,「液體溶劑實施例」包含任何反應混合物及包含液體溶劑之相應燃料(諸如液體燃料及非均勻燃料)。In the present invention, the "liquid solvent embodiment" includes any reaction mixture and a corresponding fuel (such as a liquid fuel and a non-homogeneous fuel) containing a liquid solvent.

在包含液體溶劑之另一實施例中,由金屬、離子或分子形式之Na與至少一種其他化合物或元素之間的反應提供原子鈉與分子NaH之一。Na或NaH之來源可為以下至少一者:金屬Na;包含Na之無機化合物,諸如NaOH;及其他合適Na化合物,諸如NaNH2 、Na2 CO3 及Na2 O、NaX(X為鹵素)及NaH(s)。其他元素可為H、置換劑或還原劑。反應混合物可包含以下至少一者:(1)溶劑;(2)鈉來源,諸如Na(m)、NaH、NaNH2 、Na2 CO3 、Na2 O、NaOH、摻雜NaOH之R-Ni、NaX(X為鹵素)及摻雜NaX之R-Ni;(3)氫源,諸如氫氣及解離器及氫化物;(4)置換劑,諸如鹼金屬或鹼土金屬,較佳Li;及(5)還原劑,諸如以下至少一者:金屬(諸如鹼金屬、鹼土金屬、鑭系金屬、過渡金屬(諸如Ti)、鋁、B)、金屬合金(諸如AlHg、NaPb、NaAl、LiAl)及單獨或與還原劑組合之金屬來源(諸如鹼土金屬鹵化物、過渡金屬鹵化物、鑭系鹵化物及鹵化鋁)。鹼金屬還原劑較佳為Na。其他合適還原劑包含金屬氫化物,諸如LiBH4 、NaBH4 、LiAlH4 或NaAlH4 。還原劑較佳與NaOH反應,形成NaH分子及Na產物,諸如Na、NaH(s)及Na2 O。NaH來源可為包含NaOH及反應物(諸如形成NaH催化劑之還原劑,諸如鹼金屬或鹼土金屬或R-Ni之Al介金屬)之R-Ni。其他例示性試劑為鹼金屬或鹼土金屬及氧化劑,諸如AlX3 、MgX2 、LaX3 、CeX3 及TiXn ,其中X為鹵素,較佳為Br或I。另外,反應混合物可包含含有吸氣劑或分散劑之另一化合物,諸如可摻雜至諸如R-Ni之解離器中的Na2 CO3 、Na2 SO4 及Na3 PO4 中之至少一者。反應混合物可進一步包含載體,其中該載體可摻雜有混合物之至少一種反應物。載體較佳可具有利於由反應混合物產生NaH催化劑之大表面積。載體可包含以下之群中之至少一者:R-Ni、Al、Sn、Al2 O3 (諸如γ、β或α氧化鋁、鋁酸鈉(β氧化鋁存在諸如Na+ 之其他離子且具有理想化組成Na 2 O ‧11Al 2 O 3 ))、鑭系氧化物(諸如M2 O3 (較佳M=La、Sm、Dy、Pr、Tb、Gd及Er))、Si、二氧化矽、矽酸鹽、沸石、鑭系金屬、過渡金屬、金屬合金(諸如鹼金屬及鹼土金屬與Na之合金)、稀土金屬、SiO2 -Al2 O3 或SiO2 負載之Ni及其他負載金屬(諸如氧化鋁負載之鉑、鈀或釕中之至少一者)。載體可具有高表面積且包含高表面積(HSA)物質,諸如R-Ni、沸石、矽酸鹽、鋁酸鹽、氧化鋁、氧化鋁奈米粒子、多孔Al2 O3 、Pt/Al2 O3 、Ru/Al2 O3 或Pd/Al2 O3 、碳、Pt/C或Pd/C、無機化合物(諸如Na2 CO3 、二氧化矽及沸石材料,較佳Y沸石粉末)及碳(諸如芙或奈米管)。在一實施例中,諸如Al2 O3 之載體(及解離器之Al2 O3 載體(若存在))與諸如鑭系元素之還原劑反應,形成表面改質載體。在一實施例中,表面Al與鑭系元素交換,形成經鑭系元素取代之載體。此載體可摻雜有NaH分子來源,諸如NaOH,且與諸如鑭系元素之還原劑反應。隨後經鑭系元素取代之載體與鑭系元素反應不會使其顯著改變,且表面上摻雜之NaOH可藉由與還原劑鑭系元素反應而還原成NaH催化劑。在本文中給出之其他實施例中,Li、K、Rb或Cs可替代Na。In another embodiment comprising a liquid solvent, the reaction between Na in the form of a metal, ion or molecule and at least one other compound or element provides one of atomic sodium and molecular NaH. The source of Na or NaH may be at least one of: metal Na; an inorganic compound containing Na such as NaOH; and other suitable Na compounds such as NaNH 2 , Na 2 CO 3 and Na 2 O, NaX (X is a halogen), and NaH(s). Other elements may be H, a displacer or a reducing agent. The reaction mixture may comprise at least one of: (1) a solvent; (2) a sodium source such as Na(m), NaH, NaNH 2 , Na 2 CO 3 , Na 2 O, NaOH, R-Ni doped with NaOH, NaX (X is a halogen) and Na-doped R-Ni; (3) a hydrogen source such as hydrogen and a dissociator and a hydride; (4) a displacer such as an alkali metal or an alkaline earth metal, preferably Li; a reducing agent such as at least one of: a metal (such as an alkali metal, an alkaline earth metal, a lanthanide metal, a transition metal (such as Ti), aluminum, B), a metal alloy (such as AlHg, NaPb, NaAl, LiAl) and alone or A source of metal combined with a reducing agent (such as an alkaline earth metal halide, a transition metal halide, an lanthanide halide, and an aluminum halide). The alkali metal reducing agent is preferably Na. Other suitable reducing agents include metal hydrides such as LiBH 4 , NaBH 4 , LiAlH 4 or NaAlH 4 . The reducing agent is preferably reacted with NaOH to form NaH molecules and Na products such as Na, NaH(s) and Na 2 O. The NaH source may be R-Ni comprising NaOH and a reactant such as a reducing agent forming a NaH catalyst, such as an alkali metal or alkaline earth metal or an Al meson of R-Ni. Other exemplary agent is an alkali metal or alkaline earth metal and an oxidant, such as AlX 3, MgX 2, LaX 3 , CeX 3 and TiX n, wherein X is halogen, preferably Br or I. Additionally, the reaction mixture may comprise another compound containing a getter or dispersant, such as at least one of Na 2 CO 3 , Na 2 SO 4 and Na 3 PO 4 which may be doped into a dissociator such as R-Ni. By. The reaction mixture can further comprise a support, wherein the support can be doped with at least one reactant of the mixture. The support preferably has a large surface area which facilitates the production of a NaH catalyst from the reaction mixture. The carrier may comprise at least one of the group consisting of: R-Ni, Al, Sn, Al 2 O 3 (such as gamma, beta or alpha alumina, sodium aluminate (beta alumina exists in other ions such as Na + and has Ideally composed of Na 2 O ‧11 Al 2 O 3 )), lanthanide oxides (such as M 2 O 3 (preferably M = La, Sm, Dy, Pr, Tb, Gd and Er)), Si, dioxide Bismuth, citrate, zeolite, lanthanide metal, transition metal, metal alloy (such as alkali metal and alkaline earth metal and Na alloy), rare earth metal, SiO 2 -Al 2 O 3 or SiO 2 supported Ni and other supporting metals (such as at least one of platinum, palladium or rhodium supported by alumina). The support may have a high surface area and comprise a high surface area (HSA) material such as R-Ni, zeolite, silicate, aluminate, alumina, alumina nanoparticles, porous Al 2 O 3 , Pt/Al 2 O 3 , Ru/Al 2 O 3 or Pd/Al 2 O 3 , carbon, Pt/C or Pd/C, inorganic compounds (such as Na 2 CO 3 , cerium oxide and zeolitic materials, preferably Y zeolite powder) and carbon ( Such as Fu or nano tube). In one embodiment, a support such as Al 2 O 3 (and an Al 2 O 3 support of the dissociator (if present)) is reacted with a reducing agent such as a lanthanide to form a surface modifying support. In one embodiment, the surface Al is exchanged with a lanthanide to form a carrier substituted with a lanthanide. This support may be doped with a source of NaH molecules, such as NaOH, and reacted with a reducing agent such as a lanthanide. Subsequent reaction of the lanthanide-substituted support with the lanthanide does not cause a significant change, and the surface-doped NaOH can be reduced to the NaH catalyst by reaction with the reducing agent lanthanide. In other embodiments given herein, Li, K, Rb or Cs may be substituted for Na.

在反應混合物包含NaH催化劑源的包含液體溶劑之一實施例中,NaH來源可為Na合金及氫源。合金可包含至少一種此項技術中已知之合金,諸如金屬鈉與一或多種其他鹼金屬或鹼土金屬、過渡金屬、Al、Sn、Bi、Ag、In、Pb、Hg、Si、Zr、B、Pt、Pd或其他金屬之合金,且H來源可為H2 或氫化物。In one embodiment of the liquid containing solvent comprising a NaH catalyst source in the reaction mixture, the NaH source can be a Na alloy and a hydrogen source. The alloy may comprise at least one alloy known in the art, such as metallic sodium and one or more other alkali or alkaline earth metals, transition metals, Al, Sn, Bi, Ag, In, Pb, Hg, Si, Zr, B, An alloy of Pt, Pd or other metal, and the source of H may be H 2 or a hydride.

諸如NaH分子來源、鈉來源、NaH來源、氫源、置換劑及還原劑之試劑呈任何所需莫耳比率。各呈大於0且小於100%之莫耳比率。莫耳比率較佳相似。Reagents such as NaH molecular source, sodium source, NaH source, hydrogen source, displacer, and reducing agent are in any desired molar ratio. Each has a molar ratio greater than zero and less than 100%. The molar ratios are preferably similar.

在一液體溶劑實施例中,反應混合物包含含有溶劑、Na或Na來源、NaH或NaH來源、金屬氫化物或金屬氫化物來源、形成金屬氫化物之反應物或反應物來源、氫解離器及氫源之群中之至少一種物質。反應混合物可進一步包含載體。形成金屬氫化物之反應物可包含鑭系元素,較佳La或Gd。在一實施例中,La可與NaH可逆地反應,形成LaHn (n=1、2、3)。在一實施例中,氫化物交換反應形成NaH催化劑。可逆通用反應可由以下給出In a liquid solvent embodiment, the reaction mixture comprises a solvent, a source of Na or Na, a source of NaH or NaH, a source of metal hydride or metal hydride, a reactant or reactant source that forms a metal hydride, a hydrogen dissociator, and hydrogen. At least one substance in the group of sources. The reaction mixture may further comprise a carrier. The reactant forming the metal hydride may comprise a lanthanide, preferably La or Gd. In one embodiment, La reversibly react with NaH to form LaH n (n = 1,2,3). In one embodiment, the hydride exchange reaction forms a NaH catalyst. The reversible general reaction can be given by

由方程式(156)給出之反應適用於表2中給出之其他MH型催化劑。反應可在氫形成下進行,氫可解離形成原子氫,原子氫與Na反應,形成NaH催化劑。解離器較佳為Pt/Al2 O3 粉末、Pd/Al2 O3 粉末或Ru/Al2 O3 粉末、Pt/Ti及R-Ni中之至少一者。諸如Al2 O3 之解離器載體較佳至少包含表面La取代Al或包含Pt/M2 O3 粉末、Pd/M2 O3 粉末或Ru/M2 O3 粉末,其中M為鑭系元素。解離器可與其餘反應混合物分離,其中原子H通過分離器。The reaction given by equation (156) applies to the other MH type catalysts given in Table 2. The reaction can be carried out under the formation of hydrogen, which can be dissociated to form atomic hydrogen, which reacts with Na to form a NaH catalyst. The dissociator is preferably at least one of Pt/Al 2 O 3 powder, Pd/Al 2 O 3 powder or Ru/Al 2 O 3 powder, Pt/Ti and R-Ni. The dissociator carrier such as Al 2 O 3 preferably comprises at least surface La substituted Al or comprises Pt/M 2 O 3 powder, Pd/M 2 O 3 powder or Ru/M 2 O 3 powder, wherein M is a lanthanide. The dissociator can be separated from the rest of the reaction mixture, with the atom H passing through the separator.

一合適液體溶劑實施例包含溶劑、NaH、La及Pd/Al2 O3 粉末之反應混合物,其中在一實施例中藉由移除溶劑、添加H2 、藉由篩選來分離NaH與氫化鑭、加熱氫化鑭以形成La且混合La與NaH,可使該反應混合物再生。或者,再生包含藉由將Na熔融且移除液體使Na與氫化鑭分離、加熱氫化鑭以形成La、將Na氫化成NaH、混合La與 NaH且添加溶劑之步驟。可藉由球磨混合La與NaH。A suitable liquid solvent embodiment comprises a reaction mixture of a solvent, NaH, La, and Pd/Al 2 O 3 powder, wherein in one embodiment, NaH and hydrazine hydride are separated by filtration, by addition of H 2 , by screening, The reaction mixture is regenerated by heating the hydrogenated hydrazine to form La and mixing La with NaH. Alternatively, the regeneration includes a step of separating Na from the hydrazine hydride by melting Na and removing the liquid, heating the hydrazine to form La, hydrogenating Na to NaH, mixing La with NaH, and adding a solvent. La and NaH can be mixed by ball milling.

在一液體溶劑實施例中,諸如R-Ni之高表面積物質摻雜有NaX(X=F、Cl、Br、I)。使經摻雜之R-Ni與將置換鹵素以形成Na與NaH中之至少一者的試劑反應。在一實施例中,反應物為至少一種鹼金屬或鹼土金屬,較佳K、Rb、Cs中之至少一者。在另一實施例中,反應物為鹼金屬或鹼土金屬氫化物,較佳KH、RbH、CsH、MgH2 及CaH2 中之至少一者。反應物可為鹼金屬與鹼土金屬氫化物兩者。可逆通用反應可由以下給出In a liquid solvent embodiment, a high surface area material such as R-Ni is doped with NaX (X = F, Cl, Br, I). The doped R-Ni is reacted with a reagent that will displace the halogen to form at least one of Na and NaH. In one embodiment, the reactant is at least one alkali metal or alkaline earth metal, preferably at least one of K, Rb, Cs. In another embodiment, the reactant is an alkali metal or alkaline earth metal hydride, preferably at least one of KH, RbH, CsH, MgH 2 and CaH 2 . The reactants can be both alkali metal and alkaline earth metal hydrides. The reversible general reaction can be given by

D.其他MH型催化劑及反應D. Other MH type catalysts and reactions

一般而言,表2中所示藉由M-H鍵斷裂加上t 個電子自原子M各自電離至連續能階使得鍵能與t 個電子電離能之總和為約m ‧27.2eV (其中m 為整數)提供產生低能量氫的MH型氫催化劑。第一行中所示各MH催化劑且第2行中所示相應M-H鍵能。第一行中所示之MH物質之原子M電離,以提供m ‧27.2eV 之淨反應焓外加第二行之鍵能。第八行中所示催化劑焓,其中m 在第九行中所示。所示參與電離之電子之電離電位(亦稱為電離能或結合能)。舉例而言,NaH 之鍵能1.9245eV 在第二行中給出。原子或離子之第n 個電子之電離電位稱為IP n 且由CRC所示。亦即舉例而言,Na +5.13908eVNa + +e -Na + +47.2864eVNa 2+ +e - 。第一電離電位IP 1 =5.13908eV 及第二電離電位IP 2 =47.2864eV 分別在第二及第三行中給出。NaH 鍵斷裂及Na 二次電離之淨反應焓為如第八行中所示之54.35eV 且如第九行中所示,方程式(36)中m =2。另外,如例示性方程式(23)所示,H可與表2中所示之各MH分子反應,形成相對於單獨MH之催化劑反應產物,量子數p增加1之低能量氫(方程式(35))。In general, the MH bond cleavage plus the t electrons from the atom M to each of the continuous energy levels is shown in Table 2 such that the sum of the bond energy and the t electron ionization energies is about m ‧27.2 eV (where m is an integer) Providing a MH type hydrogen catalyst that produces low energy hydrogen. Each MH catalyst is shown in the first row and the corresponding MH bond energy is shown in row 2. The atom M of the MH species shown in the first row is ionized to provide a net reaction of m ‧27.2 eV plus the bond energy of the second row. The catalyst 焓 shown in the eighth row, where m is shown in the ninth row. The ionization potential (also known as ionization energy or binding energy) of the electrons involved in ionization is shown. For example, the NaH bond energy of 1.9245 eV is given in the second row. The ionization potential of the nth electron of an atom or ion is called IP n and is indicated by CRC. That is, for example, Na + 5.13908 eVNa + + e - and Na + + 47.2864 eVNa 2+ + e - . The first ionization potential IP 1 = 5.13908 eV and the second ionization potential IP 2 = 47.2864 eV are given in the second and third rows, respectively. The net reaction Na of NaH bond cleavage and Na secondary ionization is 54.35 eV as shown in the eighth row and as shown in the ninth row, m = 2 in equation (36). Further, as shown in the exemplary equation (23), H can react with each of the MH molecules shown in Table 2 to form a low-energy hydrogen having a quantum number p increased by 1 with respect to the catalyst reaction product of MH alone (Equation (35) ).

VIII.氫氣放電電源及電漿電池及反應器VIII. Hydrogen discharge power source and plasma battery and reactor

本發明之氫氣放電電源及電漿電池及反應器展示於圖5中。圖5之氫氣放電電源及電漿電池及反應器包括一氣體放電電池307,該氣體放電電池307包含一具有腔室300之填充氫氣之輝光放電真空容器315。氫源322經由控制閥325經由供氧通道342供應氫至腔室300。催化劑容納於電池腔室300中。電壓及電流源330引起電流在陰極305與陽極320之間傳遞。電流可為可換向的。The hydrogen discharge power source and plasma battery and reactor of the present invention are shown in FIG. The hydrogen discharge power source and plasma battery and reactor of FIG. 5 include a gas discharge battery 307 comprising a glow-filled vacuum vessel 315 having a chamber 300 filled with hydrogen. Hydrogen source 322 supplies hydrogen to chamber 300 via oxygen supply passage 342 via control valve 325. The catalyst is housed in the battery chamber 300. Voltage and current source 330 causes current to pass between cathode 305 and anode 320. The current can be commutative.

在一實施例中,陰極305之材料可為催化劑源,諸如Fe、Dy、Be或Pd。在氫氣放電電源及電漿電池及反應器之另一實施例中,容器壁313導電且用作替代電極305之陰極,且陽極320可為空心的,諸如不鏽鋼空心陽極。放電可使催化劑源汽化成催化劑。分子氫可由放電解離,形成氫原子,用於產生低能量氫及能量。可由腔室中之氫解離器提供額外解離。In an embodiment, the material of the cathode 305 can be a catalyst source such as Fe, Dy, Be or Pd. In another embodiment of a hydrogen discharge power source and a plasma battery and reactor, the vessel wall 313 is electrically conductive and serves as a cathode for the replacement electrode 305, and the anode 320 can be hollow, such as a stainless steel hollow anode. The discharge vaporizes the catalyst source into a catalyst. Molecular hydrogen can be dissociated by a discharge to form a hydrogen atom for generating low energy hydrogen and energy. Additional dissociation can be provided by the hydrogen dissociator in the chamber.

催化以氣相發生之氫氣放電電源及電漿電池及反應器的另一實施例利用可控制之氣態催化劑。藉由對分子氫氣體放電,提供用於轉化成低能量氫之氣體氫原子。氣體放電電池307具有將氣態催化劑350自催化劑儲集器395傳遞至反應室300之催化劑供應通道341。催化劑儲集器395由具有電源372之催化劑儲集器加熱器392加熱以提供氣態催化劑至反應室300。藉由經由電源372調整加熱器392,控制催化劑儲集器395之溫度,來控制催化劑蒸氣壓。反應器進一步包含選擇性通風閥301。位於氣體放電電池內部之抗化學腐蝕敞口容器(諸如不鏽鋼、鎢或陶瓷舟皿)可含有催化劑。可用使用相聯電源之舟皿加熱器加熱催化劑舟皿中之催化劑,以提供氣態催化劑至反應室。或者,輝光氣體放電電池在高溫下運作,使得舟皿中之催化劑昇華、沸騰或揮發成氣相。藉由以電源調整加熱器,控制舟皿或放電電池之溫度,來控制催化劑蒸氣壓。為防止催化劑在電池中冷凝,維持溫度於超過催化劑源、催化劑儲集器395或催化劑舟皿之溫度。Another embodiment of catalyzing a hydrogen discharge power source and a plasma battery and reactor in the gas phase utilizes a controllable gaseous catalyst. By discharging the molecular hydrogen gas, a gas hydrogen atom for conversion to low energy hydrogen is provided. The gas discharge battery 307 has a catalyst supply passage 341 that transfers the gaseous catalyst 350 from the catalyst reservoir 395 to the reaction chamber 300. Catalyst reservoir 395 is heated by catalyst reservoir heater 392 having a power source 372 to provide a gaseous catalyst to reaction chamber 300. The catalyst vapor pressure is controlled by adjusting the temperature of the catalyst reservoir 395 by adjusting the heater 392 via the power source 372. The reactor further includes a selective venting valve 301. A chemically resistant open container (such as stainless steel, tungsten or ceramic boat) located inside the gas discharge battery may contain a catalyst. The catalyst in the catalyst boat can be heated using a boat heater using an associated power source to provide a gaseous catalyst to the reaction chamber. Alternatively, the glow gas discharge cell operates at a high temperature such that the catalyst in the boat sublimes, boils or volatilizes into a gas phase. The catalyst vapor pressure is controlled by adjusting the temperature of the boat or the discharge battery by adjusting the heater with a power source. To prevent condensation of the catalyst in the cell, the temperature is maintained above the temperature of the catalyst source, catalyst reservoir 395 or catalyst boat.

在一實施例中,催化以氣相發生,鋰為催化劑,且藉由維持電池溫度在約300-1000℃之範圍內,使原子鋰(諸如金屬鋰)或鋰化合物(諸如LiNH2 )之來源變為氣態。電池最佳維持在約500-750℃之範圍內。原子氫及/或分子氫反應物可維持在小於大氣壓、較佳在約10毫托至約100托之範圍內的壓力下。壓力最佳藉由維持電池中金屬鋰與氫化鋰之混合物在所需運作溫度下來確定。運作溫度範圍較佳在約300-1000℃之範圍內,且壓力最佳為電池在約300-750℃之運作溫度範圍內所實現之壓力。由電源385供以動力之加熱旋管(諸如圖5之380)可將電池控制在所需運作溫度下。該電池可進一步包含一內部反應室300及一外部氫儲集器390,使得可藉由使氫擴散穿過分隔兩腔室之壁313來對電池供氫。壁溫可由加熱器控制以控制擴散速率。擴散速率可藉由控制氫儲集器中之氫壓力而進一步控制。In one embodiment, the catalysis occurs in the gas phase, lithium is the catalyst, and the source of lithium (such as metallic lithium) or lithium compound (such as LiNH 2 ) is maintained by maintaining the battery temperature in the range of about 300-1000 ° C. Becomes a gaseous state. The battery is preferably maintained in the range of about 500-750 °C. The atomic hydrogen and/or molecular hydrogen reactants can be maintained at a pressure in the range of less than atmospheric pressure, preferably from about 10 millitorr to about 100 torr. The pressure is best determined by maintaining the mixture of lithium metal and lithium hydride in the battery at the desired operating temperature. The operating temperature range is preferably in the range of about 300-1000 ° C, and the pressure is preferably the pressure achieved by the battery over an operating temperature range of about 300-750 ° C. A heating coil powered by power source 385 (such as 380 of Figure 5) can control the battery at the desired operating temperature. The battery can further include an internal reaction chamber 300 and an external hydrogen reservoir 390 such that hydrogen can be supplied to the battery by diffusing hydrogen through the walls 313 separating the two chambers. The wall temperature can be controlled by a heater to control the rate of diffusion. The rate of diffusion can be further controlled by controlling the pressure of hydrogen in the hydrogen reservoir.

在具有包含Li、LiN H2 、Li2 NH、Li3 N、LiNO3 、LiX、NH4 X(X為鹵離子)、NH3 、LiBH4 、LiAlH4 及H2 之群中之物質的反應混合物之系統之另一實施例中,藉由添加一或多種試劑及藉由電漿再生而再生至少一種反應物。電漿可為諸如NH3 及H2 之氣體之一。電漿可維持在原處(在反應電池中)或在與反應電池相連通之外部電池中。在其他實施例中,K、Cs及Na替代Li,其中催化劑為原子K、原子Cs及分子NaH。Reaction in a group having Li, LiN H 2 , Li 2 NH, Li 3 N, LiNO 3 , LiX, NH 4 X (X is a halide), NH 3 , LiBH 4 , LiAlH 4 and H 2 In another embodiment of the system of mixtures, at least one reactant is regenerated by the addition of one or more reagents and by plasma regeneration. The plasma may be one of gases such as NH 3 and H 2 . The plasma can be maintained in situ (in the reaction cell) or in an external battery in communication with the reaction cell. In other embodiments, K, Cs, and Na are substituted for Li, wherein the catalyst is atom K, atom Cs, and molecular NaH.

為維持催化劑壓力在所需程度下,可密封將滲透作為氫源之電池。或者,電池在各入口或出口處進一步包含高溫閥,使得接觸反應氣體混合物之閥維持在所需溫度下。To maintain the catalyst pressure to the desired extent, the battery that will permeate as a source of hydrogen can be sealed. Alternatively, the battery further includes a high temperature valve at each inlet or outlet such that the valve contacting the reactive gas mixture is maintained at the desired temperature.

藉由使電池絕熱且藉由以加熱器380施加補充加熱器功率,可將電漿電池溫度獨立地控制在寬範圍內。因此,可獨立於電漿電源來控制催化劑蒸氣壓。By adiabatic the battery and by applying supplemental heater power with heater 380, the plasma battery temperature can be independently controlled over a wide range. Therefore, the catalyst vapor pressure can be controlled independently of the plasma power source.

放電電壓可在約100至10,000伏特(volt)之範圍內。電流可在所需電壓下任何所需範圍內。此外,電漿可在任何所需頻率範圍、補償電壓、峰值電壓、峰值功率及波形下脈衝。The discharge voltage can range from about 100 to 10,000 volts. The current can be in any desired range at the desired voltage. In addition, the plasma can be pulsed at any desired frequency range, compensation voltage, peak voltage, peak power, and waveform.

在另一實施例中,電漿可存在於諸如催化劑或作為催化劑源之物質反應物的溶劑的液體介質中。In another embodiment, the plasma may be present in a liquid medium such as a catalyst or a solvent for the reactants of the material as a source of the catalyst.

IX.燃料電池及電池組IX. Fuel cells and battery packs

在圖6中所示之燃料電池及電池組400之實施例中,包含固體燃料或非均勻催化劑之低能量氫反應物包含用於進行相應電池半反應之反應物。在運作期間,催化劑與原子氫反應,且能量轉移引起催化劑電離。此反應可發生在陽極室402中,使得陽極410最終接受電離電子流。LiKNaH 中之至少一者可用作形成低能量氫之催化劑。原子氫至催化劑之整數倍27.2eV 之非輻射能量轉移的反應步驟產生電離催化劑及自由電子。諸如AC之載體可用作導電性電子受體,與陽極電接觸。最終電子受體反應物包含諸如自由基或其來源之氧化劑及帶正電平衡離子之來源,該等反應物作為陰極電池反應混合物之組份,最終清除自形成低能量氫之催化劑反應釋放的電子。氧化劑或陰極電池反應混合物位於具有陰極405之陰極室401中。氧化劑較佳為氧或氧來源、鹵素(較佳F2 或Cl2 )或鹵素來源CF4 、SF6 及NF3 中之至少一者。在運作期間,諸如催化劑離子之平衡離子可遷移至陽極室,較佳經由鹽橋420遷移至陰極室。每一電池反應可由額外反應物補充,或產物可經由通至反應物來源或用於儲存產物之儲集器430及431的通道460及461移除。In the embodiment of the fuel cell and battery pack 400 illustrated in Figure 6, the low energy hydrogen reactant comprising a solid fuel or a heterogeneous catalyst comprises reactants for performing a corresponding half reaction of the battery. During operation, the catalyst reacts with atomic hydrogen and energy transfer causes ionization of the catalyst. This reaction can occur in the anode chamber 402 such that the anode 410 eventually receives ionized electron current. At least one of Li , K and NaH can be used as a catalyst for forming low energy hydrogen. The reaction step of non-radiative energy transfer of atomic hydrogen to an integral multiple of 27.2 eV of the catalyst produces an ionizing catalyst and free electrons. A carrier such as AC can be used as a conductive electron acceptor in electrical contact with the anode. The final electron acceptor reactant comprises an oxidant such as a free radical or its source and a source of positively charged counterions which act as a component of the cathode cell reaction mixture and ultimately remove electrons released from the reaction of the low energy hydrogen catalyst. . The oxidant or cathode battery reaction mixture is located in a cathode chamber 401 having a cathode 405. The oxidizing agent is preferably at least one of an oxygen or oxygen source, a halogen (preferably F 2 or Cl 2 ) or a halogen source CF 4 , SF 6 and NF 3 . During operation, counter ions such as catalyst ions can migrate to the anode chamber, preferably via salt bridge 420 to the cathode chamber. Each cell reaction may be supplemented by additional reactants, or the product may be removed via channels 460 and 461 to the reactant source or reservoirs 430 and 431 for storing the product.

在某些實施例中,除僅形成低能量氫中所消耗之氫需要置換外,使反應物再生且維持形成較低能量氫之反應的本文中所揭示之動力、化學作用、電池組及燃料電池系統可閉合,其中消耗之氫燃料可自水電解獲得。In certain embodiments, the power, chemistry, battery, and fuel disclosed herein are disclosed herein in addition to merely replacing the hydrogen consumed in the formation of low energy hydrogen, regenerating the reactants and maintaining the reaction to form lower energy hydrogen. The battery system can be closed, wherein the hydrogen fuel consumed can be obtained from water electrolysis.

X.化學反應器X. Chemical reactor

本發明亦針對用於產生本發明之結合能增加之氫化合物,諸如二低能量氫分子及低能量氫氫化物化合物的其他反應器。其他催化產物為電力及視情況存在之電漿及光,視電池類型而定。此類反應器在下文中稱為「氫反應器」或「氫電池」。氫反應器包含用於產生低能量氫之電池。用於產生低能量氫之電池可採取化學反應器或氣體燃料電池(諸如氣體放電電池、電漿炬電池或微波電池)的形式。用於產生低能量氫之電池之例示性實施例可採取液體燃料電池、固體燃料電池及非均勻燃料電池的形式。此等電池各自包含:(i)原子氫源;(ii)至少一種選自用於產生低能量氫之固體催化劑、熔融催化劑、液體催化劑、氣態催化劑或其混合物的催化劑;及(iii)使氫與催化劑反應以產生低能量氫之容器。如本文所用及如本發明所涵蓋,除非另外說明,否則術語「氫」不僅包括氕(1 H ),而且包括氘(2 H )及氚(3 H )。在使用氘作為低能量氫反應之反應物的狀況下,期望相對痕量之非均勻燃料及固體燃料之氚或氦產物。The present invention is also directed to other reactors for producing hydrogen compounds of the present invention having increased binding energy, such as di-low energy hydrogen molecules and low energy hydrogen hydride compounds. Other catalytic products are electricity and, where appropriate, plasma and light, depending on the type of battery. Such a reactor is hereinafter referred to as a "hydrogen reactor" or a "hydrogen battery." The hydrogen reactor contains a battery for generating low energy hydrogen. The battery for generating low energy hydrogen may take the form of a chemical reactor or a gas fuel cell such as a gas discharge battery, a plasma torch battery or a microwave battery. Illustrative embodiments of batteries for producing low energy hydrogen can take the form of liquid fuel cells, solid fuel cells, and non-uniform fuel cells. Each of the batteries comprises: (i) an atomic hydrogen source; (ii) at least one catalyst selected from the group consisting of solid catalysts for producing low energy hydrogen, molten catalysts, liquid catalysts, gaseous catalysts or mixtures thereof; and (iii) hydrogen and The catalyst reacts to produce a container of low energy hydrogen. As used herein and as encompassed by the present invention, unless stated otherwise, the term "hydrogen" not only include protium (1 H), but also include deuterium (2 H), and tritium (3 H). In the case where hydrazine is used as a reactant for the low energy hydrogen reaction, a relatively trace amount of the non-uniform fuel and the ruthenium or osmium product of the solid fuel are desired.

在合成包含較低能量氫(諸如低能量氫氫化物)之化合物之化學反應器的一實施例中,使用具有呈正氧化態之Fe、可藉由鐵平衡離子置換而與H - (1-p )反應之鐵鹽(較佳碳化鐵、氧化鐵或揮發性鐵鹽(諸如FeI2 或FeI3 ))合成鐵低能量氫氫化物膜。催化劑可為K、NaH或Li。H可來自H2 及諸如R-Ni或Pt/Al2 O3 之解離器。在另一實施例中,鐵低能量氫氫化物由鐵來源(諸如在反應器運作溫度下分解之鐵鹵化物)、催化劑(諸如NaH、Li或K)及氫源(諸如氫氣)及解離器(諸如R-Ni)形成。錳低能量氫氫化物可由錳來源(諸如在反應器運作溫度下分解之有機金屬,諸如2,4-戊二酸錳(II))、催化劑(諸如NaH、Li或K)及氫源(諸如氫氣)及解離器(諸如R-Ni)形成。在一實施例中,反應器維持在約25℃至800℃之溫度範圍內,較佳在約400℃至500℃之範圍內。In an embodiment of a chemical reactor for synthesizing a compound comprising a lower energy hydrogen (such as a low energy hydrogen hydride), Fe having a positive oxidation state, being replaced by an iron counter ion and H - (1- p) The iron salt of the reaction (preferably iron carbide, iron oxide or a volatile iron salt such as FeI 2 or FeI 3 ) is synthesized into a low energy hydrogen hydride film. The catalyst can be K, NaH or Li. H may be derived from H 2 and a dissociator such as R-Ni or Pt/Al 2 O 3 . In another embodiment, the iron low energy hydrogen hydride is derived from an iron source (such as an iron halide that decomposes at the operating temperature of the reactor), a catalyst (such as NaH, Li or K), and a hydrogen source (such as hydrogen) and a dissociator. Formation (such as R-Ni). The manganese low energy hydrogen hydride can be derived from a manganese source (such as an organometallic that decomposes at the operating temperature of the reactor, such as manganese (II) 2,4-glutarate), a catalyst (such as NaH, Li or K), and a source of hydrogen (such as Hydrogen) and a dissociator (such as R-Ni) are formed. In one embodiment, the reactor is maintained at a temperature in the range of from about 25 °C to 800 °C, preferably in the range of from about 400 °C to 500 °C.

因為鹼金屬在氣相中為共價雙原子分子,所以在一實施例中,形成結合能增加之氫化合物的催化劑由來源與至少一種其他元素反應而形成。藉由將金屬K或Li分散於諸如KX或LiX之鹼金屬鹵化物中,可產生諸如K或Li之催化劑,以形成KHX、LiHX(其中X為鹵素)。亦可藉由經汽化K2 或Li2 與原子H反應,分別形成KH及K或LiH及Li,產生催化劑K或Li。結合能增加之氫化合物可為MHX,其中M為鹼金屬,H為低能量氫氫化物,且X為帶一個負電荷之離子,X較佳為鹵素及之一。在一實施例中,形成KHI或KHCl之反應混合物(其中H為低能量氫氫化物)包含分別經KX(X=Cl、I)覆蓋之K金屬及解離器(較佳鎳金屬,諸如鎳網及R-Ni)。藉由在添加氫下維持反應混合物在高溫下,較佳在400-700℃之範圍內來進行反應。氫壓力較佳維持在約5PSI之計示壓力下。因此,MX置放於K上,使得K原子經由鹵化物晶格遷移且鹵化物用以分散K且充當K2 之解離器,其在界面處與來自解離器(諸如鎳網或R-Ni)之H反應,形成KHX。Since the alkali metal is a covalent diatomic molecule in the gas phase, in one embodiment, a catalyst which forms a hydrogen compound having increased binding energy is formed by reacting a source with at least one other element. By dispersing the metal K or Li in an alkali metal halide such as KX or LiX, a catalyst such as K or Li can be produced to form KHX, LiHX (where X is a halogen). It is also possible to form KH and K or LiH and Li, respectively, by reacting vaporized K 2 or Li 2 with atom H to produce catalyst K or Li. The hydrogen compound with increased binding energy may be MHX, wherein M is an alkali metal, H is a low energy hydrogen hydride, and X is a negatively charged ion, and X is preferably a halogen. one. In one embodiment, the reaction mixture forming KHI or KHCl (wherein H is a low energy hydrogen hydride) comprises a K metal and a dissociator covered with KX (X=Cl, I), respectively (preferably a nickel metal such as a nickel mesh) And R-Ni). The reaction is carried out by maintaining the reaction mixture at a high temperature, preferably in the range of from 400 to 700 ° C, under the addition of hydrogen. The hydrogen pressure is preferably maintained at a gauge pressure of about 5 PSI. Thus, MX is placed on K such that the K atoms migrate through the halide lattice and the halide is used to disperse K and act as a K 2 dissociator at the interface with from the dissociator (such as nickel mesh or R-Ni) H reacts to form KHX.

用於合成低能量氫氫化物之合適反應混合物包含催化劑、氫源、氧化劑、還原劑及載體之群中之至少兩種物質,其中氧化劑為硫、磷及氧中之至少一者之來源,諸如SF 6SSO 2 、SO3 、S2 O5 Cl2 、F5 SOF、M 2 S 2 O 8 、Sx Xy (諸如S2 Cl2 、SCl2 、S2 Br2 、S2 F2 )、CS2 、Sb2 S5 、SOxXy (諸如SOCl2 、SOF2 、SO2 F2 、SOBr2 )、P、P2 O5 、P2 S5 、Px Xy (諸如PF3 、PCl3 、PBr3 、PI3 、PF5 、PCl5 、PBr4 F或PCl4 F)、POx Xy (諸如POBr3 、POI3 、POCl3 或POF3 )、PSx Xy (諸如PSBr3 、PSF3 、PSCl3 )、磷-氮化合物(諸如P3 N5 、(Cl2 PN)3 或(Cl2 PN)4 、(Br2 PN)x (M 為鹼金屬,x及y為整數,X為鹵素))、O2 、N2 O及TeO2 。氧化劑可進一步包含鹵素、較佳氟之來源,諸如CF4 、NF3 或CrF2 。混合物亦可包含吸氣劑作為磷或硫之來源,諸如MgS及MHS(M 為鹼金屬)。合適吸氣劑為產生普通H之高磁場位移之NMR峰及位於普通H峰之高磁場之低能量氫氫化物峰的原子或化合物。合適吸氣劑包含元素S、P、O、Se及Te或包含含有S、P、O、Se及Te之化合物。用於低能量氫氫陰離子之合適吸氣劑的一般性質在於其形成呈元素形式、呈摻雜元素形式或與捕獲及穩定低能量氫氫陰離子之其他元素的鏈、籠或環。較佳可在固體或溶液NMR中觀測到H- (1/p)。在另一實施例中,NaH或HCl用作催化劑。合適反應混合物包含MX及M'HSO4 ,其中M及M'分別為鹼金屬,較佳Na及K,且X為鹵素,較佳Cl。Suitable reaction mixtures for the synthesis of low energy hydrogen hydrides comprise at least two of a catalyst, a source of hydrogen, an oxidant, a reducing agent and a carrier, wherein the oxidant is a source of at least one of sulfur, phosphorus and oxygen, such as SF 6 , S , SO 2 , SO 3 , S 2 O 5 Cl 2 , F 5 SOF, M 2 S 2 O 8 , S x X y (such as S 2 Cl 2 , SCl 2 , S 2 Br 2 , S 2 F 2 ), CS 2 , Sb 2 S 5 , SOxX y (such as SOCl 2 , SOF 2 , SO 2 F 2 , SOBr 2 ), P, P 2 O 5 , P 2 S 5 , P x X y (such as PF 3 , PCl 3 , PBr 3 , PI 3 , PF 5 , PCl 5 , PBr 4 F or PCl 4 F), PO x X y (such as POBr 3 , POI 3 , POCl 3 or POF 3 ), PS x X y ( Such as PSBr 3 , PSF 3 , PSCl 3 ), phosphorus-nitrogen compounds (such as P 3 N 5 , (Cl 2 PN) 3 or (Cl 2 PN) 4 , (Br 2 PN) x ( M is an alkali metal, x and y is an integer, X is a halogen)), O 2 , N 2 O, and TeO 2 . The oxidizing agent may further comprise a source of halogen, preferably fluorine, such as CF 4 , NF 3 or CrF 2 . The mixture may also contain a getter as a source of phosphorus or sulfur, such as MgS and MHS ( M is an alkali metal). Suitable getters are NMR peaks that produce high magnetic field shifts of ordinary H and atoms or compounds of low energy hydrogen hydride peaks at high magnetic fields of the ordinary H peak. Suitable getters include the elements S, P, O, Se and Te or comprise compounds containing S, P, O, Se and Te. A typical property of a suitable getter for low energy hydrino hydrides is that they form chains, cages or rings in elemental form, in the form of doping elements or with other elements that capture and stabilize low energy hydrino hydride ions. Preferably, H - (1/p) is observed in solid or solution NMR. In another embodiment, NaH or HCl is used as the catalyst. Suitable reaction mixtures comprise MX and M'HSO 4 wherein M and M' are each an alkali metal, preferably Na and K, and X is a halogen, preferably Cl.

包含以下至少一者之反應混合物為用於產生動力以及產生較低能量氫化合物之合適系統:(1)NaH催化劑、MgH2 、SF6 及活性碳(AC);(2)NaH催化劑、MgH2 、S及活性碳(AC);(3)NaH催化劑、MgH2 、K2 S2 O8 、Ag及AC;(4)KH催化劑、MgH2 、K2 S2 O8 及AC;(5)MH催化劑(M=Li、Na、K)、Al或MgH2 、O2 、K2 S2 O8 及AC;(6)KH催化劑、Al、CF4 及AC;(7)NaH催化劑、Al、NF3 及AC;(8)KH催化劑、MgH2 、N2 O及AC;(9)NaH催化劑、MgH2 、O2 及活性碳(AC);(10)NaH催化劑、MgH2 、CF4 及AC;(11)MH催化劑、MgH2 (M=Li、Na或K)、P2 O5 (P4 O10 )及AC;(12)MH催化劑、MgH2 、MNO3 (M=Li、Na或K)及AC;(13)NaH或KH催化劑、Mg、Ca或Sr、過渡金屬鹵化物(較佳FeCl2 、FeBr2 、NiBr2 、MnI2 )或稀土金屬鹵化物(諸如EuBr2 )及AC;及(14)NaH催化劑、Al、CS2 及AC。在上文給出之例示性反應混合物之其他實施例中,催化劑陽離子包含Li、Na、K、Rb或Cs之一且反應混合物之其他物質係選自反應1至14之物質。反應物可呈任何所需比率。A reaction mixture comprising at least one of the following is a suitable system for generating power and producing a lower energy hydrogen compound: (1) NaH catalyst, MgH 2 , SF 6 and activated carbon (AC); (2) NaH catalyst, MgH 2 , S and activated carbon (AC); (3) NaH catalyst, MgH 2 , K 2 S 2 O 8 , Ag and AC; (4) KH catalyst, MgH 2 , K 2 S 2 O 8 and AC; (5) MH catalyst (M=Li, Na, K), Al or MgH 2 , O 2 , K 2 S 2 O 8 and AC; (6) KH catalyst, Al, CF 4 and AC; (7) NaH catalyst, Al, NF 3 and AC; (8) KH catalyst, MgH 2 , N 2 O and AC; (9) NaH catalyst, MgH 2 , O 2 and activated carbon (AC); (10) NaH catalyst, MgH 2 , CF 4 and AC; (11) MH catalyst, MgH 2 (M=Li, Na or K), P 2 O 5 (P 4 O 10 ) and AC; (12) MH catalyst, MgH 2 , MNO 3 (M=Li, Na Or K) and AC; (13) NaH or KH catalyst, Mg, Ca or Sr, transition metal halide (preferably FeCl 2 , FeBr 2 , NiBr 2 , MnI 2 ) or rare earth metal halide (such as EuBr 2 ) and AC; and (14) NaH catalyst, Al, CS 2 and AC. In other embodiments of the exemplary reaction mixture given above, the catalyst cation comprises one of Li, Na, K, Rb or Cs and the other material of the reaction mixture is selected from the group consisting of reactions 1 to 14. The reactants can be in any desired ratio.

低能量氫反應產物為質子NMR峰分別向普通分子氫或氫化氫之質子NMR峰之高磁場移位的氫分子與氫陰離子中之至少一者。在一實施例中,氫產物結合除氫以外之元素,其中質子NMR峰向具有與該產物相同分子式之普通分子、物質或化合物之質子NMR峰的高磁場移位,或普通分子、物質或化合物在室溫下不穩定。The low-energy hydrogen reaction product is at least one of a hydrogen molecule and a hydrogen anion that are displaced by a proton NMR peak to a high magnetic field of a proton NMR peak of ordinary molecular hydrogen or hydrogen hydride, respectively. In one embodiment, the hydrogen product incorporates elements other than hydrogen, wherein the proton NMR peak shifts to a high magnetic field of a proton NMR peak of a common molecule, substance or compound having the same molecular formula as the product, or a common molecule, substance or compound Unstable at room temperature.

在一實施例中,動力及結合能增加之氫化合物由包含兩種或兩種以上下列物質之反應混合物產生:LiNO3 、NaNO3 、KNO3 、LiH、NaH、KH、Li、Na、K、H2 、載體(諸如碳,例如活性碳)、金屬或金屬氫化物還原劑(較佳MgH2 )。反應物可呈任何莫耳比率。反應混合物較佳包含9.3莫耳% MH、8.6莫耳% MgH2 、74莫耳% AC及7.86莫耳% MNO3 (M為Li、Na或K),其中各物質之莫耳%可在針對各物質所示之莫耳%加上或減去因子10的範圍內變化。在用NMR溶劑、較佳氘化DFM萃取產物混合物後,使用液體NMR,可分別在約1.22ppm及-3.85ppm下觀測到具有較佳1/4態之產物分子低能量氫及低能量氫氫陰離子。產物M2 CO3 可用作低能量氫氫陰離子之吸氣劑,以形成諸如MHMHCO3 之化合物。In one embodiment, the hydrogen compound with increased kinetic and binding energy is produced from a reaction mixture comprising two or more of the following: LiNO 3 , NaNO 3 , KNO 3 , LiH, NaH, KH, Li, Na, K, H 2 , a support such as carbon, such as activated carbon, a metal or metal hydride reducing agent (preferably MgH 2 ). The reactants can be in any molar ratio. The reaction mixture preferably comprises 9.3 mole% MH, 8.6 mole% MgH 2, 74 mole% AC and 7.86 mole% MNO 3 (M is Li, Na or K), where the mole% of each substance can be for The molar % shown by each substance is added or subtracted from the range of factor 10. After extracting the product mixture with NMR solvent, preferably deuterated DFM, liquid NMR is used to observe low molecular energy hydrogen and low energy hydrogen hydrogen with better 1/4 state product at about 1.22 ppm and -3.85 ppm, respectively. Anion. The product M 2 CO 3 can be used as a getter for low energy hydrino hydride to form a compound such as MHMHCO 3 .

在另一實施例中,動力及結合能增加之氫化合物由包含兩種或兩種以上下列物質之反應混合物產生:LiH、NaH、KH、Li、Na、K、H2 、金屬或金屬氫化物還原劑(較佳MgH2 或Al粉末,較佳奈米粉末)、載體(諸如碳,較佳活性碳)及氟來源(諸如氟氣或碳氟化合物,較佳CF4 或六氟苯(HFB))。反應物可呈任何莫耳比率。反應混合物較佳包含9.8莫耳% MH、9.1莫耳% MgH2 或9莫耳% Al奈米粉末、79莫耳% AC及2.4莫耳% CF4 或HFB(M為Li、Na或K),其中各物質之莫耳%可在針對各物質所示之莫耳%加上或減去因子10的範圍內變化。在用NMR溶劑、較佳氘化DFM或CDCl3 萃取產物混合物後,使用液體NMR,可分別在約1.22ppm及-3.86ppm下觀測到具有較佳1/4態之產物分子低能量氫及低能量氫氫陰離子。In another embodiment, the power and increase the binding energy hydrogen compound comprising two or more reaction mixtures produced by the following substances: LiH, NaH, KH, Li , Na, K, H 2, a metal or a metal hydride a reducing agent (preferably MgH 2 or Al powder, preferably nano powder), a carrier (such as carbon, preferably activated carbon) and a fluorine source (such as fluorine gas or fluorocarbon, preferably CF 4 or hexafluorobenzene (HFB). ). The reactants can be in any molar ratio. The reaction mixture preferably comprises 9.8 mole % MH, 9.1 mole % MgH 2 or 9 mole % Al nano powder, 79 mole % AC and 2.4 mole % CF 4 or HFB (M is Li, Na or K) The molar % of each substance may vary within a range of plus or minus a factor of 10 for each of the indicated molars. After extracting the product mixture with an NMR solvent, preferably deuterated DFM or CDCl 3 , liquid NMR is used to observe low molecular energy hydrogen and low molecular weight products at about 1.22 ppm and -3.66 ppm, respectively. Energy hydrogen hydride anion.

在另一實施例中,動力及結合能增加之氫化合物由包含兩種或兩種以上下列物質之反應混合物產生:LiH、NaH、KH、Li、Na、K、H2 、金屬或金屬氫化物還原劑(較佳MgH2 或Al粉末)、載體(諸如碳,較佳活性碳)及氟來源(較佳SF6 )。反應物可呈任何莫耳比率。反應混合物較佳包含10莫耳% MH、9.1莫耳% MgH2 或9莫耳% Al粉末、78.8莫耳% AC及24莫耳% SF6 (M為Li、Na或K),其中各物質之莫耳%可在針對各物質所給出之莫耳%加上或減去因子10的範圍內變化。合適反應混合物包含呈此等莫耳比率之NaH、MgH2 或Mg、AC及SF6 。在用NMR溶劑、較佳氘化DFM或CDCl3 萃取產物混合物後,使用液體NMR,可分別在約1.22ppm及-3.86ppm下觀測到具有較佳1/4態之產物分子低能量氫及低能量氫氫陰離子。In another embodiment, the power and increase the binding energy hydrogen compound comprising two or more reaction mixtures produced by the following substances: LiH, NaH, KH, Li , Na, K, H 2, a metal or a metal hydride A reducing agent (preferably MgH 2 or Al powder), a carrier (such as carbon, preferably activated carbon) and a fluorine source (preferably SF 6 ). The reactants can be in any molar ratio. The reaction mixture preferably comprises 10 mole % MH, 9.1 mole % MgH 2 or 9 mole % Al powder, 78.8 mole % AC and 24 mole % SF 6 (M is Li, Na or K), wherein each substance The mole % can be varied within a range of plus or minus a factor of 10 given for each substance. Suitable reaction mixtures comprise NaH, MgH 2 or Mg, AC and SF 6 in such molar ratios. NMR with a solvent, or DFM preferred CDCl 3 deuterated product was extracted mixture, liquid NMR, respectively at about 1.22ppm and -3.86ppm the observed state product molecules having the preferred low energy 1/4 hydrogen and low Energy hydrogen hydride anion.

在另一實施例中,動力及結合能增加之氫化合物由包含兩種或兩種以上下列物質之反應混合物產生:LiH、NaH、KH、Li、Na、K、H2 、金屬或金屬氫化物還原劑(較佳MgH2 或Al粉末)、載體(諸如碳,較佳活性碳)及硫、磷及氧中之至少一者之來源(較佳S或P粉末、SF6 、CS2 、P2 O5 及MNO3 (M為鹼金屬))。反應物可呈任何莫耳比率。反應混合物較佳包含8.1莫耳% MH、7.5莫耳% MgH2 或Al粉末、65莫耳% AC及19.5莫耳% S(M為Li、Na或K),其中各物質之莫耳%可在針對各物質所給出之莫耳%加上或減去因子10的範圍內變化。合適反應混合物包含呈此等莫耳比率之NaH、MgH2 或Mg、AC及S粉末。在用NMR溶劑、較佳氘化DFM或CDCl3 萃取產物混合物後,使用液體NMR,可分別在約1.22ppm及-3.86ppm下觀測到具有較佳1/4態之產物分子低能量氫及低能量氫氫陰離子。In another embodiment, the power and increase the binding energy hydrogen compound comprising two or more reaction mixtures produced by the following substances: LiH, NaH, KH, Li , Na, K, H 2, a metal or a metal hydride a reducing agent (preferably MgH 2 or Al powder), a carrier (such as carbon, preferably activated carbon), and a source of at least one of sulfur, phosphorus and oxygen (preferably S or P powder, SF 6 , CS 2 , P) 2 O 5 and MNO 3 (M is an alkali metal)). The reactants can be in any molar ratio. The reaction mixture preferably comprises 8.1 mol% MH, 7.5 mol% MgH 2 or Al powder, 65 mol% AC and 19.5 mol% S (M is Li, Na or K), wherein the molar % of each substance is It varies within the range of the molar % given for each substance plus or minus the factor of 10. Suitable reaction mixtures comprise NaH, MgH 2 or Mg, AC and S powders in such molar ratios. After extracting the product mixture with an NMR solvent, preferably deuterated DFM or CDCl 3 , liquid NMR is used to observe low molecular energy hydrogen and low molecular weight products at about 1.22 ppm and -3.66 ppm, respectively. Energy hydrogen hydride anion.

在另一實施例中,動力及結合能增加之氫化合物由包含NaHS之反應混合物產生。低能量氫氫陰離子可自NaHS分離。在一實施例中,固態反應發生在NaHS內,形成H- (1/4),H- (1/4)可與質子來源(諸如溶劑,較佳H2 O)進一步反應,形成H2 (1/4)。In another embodiment, the hydrogen compound with increased kinetic and binding energy is produced from a reaction mixture comprising NaHS. Low energy hydrino hydride anions can be separated from NaHS. In one embodiment, the solid state reaction occurs in NaHS to form H - (1/4), and H - (1/4) can be further reacted with a source of protons (such as a solvent, preferably H 2 O) to form H 2 ( 1/4).

在一實施例中,低能量氫氫化物可經純化。純化方法可包含使用合適溶劑萃取及再結晶中之至少一者。該方法可進一步包含層析及熟習此項技術者已知之用於分離無機化合物之其他技術。In one embodiment, the low energy hydro hydride can be purified. The purification method may comprise at least one of extraction and recrystallization using a suitable solvent. The method may further comprise chromatography and other techniques known to those skilled in the art for separating inorganic compounds.

在一液體燃料實施例中,溶劑具有鹵官能基,較佳氟。合適反應混合物包含六氟苯與八氟萘中之至少一者,其添加至諸如NaH之催化劑中且與諸如活性碳、氟聚合物或R-Ni之載體混合。反應混合物可包含可用於熟習此項技術者已知之應用的高能物質。歸因於高能平衡之合適應用為推進劑及活塞式引擎燃料。在一實施例中,所需產物為收集之芙及奈米管中之至少一者。In a liquid fuel embodiment, the solvent has a halogen functional group, preferably fluorine. A suitable reaction mixture comprises at least one of hexafluorobenzene and octafluoronaphthalene which is added to a catalyst such as NaH and mixed with a carrier such as activated carbon, fluoropolymer or R-Ni. The reaction mixture can comprise energetic materials that can be used in applications known to those skilled in the art. Suitable applications due to high energy balance are propellant and piston engine fuels. In one embodiment, the desired product is at least one of a collection and a tube.

在一實施例中,分子低能量氫H2 (1/p)、較佳H2 (1/4)為經進一步還原形成相應氫陰離子之產物,該等氫陰離子可用於諸如氫化物電池組及表面塗層之應用。分子低能量氫鍵可由碰撞法斷裂。H2 (1/p)可經由與電漿或電子束中離子或電子高能碰撞而解離。接著解離之低能量氫原子可反應形成所需氫陰離子。In one embodiment, the molecular low energy hydrogen H 2 (1/p), preferably H 2 (1/4), is the product of further reduction to form the corresponding hydrogen anion, which can be used in, for example, hydride batteries and Application of surface coatings. Molecular low energy hydrogen bonds can be broken by collision methods. H 2 (1/p) can be dissociated via high energy collisions with ions or electrons in the plasma or electron beam. The dissociated low energy hydrogen atoms can then react to form the desired hydride anion.

XI.實驗XI. Experiment

A.水流分批熱量測定A. Water flow batch calorimetry

使用約130.3cm 3 體積(1.5"內直徑(ID)、4.5"長及0.2"壁厚)或1988cm 3 體積(3.75"內直徑(ID)、11"長及0.375"壁厚)之圓筒形不鏽鋼反應器及包含含有各電池之真空室及收集電池中釋出能量99+%達到誤差<±1%之外部水冷卻蛇形管的水流熱量計,獲得下文各條目右側列出之催化劑反應混合物之能量及動力平衡。藉由對隨時間之總輸出功率P T 求積分來測定能量回收。功率如以下所示Use a cylinder of approximately 130.3 cm 3 volume (1.5" inner diameter (ID), 4.5" long and 0.2" wall thickness) or 1988 cm 3 volume (3.75" inner diameter (ID), 11" long and 0.375" wall thickness) Shaped stainless steel reactor and a water flow calorimeter containing an external water-cooled serpentine with an energy loss of 99+% and an external water-cooled serpentine tube with an error of <±1% in a vacuum chamber containing each battery, and the catalyst reaction listed on the right side of each item below The energy and power balance of the mixture. Energy recovery is determined by integrating the total output power P T over time. The power is as shown below

其中為質量流率,C p 為水比熱,且ΔT 為入口與出口之間的絕對溫度變化。藉由施加精確功率至外加熱器來引發反應。詳言之,提供100-200W功率(130.3cm 3 電池)或800-1000W(1988cm 3 電池)給加熱器。在此加熱期期間,試劑達到低能量氫反應臨限溫度,其中通常由電池溫度急劇升高來確認反應開始。一旦電池溫度達到約400-500℃,則設定輸入功率為零。50分鐘後,程式指示功率為零。為增加熱傳遞至冷卻劑之速率,用1000托氦對腔室再次加壓,且最大水溫變化(出口減去入口)為約1.2℃。如由觀測到流式熱敏電阻中完全平衡所確認,使該總成經24小時之時段完全達到平衡。among them Mass flow rate, C p is the specific heat of water and is the absolute temperature variation ΔT between the inlet and the outlet. The reaction is initiated by applying precise power to the external heater. In particular, 100-200W power (130.3 cm 3 battery) or 800-1000W (1988 cm 3 battery) is supplied to the heater. During this heating period, the reagent reaches a low energy hydrogen reaction threshold temperature, where the start of the reaction is typically confirmed by a sharp rise in battery temperature. Once the battery temperature reaches approximately 400-500 ° C, the input power is set to zero. After 50 minutes, the program indicates that the power is zero. To increase the rate of heat transfer to the coolant, the chamber was again pressurized with 1000 Torr and the maximum water temperature change (outlet minus inlet) was about 1.2 °C. As confirmed by the complete balance observed in the flow thermistor, the assembly was fully equilibrated over a period of 24 hours.

在各測試中,藉由對相應功率求積分來計算能量輸入及能量輸出。使用方程式(158),藉由水體積流動速率乘以19℃下水密度(0.998kg/l)、水比熱(4.181kJ/kg ℃)、校正之溫差及時間間隔,計算出冷卻流每次增加之熱能。將整個實驗中的值求和,以獲得總能量輸出。來自電池之總能量E T 必須等於能量輸入E in 與任何淨能量E net 。因此,淨能量如以下所示In each test, the energy input and energy output are calculated by integrating the corresponding power. Using equation (158), the water flow rate is multiplied by the water density at 19 ° C (0.998 kg / l), water specific heat (4.181 kJ / kg ° C), corrected temperature difference and time interval, calculate the cooling flow each time increase Thermal energy. The values in the entire experiment are summed to obtain the total energy output. The total energy E T from the battery must be equal to the energy input E in and any net energy E net . Therefore, the net energy is as follows

E net =E T -E in 。 (159) E net = E T - E in . (159)

自此能量平衡,藉由以下確定相對於最大理論E mt 的任何過剩熱E ex From this energy balance, any excess heat E ex relative to the maximum theoretical E mt is determined by the following

E ex =E net -E mt 。 (160) E ex = E net - E mt . (160)

校準測試結果顯示電阻性輸入與輸出冷卻劑超過98%之熱偶聯,且零過剩熱對照顯示在應用檢校下熱量計精確至小於1%誤差內。結果如下給出,其中Tmax為最大電池溫度,Ein為輸入能量,且dE為所量測之超過輸入能量之輸出能量。所有能量均為放熱的。給出之正值表示能量大小。The calibration test results show that the resistive input is thermally coupled to the output coolant over 98%, and the zero excess heat comparison shows that the calorimeter is accurate to less than 1% error after application calibration. The results are given below, where Tmax is the maximum battery temperature, Ein is the input energy, and dE is the measured output energy exceeding the input energy. All energy is exothermic. A positive value is given to indicate the amount of energy.

金屬鹵化物、氧化物及硫化物Metal halides, oxides and sulfides

■20g AC3-5+5g Mg+8.3g KH+11.2g Mg3 As2 ,298.6kJ,dE:21.8kJ,TSC:無,Tmax:315℃,理論上吸熱,增益無限。■ 20g AC3-5+5g Mg+8.3g KH+11.2g Mg 3 As 2 , 298.6kJ, dE: 21.8kJ, TSC: none, Tmax: 315°C, theoretically endothermic, gain infinite.

■20g AC3-5+5g Mg+8.3g KH+9.1g Ca3 P2 ,Ein:282.1kJ,dE:18.1kJ,TSC:無,Tmax:320℃,吸熱,增益無限。■ 20g AC3-5+5g Mg+8.3g KH+9.1g Ca 3 P 2 , Ein: 282.1kJ, dE: 18.1kJ, TSC: none, Tmax: 320°C, endothermic, unlimited gain.

■羅溫驗證(Rowan Validation)KH 7.47gm+Mg 4.5gm+TiC 18.0gm+EuBr2 14.04gm,Ein:321.1kJ,dE:40.5kJ,Tmax為約340℃,能量增益為約6.5X(1.37kJ×4.5=6.16kJ)。■ verification Rowan (Rowan Validation) KH 7.47gm + Mg 4.5gm + TiC 18.0gm + EuBr 2 14.04gm, Ein: 321.1kJ, dE: 40.5kJ, Tmax is about 340 ℃, the energy gain of about 6.5X (1.37kJ ×4.5=6.16kJ).

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+TiB2 3.5gm,Ein:299kJ,dE:10kJ,無TSC且Tmax為約320℃。能量增益為約X(X為約0kJ;1"電池:過剩能量為約5.1kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + TiB 2 3.5 gm, Ein: 299 kJ, dE: 10 kJ, no TSC and Tmax of about 320 °C. The energy gain is about X (X is about 0 kJ; 1" battery: excess energy is about 5.1 kJ).

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+RbCl 6.05gm,Ein:311kJ,dE:18kJ,無TSC且Tmax為約340℃,能量增益為約X(X為約0kJ;1"電池:過剩能量為約6.0kJ)。■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+RbCl 6.05gm, Ein: 311kJ, dE: 18kJ, no TSC and Tmax is about 340°C, energy gain is about X (X is about 0kJ; 1" battery : Excess energy is about 6.0kJ).

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+Li2 S 2.3gm,Ein:323kJ,dE:12kJ,無TSC且Tmax為約340℃。能量增益為約X(X為約0kJ;1"電池:過剩能量為約5.0kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + Li 2 S 2.3 gm, Ein: 323 kJ, dE: 12 kJ, no TSC and Tmax of about 340 ° C. The energy gain is about X (X is about 0 kJ; 1" battery: excess energy is about 5.0 kJ).

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+Mg3 N2 5.05gm,Ein:323kJ,dE:11kJ,無TSC且Tmax為約330℃。能量增益為約X(X為約0kJ;1"電池:過剩能量為約5.2kJ)。■ KH 8.3gm + Mg 5.0gm + CAII -300 20.0gm + Mg 3 N 2 5.05gm, Ein: 323kJ, dE: 11kJ, no TSC and Tmax of about 330 ℃. The energy gain is about X (X is about 0 kJ; 1" battery: excess energy is about 5.2 kJ).

■4g AC3-5+1g Mg+1.66g KH+3.55g PtBr2 ,Ein:95.0kJ,dE:15.7kJ,TSC:108-327℃,Tmax:346℃,理論能量為6.66kJ,增益為2.36倍。■4g AC3-5+1g Mg+1.66g KH+3.55g PtBr 2 , Ein: 95.0kJ, dE: 15.7kJ, TSC: 108-327°C, Tmax: 346°C, theoretical energy is 6.66kJ, gain is 2.36 times .

▇4g AC3-5+1g Mg+1g NaH+3.55g PtBr2 ,Ein:94.0kJ,dE:14.3kJ,TSC:100-256℃,Tmax:326℃,理論能量為6.03kJ,增益為2.37倍。▇4g AC3-5 + 1g Mg + 1g NaH + 3.55g PtBr 2, Ein: 94.0kJ, dE: 14.3kJ, TSC: 100-256 ℃, Tmax: 326 ℃, theoretical energy 6.03kJ, a gain of 2.37 times.

▇4g WC+1g MgH2 +1g NaH+0.01mol Cl2 ,用紫外燈引發,使Cl2 解離為Cl,Ein:162.9kJ,dE:16.0kJ,TSC:23-42℃,Tmax:85℃,理論能量為7.10kJ,增益為2.25倍。▇4g WC+1g MgH 2 +1g NaH+0.01mol Cl 2 , initiated by UV lamp, dissociating Cl 2 into Cl, Ein: 162.9kJ, dE: 16.0kJ, TSC: 23-42°C, Tmax: 85°C, The theoretical energy is 7.10 kJ and the gain is 2.25 times.

■4g AC3-5+1g Mg+1.66g KH+2.66g PdBr2 ,Ein:113.0kJ,dE:11.7kJ,TSC:133-276℃,Tmax:370℃,理論能量為6.43kJ,增益為1.82倍。■4g AC3-5+1g Mg+1.66g KH+2.66g PdBr 2 , Ein: 113.0kJ, dE: 11.7kJ, TSC: 133-276°C, Tmax: 370°C, theoretical energy is 6.43kJ, gain is 1.82 times .

▇4g AC3-5+1g Mg+1g NaH+2.66g PdBr2 ,Ein:116.0kJ,dE:9.4kJ,TSC:110-217℃,Tmax:361℃,理論能量為5.81kJ,增益為1.63倍。▇4g AC3-5+1g Mg+1g NaH+2.66g PdBr 2 , Ein: 116.0kJ, dE: 9.4kJ, TSC: 110-217°C, Tmax: 361°C, theoretical energy 5.81kJ, gain 1.63 times.

■4g AC3-5+1g Mg+1.66g KH+3.60g PdI2 ,Ein:142.0kJ,dE:7.8kJ,TSC:177-342℃,Tmax:403℃,理論能量為5.53kJ,增益為1.41倍。■4g AC3-5+1g Mg+1.66g KH+3.60g PdI 2 , Ein: 142.0kJ, dE: 7.8kJ, TSC: 177-342°C, Tmax: 403°C, theoretical energy is 5.53kJ, gain is 1.41 times .

■1"大容量電池中0.41g AlN+1.66g KH+1g Mg粉末+4g AC3-5,能量增益為4.9kJ,但未觀測到電池溫度突增。最大電池溫度為407℃,理論上吸熱。■1" large capacity battery 0.41g AlN+1.66g KH+1g Mg powder +4g AC3-5, energy gain is 4.9kJ, but no sudden increase in battery temperature is observed. The maximum battery temperature is 407 °C, theoretically endothermic.

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+CrB2 3.7gm,Ein:317kJ,dE:19kJ,無TSC且Tmax為約340℃,理論能量為吸熱0.05kJ,增益無限。■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+CrB 2 3.7gm, Ein: 317kJ, dE: 19kJ, no TSC and Tmax is about 340°C, the theoretical energy is 0.05kJ, and the gain is infinite.

■KH 8.3gm+新Mg 5.0gm+CAII-300 20.0gm+AgCl 9.36gm,Ein:99kJ,dE:43kJ,在約250℃下小TSC且Tmax為約340℃。能量增益為約2.3X(X=18.88kJ)。■ KH 8.3 gm + new Mg 5.0 gm + CAII-300 20.0 gm + AgCl 9.36 gm, Ein: 99 kJ, dE: 43 kJ, small TSC at about 250 ° C and Tmax of about 340 ° C. The energy gain is about 2.3X (X = 18.88kJ).

■KH 8.3gm+Mg 5.0gm+新TiC(G06U055)20.0gm+AgCl 7.2gm,Ein:315kJ,dE:25kJ,在約250℃下小TSC且Tmax為約340℃。能量增益為約1.72X(X=14.52kJ)。■ KH 8.3 gm + Mg 5.0 gm + new TiC (G06U055) 20.0 gm + AgCl 7.2 gm, Ein: 315 kJ, dE: 25 kJ, small TSC at about 250 ° C and Tmax of about 340 ° C. The energy gain is about 1.72X (X = 14.52kJ).

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+Y2 O3 11.3gm(在TiC下增益為約4X),Ein:353kJ,dE:23kJ,無TSC且Tmax為約350℃。能量增益為約4X(X為約1.18kJ*5=5.9kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + Y 2 O 3 11.3 gm (gain of about 4X at TiC), Ein: 353 kJ, dE: 23 kJ, no TSC and Tmax of about 350 °C. The energy gain is about 4X (X is about 1.18kJ*5=5.9kJ).

■KH 4.15gm+Mg 2.5gm+CAII-300 10.0gm+EuBr3 9.8gm,Ein:323kJ,dE:27kJ,無TSC且Tmax為約350℃。能量增益為約2.26X(X=11.93kJ)。■ KH 4.15 gm + Mg 2.5 gm + CAII-300 10.0 gm + EuBr 3 9.8 gm, Ein: 323 kJ, dE: 27 kJ, no TSC and Tmax of about 350 °C. The energy gain is about 2.26X (X = 11.93kJ).

■4g AC3-5+1g Mg+1g NaH+2.23g Mg3 As2 ,133.0kJ,dE:5.8kJ,TSC:無,Tmax:371℃,理論上吸熱,增益無限。■4g AC3-5+1g Mg+1g NaH+2.23g Mg 3 As 2 , 133.0kJ, dE: 5.8kJ, TSC: none, Tmax: 371 ° C, theoretically endothermic, gain unlimited.

■4g AC3-5+1g Mg+1.66g KH+2.23g Mg3 As2 ,Ein:139.0kJ,dE:6.5kJ,TSC:無,Tmax:393℃,理論上吸熱,增益無限。■4g AC3-5+1g Mg+1.66g KH+2.23g Mg 3 As 2 , Ein: 139.0kJ, dE: 6.5kJ, TSC: none, Tmax: 393°C, theoretically endothermic, gain infinite.

■4g AC3-5+1g Mg+1.66g KH+1.82g Ca3 P2 ,Ein:133.0kJ,dE:5.8kJ,TSC:無,Tmax:407℃,理論上吸熱,增益無限。■4g AC3-5+1g Mg+1.66g KH+1.82g Ca 3 P 2 , Ein: 133.0kJ, dE: 5.8kJ, TSC: none, Tmax: 407°C, theoretically endothermic, gain infinite.

■4g AC3-5+1g Mg+1g NaH+3.97g WCl6 ;Ein:99.0kJ;dE:21.84kJ;TSC:100-342℃;Tmax:375℃,理論能量為16.7kJ,增益為1.3倍。■ 4g AC3-5+1g Mg+1g NaH+3.97g WCl 6 ; Ein: 99.0kJ; dE: 21.84kJ; TSC: 100-342°C; Tmax: 375° C., theoretical energy: 16.7kJ, gain 1.3 times.

■1"大容量電池中用掉2.60g CsI、1.66g KH、1g Mg粉末及4g AC3-4。能量增益為4.9kJ,但未觀測到電池溫度突增。最大電池溫度為406℃,理論能量為0,增益無限。■ 2.60g CsI, 1.66g KH, 1g Mg powder and 4g AC3-4 were used in the 1" large-capacity battery. The energy gain was 4.9kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature was 406 °C, theoretical energy. It is 0 and the gain is infinite.

■用掉0.42g LiCl、1.66g KH、1g Mg粉末及4g AC3-4。能量增益為5.4kJ,但未觀測到電池溫度突增。最大電池溫度為412℃,理論能量為0,增益無限。■ 0.42 g of LiCl, 1.66 g of KH, 1 g of Mg powder and 4 g of AC3-4 were used. The energy gain was 5.4 kJ, but no battery temperature spike was observed. The maximum battery temperature is 412 ° C, the theoretical energy is 0, and the gain is infinite.

■4g AC3-4+1g Mg+1g NaH+1.21g RbCl,Ein:136.0kJ,dE:5.2kJ,TSC:無,Tmax:372℃,理論能量為0kJ,增益無限。■4g AC3-4+1g Mg+1g NaH+1.21g RbCl, Ein: 136.0kJ, dE: 5.2kJ, TSC: none, Tmax: 372°C, theoretical energy is 0kJ, and the gain is infinite.

■KH 8.3gm+Mg 5.0gm+CAII-30020.0gm+CaBr2 10.0gm,Ein:323kJ,dE:27kJ,無TSC且Tmax為約340℃。能量增益為約3.0X(X為約1.71kJ*5=8.55kJ)。■KH 8.3 gm+Mg 5.0 gm+CAII-30020.0 gm+CaBr 2 10.0 gm, Ein: 323 kJ, dE: 27 kJ, no TSC and Tmax of about 340 °C. The energy gain is about 3.0X (X is about 1.71 kJ*5 = 8.55 kJ).

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+YF3 7.3gm,Ein:320kJ,dE:17kJ,無TSC且Tmax為約340℃。能量增益為約4.5X(X為約0.74kJ*5=3.7kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + YF 3 7.3 gm, Ein: 320 kJ, dE: 17 kJ, no TSC and Tmax of about 340 °C. The energy gain is about 4.5X (X is about 0.74kJ*5=3.7kJ).

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+經乾燥SnBr2 14.0gm,Ein:299kJ,dE:36kJ,在約130℃下小TSC且Tmax為約350℃。能量增益為約1.23X(X為約5.85kJ×5=29.25kJ)。■ KH 8.3 gm + Mg 5.0 gm + TiC 20.0 gm + dried SnBr 2 14.0 gm, Ein: 299 kJ, dE: 36 kJ, small TSC at about 130 ° C and Tmax of about 350 ° C. The energy gain is about 1.23X (X is about 5.85kJ x 5 = 29.25kJ).

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+EuBr2 15.6gm,Ein:291kJ,dE:45kJ,在約50℃下小TSC且Tmax為約320℃。能量增益為約32X(X為約0.28kJ×5=1.4kJ)且增益為約6.5X(1.37kJ×5=6.85kJ)。■ KH 8.3 gm + Mg 5.0 gm + TiC 20.0 gm + EuBr 2 15.6 gm, Ein: 291 kJ, dE: 45 kJ, small TSC at about 50 ° C and Tmax of about 320 ° C. The energy gain is about 32X (X is about 0.28kJ x 5 = 1.4kJ) and the gain is about 6.5X (1.37kJ x 5 = 6.85kJ).

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+經乾燥ZnBr2 11.25gm,Ein:288kJ,dE:45kJ,在約200℃下小TSC且Tmax為約350℃。能量增益為約2.1X(X為約4.19kJ×5=20.9kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + dried ZnBr 2 11.25 gm, Ein: 288 kJ, dE: 45 kJ, small TSC at about 200 ° C and Tmax of about 350 °C. The energy gain is about 2.1X (X is about 4.19kJ x 5 = 20.9kJ).

■NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+SF6 ,Ein:77.7kJ,dE:105kJ,Tmax為約400℃。能量增益為約1.43X(對於0.03莫耳SF6 而言X為約73kJ)。■NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+SF 6 , Ein: 77.7kJ, dE: 105kJ, Tmax is about 400°C. Energy gain of about 1.43X (SF 6 to 0.03 mole in terms of X of about 73kJ).

■NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+SF6 ,Ein:217kJ,dE:84kJ,Tmax為約400℃。能量增益為約1.15X(對於0.03莫耳SF6 而言X為約73kJ)。■ NaH 5.0gm + Mg 5.0gm + CAII -300 20.0gm + SF 6, Ein: 217kJ, dE: 84kJ, Tmax of deg.] C to about 400. Energy gain of about 1.15x (SF 6 to 0.03 mole in terms of X of about 73kJ).

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+AgCl 7.2gm,Ein:357kJ,dE:25kJ,在約250℃下小TSC且Tmax為約340℃。能量增益為約1.72X(X為約14.52kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + AgCl 7.2 gm, Ein: 357 kJ, dE: 25 kJ, small TSC at about 250 ° C and Tmax of about 340 ° C. The energy gain is about 1.72X (X is about 14.52kJ).

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+AgCl 7.2gm,Ein:487kJ,dE:34kJ,在約250℃下小TSC且Tmax為約340℃。能量增益為約2.34X(X為約14.52kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + AgCl 7.2 gm, Ein: 487 kJ, dE: 34 kJ, small TSC at about 250 ° C and Tmax of about 340 ° C. The energy gain is about 2.34X (X is about 14.52kJ).

■20g AC3-4+8.3g Ca+5g NaH+15.5g MnI2 ,Ein:181.5kJ,dE:61.3kJ,TSC:159-233℃,Tmax:283℃,理論能量為29.5kJ,增益為2.08倍。■20g AC3-4+8.3g Ca+5g NaH+15.5g MnI 2 , Ein: 181.5kJ, dE: 61.3kJ, TSC: 159-233°C, Tmax: 283°C, theoretical energy 29.5kJ, gain 2.08 times .

■4g AC3-4+1.66g Ca+1.66g KH+3.09g MnI2 ,Ein:113.0kJ,dE:15.8kJ,TSC:228-384℃,Tmax:395℃,理論能量為6.68kJ,增益為2.37倍。■4g AC3-4+1.66g Ca+1.66g KH+3.09g MnI 2 , Ein: 113.0kJ, dE: 15.8kJ, TSC: 228-384°C, Tmax: 395°C, theoretical energy 6.68kJ, gain 2.37 Times.

■4g AC3-4+1g Mg+1.66g KH+0.46g Li2 S,Ein:144.0kJ,dE:5.0kJ,TSC:無,Tmax:419℃,理論上吸熱。■ 4g AC3-4+1g Mg+1.66g KH+0.46g Li 2 S, Ein: 144.0kJ, dE: 5.0kJ, TSC: none, Tmax: 419 ° C, theoretically endothermic.

■1"大容量電池中1.01g Mg3 N2 、1.66g KH、1g Mg粉末及4g AC3-4,能量增益為5.2kJ,但未觀測到電池溫度突增。最大電池溫度為401℃,理論能量為0。■ 1.01g Mg 3 N 2 , 1.66g KH, 1g Mg powder and 4g AC3-4 in a 1" large-capacity battery, the energy gain is 5.2kJ, but no sudden increase in battery temperature is observed. The maximum battery temperature is 401 °C, theory The energy is zero.

■1.21g RbCl、1.66g KH、1g Mg粉末及4g AC3-4,能量增益為6.0kJ,但未觀測到電池溫度突增。最大電池溫度為442℃,理論能量為0。■ 1.21 g RbCl, 1.66 g KH, 1 g Mg powder, and 4 g AC3-4, the energy gain was 6.0 kJ, but no battery temperature jump was observed. The maximum battery temperature is 442 ° C and the theoretical energy is zero.

■用掉2.24g Zn3 N2 、1.66g KH、1g Mg粉末及4g AC3-4。能量增益為5.5kJ,但未觀測到電池溫度突增。最大電池溫度為410℃,理論能量為4.41kJ,增益為1.25倍。■ 2.24 g of Zn 3 N 2 , 1.66 g of KH, 1 g of Mg powder and 4 g of AC3-4 were used. The energy gain was 5.5 kJ, but no battery temperature spike was observed. The maximum battery temperature is 410 ° C, the theoretical energy is 4.41 kJ, and the gain is 1.25 times.

■4g AC3-4+1g Mg+1g NaH+1.77g PdCl2 ,Ein:89.0kJ,dE:10.5kJ,TSC:83-204℃,Tmax:306℃,理論能量為6.14kJ,增益為1.7倍。■ 4g AC3-4+1g Mg+1g NaH+1.77g PdCl 2 , Ein: 89.0kJ, dE: 10.5kJ, TSC: 83-204°C, Tmax: 306° C., theoretical energy 6.14kJ, gain 1.7 times.

■1"大容量電池中0.74g CrB2 、1.66g KH、1g Mg粉末及4g CA-III 300活化碳粉末(AC3-4),能量增益為4.3kJ,但未觀測到電池溫度突增。最大電池溫度為404℃,理論能量為0。■ In a 1" large-capacity battery, 0.74 g of CrB 2 , 1.66 g of KH, 1 g of Mg powder, and 4 g of CA-III 300 activated carbon powder (AC3-4), the energy gain was 4.3 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 404 ° C and the theoretical energy is zero.

■用掉0.70g TiB2 、1.66g KH、1g Mg粉末及4g CA-III 300活化碳粉末(AC3-4)。能量增益為5.1kJ,但未觀測到電池溫度突增。最大電池溫度為431℃,理論能量為0。■ 0.70 g of TiB 2 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (AC3-4) were used. The energy gain was 5.1 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 431 ° C and the theoretical energy is zero.

■NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+BaBr2 14.85gm(經乾燥),Ein:328kJ,dE:16kJ,無TSC且Tmax為約320℃。能量增益160X(X為約0.02kJ*5=0.1kJ)。■NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+BaBr 2 14.85gm (dried), Ein: 328kJ, dE: 16kJ, no TSC and Tmax of about 320°C. The energy gain is 160X (X is about 0.02 kJ*5 = 0.1 kJ).

■NaH 1.0gm+Mg 1.0gm+CAII-300 4.0gm+BaBr2 2.97gm(經乾燥),Ein:140kJ,dE:3kJ,無TSC且Tmax為約360℃。能量增益為約150X(X為約0.02kJ)。■NaH 1.0 gm+Mg 1.0 gm+CAII-300 4.0 gm+BaBr 2 2.97 gm (dried), Ein: 140 kJ, dE: 3 kJ, no TSC and Tmax of about 360 °C. The energy gain is about 150X (X is about 0.02kJ).

■NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+MgI2 13.9gm,Ein:315kJ,dE:16kJ,無TSC且Tmax為約340℃。能量增益為約1.8X(X為約1.75×5=8.75kJ)。■NaH 5.0 gm+Mg 5.0 gm+CAII-300 20.0 gm+MgI 2 13.9 gm, Ein: 315 kJ, dE: 16 kJ, no TSC and Tmax of about 340 °C. The energy gain is about 1.8X (X is about 1.75 x 5 = 8.75 kJ).

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+MgBr2 9.2gm,Ein:334kJ,dE:24kJ,無TSC且Tmax為約340℃。能量增益為約2.1X(X為約2.23×5=11.5kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + MgBr 2 9.2 gm, Ein: 334 kJ, dE: 24 kJ, no TSC and Tmax of about 340 °C. The energy gain is about 2.1X (X is about 2.23 x 5 = 11.5 kJ).

■20g AC3-3+8.3g KH+7.2g AgCl,Ein:286.6kJ,dE:29.5kJ,TSC:327-391℃,Tmax:394℃,理論能量為13.57kJ,增益為2.17倍。■ 20 g AC3-3 + 8.3 g KH + 7.2 g AgCl, Ein: 286.6 kJ, dE: 29.5 kJ, TSC: 327-391 ° C, Tmax: 394 ° C, theoretical energy 13.57 kJ, gain 2.17 times.

■4g AC3-3+1g MgH2 +1.66g KH+1.44g AgCl,Ein:151.0kJ,dE:4.8kJ,TSC:無,Tmax:397℃,理論能量為2.53kJ,增益為1.89倍。■ 4g AC3-3+1g MgH 2 +1.66g KH+1.44g AgCl, Ein: 151.0kJ, dE: 4.8kJ, TSC: none, Tmax: 397 ° C, theoretical energy 2.53kJ, gain 1.89 times.

■4g AC3-3+1g Mg+1g NaH+1.48g Ca3 N2 ,Ein:140.0kJ,dE:4.9kJ,TSC:無,Tmax:392℃,理論能量為2.01kJ,增益為2.21倍。■ 4g AC3-3+1g Mg+1g NaH+1.48g Ca 3 N 2 , Ein: 140.0kJ, dE: 4.9kJ, TSC: none, Tmax: 392°C, theoretical energy 2.01kJ, gain 2.21 times.

■4g AC3-3+1g Mg+1g NaH+1.86g InCl2 ,Ein:125.0kJ,dE:7.9kJ,TSC:163-259℃,Tmax:374℃,理論能量為4.22kJ,增益為1.87倍。■ 4g AC3-3+1g Mg+1g NaH+1.86g InCl 2 , Ein: 125.0kJ, dE: 7.9kJ, TSC: 163-259°C, Tmax: 374°C, theoretical energy 4.22kJ, gain 1.87 times.

■4g AC3-3+1g Mg+1.66g KH+1.86g InCl2 ,Ein:105.0kJ,dE:7.5kJ,TSC:186-302℃,Tmax:370℃,理論能量為4.7kJ,增益為1.59倍。■4g AC3-3+1g Mg+1.66g KH+1.86g InCl 2 , Ein: 105.0kJ, dE: 7.5kJ, TSC: 186-302°C, Tmax: 370°C, theoretical energy 4.7kJ, gain 1.59 times .

■4g AC3-3+1g Mg+1.66g KH+2.5g DyI2 ,Ein:135.0kJ,dE:6.1kJ,TSC:無,Tmax:403℃,理論能量為1.89kJ,增益為3.22倍。■ 4g AC3-3+1g Mg+1.66g KH+2.5g DyI 2 , Ein: 135.0kJ, dE: 6.1kJ, TSC: none, Tmax: 403°C, theoretical energy 1.89kJ, gain 3.22 times.

■1"大容量電池中3.92g EuBr3 、1.66g KH、1g Mg粉末及4g CA-III 300活化碳粉末(AC3-3),能量增益為10.5kJ,但未觀測到電池溫度突增。最大電池溫度為429℃,理論能量為3.4kJ,增益為3倍。■ 3.92 g of EuBr 3 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (AC3-3) in a 1" large-capacity battery, the energy gain was 10.5 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 429 ° C, the theoretical energy is 3.4 kJ, and the gain is 3 times.

■4.56g AsI3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-3),能量增益為13.5kJ,且電池溫度突增166℃(237-403℃)。最大電池溫度為425℃,理論能量為8.65kJ,增益為1.56倍。■ 4.56 g AsI 3 , 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (AC3-3), the energy gain was 13.5 kJ, and the battery temperature suddenly increased by 166 ° C (237-403 ° C). The maximum battery temperature is 425 ° C, the theoretical energy is 8.65 kJ, and the gain is 1.56 times.

■4g AC3-3+1g Mg+1g NaH+2.09g EuF3 ,Ein:185.1kJ,dE:8.0kJ,TSC:無,Tmax:463℃,理論能量為1.69kJ,增益為4.73倍。■ 4g AC3-3+1g Mg+1g NaH+2.09g EuF 3 , Ein: 185.1kJ, dE: 8.0kJ, TSC: none, Tmax: 463°C, theoretical energy 1.69kJ, gain 4.73 times.

■4g AC3-3+1g Mg+1.66g KH+1.27g AgF;Ein:127.0kJ;dE:6.04kJ;TSC:84-190℃;Tmax:369℃,理論能量為3.58kJ,增益為1.69倍。■ 4g AC3-3+1g Mg+1.66g KH+1.27g AgF; Ein: 127.0kJ; dE: 6.04kJ; TSC: 84-190°C; Tmax: 369°C, theoretical energy 3.58kJ, gain 1.69 times.

■4g AC3-3+1g Mg+1g NaH+3.92g EuBr3 ;Ein:162.5kJ;dE:7.54kJ;TSC:未觀測到;Tmax:471℃,理論能量為3.41kJ,增益為2.21倍。■ 4g AC3-3+1g Mg+1g NaH+3.92g EuBr 3 ; Ein: 162.5kJ; dE: 7.54kJ; TSC: not observed; Tmax: 471° C., theoretical energy 3.41kJ, gain 2.21 times.

■1"大容量電池中2.09g EuF3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-3),能量增益為5.5kJ,但未觀測到電池溫度突增。最大電池溫度為417℃,理論能量為1.71kJ,增益為3.25倍。■ In a 1" large-capacity battery, 2.09 g of EuF 3 , 1.66 g of KH, 1 g of Mg powder, and 4 g of CA-III 300 activated carbon powder (AC3-3), the energy gain was 5.5 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 417 ° C, the theoretical energy is 1.71 kJ, and the gain is 3.25 times.

■3.29g YBr3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-3),能量增益為7.0kJ,但未觀測到電池溫度突增。最大電池溫度為441℃,理論能量為4.16kJ,增益為1.68倍。■ 3.29 g of YBr 3 , 1.66 g of KH, 1 g of Mg powder, and 4 g of CA-III 300 activated carbon powder (AC3-3), the energy gain was 7.0 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 441 ° C, the theoretical energy is 4.16 kJ, and the gain is 1.68 times.

▇NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+BaI2 19.5gm,Ein:334kJ,dE:13kJ,無TSC且Tmax為約350℃。能量增益為約2.95X(X為約0.88kJ×5=4.4kJ)。▇NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+BaI 2 19.5gm, Ein: 334kJ, dE: 13kJ, no TSC and Tmax of about 350°C. The energy gain is about 2.95X (X is about 0.88kJ x 5 = 4.4kJ).

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+BaCl2 10.4gm,Ein:331kJ,dE:18kJ,無TSC且Tmax為約320℃。能量增益為約6.9X(X為約0.52×5=2.6kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + BaCl 2 10.4 gm, Ein: 331 kJ, dE: 18 kJ, no TSC and Tmax of about 320 °C. The energy gain is about 6.9X (X is about 0.52 x 5 = 2.6 kJ).

▇KH 8.3gm+Mg 5.0gm+TiC 20.0gm+LaF3 9.8gm,Ein:338kJ,dE:7kJ,無TSC且Tmax為約320℃。能量增益為約1.9X(X為約3.65kJ)。▇KH 8.3gm+Mg 5.0gm+TiC 20.0gm+LaF 3 9.8gm, Ein: 338kJ, dE: 7kJ, no TSC and Tmax of about 320°C. The energy gain is about 1.9X (X is about 3.65kJ).

■NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+BaBr2 14.85gm(經乾燥),Ein:280kJ,dE:10kJ,無TSC且Tmax為約320℃。能量增益為約100X(X為約0.01=0.02×5kJ)。■NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+BaBr 2 14.85gm (dried), Ein: 280kJ, dE: 10kJ, no TSC and Tmax of about 320°C. The energy gain is about 100X (X is about 0.01 = 0.02 x 5kJ).

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+BaBr2 14.85gm(經乾燥),Ein:267kJ,dE:8kJ,無TSC且Tmax為約360℃。能量增益為約2.5X(X為約3.2kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + BaBr 2 14.85 gm (dried), Ein: 267 kJ, dE: 8 kJ, no TSC and Tmax of about 360 °C. The energy gain is about 2.5X (X is about 3.2kJ).

■NaH 5.0gm+Mg 5.0gm+TiC 20.0gm+ZnS 4.85gm,Ein:319kJ,dE:12kJ,無TSC且Tmax為約340℃。能量增益為約1.5X(X為約8.0kJ)。■NaH 5.0gm+Mg 5.0gm+TiC 20.0gm+ZnS 4.85gm, Ein: 319kJ, dE: 12kJ, no TSC and Tmax of about 340°C. The energy gain is about 1.5X (X is about 8.0kJ).

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+AgCl 7.2gm(在070109上乾燥),Ein:219kJ,dE:26kJ,在約250℃下小TSC且Tmax為約340℃。能量增益為約1.8X(X為約14.52kJ)。■ KH 8.3 gm + Mg 5.0 gm + TiC 20.0 gm + AgCl 7.2 gm (dried on 070109), Ein: 219 kJ, dE: 26 kJ, small TSC at about 250 ° C and Tmax about 340 ° C. The energy gain is about 1.8X (X is about 14.52kJ).

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+Y2 O3 11.3gm,Ein:339kJ,dE:24kJ,在約300℃下小TSC且Tmax為約350℃。能量增益為約4.0X(在NaH下X為約5.9kJ)。■ KH 8.3 gm + Mg 5.0 gm + TiC 20.0 gm + Y 2 O 3 11.3 gm, Ein: 339 kJ, dE: 24 kJ, small TSC at about 300 ° C and Tmax of about 350 ° C. The energy gain is about 4.0X (X is about 5.9kJ at NaH).

■4g AC3-3+1g Mg+1g NaH+1.95g YCl3 ,Ein:137.0kJ,dE:7.1kJ,TSC:無,Tmax:384℃,理論能量為3.3kJ,增益為2.15倍。■ 4g AC3-3+1g Mg+1g NaH+1.95g YCl 3 , Ein: 137.0kJ, dE: 7.1kJ, TSC: none, Tmax: 384°C, theoretical energy 3.3kJ, gain 2.15 times.

■1"大容量電池中4.70g YI3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-1),能量增益為6.9kJ,但未觀測到電池溫度突增。最大電池溫度為426℃,理論能量為3.37kJ,增益為2.04倍。■ In a 1" large-capacity battery, 4.70 g of YI 3 , 1.66 g of KH, 1 g of Mg powder, and 4 g of CA-III 300 activated carbon powder (AC3-1), the energy gain was 6.9 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 426 ° C, the theoretical energy is 3.37 kJ, and the gain is 2.04 times.

■1.51g SnO2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-1),能量增益為9.4kJ,但未觀測到電池溫度突增。最大電池溫度為460℃,理論能量為7.06kJ,增益為1.33倍。■ 1.51 g of SnO 2 , 1.66 g of KH, 1 g of Mg powder, and 4 g of CA-III 300 activated carbon powder (AC3-1), the energy gain was 9.4 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 460 ° C, the theoretical energy is 7.06 kJ, and the gain is 1.33 times.

■4.56g AsI3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-1),能量增益為11.5kJ,且電池溫度突增144℃(221-365℃)。最大電池溫度為463℃,理論能量為8.65kJ,增益為1.33倍。■ 4.56 g AsI 3 , 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (AC3-1), the energy gain was 11.5 kJ, and the battery temperature suddenly increased by 144 ° C (221-365 ° C). The maximum battery temperature is 463 ° C, the theoretical energy is 8.65 kJ, and the gain is 1.33 times.

■3.09g MnI2 、1.66g KH、1g Mg粉末及4g STiC-1(TiC來自Sigma Aldrich),能量增益為9.6kJ,且電池溫度突增137℃(38-175℃)。最大電池溫度為396℃,理論能量為3.73kJ,增益為2.57倍。■ 3.09 g MnI 2 , 1.66 g KH, 1 g Mg powder, and 4 g STiC-1 (TiC from Sigma Aldrich), the energy gain was 9.6 kJ, and the battery temperature suddenly increased by 137 ° C (38-175 ° C). The maximum battery temperature is 396 ° C, the theoretical energy is 3.73 kJ, and the gain is 2.57 times.

■3.99g SeBr4 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-1),能量增益為20.9kJ,且電池溫度突增224℃(47-271℃)。最大電池溫度為383℃,理論能量為16.93kJ,增益為1.23倍。■ 3.99 g of SeBr 4 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (AC3-1), the energy gain was 20.9 kJ, and the battery temperature suddenly increased by 224 ° C (47-271 ° C). The maximum battery temperature is 383 ° C, the theoretical energy is 16.93 kJ, and the gain is 1.23 times.

■20g AC3-3+5g Mg+8.3g KH+11.65g AgI,Ein:238.6kJ,dE:31.7kJ,TSC:230-316℃,Tmax:317℃,理論能量為12.3kJ,增益為2.57倍。■ 20g AC3-3+5g Mg+8.3g KH+11.65g AgI, Ein: 238.6kJ, dE: 31.7kJ, TSC: 230-316°C, Tmax: 317°C, theoretical energy 12.3kJ, gain 2.57 times.

■4g AC3-3+1g Mg+1.66g KH+0.91g CoS,Ein:145.1kJ,dE:8.7kJ,TSC:無,Tmax:420℃,理論能量為2.63kJ,增益為3.3倍。■ 4g AC3-3+1g Mg+1.66g KH+0.91g CoS, Ein: 145.1kJ, dE: 8.7kJ, TSC: none, Tmax: 420°C, theoretical energy 2.63kJ, gain 3.3 times.

■4g AC3-3+1g Mg+1.66g KH+1.84g MgBr2 ;Ein:134.1kJ;dE:5.75kJ;TSC:未觀測到;Tmax:400℃,理論能量為2.23kJ,增益為2.58倍。■ 4g AC3-3+1g Mg+1.66g KH+1.84g MgBr 2 ; Ein: 134.1 kJ; dE: 5.75 kJ; TSC: not observed; Tmax: 400 ° C, theoretical energy 2.23 kJ, gain 2.58 times.

■5.02g SbI3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-1),能量增益為12.2kJ,且電池溫度突增154℃(141-295℃)。最大電池溫度為379℃,理論能量為9.71kJ,增益為1.26倍。■ 5.02 g SbI 3 , 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (AC3-1), the energy gain was 12.2 kJ, and the battery temperature suddenly increased by 154 ° C (141-295 ° C). The maximum battery temperature is 379 ° C, the theoretical energy is 9.71 kJ, and the gain is 1.26 times.

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+AgCl 7.2gm,Ein:304kJ,dE:30kJ,在約275℃下小TSC且Tmax為約340℃。能量增益為約2.1X(X為約14.52kJ)。■ KH 8.3 gm + Mg 5.0 gm + TiC 20.0 gm + AgCl 7.2 gm, Ein: 304 kJ, dE: 30 kJ, small TSC at about 275 ° C and Tmax of about 340 ° C. The energy gain is about 2.1X (X is about 14.52kJ).

■KH 1.66gm+Mg 1.0gm+TiC 5.0gm+BaBr2 2.97gm,負載BaBr2 -KH-Mg-TiC,Ein:130kJ,dE:2kJ,無TSC且Tmax為約360℃,理論能量為0.64kJ,增益為3倍。■KH 1.66gm+Mg 1.0gm+TiC 5.0gm+BaBr 2 2.97gm, loaded BaBr 2 -KH-Mg-TiC, Ein: 130kJ, dE: 2kJ, no TSC and Tmax is about 360°C, theoretical energy is 0.64kJ The gain is 3 times.

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+CuS 4.8gm,Ein:318kJ,dE:30kJ,在約250℃下小TSC且Tmax為約360℃。能量增益為約2.1X(X為約14.4kJ)。■ KH 8.3 gm + Mg 5.0 gm + TiC 20.0 gm + CuS 4.8 gm, Ein: 318 kJ, dE: 30 kJ, small TSC at about 250 ° C and Tmax of about 360 ° C. The energy gain is about 2.1X (X is about 14.4kJ).

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+MnS 4.35gm,Ein:326kJ,dE:14kJ,無TSC且Tmax為約350℃。能量增益為約2.2X(X為約6.3kJ)。■ KH 8.3 gm + Mg 5.0 gm + TiC 20.0 gm + MnS 4.35 gm, Ein: 326 kJ, dE: 14 kJ, no TSC and Tmax of about 350 °C. The energy gain is about 2.2X (X is about 6.3kJ).

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+GdF3 10.7gm,Ein:339kJ,dE:7kJ,無TSC且Tmax為約360℃。能量增益為約2.54X(X為約2.75kJ)。■ KH 8.3 gm + Mg 5.0 gm + TiC 20.0 gm + GdF 3 10.7 gm, Ein: 339 kJ, dE: 7 kJ, no TSC and Tmax of about 360 °C. The energy gain is about 2.54X (X is about 2.75kJ).

■20g AC3-2+5g Mg+8.3g KH+7.2g AgCl,Ein:327.1kJ,dE:40.4kJ,TSC:288-318℃,Tmax:326℃,理論能量為14.52kJ,增益為2.78倍。■ 20 g AC3-2+5g Mg+8.3g KH+7.2g AgCl, Ein: 327.1kJ, dE: 40.4kJ, TSC: 288-318°C, Tmax: 326°C, theoretical energy 14.52kJ, gain 2.78 times.

■20g AC3-2+5g Mg+8.3g KH+7.2g CuBr,Ein:205.1kJ,dE:22.5kJ,TSC:216-268℃,Tmax:280℃,理論能量為13.46kJ,增益為1.67倍。■ 20 g AC3-2+5g Mg+8.3g KH+7.2g CuBr, Ein: 205.1kJ, dE: 22.5kJ, TSC: 216-268°C, Tmax: 280°C, theoretical energy 13.46kJ, gain 1.67 times.

■4g AC3-2+1g Mg+1g NaH+1.46g YF3 ,Ein:157.0kJ,dE:4.3kJ,TSC:無,Tmax:405℃,理論能量為0.77kJ,增益為5.65倍。■ 4g AC3-2+1g Mg+1g NaH+1.46g YF 3 , Ein: 157.0kJ, dE: 4.3kJ, TSC: none, Tmax: 405 ° C, theoretical energy 0.77kJ, gain 5.65 times.

■4g AC3-2+1g Mg+1.66g KH+1.46g YF3 ,Ein:137.0kJ,dE:5.6kJ,TSC:無,Tmax:398℃,理論能量為0.74kJ,增益為7.54倍。■ 4g AC3-2+1g Mg+1.66g KH+1.46g YF 3 , Ein: 137.0kJ, dE: 5.6kJ, TSC: none, Tmax: 398°C, theoretical energy 0.74kJ, gain 7.54 times.

■在2"大容量電池中11.3g Y2 O3 、5g NaH、5g Mg粉末及20g CA-III 300活性碳粉末(AC3-2),能量增益為24.5kJ,但未觀測到電池溫度突增。最大電池溫度為386℃,理論能量為5.9kJ,增益為4.2倍。■ 11.3g Y 2 O 3 , 5g NaH, 5g Mg powder and 20g CA-III 300 activated carbon powder (AC3-2) in 2" large capacity battery, the energy gain is 24.5kJ, but no battery temperature is observed. The maximum battery temperature is 386 ° C, the theoretical energy is 5.9 kJ, and the gain is 4.2 times.

■4g AC3-2+1g Mg+1g NaH+3.91g BaI2 ,Ein:135.0kJ,dE:5.3kJ,TSC:無,Tmax:378℃,理論能量為0.1kJ,增益為51倍。■4g AC3-2+1g Mg+1g NaH+3.91g BaI 2 , Ein: 135.0kJ, dE: 5.3kJ, TSC: none, Tmax: 378°C, theoretical energy 0.1kJ, gain 51 times.

■4g AC3-2+1g Mg+1.66g KH+3.91g BaI2 ,Ein:123.1kJ,dE:3.3kJ,TSC:無,Tmax:390℃,理論能量為0.88kJ,增益為3.8倍。■4g AC3-2+1g Mg+1.66g KH+3.91g BaI 2 , Ein: 123.1kJ, dE: 3.3kJ, TSC: none, Tmax: 390° C., theoretical energy 0.88 kJ, gain 3.8 times.

■4g AC3-2+1g Mg+1.66g KH+2.08g BaCl2 ,Ein:141.0kJ,dE:5.5kJ,TSC:無,Tmax:403℃,理論能量為0.52kJ,增益為10.5倍。■4g AC3-2+1g Mg+1.66g KH+2.08g BaCl 2 , Ein: 141.0kJ, dE: 5.5kJ, TSC: none, Tmax: 403°C, theoretical energy 0.52kJ, gain 10.5 times.

■4g AC3-2+1g Mg+1.66g KH+3.42g SrI2 ;Ein:128.2kJ;dE:4.35kJ;TSC:未觀測到;Tmax:383℃,理論能量為1.62kJ,增益為3.3倍。■ 4g AC3-2+1g Mg+1.66g KH+3.42g SrI 2 ; Ein: 128.2kJ; dE: 4.35kJ; TSC: not observed; Tmax: 383°C, theoretical energy 1.62kJ, gain 3.3 times.

■用掉4.04g Sb2 S5 、1.66g KH、1g Mg粉末及4g CA-III 300活化碳粉末(AC3-2)。能量增益為18.0kJ,且電池溫度突增251℃(224-475℃)。最大電池溫度為481℃,理論能量為12.7kJ,增益為1.4倍。■ 4.04 g of Sb 2 S 5 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (AC3-2) were used. The energy gain was 18.0 kJ and the battery temperature increased sharply by 251 ° C (224-475 ° C). The maximum battery temperature is 481 ° C, the theoretical energy is 12.7 kJ, and the gain is 1.4 times.

■4g AC3-2+1g Mg+1g NaH+0.97g ZnS,Ein:132.1kJ,dE:7.5kJ,TSC:無,Tmax:370℃,理論能量為1.4kJ,增益為5.33倍。■ 4g AC3-2+1g Mg+1g NaH+0.97g ZnS, Ein: 132.1kJ, dE: 7.5kJ, TSC: none, Tmax: 370°C, theoretical energy 1.4kJ, gain 5.33 times.

■4g AC3-2+1g Mg+1g NaH+3.12g EuBr2 ,Ein:135.0kJ,dE:5.0kJ,TSC:114-182℃,Tmax:371℃,理論上吸熱+0.35kJ,增益無限。■4g AC3-2+1g Mg+1g NaH+3.12g EuBr 2 , Ein: 135.0kJ, dE: 5.0kJ, TSC: 114-182°C, Tmax: 371°C, theoretically endothermic +0.35kJ, the gain is infinite.

■4g AC3-2+1g Mg+1.66g KH+3.12g EuBr2 ,Ein:122.0kJ,dE:9.4kJ,TSC:73-135℃,Tmax:385℃,理論能量為0.28kJ,增益為34倍。■4g AC3-2+1g Mg+1.66g KH+3.12g EuBr 2 , Ein: 122.0kJ, dE: 9.4kJ, TSC: 73-135°C, Tmax: 385°C, theoretical energy 0.28kJ, gain 34 times .

■4g CA3-2+1g Mg+1.66g KH+3.67g PbBr2 ;Ein:126.0kJ;dE:6.98kJ;TSC:270-408℃;Tmax:421℃,理論能量為5.17kJ,增益為1.35倍。■4g CA3-2+1g Mg+1.66g KH+3.67g PbBr 2 ; Ein: 126.0kJ; dE: 6.98kJ; TSC: 270-408°C; Tmax: 421°C, theoretical energy 5.17kJ, gain 1.35 times .

■4g CA3-2+1g Mg+1g NaH+1.27g AgF:Ein:125.0kJ;dE:7.21kJ;TSC:74-175℃;Tmax:372℃,理論能量為3.58kJ,增益為2倍。■ 4g CA3-2+1g Mg+1g NaH+1.27g AgF: Ein: 125.0kJ; dE: 7.21kJ; TSC: 74-175°C; Tmax: 372°C, theoretical energy: 3.58kJ, gain of 2 times.

■1.80g GdBr3 (0.01mol GdBr3 為3.97g,但無足夠的GdBr3 )、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-1),能量增益為2.8kJ,但未觀測到電池溫度突增。最大電池溫度為431℃,理論能量為1.84kJ,增益為1.52倍。■ 1.80g GdBr 3 (0.01mol GdBr 3 is 3.97g, but not enough GdBr 3 ), 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (AC3-1), energy gain is 2.8kJ However, no sudden increase in battery temperature was observed. The maximum battery temperature is 431 ° C, the theoretical energy is 1.84 kJ, and the gain is 1.52 times.

■0.97g ZnS、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-1),能量增益為4.0kJ,但未觀測到電池溫度突增。最大電池溫度為444℃,理論能量為1.61kJ,增益為2.49倍。■ 0.97 g of ZnS, 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (AC3-1), the energy gain was 4.0 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 444 ° C, the theoretical energy is 1.61 kJ, and the gain is 2.49 times.

■3.92g BI3 (在PP小瓶中)、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-1),能量增益為13.2kJ,且電池溫度上升變化為87℃(152-239℃)。最大電池溫度為465℃,理論能量為9.7kJ,增益為1.36倍。■ 3.92g BI 3 (in PP vials), 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (AC3-1), the energy gain is 13.2kJ, and the battery temperature rises to 87°C ( 152-239 ° C). The maximum battery temperature is 465 ° C, the theoretical energy is 9.7 kJ, and the gain is 1.36 times.

■4g AC3-2+1g Mg+1g NaH+3.2g HfCl4 ,Ein:131.0kJ,dE:10.5kJ,TSC:277-439℃,Tmax:440℃,理論能量為8.1kJ,增益為1.29倍。■ 4g AC3-2+1g Mg+1g NaH+3.2g HfCl 4 , Ein: 131.0kJ, dE: 10.5kJ, TSC: 277-439°C, Tmax: 440°C, theoretical energy 8.1kJ, gain 1.29 times.

■4g AC3-2+1g Mg+1.66g KH+3.2g HfCl4 ,Ein:125.0kJ,dE:11.5kJ,TSC:254-357℃,Tmax:405℃,理論能量為9.06kJ,增益為1.27倍。■4g AC3-2+1g Mg+1.66g KH+3.2g HfCl 4 , Ein: 125.0kJ, dE: 11.5kJ, TSC: 254-357°C, Tmax: 405°C, theoretical energy 9.06kJ, gain 1.27 times .

■4g CA3-2+1g Mg+1.66g KH+2.97g BaBr2 ;Ein:132.1kJ;dE:4.65kJ;TSC:未觀測到;Tmax:361℃,理論能量為0.64kJ,增益為7.24倍。■ 4g CA3-2+1g Mg+1.66g KH+2.97g BaBr 2 ; Ein: 132.1kJ; dE: 4.65kJ; TSC: not observed; Tmax: 361° C., theoretical energy 0.64kJ, gain 7.24 times.

■4g CA3-2+1g Mg+1.66g KH+2.35g AgI;Ein:142.9kJ;dE:7.32kJ;TSC:未觀測到;Tmax:420℃,理論能量為2.46kJ,增益為2.98倍。■ 4g CA3-2+1g Mg+1.66g KH+2.35g AgI; Ein: 142.9kJ; dE: 7.32kJ; TSC: not observed; Tmax: 420°C, theoretical energy 2.46kJ, gain 2.98 times.

■用掉4.12g PI3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-1)。能量增益為13.8kJ,且電池溫度突增189℃(184-373℃)。最大電池溫度為438℃,理論能量為11.1kJ,增益為1.24倍。■ 4.12 g of PI 3 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (AC3-1) were used. The energy gain was 13.8 kJ and the battery temperature suddenly increased by 189 ° C (184-373 ° C). The maximum battery temperature is 438 ° C, the theoretical energy is 11.1 kJ, and the gain is 1.24 times.

■1.57g SnF2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-1),能量增益為7.9kJ,且電池溫度上升變化為72℃(149-221℃)。最大電池溫度為407℃,理論能量為5.28kJ,增益為1.5倍。■ 1.57 g SnF 2 , 1.66 g KH, 1 g Mg powder, and 4 g CA-III 300 activated carbon powder (AC3-1), the energy gain was 7.9 kJ, and the battery temperature rise was changed to 72 ° C (149-221 ° C). The maximum battery temperature is 407 ° C, the theoretical energy is 5.28 kJ, and the gain is 1.5 times.

■1.96g LaF3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-1),能量增益為4.2kJ,但未觀測到電池溫度突增。最大電池溫度為442℃,理論能量為0.68kJ,增益為6.16倍。■ 1.96 g of LaF 3 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (AC3-1), the energy gain was 4.2 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 442 ° C, the theoretical energy is 0.68 kJ, and the gain is 6.16 times.

■4g CAIII-300+1g Mg+1g NaH+2.78g MgI2 ,Ein:129.0kJ,dE:6.6kJ,TSC:無,Tmax:371℃,理論能量為1.75kJ,增益為3.8倍。■ 4g CAIII-300+1g Mg+1g NaH+2.78g MgI 2 , Ein: 129.0kJ, dE: 6.6kJ, TSC: none, Tmax: 371°C, theoretical energy 1.75kJ, gain 3.8 times.

■4g CAIII-300+1g Mg+1.66g KH+2.48g SrBr2 ,Ein:137.0kJ,dE:6.1kJ,TSC:無,Tmax:402℃,理論能量為1.35kJ,增益為4.54倍。■ 4g CAIII-300+1g Mg+1.66g KH+2.48g SrBr 2 , Ein: 137.0kJ, dE: 6.1kJ, TSC: none, Tmax: 402°C, theoretical energy 1.35kJ, gain 4.54 times.

▇4g CA3-2+1g Mg+1.66g KH+2.0g CaBr2 ;Ein:147.0kJ;dE:6.33kJ;TSC:未觀測到;Tmax:445℃,理論能量為1.71kJ,增益為3.7倍。▇4g CA3-2+1g Mg+1.66g KH+2.0g CaBr 2 ; Ein: 147.0kJ; dE: 6.33kJ; TSC: not observed; Tmax: 445° C., theoretical energy 1.71kJ, gain 3.7 times.

■4g CA3-2+1g Mg+1g NaH+2.97g BaBr2 ;Ein:140.1kJ;dE:8.01kJ;TSC:未觀測到;Tmax:405℃,理論能量為0.02kJ,增益為483倍。■ 4g CA3-2+1g Mg+1g NaH+2.97g BaBr 2 ; Ein: 140.1kJ; dE: 8.01kJ; TSC: not observed; Tmax: 405 ° C, theoretical energy 0.02 kJ, gain 483 times.

■用掉0.90g CrF2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-1)。能量增益為4.7kJ,但未觀測到電池溫度突增。最大電池溫度為415℃,理論能量為3.46kJ,增益為1.36倍。■ 0.90 g of CrF 2 , 1.66 g of KH, 1 g of Mg powder, and 4 g of CA-III 300 activated carbon powder (AC3-1) were used. The energy gain was 4.7 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 415 ° C, the theoretical energy is 3.46 kJ, and the gain is 1.36 times.

▇KH 8.3gm+Mg 5.0gm+TiC 20.0gm+InCl 7.5gm,Ein 275kJ,dE:26kJ,無TSC且Tmax為約340℃。能量增益為約2.2X(X為約11.45kJ)。▇KH 8.3gm+Mg 5.0gm+TiC 20.0gm+InCl 7.5gm, Ein 275kJ, dE: 26kJ, no TSC and Tmax of about 340 °C. The energy gain is about 2.2X (X is about 11.45kJ).

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+InI 12.1gm,Ein 320kJ,dE:12kJ,無TSC且Tmax為約340℃。能量增益為約1.25X(X為約9.6kJ)。■ KH 8.3 gm + Mg 5.0 gm + TiC 20.0 gm + InI 12.1 gm, Ein 320 kJ, dE: 12 kJ, no TSC and Tmax of about 340 °C. The energy gain is about 1.25X (X is about 9.6kJ).

▇KH 8.3gm+Mg 5.0gm+TiC 20.0gm+InBr 9.75gm,Ein 323kJ,dE:17kJ,無TSC且Tmax為約340℃。能量增益為約1.7X(X為約10kJ)。▇KH 8.3gm+Mg 5.0gm+TiC 20.0gm+InBr 9.75gm, Ein 323kJ, dE: 17kJ, no TSC and Tmax of about 340 °C. The energy gain is about 1.7X (X is about 10kJ).

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+MnI2 15.45gm,Peter Jansson博士之驗證實驗,Ein 292kJ,dE:45kJ,在約30℃下小TSC且Tmax為約340℃。能量增益為約2.43X(X為約18.5kJ)。■ KH 8.3 gm + Mg 5.0 gm + TiC 20.0 gm + MnI 2 15.45 gm, a validation experiment by Dr. Peter Jansson, Ein 292 kJ, dE: 45 kJ, small TSC at about 30 ° C and a Tmax of about 340 °C. The energy gain is about 2.43X (X is about 18.5kJ).

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+FeBr2 10.8gm(來自STREM Chemicals之FeBr2 ),Peter Jansson博士之驗證實驗,Ein:308kJ,dE:46kJ,TSC在約220℃下且Tmax為約330℃。能量增益為約1.84X(X為約25kJ)。■ KH 8.3gm + Mg 5.0gm + TiC 20.0gm + FeBr 2 10.8gm (FeBr 2 of from STREM Chemicals), Jansson Peter Dr. validation experiments, Ein: 308kJ, dE: 46kJ , TSC at about 220 deg.] C and Tmax = About 330 ° C. The energy gain is about 1.84X (X is about 25kJ).

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+CoI2 15.65gm,Ein:243kJ,dE:55kJ,在約170℃下小TSC且Tmax為約330℃,理論能量為26.35kJ,增益為2.08倍。■ KH 8.3gm + Mg 5.0gm + TiC 20.0gm + CoI 2 15.65gm, Ein: 243kJ, dE: 55kJ, at about 170 ℃ small TSC and Tmax of about 330 ℃, theoretical energy 26.35kJ, gain is 2.08 times .

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+NiBr2 11.0gm,Ein:270kJ,dE:45kJ,在約220℃下TSC且Tmax為約340℃,理論能量為23kJ,增益為1.95倍。■ KH 8.3 gm + Mg 5.0 gm + TiC 20.0 gm + NiBr 2 11.0 gm, Ein: 270 kJ, dE: 45 kJ, TSC at about 220 ° C and Tmax of about 340 ° C, theoretical energy of 23 kJ, gain of 1.95 times.

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+FeBr2 10.8gm(來自STREM Chemicals之FeBr2 ),Ein:291kJ,dE:38kJ,約200℃ TSC且Tmax為約330℃,理論能量為25kJ,增益為1.52倍。■ KH 8.3gm + Mg 5.0gm + TiC 20.0gm + FeBr 2 10.8gm (FeBr from STREM Chemicals of 2), Ein: 291kJ, dE : 38kJ, about 200 ℃ TSC and Tmax of about 330 ℃, the theoretical energy of 25kJ, The gain is 1.52 times.

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+ZnBr2 11.25gm,Ein 302kJ,dE:42kJ,在約200℃下小TSC且Tmax為約375℃。能量增益為約2X(X為約20.9kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + ZnBr 2 11.25 gm, Ein 302 kJ, dE: 42 kJ, small TSC at about 200 ° C and Tmax about 375 ° C. The energy gain is about 2X (X is about 20.9 kJ).

■KH 8.30gm+Mg 5.0gm+TiC 20.0gm+GdBr3 19.85gm,Ein:308kJ,dE:26kJ,在約250℃下TSC且Tmax為約340℃。能量增益為約1.3X(X為約20.3kJ)。■ KH 8.30 gm + Mg 5.0 gm + TiC 20.0 gm + GdBr 3 19.85 gm, Ein: 308 kJ, dE: 26 kJ, TSC at about 250 ° C and Tmax of about 340 ° C. The energy gain is about 1.3X (X is about 20.3kJ).

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+MnS 4.35gm,Ein:349kJ,dE:24kJ,在約260℃下TSC且Tmax為約350℃。能量增益為約3.6X(X為約6.6kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + MnS 4.35 gm, Ein: 349 kJ, dE: 24 kJ, TSC at about 260 ° C and Tmax of about 350 ° C. The energy gain is about 3.6X (X is about 6.6kJ).

■4g CAIII-300+1g Mg+1g NaH+3.79g LaBr3 ,Ein:143.0kJ,dE:4.8kJ,TSC:無,Tmax:392℃,理論能量為2.46kJ,增益為1.96倍。■ 4g CAIII-300+1g Mg+1g NaH+3.79g LaBr 3 , Ein: 143.0kJ, dE: 4.8kJ, TSC: none, Tmax: 392°C, theoretical energy 2.46kJ, gain 1.96 times.

■4g CAIII-300+1g Mg+1.66g KH+3.80g CeBr3 ,Ein:145.0kJ,dE:7.6kJ,TSC:無,Tmax:413℃,理論能量為3.84kJ,增益為1.97倍。■ 4g CAIII-300+1g Mg+1.66g KH+3.80g CeBr 3 , Ein: 145.0kJ, dE: 7.6kJ, TSC: none, Tmax: 413°C, theoretical energy 3.84kJ, gain 1.97 times.

■4g CAIII-300+1g Mg+1.66g KH+1.44g AgCl;Ein:136.2kJ;dE:7.14kJ;TSC:未觀測到;Tmax:420℃,理論能量為2.90kJ,增益為2.46倍。■ 4g CAIII-300+1g Mg+1.66g KH+1.44g AgCl; Ein: 136.2kJ; dE: 7.14kJ; TSC: not observed; Tmax: 420°C, theoretical energy 2.90kJ, gain 2.46 times.

■4g CAIII-300+1g Mg+1.66g KH+1.60g Cu2 S,Ein:137.0kJ,dE:5.5kJ,TSC:無,Tmax:405℃,理論能量為2.67kJ,增益為2.06倍。■ 4g CAIII-300+1g Mg+1.66g KH+1.60g Cu 2 S, Ein: 137.0kJ, dE: 5.5kJ, TSC: none, Tmax: 405 ° C, theoretical energy 2.67kJ, gain 2.06 times.

■2.54g TeI4 (0.01mol TeI4 為6.35g,但無足夠的TeI4 )、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-1),能量增益為8.3kJ,且電池溫度突增113℃(202-315℃)。最大電池溫度為395℃,理論能量為5.61kJ,增益為1.48倍。■2.54g TeI 4 (0.01mol TeI 4 is 6.35g, but not enough TeI 4 ), 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (AC3-1), energy gain is 8.3kJ And the battery temperature suddenly increased by 113 ° C (202-315 ° C). The maximum battery temperature is 395 ° C, the theoretical energy is 5.61 kJ, and the gain is 1.48 times.

■2.51g BBr3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(AC3-1),能量增益為12.4kJ。電池溫度上升變化為52℃(77-129℃),且電池溫度突增88℃(245-333℃)。最大電池溫度為438℃,理論能量為9.28kJ,增益為1.34倍。■ 2.51 g BBr 3 , 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (AC3-1), and the energy gain was 12.4 kJ. The battery temperature rise was changed to 52 ° C (77-129 ° C), and the battery temperature suddenly increased by 88 ° C (245-333 ° C). The maximum battery temperature is 438 ° C, the theoretical energy is 9.28 kJ, and the gain is 1.34 times.

■4g CAIII-300+1g Mg+1.0g NaH+3.59g TaCl5 ,Ein:102.0kJ,dE:16.9kJ,TSC:80-293℃,Tmax:366℃,理論能量為11.89kJ,增益為1.42倍。■4g CAIII-300+1g Mg+1.0g NaH+3.59g TaCl 5 , Ein: 102.0kJ, dE: 16.9kJ, TSC: 80-293°C, Tmax: 366°C, theoretical energy 11.89kJ, gain 1.42 times .

■2.72g CdBr2 、1.66g KH、1g Mg粉末及4g CA-III300活性碳粉末(在300℃下乾燥),能量增益為6.6kJ,且電池溫度突增56℃(253-309℃)。最大電池溫度為414℃,理論能量為4.31kJ,增益為1.53倍。 ■ 2.72g CdBr 2, 1.66g KH, 1g Mg powder and 4g CA-III300 activated carbon powder (dried at 300 ℃), an energy gain of 6.6kJ, and a sudden increase in the temperature of the battery 56 ℃ (253-309 ℃). The maximum battery temperature is 414 ° C, the theoretical energy is 4.31 kJ, and the gain is 1.53 times.

■2.73g MoCl5 、1.66gKH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為20.1kJ,且電池溫度突增240℃(67-307℃)。最大電池溫度為511℃,理論能量為15.04kJ,增益為1.34倍。 ■ 2.73g MoCl 5, 1.66gKH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ℃), an energy gain of 20.1kJ, and a sudden increase in the temperature of the battery 240 ℃ (67-307 ℃). The maximum battery temperature is 511 ° C, the theoretical energy is 15.04 kJ, and the gain is 1.34 times.

■2.75g InBr2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為7.3kJ,但未觀測到電池溫度突增。最大電池溫度為481℃,理論能量為4.46kJ,增益為1.64倍。■ 2.75 g of InBr 2 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 7.3 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 481 ° C, the theoretical energy is 4.46 kJ, and the gain is 1.64 times.

■1.88g NbF5 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為15.5kJ,但未觀測到電池溫度突增。最大電池溫度為448℃,理論能量為11.36kJ,增益為1.36倍。 ■ 1.88g NbF 5, 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ℃), an energy gain of 15.5kJ, but the sudden increase in the temperature of the battery was observed. The maximum battery temperature is 448 ° C, the theoretical energy is 11.36 kJ, and the gain is 1.36 times.

■2.33g ZrCl4 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為12.9kJ,且電池溫度突增156℃(311-467℃)。最大電池溫度為472℃,理論能量為8.82kJ,增益為1.46倍。 ■ 2.33g ZrCl 4, 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ℃), an energy gain of 12.9kJ, and a sudden increase in the temperature of the battery 156 ℃ (311-467 ℃) . The maximum battery temperature is 472 ° C, the theoretical energy is 8.82 kJ, and the gain is 1.46 times.

■3.66g CdI2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為6.7kJ,且電池溫度上升變化為74℃(125-199℃)。最大電池溫度為417℃,理論能量為4.12kJ,增益為1.62倍。■3.66g CdI 2 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 6.7kJ, and the battery temperature rises to 74 ° C (125-199 ° C ). The maximum battery temperature is 417 ° C, the theoretical energy is 4.12 kJ, and the gain is 1.62 times.

■4g CAIII-300+1g Mg+1.66g KH+2.64g GdCl3 ;Ein:127.0kJ;dE:4.82kJ;TSC:未觀測到;Tmax:395℃,理論能量為3.54kJ,增益為1.36倍。■ 4g CAIII-300+1g Mg+1.66g KH+2.64g GdCl 3 ; Ein: 127.0kJ; dE: 4.82kJ; TSC: not observed; Tmax: 395° C., theoretical energy 3.54kJ, gain 1.36 times.

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+InCl 7.5gm,Ein:305kJ,dE:32kJ,在約150℃下小TSC且Tmax為約350℃。能量增益為約2.8X(X為約11.5kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + InCl 7.5 gm, Ein: 305 kJ, dE: 32 kJ, small TSC at about 150 ° C and Tmax of about 350 ° C. The energy gain is about 2.8X (X is about 11.5kJ).

■KH 8.3gm+Mg 5.0gm+WC 20.0gm+CoI2 15.65gm,Ein:306kJ,dE:41kJ,在約200℃下小TSC且Tmax為約350℃。能量增益為約1.55X(X為約26.4kJ)。■ KH 8.3 gm + Mg 5.0 gm + WC 20.0 gm + CoI 2 15.65 gm, Ein: 306 kJ, dE: 41 kJ, small TSC at about 200 ° C and Tmax of about 350 ° C. The energy gain is about 1.55X (X is about 26.4kJ).

■NaH 5.0gm+Mg 5.0gm+WC 20.0gm+GdBr3 19.85gm,Ein 309kJ,dE:28kJ,在約250℃下小TSC且Tmax為約340℃。能量增益為約1.8X(X為約15.6kJ)。■NaH 5.0 gm+Mg 5.0 gm+WC 20.0 gm+GdBr 3 19.85 gm, Ein 309 kJ, dE: 28 kJ, small TSC at about 250 ° C and Tmax of about 340 ° C. The energy gain is about 1.8X (X is about 15.6kJ).

■KH 4.98gm+Mg 3.0gm+CAII-300 12.0gm+InBr 5.85gm,3X系統,Ein:297kJ,dE:13kJ,在約200℃下小TSC且Tmax為約330℃。能量增益為約1.3X(X為約10kJ)。■ KH 4.98 gm + Mg 3.0 gm + CAII-300 12.0 gm + InBr 5.85 gm, 3X system, Ein: 297 kJ, dE: 13 kJ, small TSC at about 200 ° C and Tmax of about 330 ° C. The energy gain is about 1.3X (X is about 10kJ).

■4g CAIII-300+1g Mg+1g NaH+2.26g Y2 O3 ,Ein:133.1kJ,dE:5.2kJ,TSC:無,Tmax:384℃,理論能量為1.18kJ,增益為4.44倍。■ 4g CAIII-300+1g Mg+1g NaH+2.26g Y 2 O 3 , Ein: 133.1kJ, dE: 5.2kJ, TSC: none, Tmax: 384°C, theoretical energy 1.18kJ, gain 4.44 times.

■4.11g ZrBr4 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為11.2kJ,且電池溫度突增154℃(280-434℃)。最大電池溫度為444℃,理論能量為9.31kJ,增益為1.2倍。■ 4.11g ZrBr 4 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 11.2kJ, and battery temperature suddenly increases by 154 ° C (280-434 ° C) . The maximum battery temperature is 444 ° C, the theoretical energy is 9.31 kJ, and the gain is 1.2 times.

■5.99g ZrI4 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為11.3kJ,且電池溫度突增200℃(214-414℃)。最大電池溫度為454℃,理論能量為9.4kJ,增益為1.2倍。■ 5.99g ZrI 4 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 11.3kJ, and battery temperature increases by 200 ° C (214-414 ° C) . The maximum battery temperature is 454 ° C, the theoretical energy is 9.4 kJ, and the gain is 1.2 times.

■2.70g NbCl5 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為16.4kJ,且電池溫度突增213℃(137-350℃)。最大電池溫度為395℃,理論能量為13.40kJ,增益為1.22倍。■ 2.70g NbCl 5 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 16.4kJ, and battery temperature suddenly increases by 213 ° C (137-350 ° C) . The maximum battery temperature is 395 ° C, the theoretical energy is 13.40 kJ, and the gain is 1.22 times.

■2.02g MoCl3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為12.1kJ,但未觀測到電池溫度突增。最大電池溫度為536℃,理論能量為8.48kJ,增益為1.43倍。■ 2.02 g of MoCl 3 , 1.66 g of KH, 1 g of Mg powder, and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 12.1 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 536 ° C, the theoretical energy is 8.48 kJ, and the gain is 1.43 times.

■3.13g NiI2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為8.0kJ,且電池溫度突增33℃(335-368℃)。最大電池溫度為438℃,理論能量為5.89kJ,增益為1.36倍。 ■ 3.13g NiI 2, 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 deg.] C), a gain of 8.0 kJ of energy, and a sudden increase in the temperature of the battery 33 ℃ (335-368 ℃) . The maximum battery temperature is 438 ° C, the theoretical energy is 5.89 kJ, and the gain is 1.36 times.

■3.87g As2 Se3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為12.3kJ,且電池溫度突增241℃(195-436℃)。最大電池溫度為446℃,理論能量為8.4kJ,增益為1.46倍。■ 3.87g As 2 Se 3 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300°C), energy gain is 12.3kJ, and battery temperature suddenly increases by 241°C (195-436) °C). The maximum battery temperature is 446 ° C, the theoretical energy is 8.4 kJ, and the gain is 1.46 times.

■2.74g Y2 S3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為5.2kJ,但未觀測到電池溫度突增。最大電池溫度為444℃,理論能量為0.41kJ,增益為12.64倍。■ 2.74 g of Y 2 S 3 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 5.2 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 444 ° C, the theoretical energy is 0.41 kJ, and the gain is 12.64 times.

■4g CAIII-300+1g Mg+1.66g KH+3.79g LaBr3 ,Ein:147.1kJ,dE:7.1kJ,TSC:無,Tmax:443℃,理論能量為3.39kJ,增益為2倍。■ 4g CAIII-300+1g Mg+1.66g KH+3.79g LaBr 3 , Ein: 147.1kJ, dE: 7.1kJ, TSC: none, Tmax: 443°C, theoretical energy 3.39kJ, gain of 2 times.

■4g CAIII-300+1g Mg+1.66g KH+2.15g MnBr2 ;Ein:124.0kJ;dE:5.55kJ;TSC:360-405℃;Tmax:411℃,理論能量為3.63kJ,增益為1.53倍。■4g CAIII-300+1g Mg+1.66g KH+2.15g MnBr 2 ; Ein: 124.0kJ; dE: 5.55kJ; TSC: 360-405°C; Tmax: 411°C, theoretical energy 3.63kJ, gain 1.53 times .

■2.60g Bi(OH)3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為14.8kJ,且電池溫度突增173℃(202-375℃)。最大電池溫度為452℃,理論能量為12.23kJ,增益為1.2倍。■ 2.60g Bi(OH) 3 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain is 14.8kJ, and the battery temperature suddenly increases by 173 ° C (202- 375 ° C). The maximum battery temperature is 452 ° C, the theoretical energy is 12.23 kJ, and the gain is 1.2 times.

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+SnI2 18.5gm Strem,Ein:244kJ,dE:53kJ,在約150℃下TSC且Tmax為約330℃,理論能量為28.1kJ,增益為1.9倍。■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+SnI 2 18.5gm Strem, Ein: 244kJ, dE: 53kJ, TSC at about 150°C and Tmax is about 330°C, theoretical energy is 28.1kJ, gain is 1.9 times .

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+FeBr2 10.8gm,Ein:335kJ,dE:43kJ,在約250℃下TSC且Tmax為約375℃,理論能量為22kJ,增益為1.95倍。■ KH 8.3 gm + Mg 5.0 gm + TiC 20.0 gm + FeBr 2 10.8 gm, Ein: 335 kJ, dE: 43 kJ, TSC at about 250 ° C and Tmax of about 375 ° C, theoretical energy of 22 kJ, gain of 1.95 times.

■KH 8.3gm+Mg 5.0gm+WC 20.0gm+FeBr2 10.8gm,Ein:335kJ,dE:32kJ,在約230℃下TSC且Tmax為約360℃,理論能量為22kJ,增益為1.45倍。■ KH 8.3 gm + Mg 5.0 gm + WC 20.0 gm + FeBr 2 10.8 gm, Ein: 335 kJ, dE: 32 kJ, TSC at about 230 ° C and Tmax of about 360 ° C, theoretical energy of 22 kJ, gain of 1.45 times.

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+MnI2 15.45gm,Strem,Ein:269kJ,dE:49kJ,在約50℃下小TSC且Tmax為約350℃。能量增益為約3.4X(X為約14.8kJ)。■ KH 8.3 gm + Mg 5.0 gm + TiC 20.0 gm + MnI 2 15.45 gm, Strem, Ein: 269 kJ, dE: 49 kJ, small TSC at about 50 ° C and Tmax of about 350 ° C. The energy gain is about 3.4X (X is about 14.8kJ).

■4g CAIII-300+1.66g Ca+1g NaH+3.09g MnI2 ;Ein:112.0kJ;dE:9.98kJ;TSC:178-374℃;Tmax:383℃,理論能量為5.90kJ,增益為1.69倍。■ 4g CAIII-300 + 1.66g Ca + 1g NaH + 3.09g MnI 2; Ein: 112.0kJ; dE: 9.98kJ; TSC: 178-374 ℃; Tmax: 383 ℃, theoretical energy 5.90kJ, gain is 1.69 times .

■0.96g CuS、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為5.5kJ,但未觀測到電池溫度突增。最大電池溫度為409℃,理論能量為2.93kJ,增益為1.88倍。■ 0.96 g of CuS, 1.66 g of KH, 1 g of Mg powder, and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 5.5 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 409 ° C, the theoretical energy is 2.93 kJ, and the gain is 1.88 times.

■0.87g MnS、1.66g KH、1gMg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為4.7kJ,但未觀測到電池溫度突增。最大電池溫度為412℃,理論能量為1.32kJ,增益為3.57倍。■ 0.87 g MnS, 1.66 g KH, 1 g Mg powder, and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 4.7 kJ, but no battery temperature jump was observed. The maximum battery temperature is 412 ° C, the theoretical energy is 1.32 kJ, and the gain is 3.57 times.

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+MnI2 15.45gm,Ein:269kJ,dE:49kJ,在約50℃下小TSC且Tmax為約350℃,理論能量為18.65kJ,增益為2.6倍。■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+MnI 2 15.45gm, Ein: 269kJ, dE: 49kJ, small TSC at about 50°C and Tmax is about 350°C, theoretical energy is 18.65kJ, gain is 2.6 times .

■NaH 5.0gm+Mg 5.0gm+TiC 20.0gm+NiBr2 11.0gm,Ein:245kJ,dE:43kJ,在約200℃下TSC且Tmax為約310℃,理論能量為26kJ,增益為1.6倍。■NaH 5.0gm+Mg 5.0gm+TiC 20.0gm+NiBr 2 11.0gm, Ein: 245kJ, dE: 43kJ, TSC at about 200° C. and Tmax is about 310° C., theoretical energy is 26 kJ, and gain is 1.6 times.

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+MnCl2 6.3gm,Ein:333kJ,dE:34kJ,在約250℃下TSC且Tmax為約340℃,理論能量為17.6kJ,增益為2倍。■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+MnCl 2 6.3gm, Ein: 333kJ, dE: 34kJ, TSC at about 250°C and Tmax is about 340°C, theoretical energy is 17.6kJ, gain is 2 Times.

■2.42g InI、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為4.4kJ,但未觀測到電池溫度突增。最大電池溫度為438℃,理論能量為1.92kJ,增益為2.3倍。■ 2.42 g of InI, 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 4.4 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 438 ° C, the theoretical energy is 1.92 kJ, and the gain is 2.3 times.

■1.72g InF3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為9.2kJ,但未觀測到電池溫度突增。最大電池溫度為446℃,理論能量為5kJ,增益為1.85倍。■ 1.72 g of InF 3 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 9.2 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 446 ° C, the theoretical energy is 5 kJ, and the gain is 1.85 times.

■4g CAIII-300+1g Mg+1g NaH+1.98g As2 O3 ,Ein:110.5kJ,dE:17.1kJ,TSC:325-452℃,Tmax:471℃,理論能量為11.48kJ,增益為1.49倍。■4g CAIII-300+1g Mg+1g NaH+1.98g As 2 O 3 , Ein: 110.5kJ, dE: 17.1kJ, TSC: 325-452°C, Tmax: 471°C, theoretical energy 11.48kJ, gain 1.49 Times.

■4g CAIII-300+1g Mg+1g NaH+4.66g Bi2 O3 ,Ein:152.0kJ,dE:17.7kJ,TSC:185-403℃,Tmax:481℃,理論能量為13.8kJ,增益為1.28倍。■4g CAIII-300+1g Mg+1g NaH+4.66g Bi 2 O 3 , Ein: 152.0kJ, dE: 17.7kJ, TSC: 185-403°C, Tmax: 481°C, theoretical energy 13.8kJ, gain 1.28 Times.

■4g CAIII-300+1g Mg+1g NaH+2.02g MoCl3 ;Ein:118.0kJ;dE:11.10kJ;TSC:342-496℃;Tmax:496℃,理論能量為7.76,增益為1.43倍。■ 4g CAIII-300+1g Mg+1g NaH+2.02g MoCl 3 ; Ein: 118.0kJ; dE: 11.10kJ; TSC: 342-496°C; Tmax: 496°C, theoretical energy 7.76, gain 1.43 times.

■2.83g PbF4 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為13.9kJ,且電池溫度突增245℃(217-462℃)。最大電池溫度為464℃,理論能量為13.38kJ,增益為1.32倍。■2.83g PbF 4 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 13.9kJ, and battery temperature suddenly increases by 245 ° C (217-462 ° C) . The maximum battery temperature is 464 ° C, the theoretical energy is 13.38 kJ, and the gain is 1.32 times.

■2.78g PbCl2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為6.8kJ,但未觀測到電池溫度突增。最大電池溫度為488℃,理論能量為5.22kJ,增益為1.3倍。■ 2.78 g of PbCl 2 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 6.8 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 488 ° C, the theoretical energy is 5.22 kJ, and the gain is 1.3 times.

■4g CAIII-300+1.66g KH+2.19g NiBr2 ,Ein:136.0kJ,dE:7.5kJ,TSC:275-350℃,Tmax:385℃,理論能量為4.6kJ,增益為1.6倍。■ 4g CAIII-300+1.66g KH+2.19g NiBr 2 , Ein: 136.0kJ, dE: 7.5kJ, TSC: 275-350°C, Tmax: 385°C, theoretical energy 4.6kJ, gain 1.6 times.

■4g CAIII-300+1g Mg+1g NaH+2.74g MoCl5 ,Ein:96.0kJ,dE:19.0kJ,TSC:86-334℃,Tmax:373℃,理論能量為14.06kJ,增益為1.35倍。■ 4g CAIII-300+1g Mg+1g NaH+2.74g MoCl 5 , Ein: 96.0kJ, dE: 19.0kJ, TSC: 86-334°C, Tmax: 373°C, theoretical energy 14.06kJ, gain 1.35 times.

■4g CAIII-300+1.66g Ca+1g NaH+2.19g NiBr2 ;Ein:127.1kJ;dE:10.69kJ;TSC:300-420℃;Tmax:10.69℃,理論能量為7.67kJ,增益為1.39倍。■4g CAIII-300+1.66g Ca+1g NaH+2.19g NiBr 2 ; Ein: 127.1kJ; dE: 10.69kJ; TSC: 300-420°C; Tmax: 10.69°C, theoretical energy 7.67kJ, gain 1.39 times .

■5.90g BiI3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為10.9kJ,且電池溫度上升變化為70℃(217-287℃)。最大電池溫度為458℃,理論能量為8.87kJ,增益為1.23倍。■ 5.90g BiI 3 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 10.9kJ, and the battery temperature rises to 70 ° C (217-287 ° C) ). The maximum battery temperature is 458 ° C, the theoretical energy is 8.87 kJ, and the gain is 1.23 times.

■1.79g SbF3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為11.7kJ,且電池溫度突增169℃(138-307℃)。最大電池溫度為454℃,理論能量為9.21kJ,增益為1.27倍。■ 1.79g SbF 3 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain of 11.7kJ, and battery temperature sudden increase of 169 ° C (138-307 ° C) . The maximum battery temperature is 454 ° C, the theoretical energy is 9.21 kJ, and the gain is 1.27 times.

■4g CAIII-300+1.66g Ca+1g NaH+3.09g MnI2 ,Ein:111.0kJ,dE:12.6kJ,TSC:178-340℃,Tmax:373℃,理論能量為5.9kJ,增益為2.13倍。■4g CAIII-300+1.66g Ca+1g NaH+3.09g MnI 2 , Ein: 111.0kJ, dE: 12.6kJ, TSC: 178-340°C, Tmax: 373°C, theoretical energy 5.9kJ, gain 2.13 times .

■4g CAIII-300+1.66g Ca+1g NaH+1.34g CuCl2 ;Ein:135.2kJ;dE:12.26kJ;TSC:250-390℃;Tmax:437℃,理論能量為8.55kJ,增益為1.43倍。■4g CAIII-300+1.66g Ca+1g NaH+1.34g CuCl 2 ; Ein: 135.2kJ; dE: 12.26kJ; TSC: 250-390°C; Tmax: 437°C, theoretical energy 8.55kJ, gain 1.43 times .

■1.50g InCl、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為5.1kJ,但未觀測到電池溫度突增。最大電池溫度為410℃,理論能量為2.29kJ,增益為2.22倍。■ 1.50 g of InCl, 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 5.1 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 410 ° C, the theoretical energy is 2.29 kJ, and the gain is 2.22 times.

■2.21g InCl3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為10.9kJ且電池溫度突增191℃(235-426℃)。最大電池溫度為431℃,理論能量為7.11kJ,增益為1.5倍。■ 2.21 g of InCl 3 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), an energy gain of 10.9 kJ and a sudden increase in battery temperature of 191 ° C (235-426 ° C). The maximum battery temperature is 431 ° C, the theoretical energy is 7.11 kJ, and the gain is 1.5 times.

■1.95g InBr、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為6.0kJ,但未觀測到電池溫度突增。最大電池溫度為435℃,理論能量為2kJ,增益為3倍。■ 1.95 g of InBr, 1.66 g of KH, 1 g of Mg powder, and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 6.0 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 435 ° C, the theoretical energy is 2 kJ, and the gain is 3 times.

■3.55g InBr3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為9.1kJ,且電池溫度突增152℃(156-308℃)。最大電池溫度為386℃,理論能量為6.92kJ,增益為1.3倍。■ 3.55g InBr 3 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 9.1kJ, and battery temperature suddenly increases by 152 ° C (156-308 ° C) . The maximum battery temperature is 386 ° C, the theoretical energy is 6.92 kJ, and the gain is 1.3 times.

■4g CAIII-300+1.66g KH+3.79g SnI2 ,Ein:169.1kJ,dE:6.0kJ,TSC:200-289℃,Tmax:431℃,理論能量為4.03kJ,增益為1.49倍。■ 4g CAIII-300+1.66g KH+3.79g SnI 2 , Ein: 169.1kJ, dE: 6.0kJ, TSC: 200-289°C, Tmax: 431°C, theoretical energy 4.03kJ, gain 1.49 times.

■KH 8.3gm+Mg 5.0gm+WC 20.0gm+MnBr2 10.75gm,Ein:309kJ,dE:35kJ,無TSC且Tmax為約335℃。能量增益為約1.9X(X為約18.1kJ)。■ KH 8.3 gm + Mg 5.0 gm + WC 20.0 gm + MnBr 2 10.75 gm, Ein: 309 kJ, dE: 35 kJ, no TSC and Tmax of about 335 °C. The energy gain is about 1.9X (X is about 18.1kJ).

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+MnBr2 10.75gm,Ein:280kJ,dE:41kJ,在約280℃下TSC且Tmax為約350℃。能量增益為約2.2X(X為約18.1kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + MnBr 2 10.75 gm, Ein: 280 kJ, dE: 41 kJ, TSC at about 280 ° C and Tmax of about 350 ° C. The energy gain is about 2.2X (X is about 18.1kJ).

■KH 1.66gm+Mg 1.0gm+TiC 4.0gm+TiF3 1.05gm,具有CAII-300之5X電池#1086,Ein:143kJ,dE:6kJ,無TSC且Tmax為約280℃,理論能量為2.5kJ,增益為2.4倍。■KH 1.66gm+Mg 1.0gm+TiC 4.0gm+TiF 3 1.05gm, 5X battery with CAII-300#1086, Ein: 143kJ, dE: 6kJ, no TSC and Tmax is about 280°C, theoretical energy is 2.5kJ The gain is 2.4 times.

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+FeF2 4.7gm,Ein:280kJ,dE:40kJ,在約260℃下TSC且Tmax為約340℃,理論能量為20.65kJ,增益為1.93倍。■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+FeF 2 4.7gm, Ein: 280kJ, dE: 40kJ, TSC at about 260°C and Tmax is about 340°C, theoretical energy is 20.65kJ, gain is 1.93 Times.

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+CuF2 5.1gm,Ein:203kJ,dE:57kJ,在約125℃下TSC且Tmax為約280℃,理論能量為29kJ,增益為1.96倍。■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+CuF 2 5.1gm, Ein: 203kJ, dE: 57kJ, TSC at about 125°C and Tmax is about 280°C, theoretical energy is 29kJ, gain is 1.96 times .

■KH 83.0gm+Mg 50.0gm+WC 200.0gm+SnI2 185gm,URS,Ein:1310kJ,dE:428kJ,在約140℃下TSC且Tmax為約350℃,理論能量為200kJ,增益為2.14倍。■ KH 83.0 gm + Mg 50.0 gm + WC 200.0 gm + SnI 2 185 gm, URS, Ein: 1310 kJ, dE: 428 kJ, TSC at about 140 ° C and Tmax of about 350 ° C, theoretical energy of 200 kJ, gain of 2.14 times.

■061009KAWFC1#1102,NaH 1.0gm+Mg 1.0gm+WC 4.0gm+GdBr3 3.97gm,Ein:148kJ,dE:7kJ,在約300℃下小TSC且Tmax為約420℃。能量增益為約3.5X(X為約2kJ)。■ 061009 KAWFC1 #1102, NaH 1.0 gm + Mg 1.0 gm + WC 4.0 gm + GdBr 3 3.97 gm, Ein: 148 kJ, dE: 7 kJ, small TSC at about 300 ° C and Tmax of about 420 ° C. The energy gain is about 3.5X (X is about 2kJ).

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+FeO 3.6gm,Ein:355kJ,dE:24kJ,在約260℃下小TSC且Tmax為約360℃。能量增益為約1.45X(X為約16.6kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + FeO 3.6 gm, Ein: 355 kJ, dE: 24 kJ, small TSC at about 260 ° C and Tmax of about 360 ° C. The energy gain is about 1.45X (X is about 16.6kJ).

■KH 83.0gm+Mg 50.0gm+WC 200.0gm+SnI2 185gm,羅溫,Ein:1379kJ,dE:416kJ,在約140℃下TSC且Tmax為約350℃,理論能量為200kJ,增益為2倍。■KH 83.0gm+Mg 50.0gm+WC 200.0gm+SnI 2 185gm, Rovin, Ein: 1379kJ, dE: 416kJ, TSC at about 140°C and Tmax is about 350°C, theoretical energy is 200kJ, gain is 2 times .

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+CoI2 15.65gm,Ein:361kJ,dE:69kJ,在約200℃下TSC且Tmax為約410℃,理論能量為26.35kJ,增益為2.6倍。■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+CoI 2 15.65gm, Ein: 361kJ, dE: 69kJ, TSC at about 200°C and Tmax is about 410°C, theoretical energy is 26.35kJ, gain is 2.6 Times.

■KH 8.3gm+5.0gm+CAII 300 20.0gm+FeS 4.4gm,Ein:312kJ,dE:22kJ,無TSC且Tmax為約350℃。能量增益為約1.7X(X為約12.3kJ)。■ KH 8.3 gm + 5.0 gm + CAII 300 20.0 gm + FeS 4.4 gm, Ein: 312 kJ, dE: 22 kJ, no TSC and Tmax of about 350 °C. The energy gain is about 1.7X (X is about 12.3kJ).

■KH 8.3gm+WC 40.0gm+SnI2 18.5gm,Ein:315kJ,dE:27kJ,在約140℃下小TSC且Tmax為約340℃。能量增益為約1.35X(X為約20kJ)。■ KH 8.3 gm + WC 40.0 gm + SnI 2 18.5 gm, Ein: 315 kJ, dE: 27 kJ, small TSC at about 140 ° C and Tmax of about 340 ° C. The energy gain is about 1.35X (X is about 20kJ).

■NaH 5.0gm+Mg 5.0gm+WC 20.0gm+MnI2 15.45gm,Ein:108kJ,dE:30kJ,在約70℃下TSC且Tmax為約170℃,理論能量為14.8kJ,增益為2倍。■NaH 5.0 gm+Mg 5.0 gm+WC 20.0 gm+MnI 2 15.45 gm, Ein: 108 kJ, dE: 30 kJ, TSC at about 70 ° C and Tmax of about 170 ° C, theoretical energy of 14.8 kJ, and gain of 2 times.

■NaH 5.0gm+Mg 5.0gm+WC 20.0gm+NiBr2 11.0gm,Ein:248kJ,dE:34kJ,在約170℃下TSC且Tmax為約300℃。能量增益為約1.7X(X為約20kJ),理論能量為26.25kJ,增益為1.3倍。■NaH 5.0 gm+Mg 5.0 gm+WC 20.0 gm+NiBr 2 11.0 gm, Ein: 248 kJ, dE: 34 kJ, TSC at about 170 ° C and Tmax of about 300 ° C. The energy gain is about 1.7X (X is about 20kJ), the theoretical energy is 26.25kJ, and the gain is 1.3 times.

■KH 8.3gm+Mg 5.0gm+WC 20.0gm+NiBr2 11.0gm,Ein:291kJ,dE:30kJ,在約250℃下小TSC且Tmax為約340℃。能量增益為約1.5X(X為約20kJ),理論能量為26.25kJ,增益為1.14倍。■ KH 8.3 gm + Mg 5.0 gm + WC 20.0 gm + NiBr 2 11.0 gm, Ein: 291 kJ, dE: 30 kJ, small TSC at about 250 ° C and Tmax of about 340 ° C. The energy gain is about 1.5X (X is about 20kJ), the theoretical energy is 26.25kJ, and the gain is 1.14 times.

■NaH 5.0gm+Mg 5.0gm+WC 20.0gm+NiBr2 11.0gm,重複電池#1105,Ein:242kJ,dE:33kJ,在約70℃下TSC且Tmax為約280℃。能量增益為約1.65X(X為約20kJ)。■ NaH 5.0 gm + Mg 5.0 gm + WC 20.0 gm + NiBr 2 11.0 gm, repeating battery #1105, Ein: 242 kJ, dE: 33 kJ, TSC at about 70 ° C and Tmax of about 280 ° C. The energy gain is about 1.65X (X is about 20kJ).

■NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+InCl3 11.1gm,Ein:189kJ,dE:48kJ,在約80℃下小TSC且Tmax為約260℃。能量增益為約1.5X(X為約31kJ)。■NaH 5.0 gm+Mg 5.0 gm+CAII-300 20.0 gm+InCl 3 11.1 gm, Ein: 189 kJ, dE: 48 kJ, small TSC at about 80 ° C and Tmax of about 260 ° C. The energy gain is about 1.5X (X is about 31kJ).

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+MnI2 15.45gm,Ein:248kJ,dE:46kJ,在約200℃下小TSC且Tmax為約325℃。能量增益為約3X(X為約14.8kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + MnI 2 15.45 gm, Ein: 248 kJ, dE: 46 kJ, small TSC at about 200 ° C and Tmax of about 325 ° C. The energy gain is about 3X (X is about 14.8 kJ).

■2.96g FeBr3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為12.5kJ,且電池溫度突增77℃(72-149℃)。最大電池溫度為418℃,理論能量為8.35kJ,增益為1.5倍。■ 2.96g FeBr 3 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain of 12.5kJ, and battery temperature sudden increase of 77 ° C (72-149 ° C) . The maximum battery temperature is 418 ° C, the theoretical energy is 8.35 kJ, and the gain is 1.5 times.

■0.72g FeO、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為6.7kJ,但未觀測到電池溫度突增。最大電池溫度為448℃,理論能量為3.3kJ,增益為2倍。■ 0.72 g FeO, 1.66 g KH, 1 g Mg powder, and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 6.7 kJ, but no battery temperature jump was observed. The maximum battery temperature is 448 ° C, the theoretical energy is 3.3 kJ, and the gain is 2 times.

■1.26g MnCl2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為8.6kJ,但未觀測到電池溫度突增。最大電池溫度為437℃,理論能量為3.52kJ,增益為2.45倍。■ 1.26 g of MnCl 2 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 8.6 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 437 ° C, the theoretical energy is 3.52 kJ, and the gain is 2.45 times.

■1.13g FeF3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為12.6kJ,但未觀測到電池溫度突增。最大電池溫度為618℃,理論能量為6.44kJ,能量增益為1.96倍。■ 1.13 g FeF 3 , 1.66 g KH, 1 g Mg powder, and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 12.6 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 618 ° C, the theoretical energy is 6.44 kJ, and the energy gain is 1.96 times.

■4g CAIII-300+1g Mg+1g NaH+3.97g GdBr3 ,Ein:143.1kJ,dE:5.4kJ,TSC:無,Tmax:403℃,理論能量為1.99kJ,增益為2.73倍。■ 4g CAIII-300+1g Mg+1g NaH+3.97g GdBr 3 , Ein: 143.1kJ, dE: 5.4kJ, TSC: none, Tmax: 403°C, theoretical energy 1.99kJ, gain 2.73 times.

■4g CAIII-300+1g Mg+1g NaH+1.57g SnF2 ;Ein:139.0kJ;dE:7.24kJ;TSC:未觀測到;Tmax:413℃,理論能量為5.28kJ,增益為1.37倍。■ 4g CAIII-300+1g Mg+1g NaH+1.57g SnF 2 ; Ein: 139.0kJ; dE: 7.24kJ; TSC: not observed; Tmax: 413° C., theoretical energy 5.28kJ, gain 1.37 times.

■4g CAIII-300+1g Mg+1g NaH+4.04g Sb2 S5 ,Ein:125.0kJ,dE:19.3kJ,TSC:421-651C,Tmax:651℃,理論能量為12.37kJ,增益為1.56倍。■4g CAIII-300+1g Mg+1g NaH+4.04g Sb 2 S 5 , Ein: 125.0kJ, dE: 19.3kJ, TSC: 421-651C, Tmax: 651°C, theoretical energy is 12.37kJ, gain is 1.56 times .

■1.36g ZnCl2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為6.6kJ,但未觀測到電池溫度突增。最大電池溫度為402℃,理論能量為4.34kJ,增益為1.52倍。■ 1.36 g of ZnCl 2 , 1.66 g of KH, 1 g of Mg powder, and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 6.6 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 402 ° C, the theoretical energy is 4.34 kJ, and the gain is 1.52 times.

■1.03g ZnF2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為6.5kJ,但未觀測到電池溫度突增。最大電池溫度為427℃,理論能量為3.76kJ,增益為1.73倍。■ 1.03 g of ZnF 2 , 1.66 g of KH, 1 g of Mg powder, and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 6.5 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 427 ° C, the theoretical energy is 3.76 kJ, and the gain is 1.73 times.

■4g CAIII-300+1g Mg+1g NaH+2.22g InCl3 ,實驗dE:-12.6kJ,考慮之反應:InCl3 (c)+3NaH(c)+1.5Mg(c)=3NaCl(c)+In(c)+1.5MgH2 (c)Q=-640.45千焦/反應,理論化學反應能量:-6.4kJ,過剩熱:-6.2kJ,2.0X過剩熱。■4g CAIII-300+1g Mg+1g NaH+2.22g InCl 3 , experimental dE: -12.6kJ, consider the reaction: InCl 3 (c) +3NaH(c)+1.5Mg(c)=3NaCl(c)+ In(c)+1.5MgH 2 (c)Q=-640.45 kJ/reaction, theoretical chemical reaction energy: -6.4kJ, excess heat: -6.2kJ, 2.0X excess heat.

■1.08g VF3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為9.5kJ,但未觀測到電池溫度突增。最大電池溫度為447℃,理論能量為4.9kJ,增益為1.94倍。■ 1.08 g of VF 3 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 9.5 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 447 ° C, the theoretical energy is 4.9 kJ, and the gain is 1.94 times.

■8.3g KH+5.0g Mg+20.0g AC(II-300)+5.4g VF3 ,Ein:286kJ,dE:58kJ,理論能量為24.5kJ,增益為2.3倍。■ 8.3 g KH + 5.0 g Mg + 20.0 g AC (II-300) + 5.4 g VF 3 , Ein: 286 kJ, dE: 58 kJ, theoretical energy 24.5 kJ, gain 2.3 times.

■4g CAIII-300+1g Mg+1g NaH+1.72g InF3 ,Ein:134.0kJ,dE:8.1kJ,TSC:無,Tmax:391℃,理論能量為5kJ,增益為1.62倍。■ 4g CAIII-300+1g Mg+1g NaH+1.72g InF 3 , Ein: 134.0kJ, dE: 8.1kJ, TSC: none, Tmax: 391°C, theoretical energy 5kJ, gain 1.62 times.

■4g CAIII-300+1g Mg+1.66g KH+1.02g CuF2 ,實驗dE:-9.4kJ,考慮之反應:CuF2 (c)+Mg(c)=MgF2 (c)+Cu(c)Q=-581.5千焦/反應,理論化學反應能量:-5.82kJ,過剩熱:-3.59kJ,1.6X過剩熱。■4g CAIII-300+1g Mg+1.66g KH+1.02g CuF 2 , experiment dE:-9.4kJ, consider the reaction: CuF 2 (c)+Mg(c)=MgF 2 (c)+Cu(c) Q = -581.5 kJ / reaction, theoretical chemical reaction energy: -5.82kJ, excess heat: -3.59kJ, 1.6X excess heat.

■4g CAIII-300+1g Mg+1g NaH+2.83g PbF4 ,實驗dE:-17.6kJ,考慮之反應:PbF4 (c)+2Mg(c)+4NaH(c)=2MgH2 (c)+4NaF(c)+Pb(c)Q=-1290.0千焦/反應,理論化學反應能量:-12.9kJ,過剩熱:-4.7kJ,1.4X過剩熱。■4g CAIII-300+1g Mg+1g NaH+2.83g PbF 4 , experimental dE: -17.6kJ, consider the reaction: PbF 4 (c)+2Mg(c)+4NaH(c)=2MgH 2 (c)+ 4NaF(c)+Pb(c)Q=-1290.0 kJ/reaction, theoretical chemical reaction energy: -12.9 kJ, excess heat: -4.7 kJ, 1.4X excess heat.

■KH 1.66gm+Mg 1.0gm+TiC 4.0gm+SnI4 6.26gm,Ein:97kJ,dE:17kJ,TSC在約150℃下且Tmax為約370℃,理論能量為10.1kJ,增益為1.7倍。■ KH 1.66 gm + Mg 1.0 gm + TiC 4.0 gm + SnI 4 6.26 gm, Ein: 97 kJ, dE: 17 kJ, TSC at about 150 ° C and Tmax of about 370 ° C, theoretical energy of 10.1 kJ, and gain of 1.7 times.

■4g CAIII-300+1g Mg+1.66g KH+3.7g TiBr4 ,實驗dE:-16.1kJ,考慮之反應:TiBr4 (c)+4KH(c)+2Mg(c)+C(s)=4KBr(c)+TiC(c)+2MgH2 (c)Q=-1062.3千焦/反應,理論化學反應能量:-10.7kJ,過剩熱:-5.4kJ,1.5X過剩熱。■4g CAIII-300+1g Mg+1.66g KH+3.7g TiBr 4 , experimental dE: -16.1kJ, consider the reaction: TiBr 4 (c) + 4KH (c) + 2Mg (c) + C (s) = 4KBr(c)+TiC(c)+2MgH 2 (c)Q=-1062.3 kJ/reaction, theoretical chemical reaction energy: -10.7kJ, excess heat: -5.4kJ, 1.5X excess heat.

BIBI 33

■4g CAIII-300+1g Mg+1g NaH+2.4g BI3 ,Ein:128.1kJ,dE:7.9kJ,TSC:180-263℃,Tmax:365℃,理論能量為5.55kJ,增益為1.4倍。■ 4g CAIII-300+1g Mg+1g NaH+2.4g BI 3 , Ein: 128.1kJ, dE: 7.9kJ, TSC: 180-263°C, Tmax: 365°C, theoretical energy 5.55kJ, gain 1.4 times.

MnBrMnBr 22

■4g CAIII-300+1g Mg+1.66g KH+2.15g MnBr2 ,實驗dE:-7.0kJ,考慮之反應:MnBr2 (c)+2KH(c)+Mg(c)=2KBr(c)+Mn(c)+MgH2 (c)Q=-362.6千焦/反應,理論化學反應能量:-3.63kJ,過剩熱:-3.4kJ,1.9X過剩熱。■4g CAIII-300+1g Mg+1.66g KH+2.15g MnBr 2 , experiment dE: -7.0kJ, consider the reaction: MnBr 2 (c)+2KH(c)+Mg(c)=2KBr(c)+ Mn(c)+MgH 2 (c)Q=-362.6 kJ/reaction, theoretical chemical reaction energy: -3.63 kJ, excess heat: -3.4 kJ, 1.9X excess heat.

■KH 8.3gm+Mg 5.0gm+WC 20.0gm+MnBr2 10.75gm,Ein:309kJ,dE:35kJ,無TSC且Tmax為約335℃。能量增益為約1.9X(X為約18.1kJ)。■ KH 8.3 gm + Mg 5.0 gm + WC 20.0 gm + MnBr 2 10.75 gm, Ein: 309 kJ, dE: 35 kJ, no TSC and Tmax of about 335 °C. The energy gain is about 1.9X (X is about 18.1kJ).

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+MnBr2 10.75gm,Ein:280kJ,dE:41kJ,在約280℃下TSC且Tmax為約350℃。能量增益為約2.2X(X為約18.1kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + MnBr 2 10.75 gm, Ein: 280 kJ, dE: 41 kJ, TSC at about 280 ° C and Tmax of about 350 ° C. The energy gain is about 2.2X (X is about 18.1kJ).

FeFFeF 22

■4g CAIII-300+1g Mg+1.66g KH+0.94g FeF2 ,實驗dE:-9.8kJ,考慮之反應:FeF2 (c)+Mg(c)=MgF2 (c)+Fe(c),Q=-412.9千焦/反應,理論化學反應能量:-4.13kJ,過剩熱:-5.67kJ,2.4X過剩熱。■4g CAIII-300+1g Mg+1.66g KH+0.94g FeF 2 , experiment dE:-9.8kJ, consider the reaction: FeF 2 (c)+Mg(c)=MgF 2 (c)+Fe(c) , Q = -412.9 kJ / reaction, theoretical chemical reaction energy: -4.13kJ, excess heat: -5.77kJ, 2.4X excess heat.

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+FeF2 4.7gm,Ein:280kJ,dE:40kJ,在約260℃下TSC且Tmax為約340℃,理論能量為20.65kJ,增益為1.94倍。■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+FeF 2 4.7gm, Ein: 280kJ, dE: 40kJ, TSC at about 260°C and Tmax is about 340°C, theoretical energy is 20.65kJ, gain is 1.94 Times.

TiFTiF 33

■KH 1.66gm+Mg 1.0gm+TiC 4.0gm+TiF3 1.05gm(具有CAII-300之5X電池#1086),Ein:143kJ,dE:6kJ,無TSC且Tmax為約280℃,理論能量為2.5,增益為2.4倍。■KH 1.66gm+Mg 1.0gm+TiC 4.0gm+TiF 3 1.05gm (5X battery #1086 with CAII-300), Ein: 143kJ, dE: 6kJ, no TSC and Tmax is about 280°C, theoretical energy is 2.5 The gain is 2.4 times.

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+TiF3 5.25gm,Ein:268kJ,dE:7kJ,無TSC且Tmax為約280℃。無能量增益(X為約21.7kJ)。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + TiF 3 5.25 gm, Ein: 268 kJ, dE: 7 kJ, no TSC and Tmax of about 280 °C. No energy gain (X is about 21.7 kJ).

CuFCuF 22

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+CuF2 5.1gm,Ein:203kJ,dE:57kJ,在約125℃下TSC且Tmax為約280℃,理論能量為29.1kJ,增益為2倍。■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+CuF 2 5.1gm, Ein: 203kJ, dE: 57kJ, TSC at about 125°C and Tmax is about 280°C, theoretical energy is 29.1kJ, gain is 2 Times.

MnIMnI 22

■NaH 4.0gm+Mg 4.0gm+CAII-300 16.0gm+MnI2 12.36gm(4X按比例增加),Ein:253kJ,dE:30kJ,無TSC且Tmax為約300℃,理論能量為11.8kJ,增益為2.5倍。■NaH 4.0gm+Mg 4.0gm+CAII-300 16.0gm+MnI 2 12.36gm (4X proportionally increased), Ein: 253kJ, dE: 30kJ, no TSC and Tmax is about 300°C, theoretical energy is 11.8kJ, gain It is 2.5 times.

■3.09g MnI2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥)之熱量測,能量增益為8.8kJ,且電池溫度突增92℃(172-264℃)。最大電池溫度為410℃,理論能量為2.96kJ,增益為3倍。■ Thermal measurement of 3.09g MnI 2 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain of 8.8kJ, and battery temperature sudden increase of 92 ° C (172 -264 ° C). The maximum battery temperature is 410 ° C, the theoretical energy is 2.96 kJ, and the gain is 3 times.

■4g CAIII-300+1g Mg+1g NaH+3.09g MnI2 ,Ein:126.1kJ,dE:8.0kJ,TSC:157-241℃,Tmax:385℃,理論能量為2.96kJ,增益為2.69倍。■ 4g CAIII-300+1g Mg+1g NaH+3.09g MnI 2 , Ein: 126.1kJ, dE: 8.0kJ, TSC: 157-241°C, Tmax: 385°C, theoretical energy 2.96kJ, gain 2.69 times.

ZnBrZnBr 22

■2.25g ZnBr2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為10.3kJ,且電池溫度突增82℃(253-335℃)。最大電池溫度為456℃,理論能量為3.56kJ,增益為2.9倍。■ 2.25g ZnBr 2 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 10.3kJ, and battery temperature suddenly increases 82 ° C (253-335 ° C) . The maximum battery temperature is 456 ° C, the theoretical energy is 3.56 kJ, and the gain is 2.9 times.

■NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+ZnBr2 11.25gm,Ein:291kJ,dE:26kJ,無TSC且Tmax為約330℃,理論能量為17.8kJ,增益為1.46倍。■NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+ZnBr 2 11.25gm, Ein: 291kJ, dE: 26kJ, no TSC and Tmax of about 330°C, theoretical energy of 17.8kJ, gain of 1.46 times.

CoClCoCl 22

■1.3g CoCl2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為10.4kJ,且電池溫度上升變化為105℃(316-421℃)。最大電池溫度為450℃,理論能量為5.2kJ,增益為2倍。■ 1.3g CoCl 2 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 10.4kJ, and the battery temperature rises to 105 ° C (316-421 ° C) ). The maximum battery temperature is 450 ° C, the theoretical energy is 5.2 kJ, and the gain is 2 times.

■1.3g CoCl2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為9.6kJ,且電池溫度突增181℃(295-476℃)。最大電池溫度為478℃,理論能量為5.2kJ,增益為1.89倍。■ 1.3g CoCl 2 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 9.6kJ, and battery temperature suddenly increased by 181 ° C (295-476 ° C) . The maximum battery temperature is 478 ° C, the theoretical energy is 5.2 kJ, and the gain is 1.89 times.

SnBrSnBr 22

■2.8g SnBr2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為14.2kJ,且溫度突增148℃(148-296℃)。最大電池溫度為376℃,理論能量為3.75kJ,增益為3.78倍。■ 2.8 g of SnBr 2 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), an energy gain of 14.2 kJ, and a sudden increase in temperature of 148 ° C (148-296 ° C). The maximum battery temperature is 376 ° C, the theoretical energy is 3.75 kJ, and the gain is 3.78 times.

■4g CAIII-300+1g Mg+1g NaH+2.79g SnBr2,Ein:116.0kJ,dE:7.7kJ,TSC:135-236℃,Tmax:370℃,理論能量為3.75kJ,增益為2倍。■ 4g CAIII-300+1g Mg+1g NaH+2.79g SnBr2, Ein: 116.0kJ, dE: 7.7kJ, TSC: 135-236°C, Tmax: 370°C, theoretical energy 3.75kJ, gain of 2 times.

■KH 8.3gm+Mg粉末5.0gm+CAII 300 20.0gm+SnBr2 11.4gm,Ein:211kJ,dE:41kJ,在約170℃下TSC且Tmax為約300℃;理論能量為15.5kJ,增益為2.6倍。■KH 8.3gm+Mg powder 5.0gm+CAII 300 20.0gm+SnBr 2 11.4gm, Ein: 211kJ, dE: 41kJ, TSC at about 170°C and Tmax is about 300°C; theoretical energy is 15.5kJ, gain is 2.6 Times.

■KH 8.3gm+Mg 5.0gm+TiC 20.0gm+SnBr2 4.0gm,Ein 229kJ,dE:46kJ,在約150℃下TSC且Tmax為約310℃且增益為約2.4X(X為約19kJ),理論能量為18.8kJ,增益為2.4倍。■ KH 8.3 gm + Mg 5.0 gm + TiC 20.0 gm + SnBr 2 4.0 gm, Ein 229 kJ, dE: 46 kJ, TSC at about 150 ° C and Tmax of about 310 ° C and a gain of about 2.4X (X is about 19 kJ), The theoretical energy is 18.8 kJ and the gain is 2.4 times.

■KH 1.66gm+Mg 1.0gm+WC 4.0gm+SnBr2 2.8gm,Ein:101kJ,dE:10kJ,在約150℃下TSC且Tmax為約350℃,理論能量為3.75kJ,增益為2.66倍。■ KH 1.66 gm + Mg 1.0 gm + WC 4.0 gm + SnBr 2 2.8 gm, Ein: 101 kJ, dE: 10 kJ, TSC at about 150 ° C and Tmax of about 350 ° C, theoretical energy of 3.75 kJ, gain of 2.66 times.

■4g CAIII-300+1.66g KH+2.79g SnBr2 ,Ein:132.0kJ,dE:9.6kJ,TSC:168-263,Tmax:381℃,理論能量為4.29kJ,增益為2.25倍。■ 4g CAIII-300 + 1.66g KH + 2.79g SnBr 2 , Ein: 132.0kJ, dE: 9.6kJ, TSC: 168-263, Tmax: 381 ° C, theoretical energy 4.29kJ, gain 2.25 times.

■1g Mg+1.66g KH+2.79g SnBr2 ;Ein:123.0kJ;dE:7.82kJ;TSC:125-220℃;Tmax:386℃,理論能量為5.85kJ,增益為1.33倍。■1 g Mg+1.66 g KH+2.79 g SnBr 2 ; Ein: 123.0 kJ; dE: 7.82 kJ; TSC: 125-220 ° C; Tmax: 386 ° C, theoretical energy 5.85 kJ, gain 1.33 times.

SnISnI 22

■KH 6.64gm+Mg粉末4.0gm+TiC 18.0gm+SnI2 14.8gm,Ein:232kJ,dE:47kJ,在約150℃下TSC且Tmax為約280℃。能量增益為約3.6X(X為約12.8kJ),理論能量為12.6kJ,增益為3.7倍。■ KH 6.64 gm + Mg powder 4.0 gm + TiC 18.0 gm + SnI 2 14.8 gm, Ein: 232 kJ, dE: 47 kJ, TSC at about 150 ° C and Tmax of about 280 ° C. The energy gain is about 3.6X (X is about 12.8kJ), the theoretical energy is 12.6kJ, and the gain is 3.7x.

■3.7g SnI2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為11.9kJ,但未觀測到溫度突增。最大電池溫度為455℃,理論能量為3.2kJ,增益為3.7倍。■ 3.7 g of SnI 2 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 11.9 kJ, but no temperature increase was observed. The maximum battery temperature is 455 ° C, the theoretical energy is 3.2 kJ, and the gain is 3.7 times.

■KH 1.6gm+Mg粉末1.0gm+TiC 4.0gm+SnI2 3.7gm,Ein:162kJ,dE:13kJ;在100℃下TSC且Tmax為約490℃;理論能量為3.2kJ,增益為4倍。■ KH 1.6 gm + Mg powder 1.0 gm + TiC 4.0 gm + SnI 2 3.7 gm, Ein: 162 kJ, dE: 13 kJ; TSC at 100 ° C and Tmax of about 490 ° C; theoretical energy of 3.2 kJ, gain of 4 times.

■KH 8.3gm+Mg粉末5.0gm+CAII 300 20.0gm+SnI2 18.5gm,Ein:221kJ,dE:47kJ,在約170℃下TSC且Tmax為約300℃,理論能量為15.9kJ,增益為3倍。■KH 8.3gm+Mg powder 5.0gm+CAII 300 20.0gm+SnI 2 18.5gm, Ein: 221kJ, dE: 47kJ, TSC at about 170°C and Tmax is about 300°C, theoretical energy is 15.9kJ, gain is 3. Times.

■4g CAIII-300+1g Mg+1g NaH+3.73g SnI2 ;Ein:121.9kJ;dE:7.56kJ;TSC:未觀測到;Tmax:391℃,理論能量為3.2kJ,增益為2.36倍。■ 4g CAIII-300+1g Mg+1g NaH+3.73g SnI 2 ; Ein: 121.9kJ; dE: 7.56kJ; TSC: not observed; Tmax: 391°C, theoretical energy 3.2kJ, gain 2.36 times.

■1.66g KH+3.79g SnI2 ,Ein:114.0kJ,dE:8.8kJ,TSC:161-259℃,Tmax:359℃,理論能量為4kJ,增益為2.17倍。■1.66g KH+3.79g SnI 2 , Ein: 114.0kJ, dE: 8.8kJ, TSC: 161-259°C, Tmax: 359°C, theoretical energy 4kJ, gain 2.17 times.

SnClSnCl 22

■NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+SnCl2 9.6gm,Ein:181kJ,dE:30kJ,在約140℃下TSC且Tmax為約280℃,理論能量為19kJ,增益為1.57倍。■NaH 5.0gm+Mg 5.0gm+CAII-300 20.0gm+SnCl 2 9.6gm, Ein:181kJ, dE: 30kJ, TSC at about 140°C and Tmax is about 280°C, theoretical energy is 19kJ, gain is 1.57 times .

NiBrNiBr 22

■4g CAIII-300+1g Mg+1g NaH+2.19g NiBr2 ;Ein:126.0kJ;dE:12.01kJ;TSC:290-370℃;Tmax:417℃,理論能量為4kJ,增益為3倍。■ 4g CAIII-300+1g Mg+1g NaH+2.19g NiBr 2 ; Ein: 126.0kJ; dE: 12.01kJ; TSC: 290-370°C; Tmax: 417°C, theoretical energy 4kJ, gain of 3 times.

■NaH 1.0gm+MgH2 粉末1.0gm+TiC 4.0gm,混合物+NiBr2 2.2gm,Ein:121kJ,dE:11kJ,溫度在260℃下突升且Tmax為約390℃,理論能量為4kJ,增益為2.75倍。■NaH 1.0gm+MgH 2 powder 1.0gm+TiC 4.0gm, mixture +NiBr 2 2.2gm, Ein: 121kJ, dE: 11kJ, temperature rises at 260°C and Tmax is about 390°C, theoretical energy is 4kJ, gain It is 2.75 times.

■4g CAIII-300+1g Al+1g NaH+2.19g NiBr2 ;Ein:122.0kJ;dE:7.78kJ;TSC:未觀測到;Tmax:392℃,理論能量為4kJ,增益為1.95倍。■ 4g CAIII-300+1g Al+1g NaH+2.19g NiBr 2 ; Ein: 122.0kJ; dE: 7.78kJ; TSC: not observed; Tmax: 392° C., theoretical energy 4kJ, gain 1.95 times.

■4g CAIII-300+1g Mg+0.33g LiH+2.19g NiBr2 ;Ein:128.0kJ;dE:10.72kJ;TSC:270-436℃;Tmax:440℃,理論能量為4kJ,增益為2.68倍。■ 4g CAIII-300+1g Mg+0.33g LiH+2.19g NiBr 2 ; Ein: 128.0kJ; dE: 10.72kJ; TSC: 270-436°C; Tmax: 440° C., theoretical energy 4kJ, gain 2.68 times.

■4g CAIII-300+1g Mg+1.66g KH+2.19g NiBr2 Ein:126.0kJ;dE:10.45kJ;TSC:285-423℃;Tmax:423℃,理論能量為4kJ,增益為2.6倍。■ 4g CAIII-300+1g Mg+1.66g KH+2.19g NiBr 2 Ein: 126.0kJ; dE: 10.45kJ; TSC: 285-423°C; Tmax: 423°C, theoretical energy 4kJ, gain 2.6 times.

■4g CAIII-300+1g MgH2 +1g NaH+2.19g NiBr2 ;Ein:138.1kJ;dE:8.12kJ;TSC:未觀測到;Tmax:425℃,理論能量為4kJ,增益為2倍。■ 4g CAIII-300+1g MgH 2 +1g NaH+2.19g NiBr 2 ; Ein: 138.1kJ; dE: 8.12kJ; TSC: not observed; Tmax: 425° C., theoretical energy 4kJ, gain 2 times.

■NaH 5.0gm+Mg粉末5.0gm+活性碳CAII 300 20.0gm,混合物+NiBr2 11.0gm(理論能量為23.6kJ),Ein:224kJ,dE:53kJ,溫度在160℃下突升且Tmax為約280℃,理論能量為20kJ,增益為2.65倍。■NaH 5.0gm+Mg powder 5.0gm+activated carbon CAII 300 20.0gm, mixture +NiBr 2 11.0gm (theoretical energy is 23.6kJ), Ein: 224kJ, dE: 53kJ, the temperature rises at 160°C and the Tmax is about 280. °C, the theoretical energy is 20kJ, and the gain is 2.65 times.

■NaH 1.0gm+Mg 1.0gm+WC 4.0gm+NiBr2 2.2gm,Ein:197kJ,dE:11kJ,在約200℃下小TSC且Tmax為約500℃;理論能量為4kJ,增益為2.75倍。■NaH 1.0 gm+Mg 1.0 gm+WC 4.0 gm+NiBr 2 2.2 gm, Ein: 197 kJ, dE: 11 kJ, small TSC at about 200 ° C and Tmax of about 500 ° C; theoretical energy of 4 kJ, gain of 2.75 times.

■NaH 50.0gm+Mg 50.0gm+CAII-300 200.0gm+NiBr2 109.5gm,Ein:1990kJ,dE:577kJ,在約140℃下TSC且Tmax為約980℃,理論能量為199kJ,增益為2.9倍。■NaH 50.0gm+Mg 50.0gm+CAII-300 200.0gm+NiBr 2 109.5gm, Ein:1990kJ, dE:577kJ, TSC at about 140°C and Tmax is about 980°C, theoretical energy is 199kJ, gain is 2.9 times .

■無Mg之對照:4g CAIII-300+1g NaH+2.19g NiBr2 ;Ein:134.0kJ;dE:5.37kJ;TSC:未觀測到;Tmax:375℃,理論能量為3.98kJ,增益為1.35倍。■ Control without Mg: 4g CAIII-300+1g NaH+2.19g NiBr 2 ; Ein: 134.0kJ; dE: 5.37kJ; TSC: not observed; Tmax: 375°C, theoretical energy 3.98kJ, gain 1.35 times .

■對照:1g Mg+1g NaH+2.19g NiBr2 ;Ein:129.0kJ;dE:5.13kJ;TSC:195-310℃;Tmax:416℃,理論能量為5.25kJ。Control: 1 g Mg + 1 g NaH + 2.19 g NiBr 2 ; Ein: 129.0 kJ; dE: 5.13 kJ; TSC: 195-310 ° C; Tmax: 416 ° C, theoretical energy 5.25 kJ.

■對照:1g NaH+2.19g NiBr2 ;Ein:138.2kJ;dE:-0.18kJ;TSC:未觀測到;Tmax:377℃,理論能量為3.98kJ。■ Control: 1 g NaH + 2.19 g NiBr 2 ; Ein: 138.2 kJ; dE: -0.18 kJ; TSC: not observed; Tmax: 377 ° C, theoretical energy 3.98 kJ.

CuClCuCl 22

■4g CAIII-300+1g Mg+1g NaH+1.34g CuCl2 ,Ein:119.0kJ,dE:10.5kJ,TSC:250-381℃,Tmax:393℃,理論能量為4.9kJ,增益為2.15倍。■ 4g CAIII-300+1g Mg+1g NaH+1.34g CuCl 2 , Ein: 119.0kJ, dE: 10.5kJ, TSC: 250-381°C, Tmax: 393°C, theoretical energy 4.9kJ, gain 2.15 times.

■4g CAIII-300+1g Al+1g NaH+1.34g CuCl2 ,Ein:126.0kJ,dE:7.4kJ,TSC:229-354℃,Tmax:418℃,理論能量為4.9kJ,增益為1.5倍。■ 4g CAIII-300+1g Al+1g NaH+1.34g CuCl 2 , Ein: 126.0kJ, dE: 7.4kJ, TSC: 229-354°C, Tmax: 418°C, theoretical energy 4.9kJ, gain 1.5 times.

■4g CAIII-300+1g MgH2 +1g NaH+1.34g CuCl2 ,Ein:144.0kJ,dE:8.3kJ,TSC:229-314℃,Tmax:409℃,理論能量為4.9kJ,增益為1.69倍。■4g CAIII-300+1g MgH 2 +1g NaH+1.34g CuCl 2 , Ein: 144.0kJ, dE: 8.3kJ, TSC: 229-314°C, Tmax: 409°C, theoretical energy 4.9kJ, gain 1.69 times .

■NaH 5.0gm+Mg粉末5.0gm+活性碳CAII 300 20.0gm,混合物+CuCl2 10.75gm(理論能量為45kJ),Ein:268kJ,dE:80kJ,溫度在210℃下突升且Tmax為約360℃,理論能量為39kJ,增益為2倍。■NaH 5.0gm+Mg powder 5.0gm+activated carbon CAII 300 20.0gm, mixture +CuCl 2 10.75gm (theoretical energy is 45kJ), Ein:268kJ, dE:80kJ, the temperature rises at 210°C and the Tmax is about 360°C. The theoretical energy is 39kJ and the gain is 2 times.

■1吋大容量電池中1.4g CuCl2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為14.6kJ,且溫度突增190℃(188-378℃)。最大電池溫度為437℃,理論能量為4.9kJ,增益為3倍。■ 1 吋 large capacity battery 1.4g CuCl 2 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain of 14.6kJ, and temperature sudden increase of 190 ° C ( 188-378 ° C). The maximum battery temperature is 437 ° C, the theoretical energy is 4.9 kJ, and the gain is 3 times.

■KH 8.3gm+Mg粉末5.0gm+CAII-300 20.0gm+CuCl2 6.7gm,Ein:255kJ,dE:55kJ,在約200℃下TSC且Tmax為約320℃,理論能量為24.5kJ,增益為2.24倍。■KH 8.3gm+Mg powder 5.0gm+CAII-300 20.0gm+CuCl 2 6.7gm, Ein: 255kJ, dE: 55kJ, TSC at about 200°C and Tmax is about 320°C, theoretical energy is 24.5kJ, the gain is 2.24 times.

CuClCuCl

■4g CAIII-300+1g Mg+1g NaH+1g CuCl;Ein:128.1kJ;dE:4.94kJ;TSC:未觀測到;Tmax:395℃,理論能量為2.18kJ,增益為2.26倍。■ 4g CAIII-300+1g Mg+1g NaH+1g CuCl; Ein: 128.1kJ; dE: 4.94kJ; TSC: not observed; Tmax: 395°C, theoretical energy 2.18kJ, gain 2.26 times.

CoICoI 22

■4g CAIII-300+1g Mg+1g NaH+3.13g CoI2 ,Ein:141.1kJ,dE:9.7kJ,TSC:無,Tmax:411℃,考慮之反應:2NaH(c)+CoI2 (c)+Mg(c)=2NaI(c)+Co(c)+MgH2 (c)Q=-449.8千焦/反應,理論化學反應能量:-4.50kJ,過剩熱:-5.18kJ,增益為1.9倍。■4g CAIII-300+1g Mg+1g NaH+3.13g CoI 2 , Ein: 141.1kJ, dE: 9.7kJ, TSC: none, Tmax: 411°C, consider the reaction: 2NaH(c)+CoI 2 (c) +Mg(c)=2NaI(c)+Co(c)+MgH 2 (c)Q=-449.8 kJ/reaction, theoretical chemical reaction energy: -4.50 kJ, excess heat: -5.18 kJ, gain 1.9 times .

■3.13g CoI2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為10.7kJ,且電池溫度突增117℃(248-365℃)。最大電池溫度為438℃,理論能量為5.27kJ,增益為2.03倍。■ 3.13g CoI 2 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 10.7kJ, and battery temperature suddenly increases by 117 ° C (248-365 ° C) . The maximum battery temperature is 438 ° C, the theoretical energy is 5.27 kJ, and the gain is 2.03 times.

ZnIZnI 22

■4g CAIII-300+1g Mg+1g NaH+3.19g ZnI2 ,Ein:157.1kJ,dE:5.8kJ,TSC:無,Tmax:330℃,考慮之反應:2NaH(c)+ZnI2 (c)+Mg(c)=2NaI(c)+Zn(c)+MgH2 (c)Q=-330.47千焦/反應,理論化學反應能量:-3.30kJ,過剩熱:-2.50kJ,增益為1.75倍。■4g CAIII-300+1g Mg+1g NaH+3.19g ZnI 2 , Ein: 157.1kJ, dE: 5.8kJ, TSC: none, Tmax: 330°C, consider the reaction: 2NaH(c)+ZnI 2 (c) +Mg(c)=2NaI(c)+Zn(c)+MgH 2 (c)Q=-330.47 kJ/reaction, theoretical chemical reaction energy: -3.30kJ, excess heat: -2.50kJ, gain 1.75 times .

■3.19g ZnI2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為5.9kJ,且電池溫度上升變化為79℃(180-259℃)。最大電池溫度為423℃,理論能量為4.29kJ,增益為1.38倍。■ 3.19g ZnI 2 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 5.9kJ, and the battery temperature rises to 79 ° C (180-259 ° C) ). The maximum battery temperature is 423 ° C, the theoretical energy is 4.29 kJ, and the gain is 1.38 times.

NiFNiF 22

■4g CAIII-300+1g Mg+1g NaH+0.97g NiF2 ,Ein:135.0kJ,dE:7.9kJ,TSC:253-335℃,Tmax:385℃,考慮之反應:2NaH(c)+NiF2 (c)+Mg(c)=2NaF(c)+Ni(c)+MgH2 (c)Q=-464.4千焦/反應,理論化學反應能量:-4.64kJ,過剩熱:-3.24kJ,增益為1.7倍。■4g CAIII-300+1g Mg+1g NaH+0.97g NiF 2 , Ein: 135.0kJ, dE: 7.9kJ, TSC: 253-335°C, Tmax: 385°C, consider the reaction: 2NaH(c)+NiF 2 (c) +Mg(c)=2NaF(c)+Ni(c)+MgH 2 (c)Q=-464.4 kJ/reaction, theoretical chemical reaction energy: -4.64kJ, excess heat: -3.24kJ, gain It is 1.7 times.

■0.97g NiF2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為8.7kJ,且電池溫度上升變化為63℃(256-319℃)。最大電池溫度為410℃,理論能量為5.25kJ,增益為1.66倍。■ 0.97g NiF 2 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 8.7kJ, and the battery temperature rises to 63 ° C (256-319 ° C ). The maximum battery temperature is 410 ° C, the theoretical energy is 5.25 kJ, and the gain is 1.66 times.

CC oBroBr

22

■4g CAIII-300+1g Mg+1g NaH+2.19g CoBr2 ,Ein:140.0kJ,dE:7.6kJ,TSC:無,Tmax:461℃,考慮之反應:2NaH(c)+CoBr2 (c)+Mg(c)=2NaBr(c)+Co(c)+MgH2 (c)Q=-464千焦/反應,理論化學反應能量:-4.64kJ,過剩熱:-2.9kJ,增益為1.64倍。■4g CAIII-300+1g Mg+1g NaH+2.19g CoBr 2 , Ein: 140.0kJ, dE: 7.6kJ, TSC: none, Tmax: 461°C, consider the reaction: 2NaH(c)+CoBr 2 (c) +Mg(c)=2NaBr(c)+Co(c)+MgH 2 (c)Q=-464 kJ/reaction, theoretical chemical reaction energy: -4.64kJ, excess heat: -2.9kJ, gain 1.64 times .

■2.19g CoBr2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為10.4kJ,且電池溫度突增110℃(306-416℃)。最大電池溫度為450℃,理論能量為5.27kJ,增益為1.97倍。■ 2.19g CoBr 2 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain of 10.4kJ, and battery temperature sudden increase of 110 ° C (306-416 ° C) . The maximum battery temperature is 450 ° C, the theoretical energy is 5.27 kJ, and the gain is 1.97 times.

■2.19g CoBr2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為10.2kJ,但未觀測到電池溫度突增。最大電池溫度為446℃,理論能量為5.27kJ,增益為1.94倍。■ 2.19 g of CoBr 2 , 1.66 g of KH, 1 g of Mg powder, and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 10.2 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 446 ° C, the theoretical energy is 5.27 kJ, and the gain is 1.94 times.

FeClFeCl 22

■4g CAIII-300+1g Mg+1g NaH+1.27g FeCl2 ,Ein:155.0kJ,dE:10.5kJ,TSC:無,Tmax:450℃,理論能量為3.68kJ,增益為2.85倍。■ 4g CAIII-300+1g Mg+1g NaH+1.27g FeCl 2 , Ein: 155.0kJ, dE: 10.5kJ, TSC: none, Tmax: 450°C, theoretical energy 3.86kJ, gain 2.85 times.

■4g CAIII-300+1g Al+1g NaH+1.27g FeCl2 ,Ein:141.7kJ,dE:7.0kJ,TSC:無,Tmax:440℃,理論能量為3.68kJ,增益為1.9倍。■ 4g CAIII-300+1g Al+1g NaH+1.27g FeCl 2 , Ein: 141.7kJ, dE: 7.0kJ, TSC: none, Tmax: 440° C., theoretical energy 3.86 kJ, gain 1.9 times.

■1吋大容量電池中1.3g FeCl2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為11.5kJ,且溫度突增142℃(287-429℃)。最大電池溫度為448℃,理論能量為4.1kJ,增益為2.8倍。■1吋 large capacity battery with 1.3g FeCl 2 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300°C) with an energy gain of 11.5kJ and a sudden increase in temperature of 142°C ( 287-429 ° C). The maximum battery temperature is 448 ° C, the theoretical energy is 4.1 kJ, and the gain is 2.8 times.

■NaH 5.0gm+Mg粉末5.0gm+活性碳CAII 300 20.0gm,混合物+FeCl2 6.35gm,Ein:296kJ,dE:37kJ,溫度在220℃下突升且Tmax為約330℃,理論能量為18.4kJ,增益為2倍。■NaH 5.0gm+Mg powder 5.0gm+activated carbon CAII 300 20.0gm, mixture +FeCl 2 6.35gm, Ein:296kJ, dE:37kJ, the temperature rises at 220°C and Tmax is about 330°C, the theoretical energy is 18.4kJ The gain is 2 times.

FeClFeCl 33

■2.7g FeCl3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為21.3kJ,且電池溫度突增205℃(147-352℃)。最大電池溫度為445℃,理論能量為10.8kJ,增益為1.97倍。■ 2.7 g FeCl 3 , 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 21.3 kJ, and battery temperature suddenly increases by 205 ° C (147-352 ° C) . The maximum battery temperature is 445 ° C, the theoretical energy is 10.8 kJ, and the gain is 1.97 times.

■NaH 1.0gm+Mg粉末1.0gm+TiC 4.0gm+FeCl3 1.6gm,Ein:88kJ,dE:14kJ;TSC在80℃下且Tmax為約350℃,理論能量為6.65kJ,增益為2.1倍。■NaH 1.0 gm + Mg powder 1.0 gm + TiC 4.0 gm + FeCl 3 1.6 gm, Ein: 88 kJ, dE: 14 kJ; TSC at 80 ° C and Tmax is about 350 ° C, theoretical energy is 6.65 kJ, and the gain is 2.1 times.

■KH 8.3gm+MgH2 粉末5.0gm+CAII 300 20.0gm+FeCl3 8.1gm,Ein:253kJ,dE:52kJ/;無TSC且Tmax為約300℃,理論能量為33kJ,增益為1.56倍。■ KH 8.3 gm + MgH 2 powder 5.0 gm + CAII 300 20.0 gm + FeCl 3 8.1 gm, Ein: 253 kJ, dE: 52 kJ /; no TSC and Tmax of about 300 ° C, theoretical energy of 33 kJ, gain of 1.56 times.

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+FeCl2 6.5gm,Ein:299kJ,dE:44kJ,無TSC且Tmax為約350℃,理論能量為18.9kJ,增益為2.3倍。■ KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + FeCl 2 6.5 gm, Ein: 299 kJ, dE: 44 kJ, no TSC and Tmax of about 350 ° C, theoretical energy of 18.9 kJ, and gain of 2.3 times.

FeBrFeBr 22

■4g CAIII-300+1g Mg+1.66g KH+2.16g FeBr2 ;Ein:144.0kJ;dE:9.90kJ;TSC:未觀測到;Tmax:455℃,理論能量為3.6kJ,增益為2.75倍。■ 4g CAIII-300+1g Mg+1.66g KH+2.16g FeBr 2 ; Ein: 144.0kJ; dE: 9.90kJ; TSC: not observed; Tmax: 455° C., theoretical energy 3.6kJ, gain 2.75 times.

■4g CAIII-300+1g MgH2 +1g NaH+2.16g FeBr2 ;Ein:142.0kJ;dE:8.81kJ;TSC:未觀測到;Tmax:428℃,理論能量為3.6kJ,增益為2.44倍。■ 4g CAIII-300+1g MgH 2 +1g NaH+2.16g FeBr 2 ; Ein: 142.0kJ; dE: 8.81kJ; TSC: not observed; Tmax: 428° C., theoretical energy 3.6kJ, gain 2.44 times.

■4g CAIII-300+1g MgH2 +0.33g LiH+2.16g FeBr2 ;Ein:164.0kJ;dE:8.68kJ;TSC:未觀測到;Tmax:450℃,理論能量為3.6kJ,增益為2.4倍。■4g CAIII-300+1g MgH 2 +0.33g LiH+2.16g FeBr 2 ; Ein: 164.0kJ; dE: 8.68kJ; TSC: not observed; Tmax: 450°C, theoretical energy 3.6kJ, gain 2.4 times .

■4g CAIII-300+1g MgH2 +1.66g KH+2.16g FeBr2 ;Ein:159.8kJ;dE:9.07kJ;TSC:未觀測到;Tmax:459℃,理論能量為3.6kJ,增益為2.5倍。■4g CAIII-300+1g MgH 2 +1.66g KH+2.16g FeBr 2 ; Ein: 159.8kJ; dE: 9.07kJ; TSC: not observed; Tmax: 459°C, theoretical energy 3.6kJ, gain 2.5 times .

■4g CAIII-300+1g Mg+1g NaH+2.96g FeBr2 ,實驗dE:-6.7kJ,考慮之反應:2NaH(c)+FeBr2 (c)+Mg(c)=2NaBr(c)+Fe(c)+MgH2 (c)Q=-435.1千焦/反應,理論化學反應能量:-4.35kJ,過剩熱:-2.35kJ,1.54X過剩熱。■4g CAIII-300+1g Mg+1g NaH+2.96g FeBr 2 , experiment dE: -6.7kJ, consider the reaction: 2NaH(c)+FeBr 2 (c)+Mg(c)=2NaBr(c)+Fe (c) +MgH 2 (c)Q=-435.1 kJ/reaction, theoretical chemical reaction energy: -4.35 kJ, excess heat: -2.35 kJ, 1.54X excess heat.

NiClNiCl 22

■4g CAIII-300+1g Mg+1g NaH+1.30g NiCl2 ,Ein:112.0kJ,dE:9.7kJ,TSC:230-368℃,Tmax:376℃,理論能量為4kJ,增益為2.4倍。■ 4g CAIII-300+1g Mg+1g NaH+1.30g NiCl 2 , Ein: 112.0kJ, dE: 9.7kJ, TSC: 230-368°C, Tmax: 376°C, theoretical energy 4kJ, gain 2.4 times.

■1吋大容量電池中1.3g NiCl2 、0.33g LiH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為9.2kJ,且溫度上升變化為100℃(205-305℃)。最大電池溫度為432℃,理論能量為4kJ,增益為2.3倍。■1吋 large capacity battery 1.3g NiCl 2 , 0.33g LiH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 9.2kJ, and the temperature rise changes to 100 ° C (205-305 ° C). The maximum battery temperature is 432 ° C, the theoretical energy is 4 kJ, and the gain is 2.3 times.

■1吋大容量電池中1.3g NiCl2 、0.33g LiH、1g Al粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為8.0kJ,且溫度上升變化為85℃(206-291℃)。最大電池溫度為447℃,理論能量為4kJ,增益為2倍。■1吋 large capacity battery 1.3g NiCl 2 , 0.33g LiH, 1g Al powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 8.0kJ, and the temperature rise changes to 85 ° C (206-291 ° C). The maximum battery temperature is 447 ° C, the theoretical energy is 4 kJ, and the gain is 2 times.

CuBCuB rr

■4g CAIII-300+1g Mg+1g NaH+1.44g CuBr;Ein:125.0kJ;dE:4.67kJ;TSC:未觀測到;Tmax:382℃,理論能量為2kJ,增益為2.33倍。■ 4g CAIII-300+1g Mg+1g NaH+1.44g CuBr; Ein: 125.0kJ; dE: 4.67kJ; TSC: not observed; Tmax: 382°C, theoretical energy 2kJ, gain 2.33 times.

■4g CAIII-300+1g Mg+1.66g KH+1.44g CuBr,實驗dE:-7.6kJ,考慮之反應:CuBr(c)+KH(c)+0.5Mg(c)=KBr(c)+Cu(c)+0.5MgH2 (c)Q=-269.2千焦/反應,理論化學反應能量:-2.70kJ,過剩熱:-4.90kJ,2.8X過剩熱。■4g CAIII-300+1g Mg+1.66g KH+1.44g CuBr, experimental dE:-7.6kJ, consider the reaction: CuBr(c)+KH(c)+0.5Mg(c)=KBr(c)+Cu (c) +0.5MgH 2 (c) Q=-269.2 kJ/reaction, theoretical chemical reaction energy: -2.70 kJ, excess heat: -4.90 kJ, 2.8X excess heat.

CuBrCuBr 22

■4g CAIII-300+1g Mg+1g NaH+2.23g CuBr2 ;Ein:118.1kJ;dE:8.04kJ;TSC:108-180℃;Tmax:369℃,理論能量為4.68kJ,增益為1.7倍。■ 4g CAIII-300+1g Mg+1g NaH+2.23g CuBr 2 ; Ein: 118.1kJ; dE: 8.04kJ; TSC: 108-180° C; Tmax: 369° C., theoretical energy 4.68 kJ, gain 1.7 times.

SnFSnF 44

■2.0g SnF4 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為18.4kJ,但未觀測到溫度突增。最大電池溫度為576℃,理論能量為9.3kJ,增益為1.98倍。■ 2.0 g of SnF 4 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 18.4 kJ, but no temperature increase was observed. The maximum battery temperature is 576 ° C, the theoretical energy is 9.3 kJ, and the gain is 1.98 times.

AlIAlI 33

■4.1g AlI3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為10.1kJ,但未觀測到溫度突增。最大電池溫度為412℃,理論能量為6.68kJ,增益為1.51倍。■ 4.1 g AlI 3 , 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 10.1 kJ, but no temperature increase was observed. The maximum battery temperature is 412 ° C, the theoretical energy is 6.68 kJ, and the gain is 1.51 times.

■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+AlI3 20.5gm,Ein:318kJ,dE:48kJ,理論能量為33.4kJ,增益為1.4倍。■KH 8.3gm+Mg 5.0gm+CAII-300 20.0gm+AlI 3 20.5gm, Ein: 318kJ, dE: 48kJ, theoretical energy is 33.4kJ, and gain is 1.4 times.

SiClSiCl 44

■1.7g SiCl4 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為12.6kJ,且溫度突增68℃(366-434℃)。最大電池溫度為473℃,理論能量為7.32kJ,增益為1.72倍。■ 1.7 g of SiCl 4 , 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), an energy gain of 12.6 kJ, and a sudden increase in temperature of 68 ° C (366-434 ° C). The maximum battery temperature is 473 ° C, the theoretical energy is 7.32 kJ, and the gain is 1.72 times.

■4g CAIII-300+1g Mg+1g NaH+0.01mol SiCl4 (1.15cc);Ein:114.0kJ;dE:14.19kJ;TSC:260-410℃;Tmax:423℃,理論能量為7.32kJ,增益為1.94倍。■4g CAIII-300+1g Mg+1g NaH+0.01mol SiCl 4 (1.15cc); Ein: 114.0kJ; dE: 14.19kJ; TSC: 260-410°C; Tmax: 423°C, theoretical energy 7.32kJ, gain It is 1.94 times.

AlBrAlBr 33

■2.7g AlBr3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為7.5kJ,但未觀測到溫度突增。最大電池溫度為412℃,理論能量為4.46kJ,增益為1.68倍。■ 2.7 g of AlBr 3 , 1.66 g of KH, 1 g of Mg powder, and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 7.5 kJ, but no temperature increase was observed. The maximum battery temperature is 412 ° C, the theoretical energy is 4.46 kJ, and the gain is 1.68 times.

FeClFeCl 33

■2.7g FeCl3 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為21.3kJ,且電池溫度突增205℃(147-352℃),最大電池溫度為445℃,理論能量為10.8kJ,增益為1.97倍。■ 2.7 g FeCl 3 , 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 21.3 kJ, and battery temperature suddenly increases by 205 ° C (147-352 ° C) The maximum battery temperature is 445 ° C, the theoretical energy is 10.8 kJ, and the gain is 1.97 times.

SeBrSeBr 44

■4g CAIII-300+1g Mg+1g NaH+3.99g SeBr4 ;Ein:112.0kJ;dE:23.40kJ;TSC:132-448℃;Tmax:448℃,理論能量為15.7kJ,增益為1.5倍。■ 4g CAIII-300+1g Mg+1g NaH+3.99g SeBr 4 ; Ein: 112.0kJ; dE: 23.40kJ; TSC: 132-448°C; Tmax: 448° C., theoretical energy: 15.7kJ, gain 1.5 times.

SnBrSnBr 44

■4g CAIII-300+1g Mg+1g NaH+4.38g SnBr4 ;Ein:98.0kJ;dE:12.44kJ;TSC:120-270℃;Tmax:359℃,理論能量為8.4kJ,增益為1.48倍。■ 4g CAIII-300+1g Mg+1g NaH+4.38g SnBr 4 ; Ein: 98.0kJ; dE: 12.44kJ; TSC: 120-270°C; Tmax: 359°C, theoretical energy 8.4kJ, gain 1.48 times.

■KH 8.3gm+Mg粉末5.0gm+CAII 300 20.0gm+SnBr4 22.0gm,Ein:163kJ,dE:78kJ;在60℃下TSC且Tmax為約290℃,理論能量為42kJ,增益為1.86倍。■ KH 8.3 gm + Mg powder 5.0 gm + CAII 300 20.0 gm + SnBr 4 22.0 gm, Ein: 163 kJ, dE: 78 kJ; TSC at 60 ° C and Tmax of about 290 ° C, theoretical energy of 42 kJ, gain of 1.86 times.

SiBrSiBr 44

■3.5g SiBr4 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為11.9kJ,且溫度突增99℃(304-403℃)。最大電池溫度為449℃,理論能量為7.62kJ,增益為1.56倍。■ 3.5 g SiBr 4 , 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 11.9 kJ, and the temperature suddenly increased by 99 ° C (304-403 ° C). The maximum battery temperature is 449 ° C, the theoretical energy is 7.62 kJ, and the gain is 1.56 times.

TeBrTeBr 44

■4g CAIII-300+1g Mg+1g NaH+4.47g TeBr4 ,Ein:99.0kJ,dE:18.4kJ,TSC:186-411℃,Tmax:418℃,理論能量為11.3kJ,增益為1.63倍。■ 4g CAIII-300+1g Mg+1g NaH+4.47g TeBr 4 , Ein: 99.0kJ, dE: 18.4kJ, TSC: 186-411°C, Tmax: 418°C, theoretical energy 11.3kJ, gain 1.63 times.

■4g CAIII-300+1g Al+1g NaH+4.47g TeBr4 ,Ein:101.0kJ,dE:14.7kJ,TSC:144-305℃,Tmax:374℃,理論能量為11.4kJ,增益為1.29倍。■ 4g CAIII-300+1g Al+1g NaH+4.47g TeBr 4 , Ein: 101.0kJ, dE: 14.7kJ, TSC: 144-305°C, Tmax: 374°C, theoretical energy 11.4kJ, gain 1.29 times.

■1吋大容量電池中4.5g TeBr4 、1.66g KH、1g MgH2 粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為19.1kJ,且溫度突增218℃(172-390℃)。最大電池溫度為410℃,理論能量為12.65kJ,增益為1.5倍。■ 1-inch large-capacity battery 4.5g TeBr 4, 1.66g KH, 1g MgH 2 powder and 4g CA-III 300 activated carbon powder (dried at 300 ℃), an energy gain of 19.1kJ, and a sudden increase in the temperature of 218 deg.] C (172-390 ° C). The maximum battery temperature is 410 ° C, the theoretical energy is 12.65 kJ, and the gain is 1.5 times.

■1吋大容量電池中4.5g TeBr4 、1.66g KH、1g Mg粉末及4gCA-III 300活性碳粉末(在300℃下乾燥),能量增益為23.5kJ,且溫度突增247℃(184-431℃)。最大電池溫度為436℃,理論能量為12.4kJ,增益為1.89倍。■ 1吋 large capacity battery 4.5g TeBr 4 , 1.66g KH, 1g Mg powder and 4gCA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 23.5kJ, and the temperature suddenly increases by 247 ° C (184 -431 ° C). The maximum battery temperature is 436 ° C, the theoretical energy is 12.4 kJ, and the gain is 1.89 times.

■KH 6.64gm+Mg粉末4.0gm+活性碳CAII 300 16gm+TeBr4 18gm(理論kJ)(80% 5X按比例增加),Ein:213kJ,dE:77kJ,溫度在140℃下突升且Tmax為約320℃,理論能量為48.4kJ,增益為1.59倍。■KH 6.64gm+Mg powder 4.0gm+activated carbon CAII 300 16gm+TeBr 4 18gm (theoretical kJ) (80% 5X proportionally increased), Ein: 213kJ, dE: 77kJ, temperature rises at 140°C and Tmax is about At 320 ° C, the theoretical energy is 48.4 kJ and the gain is 1.59 times.

TeClTeCl 44

■4g CAIII-300+1g Mg+1g NaH+2.7g TeCl4 ;Ein:99.0kJ;dE:16.76kJ;TSC:114-300℃;Tmax:385℃,理論能量為13kJ,增益為1.29倍。■ 4g CAIII-300+1g Mg+1g NaH+2.7g TeCl 4 ; Ein: 99.0kJ; dE: 16.76kJ; TSC: 114-300°C; Tmax: 385°C, theoretical energy 13kJ, gain 1.29 times.

■1吋大容量電池中2.7g TeCl4 、0.33g LiH、1g MgH2 粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為20.4kJ,且溫度突增140℃(138-278℃)。最大電池溫度為399℃,理論能量為12.1kJ,增益為1.69倍。■ 1 吋 large capacity battery with 2.7 g TeCl 4 , 0.33 g LiH, 1 g MgH 2 powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain of 20.4 kJ, and temperature sudden increase of 140 ° C (138-278 ° C). The maximum battery temperature is 399 ° C, the theoretical energy is 12.1 kJ, and the gain is 1.69 times.

■1吋大容量電池中2.7g TeCl4 、0.33g LiH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為17.2kJ,且溫度突增240℃(137-377℃)。最大電池溫度為398℃,理論能量為12.8kJ,增益為1.34倍。■ 1 吋 large capacity battery with 2.7 g TeCl 4 , 0.33 g LiH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 17.2 kJ and a sudden temperature increase of 240 ° C ( 137-377 ° C). The maximum battery temperature is 398 ° C, the theoretical energy is 12.8 kJ, and the gain is 1.34 times.

■1吋大容量電池中2.7g TeCl4 、1.66g KH、1g MgH2 粉末及4g CA-III 300活性碳粉末(在300℃下乾燥)。能量增益為15.6kJ,且溫度突增216℃(139-355℃)。最大電池溫度為358℃,理論能量為12.1kJ,增益為1.29倍。■ 1 吋 large capacity battery 2.7 g TeCl 4 , 1.66 g KH, 1 g MgH 2 powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C). The energy gain was 15.6 kJ and the temperature suddenly increased by 216 ° C (139-355 ° C). The maximum battery temperature is 358 ° C, the theoretical energy is 12.1 kJ, and the gain is 1.29 times.

■1吋大容量電池中2.7g TeCl4 、1.66g KH、1g Al粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為19.4kJ,且溫度突增202℃(89-291℃)。最大電池溫度為543℃,理論能量為10.9kJ,增益為1.78倍。■ 1 吋 large capacity battery with 2.7 g TeCl 4 , 1.66 g KH, 1 g Al powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain of 19.4 kJ, and temperature increase of 202 ° C ( 89-291 ° C). The maximum battery temperature is 543 ° C, the theoretical energy is 10.9 kJ, and the gain is 1.78 times.

■1吋大容量電池中2.7g TeCl4 、0.33g LiH、1g Al粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為19.0kJ,且溫度突增288℃(155-443℃)。最大電池溫度為443℃,理論能量為10.9kJ,增益為1.74倍。■ 1 吋 large capacity battery with 2.7 g TeCl 4 , 0.33 g LiH, 1 g Al powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 19.0 kJ and a sudden temperature increase of 288 ° C ( 155-443 ° C). The maximum battery temperature is 443 ° C, the theoretical energy is 10.9 kJ, and the gain is 1.74 times.

■1吋大容量電池中2.7g TeCl4 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為17.7kJ,且溫度突增208℃(84-292℃)。最大電池溫度為396℃,理論能量為13kJ,增益為1.36倍。■ 1 吋 large capacity battery with 2.7 g TeCl 4 , 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 17.7 kJ and a sudden temperature increase of 208 ° C ( 84-292 ° C). The maximum battery temperature is 396 ° C, the theoretical energy is 13 kJ, and the gain is 1.36 times.

■1吋大容量電池中2.7g TeCl4 、1.66g KH、1g Al粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為18.7kJ,且溫度突增224℃(112-336℃)。最大電池溫度為398℃,理論能量為12kJ,增益為1.56倍。■ 1 吋 large capacity battery with 2.7 g TeCl 4 , 1.66 g KH, 1 g Al powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 18.7 kJ and a sudden temperature increase of 224 ° C ( 112-336 ° C). The maximum battery temperature is 398 ° C, the theoretical energy is 12 kJ, and the gain is 1.56 times.

SeClSeCl 44

■4g CAIII-300+1g Mg+1g NaH+2.21g SeCl4 ;Ein:93.0kJ;dE:22.14kJ;TSC:141-435℃;Tmax:435℃,理論能量為15kJ,增益為1.48倍。■ 4g CAIII-300+1g Mg+1g NaH+2.21g SeCl 4 ; Ein: 93.0kJ; dE: 22.14kJ; TSC: 141-435°C; Tmax: 435° C., theoretical energy 15kJ, gain 1.48 times.

■4g CAIII-300+1g Mg+1.66g KH+2.20g SeCl4 ,實驗dE:-25.2kJ,考慮之反應:SeCl4 (c)+4KH(c)+3Mg(c)=4KCl(c)+MgSe(c)+2MgH2 (c)Q=-1750.4千焦/反應,理論化學反應能量:-17.5kJ,過剩熱:-7.7kJ,1.44X過剩熱。■4g CAIII-300+1g Mg+1.66g KH+2.20g SeCl 4 , experiment dE: -25.2kJ, consider the reaction: SeCl 4 (c)+4KH(c)+3Mg(c)=4KCl(c)+ MgSe(c)+2MgH 2 (c)Q=-1750.4 kJ/reaction, theoretical chemical reaction energy: -17.5 kJ, excess heat: -7.7 kJ, 1.44X excess heat.

CFCF 44

■NaH 50gm+Al 50gm+活性碳CAII300 200gm+CF4 0.3mol;45PSIG儲集電池體積:2221.8CC,Ein:2190kJ,dE:482kJ,溫度在200℃下突升且Tmax為約760℃,理論能量為345kJ,增益為1.4倍。■NaH 50gm+Al 50gm+activated carbon CAII300 200gm+CF 4 0.3mol; 45PSIG storage battery volume: 2221.8CC, Ein: 2190kJ, dE: 482kJ, temperature rises at 200°C and Tmax is about 760°C, theoretical energy is 345kJ, the gain is 1.4 times.

■抽空後NaH 50.0gm+Mg粉末50gm+活性碳CAII-300 200gm+CF4 75-9.9PSIG。儲集器體積為1800CC且對於此壓降而言,n=0.356mol,且理論能量為約392kJ,Ein:1810kJ,dE:765kJ,溫度在170℃下突升且Tmax為約1000℃且增益為765/392=1.95X。■ After evacuation, NaH 50.0 gm + Mg powder 50 gm + activated carbon CAII-300 200 gm + CF 4 75-9.9 PSIG. The reservoir volume is 1800 cc and for this pressure drop, n = 0.356 mol, and the theoretical energy is about 392 kJ, Ein: 1810 kJ, dE: 765 kJ, the temperature rises at 170 ° C and the Tmax is about 1000 ° C and the gain is 765/392=1.95X.

■NaH 1.0gm+(Mg粉末1.0gm+活性碳CAII 300 4gm)球磨+CF4 0.0123mol,且理論能量為約13.6kJ,Ein:143kJ,dE:25kJ,溫度在250℃下突升且Tmax為約500℃且能量增益為約1.8X。■NaH 1.0gm+ (Mg powder 1.0gm + activated carbon CAII 300 4gm) ball mill + CF 4 0.0123mol, and the theoretical energy is about 13.6kJ, Ein: 143kJ, dE: 25kJ, the temperature rises at 250 ° C and the Tmax is about 500. °C and the energy gain is about 1.8X.

■NaH 1.0gm+(Mg粉末1.0gm+活性碳CAII-300 4gm)球磨+CF4 約0.01mol,理論能量為約10.2kJ,Ein:121kJ,dE:18kJ,溫度在260℃下突升且Tmax為約500℃且能量增益為約1.7X。■NaH 1.0gm+ (Mg powder 1.0gm + activated carbon CAII-300 4gm) ball mill + CF 4 about 0.01mol, theoretical energy is about 10.2kJ, Ein: 121kJ, dE: 18kJ, temperature rises at 260 ° C and Tmax is about 500 ° C and an energy gain of about 1.7X.

■NaH 1.0gm+(Mg粉末1.0gm+活性碳CAII-300 4gm)球磨+CF4 0.006mol,且理論能量為約7.2kJ,Ein:133kJ,dE:15kJ,溫度在300℃下突升且Tmax為約440℃且能量增益為約2.0X。■NaH 1.0gm+ (Mg powder 1.0gm + activated carbon CAII-300 4gm) ball mill + CF 4 0.006mol, and the theoretical energy is about 7.2kJ, Ein: 133kJ, dE: 15kJ, the temperature rises at 300 ° C and Tmax is about 440 ° C and an energy gain of about 2.0X.

■4g CAIII-300+1g MgH2 +3.55g Rb+0.0082mol CF4 +0.0063mol H2 ;Ein:76.0kJ;dE:20.72kJ;TSC:30-200℃;Tmax:348℃,理論能量為10kJ,增益為2倍。■4g CAIII-300+1g MgH 2 +3.55g Rb+0.0082mol CF 4 +0.0063mol H 2 ;Ein:76.0kJ; dE:20.72kJ; TSC:30-200°C; Tmax:348°C, theoretical energy 10kJ The gain is 2 times.

SS FF 66

■NaH 50gm+MgH2 50gm+活性碳CAII300 200gm+SF6 0.29mol;43 PSIG儲集電池體積:2221.8CC,Ein:1760kJ,dE:920kJ,溫度在約140℃下突升且Tmax為約1100℃,理論能量為638kJ,增益為1.44倍。■NaH 50gm+MgH 2 50gm+activated carbon CAII300 200gm+SF 6 0.29mol; 43 PSIG storage battery volume: 2221.8CC, Ein: 1760kJ, dE: 920kJ, temperature rises at about 140°C and Tmax is about 1100°C. The theoretical energy is 638 kJ and the gain is 1.44 times.

■4g CAIII-300+1g MgH2 +1g NaH+0.0094mo1 SF6 ;Ein:96.7kJ;dE:33.14kJ;TSC:110-455℃;Tmax:455℃,理論能量為20.65kJ,過剩12.5kJ,增益為1.6倍。■ 4g CAIII-300 + 1g MgH 2 + 1g NaH + 0.0094mo 1 SF 6; Ein: 96.7kJ; dE: 33.14kJ; TSC: 110-455 ℃; Tmax: 455 ℃, theoretical energy 20.65kJ, excess 12.5kJ The gain is 1.6 times.

■NaH 1.0gm+Al粉末1.0gm+活性碳CAII 300 4gm球磨+SF6 0.01mol,且理論能量為約20kJ,Ein:95kJ,dE:30kJ,溫度上升變化在約100℃下且Tmax為約400℃,理論能量為20.4kJ,過剩9.6kJ,增益為1.47倍。■NaH 1.0gm+Al powder 1.0gm+activated carbon CAII 300 4gm ball mill+SF 6 0.01mol, and the theoretical energy is about 20kJ, Ein: 95kJ, dE: 30kJ, the temperature rise changes at about 100°C and the Tmax is about 400°C. The theoretical energy is 20.4kJ, the excess is 9.6kJ, and the gain is 1.47 times.

■NaH 1.0gm+MgH2 粉末1.0gm+活性碳CAII 300 4gm球磨+SF6 0.01mol,且理論能量為約22kJ,Ein:85kJ,dE:28kJ,溫度上升變化在約110℃下且Tmax為約410℃,理論能量為22kJ,過剩6kJ,增益為1.27倍。■NaH 1.0gm+MgH 2 powder 1.0gm+activated carbon CAII 300 4gm ball mill + SF 6 0.01mol, and the theoretical energy is about 22kJ, Ein: 85kJ, dE: 28kJ, the temperature rise changes at about 110°C and the Tmax is about 410. °C, the theoretical energy is 22kJ, the excess is 6kJ, and the gain is 1.27 times.

■NaH 1.0gm+Al奈米粉末1.0gm+活性碳CAII 300 4gm球磨+SF6 0.005mol,Ein:107kJ,dE:21kJ,溫度上升變化在約160℃下且Tmax為約380℃,理論能量為10.2kJ,增益為2倍。■NaH 1.0gm+Al nanopowder 1.0gm+activated carbon CAII 300 4gm ball mill+SF 6 0.005mol, Ein: 107kJ, dE: 21kJ, temperature rise change at about 160°C and Tmax is about 380°C, theoretical energy is 10.2 kJ, the gain is 2 times.

■NaH 1.0gm+Mg粉末1.0gm+活性碳CAII 300 4gm球磨+SF6 0.005mol,Ein:104kJ,dE:18kJ,溫度上升變化在約150℃下且Tmax為約370℃,理論能量為12.5kJ,過剩5.5kJ,增益為1.44倍。■NaH 1.0gm+Mg powder 1.0gm+activated carbon CAII 300 4gm ball mill+SF 6 0.005mol, Ein: 104kJ, dE: 18kJ, temperature rise change at about 150°C and Tmax is about 370°C, theoretical energy is 12.5kJ, Excess 5.5kJ, the gain is 1.44 times.

■NaH 1.0gm+MgH2 粉末1.0gm+活性碳CAII 300 4gm球磨+SF6 0.0025mol,且理論能量為約5.5kJ,Ein:100kJ,dE:10kJ,溫度在約160℃下上升變化且Tmax為約335℃,理論能量為5.5kJ,增益為1.8倍。■ NaH 1.0gm + MgH 2 1.0gm + activated carbon powder milling CAII 300 4gm + SF 6 0.0025mol, and the theoretical energy of about 5.5kJ, Ein: 100kJ, dE: 10kJ, the temperature rise at about 160 ℃ variation and Tmax of about At 335 ° C, the theoretical energy is 5.5 kJ and the gain is 1.8 times.

■4g CAIII-300+0.5g B+1g NaH+0.0047mol SF6 ;Ein:112.0kJ;dE:15.14kJ;TSC:210-350℃;Tmax:409℃,理論能量為10.12kJ,過剩5kJ,增益為1.49倍。■4g CAIII-300+0.5g B+1g NaH+0.0047mol SF 6 ; Ein: 112.0kJ; dE: 15.14kJ; TSC: 210-350°C; Tmax: 409°C, theoretical energy 10.12kJ, excess 5kJ, gain It is 1.49 times.

■4g CAIII-300+1g MgH2 +1.66g KH+0.00929mol SF6 (在填充SF6 後,電池溫度上升至29℃);Ein:66.0kJ;dE:26.11kJ;TSC:37-375℃;Tmax:375℃,理論能量為20.4kJ,增益為1.28倍。■ 4g CAIII-300 + 1g MgH 2 + 1.66g KH + 0.00929mol SF 6 ( after filling SF 6, the battery temperature rises to 29 ℃); Ein: 66.0kJ; dE: 26.11kJ; TSC: 37-375 ℃; Tmax: 375 ° C, theoretical energy is 20.4 kJ, and the gain is 1.28 times.

■4g CAIII-300+1g Mg+0.33g LiH+0.00929mol SF6 (在填充SF6 後,電池溫度上升至26℃);Ein:128.0kJ;dE:32.45kJ;TSC:275-540℃;Tmax:550℃,理論能量為23.2kJ,增益為1.4倍。■ 4g CAIII-300 + 1g Mg + 0.33g LiH + 0.00929mol SF 6 ( after filling SF 6, the battery temperature rises to 26 ℃); Ein: 128.0kJ; dE: 32.45kJ; TSC: 275-540 ℃; Tmax : 550 ° C, the theoretical energy is 23.2 kJ, and the gain is 1.4 times.

■4g CAIII-300+1g S+1g NaH+0.0106mol SF6 (線上),Ein:86.0kJ,dE:18.1kJ,TSC:51-313℃,Tmax:354℃,理論能量為11.2kJ,增益為1.6。■4g CAIII-300+1g S+1g NaH+0.0106mol SF 6 (on line), Ein: 86.0kJ, dE: 18.1kJ, TSC: 51-313°C, Tmax: 354°C, theoretical energy 11.2kJ, gain is 1.6.

■NaH 5.0gm+MgH2 5.0gm+活性碳CAII 300 20.0gm球磨+SF6 40 PSIG(0.026mol線上)(理論能量為約57kJ)2"電池,Ein:224kJ,dE:86kJ,溫度在150℃下突升且Tmax為約350℃,理論能量為57kJ,增益為1.5倍。■NaH 5.0gm+MgH 2 5.0gm+activated carbon CAII 300 20.0gm ball mill +SF 6 40 PSIG (0.026mol line) (theoretical energy is about 57kJ) 2" battery, Ein: 224kJ, dE: 86kJ, temperature at 150 °C The swell and Tmax is about 350 ° C, the theoretical energy is 57 kJ, and the gain is 1.5 times.

TeOTeO 22

■4g CAIII-300+1g MgH2 +1g NaH+1.6g TeO2 ;Ein:325.1kJ;dE:18.46kJ;TSC:210-440℃;Tmax:440℃,理論能量為9.67kJ,過剩8.8kJ,增益為1.9倍。■ 4g CAIII-300+1g MgH 2 +1g NaH+1.6g TeO 2 ; Ein: 325.1kJ; dE: 18.46kJ; TSC: 210-440°C; Tmax: 440°C, theoretical energy is 9.67kJ, excess 8.8kJ, The gain is 1.9 times.

■4g CAIII-300+2g MgH2 +2g NaH+3.2g TeO2 ,Ein:103.0kJ,dE:31.6kJ,TSC:185-491℃,Tmax:498℃,理論能量為17.28kJ,增益為1.83倍。■ 4g CAIII-300 + 2g MgH 2 + 2g NaH + 3.2g TeO 2, Ein: 103.0kJ, dE: 31.6kJ, TSC: 185-491 ℃, Tmax: 498 ℃, theoretical energy 17.28kJ, gain is 1.83 times .

■1吋大容量電池中1.6g TeO2 、0.33g LiH、1g Al粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為18.1kJ,但未觀測到溫度突增。最大電池溫度為637℃,理論能量為8.66kJ,增益為2.1倍。■1 吋 large capacity battery 1.6g TeO 2 , 0.33g LiH, 1g Al powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain of 18.1kJ, but no sudden increase in temperature . The maximum battery temperature is 637 ° C, the theoretical energy is 8.66 kJ, and the gain is 2.1 times.

■1吋大容量電池中1.6g TeO2 、1.66g KH、1g MgH2 粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為22.0kJ,且溫度突增233℃(316-549℃)。最大電池溫度為554℃,理論能量為8.64kJ,增益為2.55倍。■ 1-inch large-capacity battery 1.6g TeO 2, 1.66g KH, 1g MgH 2 powder and 4g CA-III 300 activated carbon powder (dried at 300 deg.] C), an energy gain of 22.0kJ, and a sudden increase in the temperature of 233 deg.] C (316-549 ° C). The maximum battery temperature is 554 ° C, the theoretical energy is 8.64 kJ, and the gain is 2.55 times.

■1吋大容量電池中1.6g TeO2 、1.66g KH、1g Mg粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為20.3kJ,且溫度突增274℃(268-542℃)。最大電池溫度為549℃,理論能量為10.9kJ,增益為1.86倍。■ 1 吋 large capacity battery 1.6g TeO 2 , 1.66g KH, 1g Mg powder and 4g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain is 20.3kJ, and the temperature suddenly increases by 274 ° C ( 268-542 ° C). The maximum battery temperature is 549 ° C, the theoretical energy is 10.9 kJ, and the gain is 1.86 times.

■NaH 5.0gm+MgH2 粉末5.0gm+活性碳CAII 300 20gm球磨+TeO2 8.0gm,Ein:253kJ,dE:77kJ,溫度在200℃下突升且Tmax為約400℃,理論能量為48.35kJ,增益為1.6倍。■NaH 5.0gm+MgH 2 powder 5.0gm+activated carbon CAII 300 20gm ball mill+TeO 2 8.0gm, Ein: 253kJ, dE: 77kJ, the temperature rises at 200°C and the Tmax is about 400°C, the theoretical energy is 48.35kJ, The gain is 1.6 times.

■NaH 1.0gm+MgH2 粉末1.0gm+活性碳CAII 300 4.0gm球磨+TeO2 1.6gm,Ein:110kJ,dE:16kJ,溫度在190℃下突升且Tmax為約400℃,理論能量為9.67kJ,增益為1.65倍。■NaH 1.0gm+MgH 2 powder 1.0gm+activated carbon CAII 300 4.0gm ball mill+TeO 2 1.6gm, Ein: 110kJ, dE: 16kJ, the temperature rises at 190°C and the Tmax is about 400°C, the theoretical energy is 9.67kJ The gain is 1.65 times.

■KH 1.66gm+MgH2 粉末1.0gm+活性碳CAII 300 4.0gm球磨+TeO2 1.6gm,Ein:119kJ,dE:19kJ,溫度在340℃下突升且Tmax為約570℃,理論能量為9.67kJ,增益為2倍。■KH 1.66gm+MgH 2 powder 1.0gm+activated carbon CAII 300 4.0gm ball mill + TeO 2 1.6gm, Ein: 119kJ, dE: 19kJ, temperature rises at 340°C and Tmax is about 570°C, theoretical energy is 9.67kJ The gain is 2 times.

■4g CAIII-300+1g NaH+1.6g TeO2 ,Ein:116.0kJ,dE:11.0kJ,TSC:207-352℃,Tmax:381℃,理論能量為6.6kJ,增益為1.67倍。■ 4g CAIII-300+1g NaH+1.6g TeO 2 , Ein: 116.0kJ, dE: 11.0kJ, TSC: 207-352°C, Tmax: 381°C, theoretical energy 6.6kJ, gain 1.67 times.

■KH 1.66gm+MgH2 粉末1.0gm+TiC 4.0gm+TeO2 1.6gm,Ein:133kJ,dE:15kJ,溫度在280℃下突升且Tmax為約460℃,理論能量為8.64kJ,增益為1.745倍。■KH 1.66gm+MgH 2 powder 1.0gm+TiC 4.0gm+TeO 2 1.6gm, Ein: 133kJ, dE: 15kJ, the temperature rises at 280°C and Tmax is about 460°C, the theoretical energy is 8.64kJ, the gain is 1.745 times.

■4g CAIII-300+1g Mg+1g NaH+1.60g TeO2 ,實驗dE:-17.0kJ,考慮之反應:TeO2 (c)+3Mg(c)+2NaH(c)=2MgO(c)+Na2 Te(c)+MgH2 (c)Q=-1192.7千焦/反應,理論化學反應能量:-11.9kJ,過剩熱:-5.1kJ,1.43X過剩熱。■4g CAIII-300+1g Mg+1g NaH+1.60g TeO 2 , experimental dE: -17.0kJ, consider the reaction: TeO 2 (c) + 3Mg (c) + 2NaH (c) = 2MgO (c) + Na 2 Te(c)+MgH 2 (c)Q=-1192.7 kJ/reaction, theoretical chemical reaction energy: -11.9 kJ, excess heat: -5.1 kJ, 1.43X excess heat.

PP 22 OO 55

■1吋大容量電池中1.66g KH、2g P2 O5 及1g MgH2 及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為21.2kJ,且溫度突增242℃(299-541℃)。最大電池溫度為549℃,理論能量為10.8kJ,過剩10.35kJ,增益為1.96倍032609GC4:031909RCWF4/1.66g KH+2g P2 O5 +1g MgH2 +4g CA III-300,在DMF-d7中(按原樣),強-3.86ppm峰。■1吋 large capacity battery with 1.66g KH, 2g P 2 O 5 and 1g MgH 2 and 4g CA-III 300 activated carbon powder (dried at 300°C) with an energy gain of 21.2kJ and a sudden increase in temperature of 242°C (299-541 ° C). The maximum temperature of the battery 549 ℃, theoretical energy 10.8kJ, excess 10.35kJ, the gain is 1.96 times 032609GC4: 031909RCWF4 / 1.66g KH + 2g P 2 O 5 + 1g MgH 2 + 4g CA III-300, in the DMF-d7 (as is), strong - 3.86 ppm peak.

■4g CAIII-300+1g MgH2 +1.66g KH+2g P2 O5 ,Ein:138.0kJ,dE:21.6kJ,TSC:320-616℃,Tmax:616℃,理論能量為11.5kJ,過剩10.1kJ,增益為1.9倍。■4g CAIII-300+1g MgH 2 +1.66g KH+2g P 2 O 5 , Ein: 138.0kJ, dE: 21.6kJ, TSC: 320-616°C, Tmax: 616°C, theoretical energy 11.5kJ, excess 10.1 kJ, the gain is 1.9 times.

■KH 8.3gm+MgH2 粉末5.0gm+活性碳CAII 300 20gm球磨+P2 O5 10.0gm,Ein:272kJ,dE:98kJ,在250℃下突升且Tmax為約450℃,理論能量為54kJ,增益為1.81倍。■KH 8.3gm+MgH 2 powder 5.0gm+activated carbon CAII 300 20gm ball mill + P 2 O 5 10.0gm, Ein: 272kJ, dE: 98kJ, swell at 250 ° C and Tmax is about 450 ° C, theoretical energy is 54kJ, The gain is 1.81 times.

■KH 1.66gm+MgH2 粉末1.0gm+活性碳CAII 300 4gm球磨+P2 O5 2.0gm,Ein:130kJ,dE:21kJ,在300℃下突升且Tmax為約550℃,理論能量為10.8kJ,增益為1.94倍。■KH 1.66gm+MgH 2 powder 1.0gm+activated carbon CAII 300 4gm ball mill + P 2 O 5 2.0gm, Ein: 130kJ, dE: 21kJ, rises at 300°C and Tmax is about 550°C, theoretical energy is 10.8kJ The gain is 1.94 times.

■KH 1.66gm+MgH2 粉末1.0gm+TiC 4.0gm+P2 O5 2.0gm,Ein:129kJ,dE:21kJ,溫度在270℃下突升且Tmax為約600℃,理論能量為10.8kJ,增益為1.95倍。■KH 1.66gm+MgH 2 powder 1.0gm+TiC 4.0gm+P 2 O 5 2.0gm, Ein: 129kJ, dE: 21kJ, the temperature rises at 270°C and Tmax is about 600°C, and the theoretical energy is 10.8kJ. The gain is 1.95 times.

NaMnONaMnO 44

■4g CAIII-300+1g Si+1g NaH+3.5g NaMnO4 ;Ein:123.0kJ;dE:26.25kJ;TSC:45-330℃;Tmax:465℃,理論能量為17.6kJ,過剩8.7kJ,增益為1.5倍。■ 4g CAIII-300 + 1g Si + 1g NaH + 3.5g NaMnO 4; Ein: 123.0kJ; dE: 26.25kJ; TSC: 45-330 ℃; Tmax: 465 ℃, theoretical energy 17.6kJ, excess 8.7kJ, gain It is 1.5 times.

■4g CAIII-300+1g Al+1g NaH+3.5g NaMnO4 ;Ein:120.0kJ;dE:32.41kJ;TSC:44-373℃;Tmax:433℃,理論能量為20.5kJ,過剩7.7kJ,增益為1.58倍。■4g CAIII-300+1g Al+1g NaH+3.5g NaMnO 4 ; Ein: 120.0kJ; dE: 32.41kJ; TSC: 44-373°C; Tmax: 433°C, theoretical energy 20.5kJ, excess 7.7kJ, gain It is 1.58 times.

■4g CAIII-300+1g Mg+1g NaH+3.5g NaMnO4 ;Ein:66.0kJ;dE:32.27kJ;TSC:74-430℃;Tmax:430℃,理論能量為17.4kJ,過剩14.9kJ,增益為1.85倍。■4g CAIII-300+1g Mg+1g NaH+3.5g NaMnO 4 ; Ein: 66.0kJ; dE: 32.27kJ; TSC: 74-430°C; Tmax: 430°C, theoretical energy 17.4kJ, excess 14.9kJ, gain It is 1.85 times.

■4g CAIII-300+1g Mg+1g NaH+3.5g NaMnO4 ,Ein:72.0kJ,dE:34.1kJ,TSC:49-362℃,Tmax:364℃,理論能量為17.4kJ,過剩16.7kJ,增益為2倍。■ 4g CAIII-300 + 1g Mg + 1g NaH + 3.5g NaMnO 4, Ein: 72.0kJ, dE: 34.1kJ, TSC: 49-362 ℃, Tmax: 364 ℃, theoretical energy 17.4kJ, excess 16.7kJ, the gain It is 2 times.

■KH 8.3gm+Mg粉末5.0gm+活性碳CAII 300 20gm球磨+NaMnO4 17.5gm,Ein:130kJ,dE:160kJ,溫度在70℃下突升且Tmax為約350℃,理論能量為87kJ,增益為1.84倍。■ KH 8.3gm + Mg powder 5.0gm + milled activated carbon CAII 300 20gm + NaMnO 4 17.5gm, Ein: 130kJ , dE: 160kJ, sudden temperature rise at 70 deg.] C and Tmax of about 350 ℃, the theoretical energy of 87kJ, gain 1.84 times.

■KH 8.3gm+Al粉末5.0gm+活性碳CAII 300 20gm球磨+NaMnO4 17.5gm,Ein:134kJ,dE:171kJ,溫度在50℃下突升且Tmax為約350℃,理論能量為102.5kJ,增益為1.66倍。■KH 8.3gm+Al powder 5.0gm+activated carbon CAII 300 20gm ball mill+NaMnO 4 17.5gm, Ein: 134kJ, dE: 171kJ, the temperature rises at 50°C and the Tmax is about 350°C, the theoretical energy is 102.5kJ, the gain It is 1.66 times.

■NaH 1.0gm+Mg粉末1.0gm+活性碳CAII 300 4.0gm球磨+NaMnO4 3.5gm(理論能量為約17.4kJ),Ein:54kJ,dE:32kJ,溫度在60℃下突升且Tmax為約450℃,理論能量為17.4kJ,增益為1.8倍。■NaH 1.0gm+Mg powder 1.0gm+activated carbon CAII 300 4.0gm ball mill +NaMnO 4 3.5gm (theoretical energy is about 17.4kJ), Ein: 54kJ, dE: 32kJ, the temperature rises at 60°C and the Tmax is about 450. °C, the theoretical energy is 17.4kJ, and the gain is 1.8 times.

■KH 1.66gm+Mg粉末1.0gm+TiC 4.0gm+NaMnO4 3.5gm,Ein:65kJ,dE:30kJ,溫度在70℃下突升且Tmax為約410℃,理論能量為17.4kJ,增益為1.7倍。■KH 1.66gm+Mg powder 1.0gm+TiC 4.0gm+NaMnO 4 3.5gm, Ein: 65kJ, dE: 30kJ, temperature rises at 70°C and Tmax is about 410°C, theoretical energy is 17.4kJ, gain is 1.7 Times.

硝酸鹽Nitrate

■1吋電池中2g NaH、3g NaNO3 及1g Ti粉末與4g活性碳粉末之混合物(在300℃下乾燥),能量增益為33.2kJ,且溫度突增418℃(110-528℃)。最大電池溫度為530℃,理論能量為24.8kJ,過剩8.4kJ,增益為1.3倍。■ 1 inch cell 2g NaH, 3g NaNO 3 4g of activated carbon powder and a mixture of 1g Ti powder (dried at 300 deg.] C), an energy gain of 33.2kJ, and a sudden increase in the temperature of 418 ℃ (110-528 ℃). The maximum battery temperature is 530 ° C, the theoretical energy is 24.8 kJ, the excess is 8.4 kJ, and the gain is 1.3 times.

■1吋電池中3g NaH、3g NaNO3 及1g Al奈米粉末與4g 活性碳粉末之混合物(在300℃下乾燥),能量增益為42.3kJ,且溫度突增384℃(150-534℃)。最大電池溫度為540℃,理論能量為33.3kJ,過剩9kJ,增益為1.27倍。■ 1 吋 battery of 3g NaH, 3g NaNO 3 and 1g Al nano powder and 4g activated carbon powder mixture (dried at 300 ° C), energy gain of 42.3kJ, and temperature spurt 384 ° C (150-534 ° C ). The maximum battery temperature is 540 ° C, the theoretical energy is 33.3 kJ, the excess is 9 kJ, and the gain is 1.27 times.

■1吋電池中2.1g NaH、3g NaNO3 及1g MgH2 與4g活性碳粉末之混合物(在300℃下乾燥),能量增益為43.4kJ,且溫度突增382℃(67-449℃)。最大電池溫度為451℃,理論能量為28.6kJ,過剩14.8kJ,增益為1.52倍。■ 1 inch cell 2.1g NaH, the mixture 3g NaNO 3 and 1g MgH 2 and 4g of activated carbon powder (dried at 300 deg.] C), an energy gain of 43.4kJ, and a sudden increase in the temperature of 382 ℃ (67-449 ℃) . The maximum battery temperature is 451 ° C, the theoretical energy is 28.6 kJ, the excess is 14.8 kJ, and the gain is 1.52 times.

■1吋大容量電池中0.33g LiH、1.7g LiNO3 及1g MgH2 與4g活性碳粉末之混合物(在300℃下乾燥),能量增益為40.1kJ,且溫度突增337℃(92-429℃)。最大電池溫度為431℃,理論能量為21.6kJ,過剩18.5kJ,增益為1.86倍。■ 1吋 large capacity battery 0.33g LiH, 1.7g LiNO 3 and 1g MgH 2 and 4g of activated carbon powder mixture (dried at 300 ° C), energy gain of 40.1kJ, and temperature burst 337 ° C (92- 429 ° C). The maximum battery temperature is 431 ° C, the theoretical energy is 21.6 kJ, the excess is 18.5 kJ, and the gain is 1.86 times.

■1吋電池中0.33g LiH、1.7g LiNO3 及1g Ti與4g活性碳粉末之混合物(在300℃下乾燥),能量增益為36.5kJ,且溫度突增319℃(83-402℃)。最大電池溫度為450℃,理論能量為18.4kJ,過剩18kJ,增益為2倍。■ A mixture of 0.33g LiH, 1.7g LiNO 3 and 1g Ti and 4g activated carbon powder in a 1吋 battery (dried at 300°C) with an energy gain of 36.5kJ and a sudden increase in temperature of 319°C (83-402°C) . The maximum battery temperature is 450 ° C, the theoretical energy is 18.4 kJ, the excess is 18 kJ, and the gain is 2 times.

■4g CAIII-300+1g MgH2 +1g NaH+2.42g LiNO3 ;Ein:75.0kJ;dE:39.01kJ;TSC:57-492℃;Tmax:492℃,理論能量為28.5kJ,過剩10.5kJ,增益為1.37倍。■ 4g CAIII-300+1g MgH 2 +1g NaH+2.42g LiNO 3 ; Ein: 75.0kJ; dE: 39.01kJ; TSC: 57-492°C; Tmax: 492°C, theoretical energy 28.5kJ, excess 10.5kJ, The gain is 1.37 times.

■4g CAIII-300+1g Al+1g NaH+2.42g LiNO3 ;Ein:81.2kJ;dE:41.89kJ;TSC:73-528℃;Tmax:528℃,理論能量為34.6kJ,過剩7.3kJ,增益為1.21倍。■4g CAIII-300+1g Al+1g NaH+2.42g LiNO 3 ; Ein: 81.2kJ; dE: 41.89kJ; TSC: 73-528°C; Tmax: 528°C, theoretical energy 34.6kJ, excess 7.3kJ, gain It is 1.21 times.

ClOClO 44

■4g CAIII-300+1g MgH2 +2g NaClO4 +1g NaH;Ein:86.0kJ;dE:38.88kJ;TSC:130-551℃;Tmax:551℃,理論能量為30.7kJ,過剩8.2kJ,增益為1.27倍。■4g CAIII-300+1g MgH 2 +2g NaClO 4 +1g NaH; Ein: 86.0kJ; dE: 38.88kJ; TSC: 130-551°C; Tmax: 551°C, theoretical energy 30.7kJ, excess 8.2kJ, gain It is 1.27 times.

■4g CAIII-300+1g Al+1g NaH+4.29g NaClO4 ;Ein:88.0kJ;dE:58.24kJ;TSC:119-615℃;Tmax:615℃,理論能量為47.1kJ,過剩11.14kJ,增益為1.23倍。■4g CAIII-300+1g Al+1g NaH+4.29g NaClO 4 ; Ein: 88.0kJ; dE: 58.24kJ; TSC: 119-615°C; Tmax: 615°C, theoretical energy 47.1kJ, excess 11.14kJ, gain It is 1.23 times.

■4g CAIII-300+1g MgH2 +1g NaH+4.29g NaClO4 ;Ein:98.0kJ;dE:56.26kJ;TSC:113-571℃;Tmax:571℃,理論能量為36.2kJ,過剩20.1kJ,增益為1.55倍。■4g CAIII-300+1g MgH 2 +1g NaH+4.29g NaClO 4 ; Ein: 98.0kJ; dE: 56.26kJ; TSC: 113-571°C; Tmax: 571°C, theoretical energy: 36.2kJ, excess 20.1kJ, The gain is 1.55 times.

KK 22 SS 22 OO 88

■4g CAIII-300+1g MgH2 +1.66g KH+2.7g K2 S2 O8 ,Ein:121.0kJ,dE:27.4kJ,TSC:178-462℃,Tmax:468℃,理論能量為19.6kJ,過剩7.8kJ,增益為1.40倍。■4g CAIII-300+1g MgH 2 +1.66g KH+2.7g K 2 S 2 O 8 , Ein: 121.0kJ, dE: 27.4kJ, TSC: 178-462°C, Tmax: 468°C, theoretical energy 19.6kJ With a surplus of 7.8kJ and a gain of 1.40 times.

SOSO 22

■4g CAIII-300+1g MgH2 +1g NaH+0.0146mol SO2 ,Ein:58.0kJ,dE:20.7kJ,TSC:42-287℃,Tmax:309℃,理論能量為15kJ,過剩5.7kJ,增益為1.38倍。■4g CAIII-300+1g MgH 2 +1g NaH+0.0146mol SO 2 , Ein: 58.0kJ, dE: 20.7kJ, TSC: 42-287°C, Tmax: 309°C, theoretical energy 15kJ, excess 5.7kJ, gain It is 1.38 times.

SS

■4g CAIII-300+1g MgH2 +1g NaH+3.2g S,Ein:67.0kJ,dE:22.7kJ,TSC:49-356℃,Tmax:366℃,理論能量為17.9kJ,過剩4.8kJ,增益為1.27倍。■ 4g CAIII-300 + 1g MgH 2 + 1g NaH + 3.2g S, Ein: 67.0kJ, dE: 22.7kJ, TSC: 49-356 ℃, Tmax: 366 ℃, theoretical energy 17.9kJ, excess 4.8kJ, gain It is 1.27 times.

■1吋大容量電池中1.3g S粉、1.66g KH、1g Si粉末及4g CA-III 300活性碳粉末(在300℃下乾燥),能量增益為13.7kJ,且溫度突增129℃(66-195℃)。最大電池溫度為415℃,理論能量為7.5kJ,過剩1.82倍。■1吋 large capacity battery 1.3g S powder, 1.66g KH, 1g Si powder and 4g CA-III 300 activated carbon powder (dried at 300°C), energy gain is 13.7kJ, and temperature suddenly increases by 129°C ( 66-195 ° C). The maximum battery temperature is 415 ° C, the theoretical energy is 7.5 kJ, and the excess is 1.82 times.

■1吋大容量電池中3.2g S粉末、0.33g LiH、1g Al粉末及4g CA-IV 300活性碳粉末(在300℃下乾燥),能量增益為27.1kJ,且溫度突增301℃(163-464℃)。最大電池溫度為484℃,理論能量為20.9kJ,過剩6.2kJ,增益為1.3倍。■1 吋 large capacity battery 3.2g S powder, 0.33g LiH, 1g Al powder and 4g CA-IV 300 activated carbon powder (dried at 300 ° C), the energy gain is 27.1kJ, and the temperature suddenly increases by 301 ° C ( 163-464 ° C). The maximum battery temperature is 484 ° C, the theoretical energy is 20.9 kJ, the excess is 6.2 kJ, and the gain is 1.3 times.

■1吋大容量電池中3.2g S粉、0.33g LiH,1g Si粉末及4g CA-IV 300活性碳粉末(在300℃下乾燥),能量增益為17.7kJ,且溫度突增233℃(212-445℃)。最大電池溫度為451℃,理論能量為13.7kJ,過剩4kJ,增益為1.3倍。■ 1 吋 large capacity battery 3.2g S powder, 0.33g LiH, 1g Si powder and 4g CA-IV 300 activated carbon powder (dried at 300 ° C), energy gain of 17.7kJ, and temperature increase of 233 ° C ( 212-445 ° C). The maximum battery temperature is 451 ° C, the theoretical energy is 13.7 kJ, the excess is 4 kJ, and the gain is 1.3 times.

■4g CAIII-300+1g Si+1.66g KH+1.3g S,Ein:81.0kJ,dE:10.8kJ,TSC:52-196℃,Tmax:326℃,理論能量為7.4kJ,增益為1.45倍。■ 4g CAIII-300+1g Si+1.66g KH+1.3g S, Ein: 81.0kJ, dE: 10.8kJ, TSC: 52-196°C, Tmax: 326°C, theoretical energy 7.4kJ, gain 1.45 times.

SnFSnF 44

■4g CAIII-300+1g Mg+1g NaH+1.95g SnF4 ;Ein:130.2kJ;dE:13.89kJ;TSC:375-520℃;Tmax:525℃,理論能量為9.3kJ,增益為1.5倍。■ 4g CAIII-300+1g Mg+1g NaH+1.95g SnF 4 ; Ein: 130.2kJ; dE: 13.89kJ; TSC: 375-520°C; Tmax: 525°C, theoretical energy 9.3kJ, gain 1.5 times.

■4g CAIII-300+1g Mg+1g NaH+1.95g SnF4 ;Ein:130.2kJ;dE:13.89kJ;TSC:375-520℃;Tmax:525℃,理論能量為9.3kJ,增益為1.5倍。■ 4g CAIII-300+1g Mg+1g NaH+1.95g SnF 4 ; Ein: 130.2kJ; dE: 13.89kJ; TSC: 375-520°C; Tmax: 525°C, theoretical energy 9.3kJ, gain 1.5 times.

SeOSeO 22

■4g CAIII-300+2g MgH2 +2g NaH+2.2g SeO2 ,Ein:82.0kJ,dE:29.5kJ,TSC:99-388℃,Tmax:393℃,理論能量為20.5kJ,增益為1.4倍。■4g CAIII-300+2g MgH 2 +2g NaH+2.2g SeO 2 , Ein: 82.0kJ, dE: 29.5kJ, TSC: 99-388°C, Tmax: 393°C, theoretical energy 20.5kJ, gain 1.4 times .

CSCS 22

■PP小瓶中NaH 1.0gm+(Al粉末1.0gm+活性碳CAII 300 4gm)球磨+CS2 1.2ml,Ein:72kJ,dE:18kJ,溫度在約80℃下突升且Tmax為約320℃,理論能量為11.4kJ,增益為1.58倍。■ PP vial NaH 1.0gm + (Al activated carbon powder 1.0gm + CAII 300 4gm) milling + CS 2 1.2ml, Ein: 72kJ , dE: 18kJ, sudden temperature rise at about 80 deg.] C and Tmax of about 320 ℃, theoretical energy It is 11.4kJ and the gain is 1.58 times.

■PP小瓶中NaH 1.0gm+MgH2 粉末1.0gm+活性碳CAII 300 4gm球磨+CS2 1.2ml,Ein:82kJ,dE:18kJ,溫度在約80℃下突升且Tmax為約330℃,理論能量為12.6kJ,增益為1.4倍。■ PP in a small bottle of NaH 1.0gm + MgH 2 powder 1.0gm + activated carbon CAII 300 4gm ball mill + CS 2 1.2ml, Ein: 82kJ, dE: 18kJ, the temperature rises at about 80 ° C and Tmax is about 330 ° C, theoretical energy It is 12.6kJ and the gain is 1.4 times.

COCO

22

■4g CAIII-300+1g MgH2 +1g NaH+0.00953mol CO2 (在填充CO2 後,電池溫度上升至45℃);Ein:188.4kJ;dE:10.37kJ;TSC:80-120C;Tmax:508℃,理論能量為6.3kJ,增益為1.65倍。■ 4g CAIII-300+1g MgH 2 +1g NaH+0.00953mol CO 2 (battery temperature rises to 45°C after filling with CO 2 ; Ein: 188.4kJ; dE: 10.37kJ; TSC: 80-120C; Tmax: At 508 ° C, the theoretical energy is 6.3 kJ and the gain is 1.65 times.

PFPF

55

■4g CAIII-300+1g Al+1g NaH+0.010mol PF5 ;Ein:127.0kJ;dE:15.65kJ;TSC:210-371℃;Tmax:371℃,理論能量為10kJ,過剩6.45kJ,增益為1.57倍。■4g CAIII-300+1g Al+1g NaH+0.010mol PF 5 ; Ein: 127.0kJ; dE: 15.65kJ; TSC: 210-371°C; Tmax: 371°C, theoretical energy 10kJ, excess 6.45kJ, gain 1.57 times.

■4g CAIII-300+1g Al+1g NaH+0.01mol PF5 ,Ein:101.0kJ,dE:15.7kJ,TSC:178-370℃,Tmax:391℃,理論能量為10kJ,增益為1.57倍。■ 4g CAIII-300 + 1g Al + 1g NaH + 0.01mol PF 5, Ein: 101.0kJ, dE: 15.7kJ, TSC: 178-370 ℃, Tmax: 391 ℃, the theoretical energy of 10kJ, a gain of 1.57 times.

NFNF

33

■NaH 1.0gm+(Mg粉末1.0gm+活性碳CAII-300 4gm)球磨+NF3 0.011mol,且理論能量為約kJ,Ein:136kJ,dE:28kJ,溫度在70℃下突升且Tmax為約470℃,理論能量為19.6kJ,增益為1.4倍。■ NaH 1.0gm + (Mg activated carbon powder 1.0gm + CAII-300 4gm) milling + NF 3 0.011mol, and the theoretical energy of about kJ, Ein: 136kJ, dE: 28kJ, Tmax and sudden temperature rise at 70 deg.] C to about 470 °C, the theoretical energy is 19.6kJ, and the gain is 1.4 times.

PClPCl 55

■4g CAIII-300+1g MgH2 +2.08g PCl5 +1g NaH;Ein:90.0kJ;dE:20.29kJ;TSC:180-379℃;Tmax:391℃,理論能量為13.92kJ,增益為1.45倍。■4g CAIII-300+1g MgH 2 +2.08g PCl 5 +1g NaH; Ein: 90.0kJ; dE: 20.29kJ; TSC: 180-379°C; Tmax: 391°C, theoretical energy 13.92kJ, gain 1.45 times .

PP 22 SS 55

■4g CAIII-300+1g MgH2 +1g NaH+2.22g P2 S5 ;Ein:105.0kJ;dE:13.79kJ;TSC:150-363℃;Tmax:398℃,理論能量為10.5kJ,過剩3.3kJ,增益為1.3倍。■4g CAIII-300+1g MgH 2 +1g NaH+2.22g P 2 S 5 ; Ein: 105.0kJ; dE: 13.79kJ; TSC: 150-363°C; Tmax: 398°C, theoretical energy: 10.5kJ, excess 3.3 kJ, the gain is 1.3 times.

■NaH 1.0gm+Al粉末1.0gm+活性碳CAII 300 4gm球磨+P2 S5 2.22gm,Ein:110kJ,dE:14kJ,溫度在約170℃下突升且Tmax為約425℃,理論能量為10.1kJ,增益為1.39倍。■NaH 1.0gm+Al powder 1.0gm+activated carbon CAII 300 4gm ball mill+P 2 S 5 2.22gm, Ein: 110kJ, dE: 14kJ, the temperature rises at about 170°C and the Tmax is about 425°C, the theoretical energy is 10.1. kJ, the gain is 1.39 times.

氧化物Oxide

■4g AC+1g MgH2 +1.66g KH+1.35g KO2 ,Ein:86.0kJ,dE:21.0kJ,TSC:157-408℃,Tmax:416℃,理論能量為15.4kJ,增益為1.36倍。■ 4 g AC + 1 g MgH 2 + 1.66 g KH + 1.35 g KO 2 , Ein: 86.0 kJ, dE: 21.0 kJ, TSC: 157-408 ° C, Tmax: 416 ° C, theoretical energy: 15.4 kJ, gain 1.36 times.

MnOMnO 44

■4g CAIII-300+1g Mg+1g NaH+3.5g MnO2 ;Ein:108.0kJ;dE:22.11kJ;TSC:170-498℃;Tmax:498℃,理論能量為18.4kJ,過剩3.7kJ,增益為1.2倍。■4g CAIII-300+1g Mg+1g NaH+3.5g MnO 2 ; Ein: 108.0kJ; dE: 22.11kJ; TSC: 170-498°C; Tmax: 498°C, theoretical energy 18.4kJ, excess 3.7kJ, gain It is 1.2 times.

NN 22 OO

■4g Pt/C+1g Mg+1g NaH+0.0198mol N2 O,Ein:72.0kJ,dE:22.2kJ,TSC:73-346℃,Tmax:361℃,理論能量為16.2kJ,增益為1.37倍。■ 4g Pt / C + 1g Mg + 1g NaH + 0.0198mol N 2 O, Ein: 72.0kJ, dE: 22.2kJ, TSC: 73-346 ℃, Tmax: 361 ℃, theoretical energy 16.2kJ, the gain is 1.37 times .

HFBHFB

■NaH 1.0gm+(鋁奈米粉末1gm+活性碳(AC)5gm)球磨+HFB 1ml,Ein:108kJ,dE 35kJ,溫度在90℃下突增450℃。■NaH 1.0 gm+ (aluminum nanopowder 1 gm + activated carbon (AC) 5 gm) ball mill + HFB 1 ml, Ein: 108 kJ, dE 35 kJ, and the temperature was suddenly increased by 450 ° C at 90 ° C.

■NaH 1.0gm+(La 5gm+活性碳5gm)球磨+六氟苯1ml,Ein:109kJ,dE:38kJ,溫度在90℃下突增400℃。■NaH 1.0 gm+ (La 5 gm + activated carbon 5 gm) ball mill + hexafluorobenzene 1 ml, Ein: 109 kJ, dE: 38 kJ, and the temperature was suddenly increased by 400 ° C at 90 ° C.

■(4g活性碳(AC)+1g MgH2 )球磨+1ml HFB+1g NaH,Ein:150.0kJ,dE:45.1kJ,TSC:約50-240,Tmax為約250℃。■ (4 g activated carbon (AC) + 1 g MgH 2 ) ball mill + 1 ml HFB + 1 g NaH, Ein: 150.0 kJ, dE: 45.1 kJ, TSC: about 50-240, Tmax is about 250 °C.

■摻合物(4g AC+1g MgH2 )+1ml HFB+1g NaH,Ein:150.0kJ,dE:35.0kJ,TSC:54-255℃、45-241℃、48-199℃;Tmax:258℃、247℃、206℃(三串聯電池)。■ Blend (4g AC+1g MgH 2 )+1ml HFB+1g NaH, Ein: 150.0kJ, dE: 35.0kJ, TSC: 54-255°C, 45-241°C, 48-199°C; Tmax: 258°C , 247 ° C, 206 ° C (three series battery).

■1吋電池中1.66g KH、1ml十六氟庚烷(HDFH)及4g活性碳粉末與1g MgH2 之混合物,dE:34.3kJ,且突增419℃(145-564℃),Tmax為約575℃。■1.6 g of KH, 1 ml of hexadecafluoroheptane (HDFH) and a mixture of 4 g of activated carbon powder and 1 g of MgH 2 in a battery, dE: 34.3 kJ, and a sudden increase of 419 ° C (145-564 ° C), Tmax is About 575 ° C.

B.溶液NMRB. Solution NMR

用於形成低能量氫之代表性反應混合物包含:(i)至少一種催化劑,諸如選自LiHKHNaH 之一;(ii)至少一種氧化劑,諸如選自NiBr 2MnI 2AgClEu Br2SF 6SCF 4NF 3LiNO 3 、具有AgM 2 S 2 O 8P 2 P 5 之一;(iii)至少一種還原劑,諸如選自Mg 粉末或MgH 2Al 粉末或鋁奈米粉末(Al NP)、SrCa 之一;及(iv)至少一種載體,諸如選自AC及TiC之一。將反應混合物之50mg反應產物添加至用玻璃TEFLONTM 閥密封之小瓶中1.5ml氘化N,N-二甲基甲醯胺-d7(DCON (CD 3 )2 ,DMF-d7(99.5% Cambridge Isotope Laboratories,Inc.))中,攪動,且使之在手套箱中在氬氛圍下經12小時之時段溶解。藉由不透氣之連接將缺乏任何固體之溶液轉移至NMR管(5mm OD,23cm長,Wilmad)中,接著火焰密封管。用氘鎖定之500MHz Bruker NMR頻譜儀記錄NMR譜。化學位移參考在相對於四甲基矽烷(TMS)8.03ppm下諸如DMF-d7之溶劑頻率。A representative reaction mixture for forming low energy hydrogen comprises: (i) at least one catalyst, such as one selected from the group consisting of LiH , KH, and NaH ; (ii) at least one oxidizing agent, such as selected from the group consisting of NiBr 2 , MnI 2 , AgCl , Eu Br 2 , SF 6 , S , CF 4 , NF 3 , LiNO 3 , one of M 2 S 2 O 8 and P 2 P 5 having Ag ; (iii) at least one reducing agent such as selected from Mg powder or MgH 2 And one of Al powder or aluminum nano powder ( Al NP), Sr and Ca ; and (iv) at least one carrier such as one selected from the group consisting of AC and TiC. 50mg of the reaction mixture was added to the reaction product of a sealing glass vial TEFLON TM valve 1.5ml deuterated N, N- dimethylformamide -d7 (DCON (CD 3) 2 , DMF-d7 (99.5% Cambridge Isotope In Laboratories, Inc.)), it was agitated and allowed to dissolve in a glove box under an argon atmosphere over a period of 12 hours. The solution lacking any solids was transferred to an NMR tube (5 mm OD, 23 cm long, Wilmad) by means of a gas-tight connection, followed by flame sealing of the tube. NMR spectra were recorded on a 氘-locked 500 MHz Bruker NMR spectrometer. The chemical shift is referenced at a solvent frequency such as DMF-d7 relative to tetramethyl decane (TMS) 8.03 ppm.

預測在相對於TMS約-3.86ppm下觀測到低能量氫氫陰離子H- (1/4),且預測在相對於TMS 1.25ppm下觀測到分子低能量氫H2 (1/4)。在表4中以位移給出特定反應混合物之此等峰出現位置及強度。A low energy hydrino hydride H - (1/4) was predicted to be observed at about -3.66 ppm relative to TMS, and a molecular low energy hydrogen H 2 (1/4) was predicted to be observed at 1.25 ppm relative to TMS. The position and intensity of these peaks for a particular reaction mixture are given by displacement in Table 4.

表4. DMF-d7溶劑萃取包含以下反應物之非均勻低能量氫催化劑系統之產物後的1H溶液NMR:(i)催化劑,諸如LiH、KH或NaH;(ii)還原劑,諸如Al、Al NP、Mg或MgH2 ;及(iii)氧化劑,諸如CF4 、N2 O、NF3 、K2 S2 O8 、FeSO4 、O2 、LiNO3 、P2 O5 、SF6 、S、CS2 、NiBr2 、TeO2 、NaMnO4 、SnF4 及SnI4 ,與(iv)諸如AC或Pt/C之載體混合。Table 4. 1H solution NMR after DMF-d7 solvent extraction of the product of a non-homogeneous low energy hydrogen catalyst system comprising: (i) a catalyst such as LiH, KH or NaH; (ii) a reducing agent such as Al, Al NP, Mg or MgH 2 ; and (iii) an oxidizing agent such as CF 4 , N 2 O, NF 3 , K 2 S 2 O 8 , FeSO 4 , O 2 , LiNO 3 , P 2 O 5 , SF 6 , S, CS 2, NiBr 2, TeO 2 , NaMnO 4, SnF 4 and SnI 4, AC carrier or Pt / C mixed with the (iv), such as.

5...產生氫催化劑能量及較低能量氫物質之反應器5. . . a reactor for generating hydrogen catalyst energy and lower energy hydrogen species

10...鍋爐10. . . boiler

11...燃料反應混合物11. . . Fuel reaction mixture

12...氫源12. . . Hydrogen source

13...蒸汽管及蒸汽發生器13. . . Steam pipe and steam generator

14...渦輪機14. . . Turbine

16...水冷凝器16. . . Water condenser

17...補水來源17. . . Water supply source

18...燃料再循環器18. . . Fuel recycler

19...氫-二低能量氫氣體分離器19. . . Hydrogen-two low energy hydrogen gas separator

21...分離器twenty one. . . Splitter

22...移位或旋風分離器twenty two. . . Shift or cyclone separator

23...磁力分離器twenty three. . . Magnetic separator

24...差異產物溶解或懸浮系統twenty four. . . Differential product dissolution or suspension system

25...組份溶劑洗滌液25. . . Component solvent wash

26...化合物回收系統26. . . Compound recovery system

27...溶劑蒸發器/蒸發器27. . . Solvent evaporator / evaporator

28...化合物收集器28. . . Compound collector

29...沈澱器29. . . Precipitator

30...化合物乾燥器及收集器30. . . Compound dryer and collector

31...電解器31. . . Electrolyzer

32...易揮發氣體收集器32. . . Volatile gas collector

33...金屬收集器33. . . Metal collector

34...金屬蒸餾器或分離器34. . . Metal distiller or separator

35...氫化反應器35. . . Hydrogenation reactor

36...動力反應器/電池36. . . Power reactor / battery

37...供金屬及氫化物用之入口及出口37. . . Inlet and outlet for metals and hydrides

38...供氫氣用之入口38. . . Entrance for hydrogen supply

39...閥39. . . valve

40...氫氣供應40. . . Hydrogen supply

41...出氣口41. . . Air outlet

42...閥42. . . valve

43...泵43. . . Pump

44...加熱器44. . . Heater

45...壓力與溫度計量表45. . . Pressure and temperature meter

46...鹵化反應器46. . . Halogenation reactor

47...電池47. . . battery

48...供碳用之入口及供鹵化產物用之出口48. . . An inlet for carbon supply and an outlet for halogenated products

49...供氟氣用之入口49. . . Entrance for fluorine gas

50...閥50. . . valve

51...鹵素氣體供應51. . . Halogen gas supply

52...出氣口52. . . Air outlet

53...閥53. . . valve

54...泵54. . . Pump

55...加熱器55. . . Heater

56...壓力與溫度計量表56. . . Pressure and temperature meter

57...金屬57. . . metal

58...混合器58. . . mixer

61...催化劑供應通道61. . . Catalyst supply channel

62...供應通道62. . . Supply channel

70...氫催化劑反應器/能量反應器70. . . Hydrogen catalyst reactor / energy reactor

72...容器72. . . container

74...能量反應混合物74. . . Energy reaction mixture

76...來源/能量釋放物質76. . . Source/energy release substance

78...催化劑/催化物質78. . . Catalyst/catalytic substance

80...熱交換器/交換器80. . . Heat exchanger/exchanger

82...蒸汽產生器82. . . Steam generator

90...渦輪機90. . . Turbine

100...發電機100. . . generator

110...負載110. . . load

200...腔室/反應室/內部反應室/容器/電池200. . . Chamber / Reaction Chamber / Internal Reaction Chamber / Container / Battery

206...選擇閥206. . . Selection valve

207...反應容器207. . . Reaction vessel

221...氫源221. . . Hydrogen source

222...控制器222. . . Controller

223...壓力感測器223. . . Pressure sensor

225...電源225. . . power supply

230...溫度控制組件/加熱器/加熱旋管230. . . Temperature control unit / heater / heating coil

232...控制閥232. . . Control valve

233...連接233. . . connection

241...催化劑供應通道241. . . Catalyst supply channel

242...供氫通道242. . . Hydrogen supply channel

250...催化劑源250. . . Catalyst source

255...收氣器或收集器255. . . Gas collector or collector

256...真空泵256. . . Vacuum pump

257...真空管線257. . . Vacuum line

260...反應物260. . . Reactant

272...電源272. . . power supply

280...熱燈絲280. . . Hot filament

285...電源285. . . power supply

290...外部氫儲集器290. . . External hydrogen reservoir

291...分隔兩腔室之壁291. . . Separating the walls of the two chambers

295...催化劑儲集器295. . . Catalyst reservoir

298...催化劑儲集器加熱器298. . . Catalyst reservoir heater

300...腔室/電池腔室/反應室/內部反應室300. . . Chamber/battery chamber/reaction chamber/internal reaction chamber

301...選擇性通風閥301. . . Selective ventilation valve

305...陰極/電極305. . . Cathode/electrode

307...氣體放電電池307. . . Gas discharge battery

313...分隔兩腔室之壁313. . . Separating the walls of the two chambers

315...填充氫氣之輝光放電真空容器315. . . Glow discharge vacuum vessel filled with hydrogen

320...陽極320. . . anode

322...氫源322. . . Hydrogen source

325...控制閥325. . . Control valve

330...電壓及電流源330. . . Voltage and current source

341...催化劑供應通道341. . . Catalyst supply channel

342...供氧通道342. . . Oxygen supply channel

350...氣態催化劑350. . . Gaseous catalyst

372...電源372. . . power supply

380...加熱旋管/加熱器380. . . Heating coil/heater

385...電源385. . . power supply

390...外部氫儲集器390. . . External hydrogen reservoir

392...催化劑儲集器加熱器392. . . Catalyst reservoir heater

395...催化劑儲集器395. . . Catalyst reservoir

400...燃料電池及電池組400. . . Fuel cell and battery pack

401...陰極室401. . . Cathode chamber

402...陽極室402. . . Anode chamber

405...陰極405. . . cathode

410...陽極410. . . anode

420...鹽橋420. . . Salt bridge

430...反應物源或用於儲存產物之儲集器430. . . Reagent source or reservoir for storing products

431...反應物源或用於儲存產物之儲集器431. . . Reagent source or reservoir for storing products

460...通道460. . . aisle

461...通道461. . . aisle

圖1為根據本發明之能量反應器及動力裝置的示意圖;Figure 1 is a schematic illustration of an energy reactor and power plant in accordance with the present invention;

圖2為根據本發明用於使燃料再循環或再生之能量反應器及動力裝置之示意圖;Figure 2 is a schematic illustration of an energy reactor and power plant for recycling or regenerating fuel in accordance with the present invention;

圖3為根據本發明之動力反應器的示意圖;Figure 3 is a schematic illustration of a power reactor in accordance with the present invention;

圖4為根據本發明用於使燃料再循環或再生之系統的示意圖;Figure 4 is a schematic illustration of a system for recycling or regenerating fuel in accordance with the present invention;

圖5為根據本發明之放電電源及電漿電池及反應器的示意圖;及Figure 5 is a schematic view of a discharge power source and a plasma battery and a reactor according to the present invention;

圖6為根據本發明之電池組及燃料電池的示意圖。Figure 6 is a schematic illustration of a battery pack and a fuel cell in accordance with the present invention.

61...催化劑供應通道61. . . Catalyst supply channel

62...供應通道62. . . Supply channel

70...氫催化劑反應器/能量反應器70. . . Hydrogen catalyst reactor / energy reactor

72...容器72. . . container

74...能量反應混合物/混合物74. . . Energy reaction mixture/mixture

76...來源/能量釋放物質76. . . Source/energy release substance

78...催化劑/催化物質78. . . Catalyst/catalytic substance

80...熱交換器/交換器80. . . Heat exchanger/exchanger

82...蒸汽產生器82. . . Steam generator

90...渦輪機90. . . Turbine

100...發電機100. . . generator

110...負載110. . . load

Claims (24)

一種動力系統,其包含:反應電池,用於催化原子氫形成總能量比未經催化之氫物質總能量更低且更穩定之氫物質及包含該等氫物質之組合物;反應容器;真空泵;原子氫源,來自與該反應容器相連通之來源;氫催化劑源,與該反應容器相通;該原子氫源與該氫催化劑源中之至少一者的來源包含含有一或多種形成該原子氫與該氫催化劑中之至少一者之元素及至少一種其他元素的至少一種反應物的反應混合物,藉此該原子氫與該氫催化劑中之至少一者由該來源形成,至少一種其他反應物,藉由執行活化及擴展催化中之至少一種功能來引起該催化;及用於該容器之加熱器,其起始該反應容器中形成該原子氫與該氫催化劑中之至少一者,且起始該反應以引起催化,藉此在該氫原子催化期間原子氫之催化每莫耳氫釋放超過約300kJ之量的能量,其中引起該催化反應之反應包含選自以下之反應:(i)放熱反應,其為該催化反應提供活化能;(ii)偶合反應,其提供催化劑源或原子氫源中之至少一者以維持該催化反應; (iii)自由基反應,其用作該催化反應期間來自該催化劑之電子的受體;(iv)氧化還原反應,其用作該催化反應期間來自該催化劑之電子的受體;(v)交換反應,其在該催化劑接受來自原子氫之能量時促進該催化劑發生電離作用以形成該氫物質;及(vi)吸氣劑、載體或基質輔助之催化反應。 A power system comprising: a reaction battery for catalyzing the formation of a hydrogen substance having a lower total energy and a more stable total energy than an uncatalyzed hydrogen substance and a composition comprising the same; a reaction vessel; a vacuum pump; An atomic hydrogen source from a source in communication with the reaction vessel; a hydrogen catalyst source in communication with the reaction vessel; a source of at least one of the atomic hydrogen source and the hydrogen catalyst source comprising one or more hydrogen atoms forming a reaction mixture of at least one element of the hydrogen catalyst and at least one reactant of at least one other element, whereby at least one of the atomic hydrogen and the hydrogen catalyst is formed from the source, at least one other reactant, Causing the catalysis by performing at least one of activation and expansion catalysis; and a heater for the vessel, which initiates formation of at least one of the atomic hydrogen and the hydrogen catalyst in the reaction vessel, and initiates the Reacting to cause catalysis whereby the catalysis of atomic hydrogen during the hydrogen atom catalysis releases more than about 300 kJ of energy per mole of hydrogen, which causes the reminder The reaction comprises a reaction selected from the group of: (i) an exothermic reaction, which provides the activation energy for the catalytic reaction; (ii) the coupling reaction, a catalyst which provides a source or sources of atomic hydrogen to maintain at least one of the catalytic reaction; (iii) a free radical reaction which acts as a acceptor for electrons from the catalyst during the catalytic reaction; (iv) a redox reaction which acts as a acceptor for electrons from the catalyst during the catalytic reaction; (v) exchange a reaction that promotes ionization of the catalyst to form the hydrogen species as the catalyst receives energy from atomic hydrogen; and (vi) a getter, carrier or matrix assisted catalytic reaction. 如請求項1之動力系統,其中該反應混合物包含起動該催化反應之導電性載體。 The power system of claim 1, wherein the reaction mixture comprises a conductive support that initiates the catalytic reaction. 如請求項1之動力系統,其中該反應混合物包含固體、液體或非均勻催化反應混合物。 The power system of claim 1, wherein the reaction mixture comprises a solid, liquid or non-homogeneous catalytic reaction mixture. 如請求項1之動力系統,其中包含氧化還原反應以引起該催化反應之該反應混合物包含:(i)至少一種選自Li、LiHKKHNaH 、Rb、RbH、Cs及CsH之催化劑;(ii)氫氣、氫氣源或氫化物;(iii)至少一種選自以下之氧化劑:金屬化合物,包含鹵化物、磷化物、硼化物、氧化物、氫氧化物、矽化物、氮化物、砷化物、硒化物、碲化物、銻化物、碳化物、硫化物、氫化物、碳酸鹽、碳酸氫鹽、硫酸鹽、硫酸氫鹽、磷酸鹽、磷酸氫鹽、磷酸二氫鹽、硝酸鹽、亞硝酸鹽、過錳酸鹽、氯酸鹽、過氯酸鹽、亞氯酸鹽、過亞氯酸鹽、次氯酸鹽、溴酸鹽、過溴酸鹽、亞溴酸鹽、過亞溴酸鹽、碘酸鹽、過碘酸鹽、 亞碘酸鹽、過亞碘酸鹽、鉻酸鹽、重鉻酸鹽、碲酸鹽、硒酸鹽、砷酸鹽、矽酸鹽、硼酸鹽、氧化鈷、氧化碲,及鹵素、P、B、Si、N、As、S、Te、Sb、C、S、P、Mn、Cr、Co及Te之氧陰離子;過渡金屬、Sn、Ga、In、鉛、鍺、鹼金屬及鹼土金屬化合物;GeF2 、GeCl2 、GeBr2 、GeI2 、GeO、GeP、GeS、GeI4 及GeCl4 ;碳氟化合物,CF 4 、ClCF3 ;碳氯化合物,CCl4O 2MNO 3MClO 4MO 2NF 3N 2 O ;NO;NO2 ;硼-氮化合物,諸如B3 N3 H6 ;含硫化合物,諸如SF6SSO 2 、SO3 、S2 O5 Cl2 、F5 SOF、M2 S2 O8 、Sx Xy (諸如S2 Cl2 、SCl2 、S2 Br2 或S2 F2 )、CS2 、SOx Xy (SOCl2 、SOF2 、SO2 F2 、SOBr2 );Xx X'y ,ClF5 ;Xx X'y Oz ,ClO2 F、ClO2 F2 、ClOF3 、ClO3 F、ClO2 F3 ;硼-氮化合物,B3 N3 H6 ;Se;Te;Bi;As;Sb;Bi;TeXx ,TeF4 、TeF6 ;TeOx ,TeO2 、TeO3 ;SeXx ,SeF6 ;SeOx ,SeO2 或SeO3 ;碲氧化物、鹵化物、碲化合物,TeO2 、TeO3 、Te(OH)6 、TeBr2 、TeCl2 、TeBr4 、TeCl4 、TeF4 、TeI4 、TeF6 、CoTe或NiTe;硒化合物、硒氧化物、硒鹵化物、硒硫化物,SeO2 、SeO3 、Se2 Br2 、Se2 Cl2 、SeBr4 、SeCl4 、SeF4 、SeF6 、SeOBr2 、SeOCl2 、SeOF2 、SeO2 F2 、SeS2 、Se2 S6 、Se4 S4 或Se6 S2 ;P;P2 O5 ;P2 S5 ;Px Xy ,PF3 、PCl3 、PBr3 、PI3 、PF5 、PCl5 、PBr4 F、PCl4 F;POx Xy ,POBr3 、POI3 、POCl3 或POF3 ;PSx Xy (M 為鹼金屬,x、y及z為整數,X及X'為鹵素),PSBr3 、PSF3 、PSCl3 ;磷-氮化合物,P3 N5 、(Cl2 PN)3 、(Cl2 PN)4 、(Br2 PN)x ;砷化合物、砷氧化物、砷鹵化物、砷硫化物、砷硒化物、砷碲化物,AlAs、As2 I4 、As2 Se、As4 S4 、AsBr3 、AsCl3 、AsF3 、AsI3 、As2 O3 、As2 Se3 、As2 S3 、As2 Te3 、AsCl5 、AsF5 、As2 O5 、As2 Se5 、As2 S5 ;銻化合物、銻氧化物、銻鹵化物、銻硫化物、硫酸銻、銻硒化物、銻砷化物,SbAs、SbBr3 、SbCl3 、SbF3 、SbI3 、Sb2 O3 、SbOCl、Sb2 Se3 、Sb2 (SO4 )3 、Sb2 S3 、Sb2 Te3 、Sb2 O4 、SbCl5 、SbF5 、SbCl2 F3 、Sb2 O5 、Sb2 S5 ;鉍化合物、鉍氧化物、鉍鹵化物、鉍硫化物、鉍硒化物,BiAsO4 、BiBr3 、BiCl3 、BiF3 、BiF5 、Bi(OH)3 、BiI3 、Bi2 O3 、BiOBr、BiOCl、BiOI、Bi2 Se3 、Bi2 S3 、Bi2 Te3 、Bi2 O4 ;SiCl4 、SiBr4 ;過渡金屬鹵化物,CrCl3 、ZnF2 、ZnBr2 、ZnI2 、MnCl2 、MnBr2 、MnI2 、CoBr2 、CoI2 、CoCl2 、NiCl2 、NiBr2 、NiF2 、FeF2 、FeCl2 、FeBr2 、FeCl3 、TiF3 、CuBr、CuBr2 、VF3 、CuCl2 ;金屬鹵化物,SnF2 、SnCl2 、SnBr2 、SuI2 、SnF4 、SnCl4 、SnBr4 、SnI4 、InF、InCl、InBr、InI、AgCl、AgI、AlF3 、AlBr3 、AlI3 、YF3 、CdCl2 、CdBr2 、CdI2 、InCl3 、ZrCl4 、NbF5 、TaCl5 、MoCl3 、MoCl5 、NbCl5 、AsCl3 、TiBr4 、SeCl2 、SeCl4 、InF3 、InCl3 、PbF4 、TeI4 、WCl6 、OsCl3 、GaCl3 、PtCl3 、ReCl3 、RhCl3 、RuCl3 ;金屬氧化物、金屬氫氧 化物,Y2 O3 、FeO、Fe2 O3 或NbO、NiO、Ni2 O3 、SnO、SnO2 、Ag2 O、AgO、Ga2 O、As2 O3 、SeO2 、TeO2 、In(OH)3 、Sn(OH)2 、In(OH)3 、Ga(OH)3 、Bi(OH)3 ;CO2 ;As2 Se3 ;SF6 ;S;SbF3 ;CF4 ;NF3 ;金屬過錳酸鹽,KMnO4 、NaMnO4 ;P2 O5 ;金屬硝酸鹽,LiNO3 、NaNO3 、KNO3 ;鹵化硼,BBr3 、BI3 ;第13族鹵化物,鹵化銦,InBr2 、InCl2 、InI3 ;鹵化銀,AgCl、AgI;鹵化鉛;鹵化鎘;鹵化鋯;過渡金屬氧化物、過渡金屬硫化物或過渡金屬鹵化物(Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu或Zn與F、Cl、Br或I);第二或第三過渡系列鹵化物YF3 、第二或第三過渡系列氧化物、第二或第三過渡系列硫化物Y2 S3 、Y、Zr、Nb、Mo、Tc、Ag、Cd、Hf、Ta、W、Os之鹵化物,諸如NbX3 、NbX5 或TaX5 ;Li2 S、ZnS、FeS、NiS、MnS、Cu2 S、CuS、SnS;鹼土金屬鹵化物,BaBr2 、BaCl2 、BaI2 、SrBr2 、SrI2 、CaBr2 、CaI2 、MgBr2 或MgI2 ;稀土金屬鹵化物,EuBr3 、LaF3 、LaBr3 、CeBr3 、GdF3 、GdBr3 ;金屬呈II態之稀土金屬鹵化物,CeI2 、EuF2 、EuCl2 、EuBr2 、EuI2 、DyI2 、NdI2 、SmI2 、YbI2 及TmI2 ;金屬硼化物,硼化銪;MB2 硼化物,CrB2 、TiB2 、MgB2 、ZrB2 、GdB2 ;鹼金屬鹵化物,LiCl、RbCl或CsI;金屬磷化物,如Ca3 P2 ;貴金屬鹵化物、貴金屬氧化物、貴金屬硫化物,PtCl2 、PtBr2 、PtI2 、PtCl4 、PdCl2 、PbBr2 、PbI2 ;稀土金屬硫化物CeS;La鹵化物;Gd鹵化物;金屬及陰離子,Na2 TeO4 、 Na2 TeO3 、Co(CN)2 、CoSb、CoAs、Co2 P、CoO、CoSe、CoTe、NiSb、NiAs、NiSe、Ni2 Si、MgSe;稀土金屬碲化物,EuTe;稀土金屬硒化物,EuSe;稀土金屬氮化物,EuN;金屬氮化物,AlN、GdN、Mg3 N2 ;含有至少兩個選自氧原子及不同鹵原子之原子的化合物,F2 O、Cl2 O、ClO2 、Cl2 O6 、Cl2 O7 、ClF、ClF3 、ClOF3 、ClF5 、ClO2 F、ClO2 F3 、ClO3 F、BrF3 、BrF5 、I2 O5 、IBr、ICl、ICl3 、IF、IF3 、IF5 、IF7 ;金屬第二或第三過渡系列鹵化物,OsF6 、PtF6 或IrF6 ;可在還原後形成金屬之化合物,金屬氫化物、稀土金屬氫化物、鹼土金屬氫化物或鹼金屬氫化物;(iv)至少一種選自以下之還原劑:金屬,鹼金屬、鹼土金屬、過渡金屬、第二及第三系列過渡金屬及稀土金屬,AlMgMgH 2Si 、La、B、Zr及Ti粉末;及H2 ;及(v)至少一種選自AC、1% Pt/碳或Pd/碳(Pt/C、Pd/C)、碳化物TiC及WC之導電性載體。The power system of claim 1, wherein the reaction mixture comprising a redox reaction to cause the catalytic reaction comprises: (i) at least one catalyst selected from the group consisting of Li, LiH , K , KH , NaH , Rb, RbH, Cs, and CsH (ii) hydrogen, a hydrogen source or a hydride; (iii) at least one oxidizing agent selected from the group consisting of metal compounds including halides, phosphides, borides, oxides, hydroxides, tellurides, nitrides, arsenic Compound, selenide, telluride, telluride, carbide, sulfide, hydride, carbonate, bicarbonate, sulfate, hydrogen sulfate, phosphate, hydrogen phosphate, dihydrogen phosphate, nitrate, sub Nitrate, permanganate, chlorate, perchlorate, chlorite, perchlorate, hypochlorite, bromate, perbromate, bromate, perbromine Acid salt, iodate, periodate, iodate, periodate, chromate, dichromate, citrate, selenate, arsenate, citrate, borate , cobalt oxide, cerium oxide, and halogen, P, B, Si, N, As, S, Te, Sb, C, S, P, Mn, Cr, Co And Te oxyanions; transition metals, Sn, Ga, In, lead, bismuth, alkali metal and alkaline earth metal compounds; GeF 2 , GeCl 2 , GeBr 2 , GeI 2 , GeO, GeP, GeS, GeI 4 and GeCl 4 ; Fluorocarbon, CF 4 , ClCF 3 ; chlorocarbon, CCl 4 ; O 2 ; MNO 3 ; MClO 4 ; MO 2 ; NF 3 ; N 2 O ; NO; NO 2 ; boron-nitrogen compound, such as B 3 N 3 H 6 ; sulfur-containing compounds such as SF 6 , S , SO 2 , SO 3 , S 2 O 5 Cl 2 , F 5 SOF, M 2 S 2 O 8 , S x X y (such as S 2 Cl 2 , SCl 2 , S 2 Br 2 or S 2 F 2 ), CS 2 , SO x X y (SOCl 2 , SOF 2 , SO 2 F 2 , SOBr 2 ); X x X' y , ClF 5 ; X x X' y O z , ClO 2 F, ClO 2 F 2 , ClOF 3 , ClO 3 F, ClO 2 F 3 ; boron-nitrogen compound, B 3 N 3 H 6 ; Se; Te; Bi; As; Sb; Bi; TeX x , TeF 4, TeF 6; TeO x, TeO 2, TeO 3; SeX x, SeF 6; SeO x, SeO 2 or SeO 3; tellurium oxides, halides, tellurium compounds, TeO 2, TeO 3, Te (OH ) 6, TeBr 2, TeCl 2 , TeBr 4, TeCl 4, TeF 4, TeI 4, TeF 6, CoTe or NITE; selenium compound, selenium oxide Selenium halides, selenium sulfide, SeO 2, SeO 3, Se 2 Br 2, Se 2 Cl 2, SeBr 4, SeCl 4, SeF 4, SeF 6, SeOBr 2, SeOCl 2, SeOF 2, SeO 2 F 2, SeS 2 , Se 2 S 6 , Se 4 S 4 or Se 6 S 2 ; P; P 2 O 5 ; P 2 S 5 ; P x X y , PF 3 , PCl 3 , PBr 3 , PI 3 , PF 5 , PCl 5 , PBr 4 F, PCl 4 F; PO x X y , POBr 3 , POI 3 , POCl 3 or POF 3 ; PS x X y ( M is an alkali metal, x, y and z are integers, X and X' Is halogen), PSBr 3 , PSF 3 , PSCl 3 ; phosphorus-nitrogen compound, P 3 N 5 , (Cl 2 PN) 3 , (Cl 2 PN) 4 , (Br 2 PN) x ; arsenic compound, arsenic oxide , arsenic halides, arsenic sulfides, arsenic selenides, arsenic tellurides, AlAs, As 2 I 4 , As 2 Se, As 4 S 4 , AsBr 3 , AsCl 3 , AsF 3 , AsI 3 , As 2 O 3 , As 2 Se 3 , As 2 S 3 , As 2 Te 3 , AsCl 5 , AsF 5 , As 2 O 5 , As 2 Se 5 , As 2 S 5 ; antimony compound, antimony oxide, antimony halide, antimony sulfide , barium sulfate, barium selenide, barium arsenide, SbAs, SbBr 3 , SbCl 3 , SbF 3 , SbI 3 , Sb 2 O 3 , SbOCl, Sb 2 Se 3 , Sb 2 (SO 4 ) 3 , Sb 2 S 3 , Sb 2 Te 3 , Sb 2 O 4 , SbCl 5 , SbF 5 , SbCl 2 F 3 , Sb 2 O 5 , Sb 2 S 5 ; antimony compound, antimony oxide, antimony halide, antimony sulfide , bismuth selenide, BiAsO 4 , BiBr 3 , BiCl 3 , BiF 3 , BiF 5 , Bi(OH) 3 , BiI 3 , Bi 2 O 3 , BiOBr, BiOCl, BiOI, Bi 2 Se 3 , Bi 2 S 3 , Bi 2 Te 3, Bi 2 O 4; SiCl 4, SiBr 4; a transition metal halide, CrCl 3, ZnF 2, ZnBr 2, ZnI 2, MnCl 2, MnBr 2, MnI 2, CoBr 2, CoI 2, CoCl 2 , NiCl 2 , NiBr 2 , NiF 2 , FeF 2 , FeCl 2 , FeBr 2 , FeCl 3 , TiF 3 , CuBr, CuBr 2 , VF 3 , CuCl 2 ; metal halides, SnF 2 , SnCl 2 , SnBr 2 , SuI 2, SnF 4, SnCl 4 , SnBr 4, SnI 4, InF, InCl, InBr, InI, AgCl, AgI, AlF 3, AlBr 3, AlI 3, YF 3, CdCl 2, CdBr 2, CdI 2, InCl 3 , ZrCl 4, NbF 5, TaCl 5, MoCl 3, MoCl 5, NbCl 5, AsCl 3, TiBr 4, SeCl 2, SeCl 4, InF 3, InCl 3, PbF 4, TeI 4, WCl 6, OsCl 3, GaCl 3, PtCl 3, ReCl 3, RhCl 3, RuCl 3; metal Compounds, metal hydroxides, Y 2 O 3, FeO, Fe 2 O 3 or NbO, NiO, Ni 2 O 3 , SnO, SnO 2, Ag 2 O, AgO, Ga 2 O, As 2 O 3, SeO 2 , TeO 2 , In(OH) 3 , Sn(OH) 2 , In(OH) 3 , Ga(OH) 3 , Bi(OH) 3 ; CO 2 ; As 2 Se 3 ; SF 6 ; S; SbF 3 ; CF 4 ; NF 3 ; metal permanganate, KMnO 4 , NaMnO 4 ; P 2 O 5 ; metal nitrate, LiNO 3 , NaNO 3 , KNO 3 ; boron halide, BBr 3 , BI 3 ; , indium halide, InBr 2 , InCl 2 , InI 3 ; silver halide, AgCl, AgI; lead halide; cadmium halide; zirconium halide; transition metal oxide, transition metal sulfide or transition metal halide (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu or Zn with F, Cl, Br or I); second or third transition series halide YF 3 , second or third transition series oxide, second or third Transition series sulfides Y 2 S 3 , Y, Zr, Nb, Mo, Tc, Ag, Cd, Hf, Ta, W, Os halides, such as NbX 3 , NbX 5 or TaX 5 ; Li 2 S, ZnS, FeS, NiS, MnS, Cu 2 S, CuS, SnS; alkaline earth metal halides, BaBr 2 , BaCl 2 , BaI 2 , SrBr 2 , SrI 2, CaBr 2, CaI 2, MgBr 2 or MgI 2; rare earth metal halides, EuBr 3, LaF 3, LaBr 3, CeBr 3, GdF 3, GdBr 3; a rare earth metal is in the state of the halide II, CeI 2, EuF 2, EuCl 2, EuBr 2, EuI 2, DyI 2, NdI 2, SmI 2, YbI 2 and TmI 2; metal boride, europium boride; MB 2 boride, CrB 2, TiB 2, MgB 2 , ZrB 2 , GdB 2 ; alkali metal halides, LiCl, RbCl or CsI; metal phosphides such as Ca 3 P 2 ; noble metal halides, noble metal oxides, noble metal sulfides, PtCl 2 , PtBr 2 , PtI 2 , PtCl 4 , PdCl 2 , PbBr 2 , PbI 2 ; rare earth metal sulfide CeS; La halide; Gd halide; metal and anion, Na 2 TeO 4 , Na 2 TeO 3 , Co(CN) 2 , CoSb, CoAs, Co 2 P, CoO, CoSe, CoTe, NiSb, NiAs, NiSe, Ni 2 Si, MgSe; rare earth metal telluride, EuTe; rare earth metal selenide, EuSe; rare earth metal nitride, EuN; metal nitride, AlN, GdN, Mg 3 N 2 ; a compound containing at least two atoms selected from oxygen atoms and different halogen atoms, F 2 O, Cl 2 O, ClO 2 , Cl 2 O 6 , Cl 2 O 7 , ClF, ClF 3 , ClOF 3 , ClF 5 , ClO 2 F, ClO 2 F 3 , ClO 3 F, BrF 3 , BrF 5 , I 2 O 5 , IBr, ICl, ICl 3 , IF , IF 3 , IF 5 , IF 7 ; metal second or third transition series halides, OsF 6 , PtF 6 or IrF 6 ; compounds capable of forming metals after reduction, metal hydrides, rare earth metal hydrides, alkaline earth metals a hydride or an alkali metal hydride; (iv) at least one reducing agent selected from the group consisting of metals, alkali metals, alkaline earth metals, transition metals, second and third series of transition metals and rare earth metals, Al , Mg , MgH 2 , Si , La, B, Zr and Ti powders; and H 2 ; and (v) at least one selected from the group consisting of AC, 1% Pt/carbon or Pd/carbon (Pt/C, Pd/C), carbide TiC and WC Conductive carrier. 如請求項1之動力系統,其中包含氧化還原反應以引起該催化反應之該反應混合物包含:(i)至少一種催化劑或催化劑源,其包含來自第I族元素之金屬或氫化物;(ii)至少一種氫源,其包含氫氣或氫氣源或氫化物;(iii)至少一種氧化劑,其包含含有至少一種來自第13族、第14族、第15族、第16族及第17族且選自F、Cl、Br、I、B、C、N、O、Al、Si、P、S、Se及Te之元素的 原子或離子或化合物;(iv)至少一種還原劑,其包含選自Mg、MgH2 、Al、Si、B、Zr及稀土金屬之元素或氫化物;及(v)至少一種導電性載體,其選自碳、AC、石墨烯、浸漬有金屬之碳Pt/C或Pd/C、碳化物TiC及WC。The power system of claim 1, wherein the reaction mixture comprising a redox reaction to cause the catalytic reaction comprises: (i) at least one catalyst or catalyst source comprising a metal or hydride from a Group I element; (ii) At least one hydrogen source comprising hydrogen or a hydrogen source or hydride; (iii) at least one oxidant comprising at least one member from Group 13, Group 14, Group 15, Group 16, and Group 17 and selected from the group consisting of An atom or ion or compound of an element of F, Cl, Br, I, B, C, N, O, Al, Si, P, S, Se, and Te; (iv) at least one reducing agent comprising a substance selected from the group consisting of Mg, An element or hydride of MgH 2 , Al, Si, B, Zr and a rare earth metal; and (v) at least one electrically conductive support selected from the group consisting of carbon, AC, graphene, metal impregnated carbon Pt/C or Pd/ C, carbide TiC and WC. 如請求項1之動力系統,其中包含氧化還原反應以引起該催化反應之之該反應混合物包含:(i)至少一種催化劑或催化劑源,其包含來自第I族元素之金屬或氫化物;(ii)至少一種氫源,其包含氫氣或氫氣源或氫化物;(iii)至少一種氧化劑,其包含選自第IA族、第IIA族、第3d族、第4d族、第5d族、第6d族、第7d族、第8d族、第9d族、第10d族、第11d族、第12d族及鑭系元素之元素的鹵化物、氧化物或硫化物;(iv)至少一種還原劑,其包含選自Mg、MgH2 、Al、Si、B、Zr及稀土金屬之元素或氫化物;及(v)至少一種導電性載體,其選自碳、AC、石墨烯、諸如Pt/C或Pd/C之浸漬有金屬之碳、碳化物TiC及WC。The power system of claim 1, wherein the reaction mixture comprising a redox reaction to cause the catalytic reaction comprises: (i) at least one catalyst or catalyst source comprising a metal or hydride from a Group I element; At least one hydrogen source comprising hydrogen or a hydrogen source or hydride; (iii) at least one oxidant comprising a group selected from Group IA, Group IIA, Group 3d, Group 4d, Group 5d, Group 6d a halide, an oxide or a sulfide of an element of Group 7d, Group 8d, Group 9d, Group 10d, Group 11d, Group 12d and a lanthanide element; (iv) at least one reducing agent comprising An element or hydride selected from the group consisting of Mg, MgH 2 , Al, Si, B, Zr, and a rare earth metal; and (v) at least one electrically conductive support selected from the group consisting of carbon, AC, graphene, such as Pt/C or Pd/ C is impregnated with metal carbon, carbide TiC and WC. 如請求項1之動力系統,其中引起該催化反應之該交換反應包含該氧化劑、該還原劑及該催化劑中之至少兩者之間的陰離子交換,其中該陰離子係選自鹵離子、氫離子、氧離子、硫離子、氮離子、硼離子、碳離子、矽離子、砷離子、硒離子、碲離子、磷離子、硝酸根、硫氫根、碳酸根、硫酸根、硫酸氫根、磷酸根、磷酸氫根、 磷酸二氫根、過氯酸根、鉻酸根、重鉻酸根、鈷酸根及氧陰離子。 The power system of claim 1, wherein the exchange reaction causing the catalytic reaction comprises anion exchange between the oxidant, the reducing agent, and at least two of the catalysts, wherein the anion is selected from the group consisting of halides, hydrogen ions, Oxygen ions, sulfur ions, nitrogen ions, boron ions, carbon ions, barium ions, arsenic ions, selenium ions, barium ions, phosphorus ions, nitrates, hydrogen sulfide, carbonates, sulfates, hydrogen sulfate, phosphates, Hydrogen phosphate, Dihydrogen phosphate, perchlorate, chromate, dichromate, cobaltate and oxyanion. 如請求項7之動力系統,其中引起該催化之該交換反應為熱可逆的以使該等初始交換反應物再生。 The power system of claim 7, wherein the exchange reaction that causes the catalysis is thermally reversible to regenerate the initial exchange reactants. 如請求項8之動力系統,其中該等熱再生反應物包含(i)至少一種選自NaH及KH之催化劑或催化劑源;(ii)選自NaH、KH及MgH2 之氫源;(iii)至少一種選自以下之氧化劑:(a)選自BaBr2 、BaCl2 、BaI2 、CaBr2 、MgBr2 及MgI2 之鹼土金屬鹵化物;(b)選自EuBr2 、EuBr3 、EuF3 、DyI2 、LaF3 及GdF3 之稀土金屬鹵化物;(c)選自YF3 之第二或第三系列過渡金屬鹵化物;(d)選自CrB2 及TiB2 之金屬硼化物;(e)選自LiCl、RbCl及CsI之鹼金屬鹵化物;(f)選自Li2 S、ZnS及Y2 S3 之金屬硫化物;(h)選自Y2 O3 之金屬氧化物;及(i)選自Ca3 P2 之金屬磷化物;(iv)至少一種選自Mg及MgH2 之還原劑;及(v)至少一種選自AC、TiC及WC之載體。The power system of claim 8, wherein the thermally regenerated reactants comprise (i) at least one catalyst or catalyst source selected from the group consisting of NaH and KH; (ii) a hydrogen source selected from the group consisting of NaH, KH, and MgH 2 ; At least one oxidizing agent selected from the group consisting of (a) an alkaline earth metal halide selected from the group consisting of BaBr 2 , BaCl 2 , BaI 2 , CaBr 2 , MgBr 2 and MgI 2 ; (b) selected from the group consisting of EuBr 2 , EuBr 3 , EuF 3 , a rare earth metal halide of DyI 2 , LaF 3 and GdF 3 ; (c) a second or third series of transition metal halides selected from the group consisting of YF 3 ; (d) a metal boride selected from the group consisting of CrB 2 and TiB 2 ; An alkali metal halide selected from the group consisting of LiCl, RbCl and CsI; (f) a metal sulfide selected from the group consisting of Li 2 S, ZnS and Y 2 S 3 ; (h) a metal oxide selected from the group consisting of Y 2 O 3 ; i) a metal phosphide selected from the group consisting of Ca 3 P 2 ; (iv) at least one reducing agent selected from the group consisting of Mg and MgH 2 ; and (v) at least one carrier selected from the group consisting of AC, TiC and WC. 如請求項1之動力系統,其中引起該催化反應之該吸氣劑、載體或基質輔助之催化反應包含如下催化反應:為該催化反應提供至少一種化學環境,用以轉移電子以促進H催化劑功能,經歷可逆相變或其他物理變化或其電 子態變化,及結合該氫物質產物以增加該催化反應之程度或速率中之至少一者的催化反應。 The kinetic system of claim 1, wherein the getter, carrier or matrix-assisted catalytic reaction that causes the catalytic reaction comprises a catalytic reaction that provides at least one chemical environment for the catalytic reaction to transfer electrons to promote H catalyst function. , undergoing reversible phase transitions or other physical changes or their electricity A substate change, and a catalytic reaction that combines the hydrogen species product to increase at least one of the extent or rate of the catalytic reaction. 如請求項10之動力系統,其中該吸氣劑、載體或基質輔助之催化反應可熱逆轉以使該等初始交換反應物再生。 The power system of claim 10, wherein the getter, carrier or matrix assisted catalytic reaction is thermally reversed to regenerate the initial exchange reactants. 如請求項11之動力系統,其中該吸氣劑、載體或基質輔助之催化反應混合物包含(i)至少一種選自NaH及KH之催化劑或催化劑源;(ii)選自NaH、KH及MgH2 之氫源;(iii)至少一種選自以下之氧化劑:(a)選自Mg3 As2 之金屬砷化物;及(b)選自Mg3 N2 及AlN之金屬氮化物;(iv)至少一種選自Mg及MgH2 之還原劑;及(v)至少一種選自AC、TiC及WC之載體。The power system of claim 11, wherein the getter, carrier or matrix-assisted catalytic reaction mixture comprises (i) at least one catalyst or catalyst source selected from the group consisting of NaH and KH; (ii) selected from the group consisting of NaH, KH and MgH 2 the source of hydrogen; (iii) at least one of an oxidizing agent selected from: (a) a metal selected from Mg 3 As 2 of arsenide; and (b) is selected from Mg 3 N 2 and the metal nitride AlN; (iv) at least one selected from Mg and MgH 2 of a reducing agent; and (v) at least one selected AC, TiC, and WC of the carrier. 如請求項1之動力系統,其中引起該催化反應且包含含有鹼金屬之催化劑的該反應混合物係藉由分離一或多種該等組份且以電解使該鹼金屬再生而自該等產物再生。 The power system of claim 1, wherein the reaction mixture that causes the catalytic reaction and comprises an alkali metal-containing catalyst is regenerated from the products by separating one or more of the components and regenerating the alkali metal by electrolysis. 一種氫化物反應器,其包含:反應電池,用於催化原子氫形成總能量比未經催化之氫物質總能量更低且更穩定之氫物質及包含該等氫物質之組合物;反應容器;真空泵;原子氫源,來自與該反應容器相連通之來源;氫催化劑源,與該反應容器相連通; 該原子氫源與該氫催化劑源中之至少一者的來源包含含有一或多種形成該原子氫與該氫催化劑中之至少一者之元素及至少一種其他元素的至少一種反應物的反應混合物,藉此該原子氫與該氫催化劑中之至少一者由該來源形成,至少一種其他反應物,藉由執行活化及擴展催化中之至少一種功能來引起該催化的;及用於該容器之加熱器,其起始該反應容器中形成該原子氫與該氫催化劑中之至少一者,且起始該反應以引起催化,藉此在該氫原子催化期間原子氫之催化每莫耳氫釋放超過約300kJ之量的能量。 A hydride reactor comprising: a reaction cell for catalyzing a hydrogen atom having a total energy lower than a total energy of an uncatalyzed hydrogen substance and being more stable; and a composition comprising the hydrogen substance; a reaction vessel; a vacuum pump; an atomic hydrogen source from a source in communication with the reaction vessel; a hydrogen catalyst source in communication with the reaction vessel; a source of at least one of the atomic hydrogen source and the hydrogen catalyst source comprising a reaction mixture comprising one or more at least one reactant that forms an element of the atomic hydrogen and at least one of the hydrogen catalyst and at least one other element, Thereby at least one of the atomic hydrogen and the hydrogen catalyst is formed from the source, the at least one other reactant causing the catalysis by performing at least one of activation and expansion catalysis; and heating for the vessel Forming at least one of the atomic hydrogen and the hydrogen catalyst in the reaction vessel, and initiating the reaction to cause catalysis, whereby the atomic hydrogen catalysis releases more hydrogen per mole than during the hydrogen atom catalysis An amount of energy of about 300kJ. 如請求項14之氫化物反應器,其中用於合成該等化合物之該反應混合物包含至少兩種選自以下種類之組份(i)-(v)之物質:(i)催化劑、(ii)氫源、(iii)氧化劑、(iv)還原劑及(v)載體。 The hydride reactor of claim 14, wherein the reaction mixture for synthesizing the compounds comprises at least two materials selected from the group consisting of components (i) to (v): (i) a catalyst, (ii) a hydrogen source, (iii) an oxidizing agent, (iv) a reducing agent, and (v) a carrier. 如請求項15之氫化物反應器,其中該氧化劑係選自硫;磷;氧、SF 6S 、SO2 、SO3 、S2 O5 Cl2 、F5 SOF、M 2 S 2 O 8 、Sx Xy 、S2 Cl2 、SCl2 、S2 Br2 、S2 F2 、CS2 、Sb2 S5 、SOx Xy 、SOCl2 、SOF2 、SO2 F2 、SOBr2 、P、P2 O5 、P2 S5 、Px Xy 、PF3 、PCl3 、PBr3 、PI3 、PF5 、PCl5 、PBr4 F、PCl4 F、POx Xy 、POBr3 、POI3 、POCl3 、POF3 、PSx Xy 、PSBr3 、PSF3 、PSCl3 ;磷-氮化合物P3 N5 、(Cl2 PN)3 或(Cl2 PN)4 、(Br2 PN)x (M 為鹼金屬,x及y為整數,X為鹵素);O2 、N2 O及TeO2 ;鹵化物,CF4 、 NF3 、CrF2 ;磷源、硫源、MgS、MHS(M 為鹼金屬)。The hydride reactor of claim 15 wherein the oxidant is selected from the group consisting of sulfur; phosphorus; oxygen, SF 6 , S , SO 2 , SO 3 , S 2 O 5 Cl 2 , F 5 SOF, M 2 S 2 O 8 , S x X y , S 2 Cl 2 , SCl 2 , S 2 Br 2 , S 2 F 2 , CS 2 , Sb 2 S 5 , SO x X y , SOCl 2 , SOF 2 , SO 2 F 2 , SOBr 2 , P, P 2 O 5 , P 2 S 5 , P x X y , PF 3 , PCl 3 , PBr 3 , PI 3 , PF 5 , PCl 5 , PBr 4 F, PCl 4 F, PO x X y , POBr 3 , POI 3 , POCl 3 , POF 3 , PS x X y , PSBr 3 , PSF 3 , PSCl 3 ; phosphorus-nitrogen compound P 3 N 5 , (Cl 2 PN) 3 or (Cl 2 PN) 4 , (Br 2 PN) x ( M is an alkali metal, x and y are integers, X is a halogen); O 2 , N 2 O and TeO 2 ; halides, CF 4 , NF 3 , CrF 2 ; phosphorus source, sulfur source, MgS , MHS ( M is an alkali metal). 如請求項16之氫化物反應器,其中該反應混合物進一步包含用於該經催化氫之選自以下之吸氣劑:元素S、P、O、Se及Te,及包含S、P、O、Se及Te之化合物。 The hydride reactor of claim 16, wherein the reaction mixture further comprises a getter selected from the group consisting of the elements S, P, O, Se, and Te, and comprising S, P, O, Compounds of Se and Te. 如請求項1之動力系統,其中該催化劑能夠接受來自原子氫之約27.2eV±0.5eV與 eV ±0.5eV之一之整數單位的能量。The power system of claim 1, wherein the catalyst is capable of accepting about 27.2 eV ± 0.5 eV from atomic hydrogen The energy of an integer unit of one of eV ± 0.5eV. 如請求項1之動力系統,其中該催化劑包含原子或離子M,其中t 個電子自該原子或離子M各自電離至連續能階,使得該t 個電子之電離能之總和為約m ˙27.2eVm ˙ eV 之一,其中m 為整數。The power system of claim 1, wherein the catalyst comprises an atom or an ion M, wherein t electrons are each ionized from the atom or ion M to a continuous energy level such that the sum of the ionization energies of the t electrons is about m ̇ 27.2 eV and m ˙ One of eVs , where m is an integer. 如請求項1之動力系統,其中該催化劑包含雙原子分子MH,其中M-H鍵斷裂加上t 個電子自該原子M各自電離至連續能階,使得該鍵能與該t 個電子之電離能之總和為約m ×27.2eVm ˙ eV 之一,其中m 為整數。The power system of claim 1, wherein the catalyst comprises a diatomic molecule MH, wherein the MH bond is broken and t electrons are each ionized from the atom M to a continuous energy level such that the bond can ionize with the t electrons. The sum is about m × 27.2 eV and m ̇ One of eVs , where m is an integer. 如請求項1之動力系統,其中該催化劑包含選自分子AlH、BiH、ClH、CoH、GeH、InH、NaH、RuH、SbH、SeH、SiH、SnH、C 2N 2O 2CO 2NO 2NO 3 及原子或離子Li、Be、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Se、Kr、Rb、Sr、Nb、Mo、Pd、Sn、Te、Cs、Ce、Pr、Sm、Gd、Dy、Pb、Pt、Kr、2K +He +Ti 2+Na +Rb +Sr +Fe 3+Mo 2+Mo 4+In 3+He +Ar +Xe +Ar 2+H +Ne +H + 之原子、離子及/或分子。The power system of claim 1, wherein the catalyst comprises a molecule selected from the group consisting of molecules AlH, BiH, ClH, CoH, GeH, InH, NaH, RuH, SbH, SeH, SiH, SnH, C 2 , N 2 , O 2 , CO 2 , NO 2 and NO 3 and atoms or ions Li, Be, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Kr, Rb, Sr, Nb, Mo, Pd, Sn, Te, Cs, Ce, Pr, Sm, Gd, Dy, Pb, Pt, Kr, 2 K + , He + , Ti 2+ , Na + , Rb + , Sr + , Fe 3+ , Mo 2 The atoms, ions and/or molecules of + , Mo 4+ , In 3+ , He + , Ar + , Xe + , Ar 2+ and H + and Ne + and H + . 如請求項1之動力系統,以使用電解或熱再生反應維持動力產生與再生同步之方式使其連續運作。 The power system of claim 1 is operated continuously by synchronizing the power generation with regeneration using an electrolysis or thermal regeneration reaction. 如請求項1之動力系統,其進一步包含功率變換器。 The power system of claim 1, further comprising a power converter. 如請求項23之動力系統,其中該變換器包含與該反應容器相連通之蒸汽產生器、與該蒸汽產生器相連通之蒸汽渦輪機及與該蒸汽渦輪機相連通之發電機。 The power system of claim 23, wherein the converter includes a steam generator in communication with the reaction vessel, a steam turbine in communication with the steam generator, and a generator in communication with the steam turbine.
TW098125725A 2009-07-30 2009-07-30 Heterogeneous hydrogen-catalyst reactor TWI497809B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098125725A TWI497809B (en) 2009-07-30 2009-07-30 Heterogeneous hydrogen-catalyst reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098125725A TWI497809B (en) 2009-07-30 2009-07-30 Heterogeneous hydrogen-catalyst reactor

Publications (2)

Publication Number Publication Date
TW201104948A TW201104948A (en) 2011-02-01
TWI497809B true TWI497809B (en) 2015-08-21

Family

ID=44813816

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098125725A TWI497809B (en) 2009-07-30 2009-07-30 Heterogeneous hydrogen-catalyst reactor

Country Status (1)

Country Link
TW (1) TWI497809B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI524825B (en) 2012-10-29 2016-03-01 財團法人工業技術研究院 Method of transferring carbon conductive film
CN115367701B (en) * 2022-09-29 2023-07-07 重庆大学 MgH (MgH) 2 -AlH 3 -TiF 3 Composite hydrogen storage material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008134451A1 (en) * 2007-04-24 2008-11-06 Blacklight Power, Inc. Hydrogen-catalyst reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008134451A1 (en) * 2007-04-24 2008-11-06 Blacklight Power, Inc. Hydrogen-catalyst reactor

Also Published As

Publication number Publication date
TW201104948A (en) 2011-02-01

Similar Documents

Publication Publication Date Title
EP2966723A1 (en) Heterogeneous hydrogen-catalyst power system
KR101728176B1 (en) Heterogeneous hydrogen-catalyst reactor
CN102906925B (en) Electrochemical hydrogen catalyst dynamical system
CN107275722A (en) Battery or fuel cell system
US20130084474A1 (en) Electrochemical hydrogen-catalyst power system
JP2013542547A5 (en)
AU2015246122A1 (en) Electrochemical hydrogen-catalyst power system
JP2017014098A (en) Heterogeneous hydrogen-catalyst reactor
US20200299130A1 (en) Heterogeneous hydrogen-catalyst reactor
TWI497809B (en) Heterogeneous hydrogen-catalyst reactor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees