TWI419345B - Photovoltaic power apparatus and analog circuit for tracking maximum power thereof - Google Patents

Photovoltaic power apparatus and analog circuit for tracking maximum power thereof Download PDF

Info

Publication number
TWI419345B
TWI419345B TW100140422A TW100140422A TWI419345B TW I419345 B TWI419345 B TW I419345B TW 100140422 A TW100140422 A TW 100140422A TW 100140422 A TW100140422 A TW 100140422A TW I419345 B TWI419345 B TW I419345B
Authority
TW
Taiwan
Prior art keywords
voltage
power
resistor
asymptote
maximum power
Prior art date
Application number
TW100140422A
Other languages
Chinese (zh)
Other versions
TW201320362A (en
Inventor
Yi Hua Liu
Jia Wei Huang
Original Assignee
Univ Nat Taiwan Science Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan Science Tech filed Critical Univ Nat Taiwan Science Tech
Priority to TW100140422A priority Critical patent/TWI419345B/en
Publication of TW201320362A publication Critical patent/TW201320362A/en
Application granted granted Critical
Publication of TWI419345B publication Critical patent/TWI419345B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Description

太陽能發電裝置及其類比式最大功率追蹤電路Solar power generation device and analogous maximum power tracking circuit

本發明係與一種發電裝置有關,且特別是與一種太陽能發電裝置及其類比式最大功率追蹤電路有關。The present invention relates to a power generating device, and more particularly to a solar power generating device and its analogous maximum power tracking circuit.

近年來,由於環保意識的逐漸高漲,以及太陽能電池、電力電子及微電子技術的快速發展,太陽能發電逐漸被實現並應用於生活中。在許多太陽能的應用中,都證明了太陽能發電系統的經濟性係優於柴油機發電系統。由於太陽能發電系統具有全自動、高可靠性、無需人看守等特點,因此非常適合偏遠地區使用。然而,在使用太陽能電池時,需要了解太陽能電池之工作特性,並且太陽能電池往往會受到當下太陽光照度大小不同而有所影響,以致於產生不同之輸出功率。In recent years, due to the increasing awareness of environmental protection and the rapid development of solar cells, power electronics and microelectronics technology, solar power generation has gradually been realized and applied to life. In many solar applications, it has been proven that the economics of solar power systems are superior to diesel power generation systems. Because the solar power system is fully automatic, highly reliable, and requires no guards, it is ideal for use in remote areas. However, when using solar cells, it is necessary to understand the operating characteristics of the solar cells, and the solar cells are often affected by the difference in the current solar illuminance, so that different output powers are generated.

圖1為對應於照度之太陽能電池的輸出功率與輸出電壓之變化示意圖。請參照圖1,在不同照度下,太陽能電池的輸出功率與輸出電壓的對應關係並不相同,因此常常需要透過最大功率追蹤器,以使得太陽能電池得以在最大功率輸出點下進行操作。因此,在太陽能發電系統中,最大功率追蹤器常扮演著很重要的角色。現今已發展出許多不同之最大功率追蹤技術,一般常見的最大功率追蹤技術為電壓迴授法、功率迴授法、擾動觀察法及增量電導法等四種方法。FIG. 1 is a schematic diagram showing changes in output power and output voltage of a solar cell corresponding to illuminance. Referring to FIG. 1, the corresponding relationship between the output power of the solar cell and the output voltage is different under different illumination conditions, so it is often necessary to pass the maximum power tracker to enable the solar cell to operate at the maximum power output point. Therefore, in solar power systems, the maximum power tracker often plays a very important role. Many different maximum power tracking technologies have been developed today. The most common maximum power tracking techniques are voltage feedback method, power feedback method, disturbance observation method and incremental conductivity method.

擾動觀察法(perturb and observe algorithms,P&O)是一種較為常用的最大功率追蹤方法,其中擾動觀察法是一種數位式最大功率追蹤技術。擾動觀察法的原理是透過擾動開關的工作週期來變動太陽能電池的輸出電壓,再量測功率變化,並且和擾動之前功率做比較。若擾動後功率增加,則表示擾動的方向(即增加輸出電壓或減少輸出電壓)正確,可朝同一方向繼續擾動;反之,若擾動後功率減小,則表示擾動方向不正確,必須進行反向擾動,直到太陽能電池的最大功率點被追蹤到為止。但擾動觀察法在太陽能電池於最大功率點下工作時,仍會對太陽能發電系統進行擾動,而使得太陽能電池的輸出電壓會在最大功率點附近回來移動,進而造成系統震盪並增加太陽能發電系統的功率損失。此外,擾動觀察法的擾動值為重要的運作參數,當選擇較大擾動值時,則可較快地追蹤到最大功率點,但是在最大功率點下的擾動較大,進而造成較大的擾動功率損失;反之,當選擇較小的擾動值時,則追蹤到最大功率點的速度較慢,但在最大功率點的擾動較小,因此所造成的擾動損失較小。Perturb and observe algorithms (P&O) is a commonly used maximum power tracking method. Perturbation observation is a digital maximum power tracking technique. The principle of the disturbance observation method is to change the output voltage of the solar cell through the duty cycle of the disturbance switch, and then measure the power variation and compare it with the power before the disturbance. If the power increases after the disturbance, it indicates that the direction of the disturbance (ie, increasing the output voltage or reducing the output voltage) is correct, and the disturbance can continue in the same direction. Conversely, if the power is reduced after the disturbance, the disturbance direction is incorrect and must be reversed. Disturb until the maximum power point of the solar cell is tracked. However, the disturbance observation method will still disturb the solar power generation system when the solar cell is operated at the maximum power point, so that the output voltage of the solar cell will move back near the maximum power point, thereby causing the system to oscillate and increasing the solar power generation system. Power loss. In addition, the disturbance value of the disturbance observation method is an important operational parameter. When a larger disturbance value is selected, the maximum power point can be tracked relatively quickly, but the disturbance at the maximum power point is large, thereby causing a large disturbance. Power loss; conversely, when a smaller disturbance value is selected, the speed at which the maximum power point is tracked is slower, but the disturbance at the maximum power point is smaller, so the disturbance loss caused is smaller.

增量電導法(incremental conductance algorithm)則是另一種較常用的最大功率追蹤方法,其中增量電導法亦是一種數位式最大功率追蹤技術。圖2為增量電導法的操作示意圖。請參照圖2,增量電導法目的就是讓太陽能電池的輸出電壓達到最大功率點電壓Vmax,以得到最大的輸出功率。而在最大功率Pmax的斜率為零,由下述方程式(1)及(2)可知,當太陽能電池的輸出電壓於最大功率點之左側時(即小於最大功率點的區域)下操作時,(dP/dV)>0;反之,當太陽能電池的輸出電壓於最大功率點之右側時(即大於最大功率點的區域)下操作時,(dP/dV)<0。Incremental conductance algorithm is another commonly used maximum power tracking method, and incremental conductivity method is also a digital maximum power tracking technology. Figure 2 is a schematic diagram of the operation of the incremental conductance method. Referring to FIG. 2, the purpose of the incremental conductance method is to let the output voltage of the solar cell reach the maximum power point voltage Vmax to obtain the maximum output power. While the slope of the maximum power Pmax is zero, it can be seen from the following equations (1) and (2) that when the output voltage of the solar cell is operated to the left of the maximum power point (ie, the region smaller than the maximum power point), dP/dV)>0; conversely, when the output voltage of the solar cell is operated to the right of the maximum power point (ie, an area larger than the maximum power point), (dP/dV) < 0.

其中,P為太陽能電池的輸出功率,V為太陽能電池的輸出電壓,I為太陽能電池的輸出電流,當(dP/dV)=0時,可化簡第(1)整理後可得Where P is the output power of the solar cell, V is the output voltage of the solar cell, and I is the output current of the solar cell. When (dP/dV) = 0, it can be simplified after finishing (1)

當符合上方程式(2)時,表示系統已到達最大功率點,此時便不必再對系統做電壓的變動。在程式設計上,電壓增加量和電壓減少量會影響太陽能發電系統追蹤達到最大功率點的速度,以致於在程式執行上會較其它最大功率追蹤方法複雜,並且在實際量測時,最大功率追蹤的效果會因為電壓感測器及電流感測器之精準度而有不同。When the above formula (2) is met, it means that the system has reached the maximum power point, and it is no longer necessary to make voltage changes to the system. In terms of programming, the voltage increase and voltage reduction will affect the speed at which the solar power system tracks the maximum power point, so that the program execution is more complicated than other maximum power tracking methods, and in actual measurement, the maximum power tracking The effect will vary depending on the accuracy of the voltage sensor and current sensor.

定電壓控制法是一種最簡易的最大功率追蹤方法,其中定電壓控制法是一種類比式最大功率追蹤技術。圖3為定電壓控制法的操作示意圖。請參照圖3,定電壓控制法為將太陽能電池之輸出電壓控制在電壓VOP,預設此電壓VOP為對應所有最大功率點的操作電壓。由於此特定電壓並非為太陽能電池對應於當下照度的最大功率操作點,因此定電壓控制法的太陽能追蹤效率較不好,亦即太陽能電池整體的功率耗損較大。The constant voltage control method is one of the simplest maximum power tracking methods, and the constant voltage control method is an analogous maximum power tracking technique. Figure 3 is a schematic diagram of the operation of the constant voltage control method. Referring to FIG. 3, the constant voltage control method controls the output voltage of the solar cell to a voltage VOP, and the voltage VOP is preset to be an operating voltage corresponding to all the maximum power points. Since the specific voltage is not the maximum power operating point of the solar cell corresponding to the current illuminance, the solar tracking efficiency of the constant voltage control method is not good, that is, the power consumption of the solar cell as a whole is large.

直線性近似法是另一種簡易的最大功率追蹤方法,其中直線性近似法亦是一種類比式最大功率追蹤技術。圖4為直線性近似法的操作示意圖。直線性近似法以一近似於太陽能電池在不同照度下的多個最大功率點的功率近似線410,並依據功率漸近線410來操作太陽能電池的輸出電壓,並藉以達成最大功率追蹤。直線性近似法的最大功率追蹤效率係較定電壓控制法好,亦即太陽能電池整體的功率耗損較低,但仍會有一定的功率耗損。The linear approximation method is another simple maximum power tracking method, and the linear approximation method is also an analogous maximum power tracking technique. Figure 4 is a schematic diagram of the operation of the linear approximation. The linear approximation approximates the line 410 with a power approximating the plurality of maximum power points of the solar cell at different illumination levels, and operates the output voltage of the solar cell in accordance with the power asymptote 410 to achieve maximum power tracking. The maximum power tracking efficiency of the linear approximation method is better than the constant voltage control method, that is, the overall power consumption of the solar cell is low, but there is still a certain power loss.

本發明提供一種太陽能發電裝置及其類比式最大功率追蹤電路,其係透過兩條分別近似於不同照度範圍的最大功率點之功率漸近線,並以此兩條功率漸近線的交叉點電壓來選擇所使用的功率漸近線,而透過所使用的功率漸近線來快速的找到對應當下照度的最大功率電壓。並且,由於本發明係透過兩條分別近似不同照度範圍的最大功率點之功率漸近線,因此所找到的最大功率電壓會更貼近實際的最大功率點,以降低太陽能發電裝置整體的功率耗損。The invention provides a solar power generation device and an analog-type maximum power tracking circuit thereof, which are selected by transmitting two power asymptotes respectively corresponding to maximum power points of different illumination ranges, and selecting the intersection voltages of the two power asymptotes The power asymptote used, and the power asymptote used to quickly find the maximum power voltage for the illuminance that should be down. Moreover, since the present invention transmits power asymptotes of two maximum power points respectively approximating different illumination ranges, the maximum power voltage found will be closer to the actual maximum power point to reduce the overall power consumption of the solar power generation device.

本發明提出一種太陽能發電裝置,其包括太陽能電池、直流對直流轉換電路、電流偵測單元、電壓偵測單元、控制單元及類比式最大功率追蹤電路。太陽能電池係用以提供輸出電壓及輸出電流。直流對直流轉換電路,係耦接至太陽能電池,並可接收脈寬調變信號,以依據脈寬調變信號而將輸出電壓及輸出電流轉換為操作電壓。電流偵測單元係耦接至太陽能電池,以偵測輸出電流並輸出第一偵測電壓。電壓偵測單元係耦接至太陽能電池,以偵測輸出電壓並輸出第二偵測電壓。控制單元係耦接至電壓偵測單元,並可接收最大功率電壓,以產生脈寬調變信號,並依據第二偵測電壓與最大功率電壓的比較結果,來調整脈寬調變信號的脈波寬度。類比式最大功率追蹤電路係耦接至電流偵測單元、電壓偵測單元及控制單元,以依據第二偵測電壓以及第一功率漸近線與第二功率漸近線的交叉點電壓的比較結果,來選擇第一功率漸近線及第二功率漸近線的其中之一者,並依據所選擇的第一功率漸近線或第二功率漸近線以及第一偵測電壓,來產生最大功率電壓,其中第一功率漸近線以及第二功率漸近線係用來近似多個最大功率點,第一功率漸近線及第二功率漸近線的斜率並不相同,且係對應於不同照度範圍。The invention provides a solar power generation device, which comprises a solar battery, a DC-to-DC conversion circuit, a current detecting unit, a voltage detecting unit, a control unit and an analog-type maximum power tracking circuit. Solar cells are used to provide output voltage and output current. The DC-to-DC conversion circuit is coupled to the solar cell and can receive the pulse width modulation signal to convert the output voltage and the output current into an operating voltage according to the pulse width modulation signal. The current detecting unit is coupled to the solar cell to detect the output current and output the first detecting voltage. The voltage detecting unit is coupled to the solar cell to detect the output voltage and output the second detecting voltage. The control unit is coupled to the voltage detecting unit and can receive the maximum power voltage to generate a pulse width modulation signal, and adjust the pulse of the pulse width modulation signal according to the comparison result of the second detection voltage and the maximum power voltage. Wave width. The analogy maximum power tracking circuit is coupled to the current detecting unit, the voltage detecting unit and the control unit to compare the second detecting voltage and the intersection voltage of the first power asymptote and the second power asymptote. Selecting one of a first power asymptote and a second power asymptote, and generating a maximum power voltage according to the selected first power asymptote or second power asymptote and the first detection voltage, wherein A power asymptote and a second power asymptote are used to approximate a plurality of maximum power points, and the slopes of the first power asymptote and the second power asymptote are not the same and correspond to different illumination ranges.

本發明提出一種類比式最大功率追蹤電路,其係適用於太陽能發電裝置中。類比式最大功率追蹤電路包括有開關、第一電阻、第二電阻、第三電阻、第四電阻、第五電阻、比較器及單位增益反向放大器。開關具有第一端、第二端及第三端。第一電阻係耦接於第一電壓與第一端之間,其中該第一電壓係對應於太陽能電池的一輸出電流。第二電阻係耦接於參考電壓與第一端之間。第三電阻耦接於第一電壓與第二端之間。第四電阻耦接於參考電壓與第二端之間。比較器係耦接至該開關,以將第二電壓以及第一功率漸近線與第二功率漸近線的交叉點電壓進行比較,並依據比較結果來控制第三端係耦接至第一端或第二端,其中該第二電壓係對應於太陽能電池的輸出電壓。運算放大器係具有第一輸入端、第二輸入端及輸出端,第一輸入端係耦接至第三端,第二輸入端係耦接至接地電壓。第五電阻係耦接至於第一輸入端與輸出端之間。單位增益反向放大器係耦接至輸出端,以輸出最大功率電壓。其中,藉由第一電阻、第二電阻、第五電阻、第一電壓及參考電壓之數值,可以求得第一功率漸近線,藉由第三電阻、第四電阻、第五電阻、第一電壓及參考電壓之數值,則可以求得第二功率漸近線,第一電阻的電阻值係與第三電阻的電阻值不同,第一功率漸近線及第二功率漸近線係對應於不同照度範圍。The invention proposes an analogous maximum power tracking circuit, which is suitable for use in a solar power generation device. The analog-type maximum power tracking circuit includes a switch, a first resistor, a second resistor, a third resistor, a fourth resistor, a fifth resistor, a comparator, and a unity gain inverting amplifier. The switch has a first end, a second end, and a third end. The first resistor is coupled between the first voltage and the first end, wherein the first voltage corresponds to an output current of the solar cell. The second resistor is coupled between the reference voltage and the first end. The third resistor is coupled between the first voltage and the second end. The fourth resistor is coupled between the reference voltage and the second end. a comparator is coupled to the switch to compare the second voltage and the crossover voltage of the first power asymptote with the second power asymptote, and control the third end to be coupled to the first end or according to the comparison result The second end, wherein the second voltage corresponds to an output voltage of the solar cell. The operational amplifier has a first input end, a second input end, and an output end. The first input end is coupled to the third end, and the second input end is coupled to the ground voltage. The fifth resistor is coupled between the first input end and the output end. A unity gain inverting amplifier is coupled to the output to output a maximum power voltage. The first power asymptote is obtained by the values of the first resistor, the second resistor, the fifth resistor, the first voltage, and the reference voltage, and the third resistor, the fourth resistor, the fifth resistor, and the first The value of the voltage and the reference voltage can be used to obtain a second power asymptote. The resistance of the first resistor is different from the resistance of the third resistor. The first power asymptote and the second power asymptote correspond to different illumination ranges. .

在本發明之一實施例中,第一功率漸近線可以為a‧VIPV +b,且a=R5/R1,b=Vref×R5/R2,其中R1為第一電阻的電阻值,R2為第二電阻的電阻值,R5為第五電阻的電阻值,VIPV 為第一偵測電壓,Vref為參考電壓。In an embodiment of the present invention, the first power asymptote may be a‧V IPV +b, and a=R5/R1, b=Vref×R5/R2, where R1 is the resistance value of the first resistor, and R2 is The resistance value of the second resistor, R5 is the resistance value of the fifth resistor, V IPV is the first detection voltage, and Vref is the reference voltage.

在本發明之一實施例中,第二功率漸近線可以為c‧VIPV +d,且c=R5/R3,d=Vref×R5/R4,其中R3為第三電阻的電阻值,R4為第四電阻的電阻值,R5為第五電阻的電阻值,VIPV 為第一偵測電壓,Vref為參考電壓。In an embodiment of the present invention, the second power asymptote may be c‧V IPV +d, and c=R5/R3, d=Vref×R5/R4, where R3 is the resistance value of the third resistor, and R4 is The resistance value of the fourth resistor, R5 is the resistance value of the fifth resistor, V IPV is the first detection voltage, and Vref is the reference voltage.

在本發明之一實施例中,類比式最大功率追蹤電路更可以包括電壓補償單元,其係耦接至單位增益反向放大器的輸出端,以在對最大功率電壓進行溫度補償後加以輸出。In an embodiment of the present invention, the analog-type maximum power tracking circuit may further include a voltage compensation unit coupled to the output of the unity gain inverting amplifier for outputting after temperature compensation of the maximum power voltage.

在本發明之一實施例中,電壓補償單元包括加法器,以總和單位增益反向放大器輸出的最大功率電壓與溫度補償電壓,其中當太陽能電池的運作溫度為增加時,則溫度補償電壓為負電壓,當太陽能電池的運作溫度為減少時,則溫度補償電壓為正電壓。In an embodiment of the invention, the voltage compensation unit includes an adder to sum the maximum power voltage and the temperature compensation voltage output by the unity gain inversion amplifier, wherein when the operating temperature of the solar cell is increased, the temperature compensation voltage is negative. Voltage, when the operating temperature of the solar cell is reduced, the temperature compensation voltage is a positive voltage.

在本發明之一實施例中,第一功率漸近線所對應的照度範圍,係低於第二功率漸近線所對應的照度範圍。In an embodiment of the invention, the illuminance range corresponding to the first power asymptote is lower than the illuminance range corresponding to the second power asymptote.

在本發明之一實施例中,第三端係被預設為耦接至第一端。In an embodiment of the invention, the third end is preset to be coupled to the first end.

在本發明之一實施例中,開關係為一類比開關。In an embodiment of the invention, the open relationship is an analog switch.

在本發明之一實施例中,第一功率漸近線係對應於這些最大功率點中之多個第一最大功率點與一第二最大功率點,第二功率漸近線係對應這些最大功率點中之第二最大功率點及多個第三最大功率點,這些第一最大功率點所對應的照度範圍係與這些第三最大功率點所對應的照度範圍不同。In an embodiment of the invention, the first power asymptote line corresponds to the plurality of first maximum power points and the second maximum power point of the maximum power points, and the second power asymptote line corresponds to the maximum power points. The second maximum power point and the plurality of third maximum power points, the illuminance ranges corresponding to the first maximum power points are different from the illuminance ranges corresponding to the third maximum power points.

基於上述說明,本發明實施例的太陽能發電裝置及其之類比式最大功率追蹤電路,係利用對應於不同照度範圍且斜率不同的第一功率漸近線及第二功率漸近線,而近似於多個最大功率點,並依據第一功率漸近線及第二功率漸近線所產生之最大功率電壓,來降低因最大功率電壓與對應的最大功率點之差距所造成的功率耗損,並透過類比操作的方式,來提高最大功率電壓的找尋速度。Based on the above description, the solar power generation device and the analogous maximum power tracking circuit of the embodiments of the present invention approximate a plurality of first power asymptotes and second power asymptotes corresponding to different illumination ranges and different slopes. The maximum power point, and according to the maximum power voltage generated by the first power asymptote and the second power asymptote, to reduce the power loss caused by the difference between the maximum power voltage and the corresponding maximum power point, and through analog operation To increase the speed of finding the maximum power voltage.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖5為依據本發明一實施例的太陽能電池於不同照度下的輸出功率及輸出電壓與功率漸近線的對應示意圖。請參照圖5,在本實施例中,太陽能電池的輸出電壓與輸出電流的特徵線501~520分別對不同照度,並且特徵線501~520分別對應的照度為由低至高。進一步來說,假設太陽能電池的照度範圍為0~1000 W/m2 ,則特徵線501對應的照度約為50 W/m2 ,特徵線502對應的照度約為100 W/m2 ,其餘則以此類推,並且特徵線520對應的照度約為最大照度(即1000 W/m2 )。FIG. 5 is a schematic diagram showing the correspondence between output power and output voltage and power asymptote of a solar cell under different illumination levels according to an embodiment of the invention. Referring to FIG. 5, in the embodiment, the output voltages of the solar cells and the characteristic lines 501-520 of the output current respectively have different illuminances, and the illuminances corresponding to the characteristic lines 501-520 respectively are from low to high. Further, assuming that the illuminance range of the solar cell is 0 to 1000 W/m 2 , the illuminance corresponding to the characteristic line 501 is about 50 W/m 2 , and the illuminance corresponding to the characteristic line 502 is about 100 W/m 2 , and the rest is And so on, and the illuminance corresponding to the feature line 520 is about the maximum illuminance (ie, 1000 W/m 2 ).

在每一特徵線501~520上分別具有一最大功率點MPP,此最大功率點MPP為對應的輸出電壓與對應的輸出電流的乘積在對應的特徵線(如501~520)上為最大值。一般而言,太陽能電池的技術手冊至少會提供太陽能電池的短路電流Isc、開路電流Voc、最佳電壓Vopt及最佳電流Iopt,其中最佳電壓Vopt及最佳電流Iopt分別為對應最大照度的特徵線(即520)上最大功率點MPP所對應的輸出電壓及對應的輸出電流。並且,太陽能電池的輸出電壓與輸出電流的特徵線501~520可以利用太陽能電池的技術手冊所提供的短路電流Isc、開路電流Voc、最佳電壓Vopt及最佳電流Iopt計算而得到,但在本發明其他實施例不以此為限。Each of the characteristic lines 501-520 has a maximum power point MPP, and the maximum power point MPP is a product of a corresponding output voltage and a corresponding output current being a maximum value on a corresponding characteristic line (eg, 501 to 520). In general, the technical manual of the solar cell provides at least the short-circuit current Isc of the solar cell, the open circuit current Voc, the optimum voltage Vopt, and the optimal current Iopt, wherein the optimum voltage Vopt and the optimal current Iopt are respectively corresponding to the maximum illuminance. The output voltage corresponding to the maximum power point MPP on the line (ie 520) and the corresponding output current. Moreover, the characteristic lines 501 to 520 of the output voltage and the output current of the solar cell can be obtained by calculating the short-circuit current Isc, the open circuit current Voc, the optimum voltage Vopt, and the optimum current Iopt provided by the technical manual of the solar cell, but in the present Other embodiments of the invention are not limited thereto.

由於特徵線501~520上的最大功率點MPP並非以直線性分佈,因此以單一功率漸近線來近似時(如圖4所示功率漸近線410),某些特徵線的最大功率點MPP會離功率漸近線較遠,以致於造成較大的功率耗損。依據上述,本發明的一實施例是以兩條功率漸近線(即530及540)來近似特徵線501~520上的最大功率點MPP。Since the maximum power point MPP on the characteristic lines 501-520 is not linearly distributed, when approximated by a single power asymptote (such as the power asymptote 410 shown in FIG. 4), the maximum power point MPP of some characteristic lines will leave. The power asymptote is far away, resulting in a large power loss. In accordance with the above, an embodiment of the present invention approximates the maximum power point MPP on feature lines 501-520 with two power asymptotes (i.e., 530 and 540).

依據圖5所示,特徵線506的最大功率點MPP為特徵線501~520的最大功率點MPP分佈轉折點,因此本實施例以特徵線506的最大功率點MPP(對應第二最大功率點)為分界點,利用特徵線501~506的最大功率點MPP(對應多個第一最大功率點與一第二最大功率點)計算出功率漸近線530(對應第一功率漸近線),利用特徵線506~520的最大功率點MPP(對應一第二最大功率點與多個第三最大功率點)計算出功率漸近線540(對應第二功率漸近線)。其中,功率漸近線530與540的斜率會不同,並且功率漸近線530於輸出電流=0時對應至電壓Vini。According to FIG. 5, the maximum power point MPP of the feature line 506 is the maximum power point MPP distribution turning point of the feature lines 501-520. Therefore, the maximum power point MPP (corresponding to the second maximum power point) of the feature line 506 is used in this embodiment. The demarcation point is calculated by using the maximum power point MPP of the feature lines 501-506 (corresponding to the plurality of first maximum power points and a second maximum power point) to calculate the power asymptote 530 (corresponding to the first power asymptote), using the feature line 506 A power asymptote 540 (corresponding to a second power asymptote) is calculated for the maximum power point MPP of ~520 (corresponding to a second maximum power point and a plurality of third maximum power points). Wherein, the slopes of the power asymptote lines 530 and 540 will be different, and the power asymptote line 530 corresponds to the voltage Vini at the output current=0.

並且,由於特徵線501~505對應的照度範圍(即50~300 W/m2 )低於特徵線507~520對應的照度範圍(即400~1000 W/m2 ),亦即特徵線501~505的最大功率點MPP對應的照度範圍低於特徵線507~520的最大功率點MPP對應的照度範圍,因此利用特徵線501~506的最大功率點MPP取得的功率漸近線530所對應的照度範圍(即50~350 W/m2 )低於利用特徵線506~520的最大功率點MPP所取得的功率漸近線540的照度範圍(即350~1000 W/m2 )。Moreover, since the illuminance range corresponding to the characteristic lines 501 to 505 (ie, 50 to 300 W/m 2 ) is lower than the illuminance range corresponding to the characteristic lines 507 to 520 (ie, 400 to 1000 W/m 2 ), that is, the characteristic line 501~ The illuminance range corresponding to the maximum power point MPP of the 505 is lower than the illuminance range corresponding to the maximum power point MPP of the characteristic lines 507-520, so the illuminance range corresponding to the power asymptote 530 obtained by the maximum power point MPP of the characteristic lines 501-506 is used. (ie, 50 to 350 W/m 2 ) is lower than the illuminance range of the power asymptote 540 (ie, 350 to 1000 W/m 2 ) obtained by using the maximum power point MPP of the characteristic lines 506 to 520.

並且,依據功率漸近線530及540可計算出功率漸近線530及540的交叉點電壓Vx,以利用交叉點電壓Vx及太陽能電池的輸出電壓選擇功率漸近線530或540,並利用所選擇的功率漸近線(如530或540)取得對應當下照度的最大功率電壓。進一步來說,本實施例為依據交叉點電壓Vx與太陽能電池的輸出電壓的比較結果選擇功率漸近線530或540,並利用所選擇的功率漸近線(如530或540)及太陽能電池的輸出電流計算出對應當下照度的最大功率電壓。藉此,由於利用功率漸近線530及540來近似特徵線501~520的最大功率點MPP,以降低因最大功率電壓與對應的最大功率點MPP的差距所造成的功率耗損,並且透過類比操作方式來提高最大功率電壓的找尋速度。Moreover, the intersection voltage Vx of the power asymptote lines 530 and 540 can be calculated according to the power asymptote lines 530 and 540 to select the power asymptote 530 or 540 using the intersection voltage Vx and the output voltage of the solar cell, and utilize the selected power. The asymptote (such as 530 or 540) takes the maximum power voltage for the down illuminance. Further, in this embodiment, the power asymptote 530 or 540 is selected according to the comparison result of the cross point voltage Vx and the output voltage of the solar cell, and the selected power asymptote (such as 530 or 540) and the output current of the solar cell are utilized. Calculate the maximum power voltage for the lower illuminance. Therefore, since the power asymptote lines 530 and 540 are used to approximate the maximum power point MPP of the characteristic lines 501 to 520, the power consumption caused by the difference between the maximum power voltage and the corresponding maximum power point MPP is reduced, and the analog operation mode is transmitted. To increase the speed of finding the maximum power voltage.

依據上述說明,下述對應地提出一種太陽能發電裝置。圖6為依據本發明一實施例的太陽能發電裝置的系統示意圖。請參照圖5及圖6,在本實施例中,太陽能發電裝置600包括太陽能電池610、直流對直流轉換電路620、電流偵測單元630、電壓偵測單元640、控制單元650及類比式最大功率追蹤電路660。太陽能電池610用以提供輸出電壓Vpv及輸出電流Ipv,其中輸出電壓Vpv及輸出電流Ipv可參照圖5所示。直流對直流轉換電路620耦接太陽能電池610,且接收脈寬調變信號PWM,用以依據脈寬調變信號PWM將輸出電壓Vpv及輸出電流Ipv轉換為操作電壓Vcc。According to the above description, a solar power generation device is proposed correspondingly below. 6 is a schematic diagram of a system of a solar power generating apparatus according to an embodiment of the present invention. Referring to FIG. 5 and FIG. 6 , in the embodiment, the solar power generation device 600 includes a solar cell 610 , a DC-DC conversion circuit 620 , a current detecting unit 630 , a voltage detecting unit 640 , a control unit 650 , and an analog-type maximum power. Tracking circuit 660. The solar cell 610 is configured to provide an output voltage Vpv and an output current Ipv, wherein the output voltage Vpv and the output current Ipv can be referred to FIG. The DC-DC conversion circuit 620 is coupled to the solar cell 610 and receives the pulse width modulation signal PWM for converting the output voltage Vpv and the output current Ipv into the operating voltage Vcc according to the PWM signal PWM.

電流偵測單元630耦接太陽能電池610,用以偵測輸出電流Ipv以輸出第一偵測電壓VIPV ,其中第一偵測電壓VIPV 的數值可以等於輸出電流Ipv的數值,例如輸出電流Ipv為900 mA,則第一偵測電壓VIPV 為900 mV。電壓偵測單元640耦接太陽能電池610,用以偵測輸出電壓Vpv以輸出第二偵測電壓VVPV ,其中第二偵測電壓VVPV 可以等於輸出電壓Vpv。控制單元650耦接電壓偵測單元640,且接收最大功率電壓命令Vmp*,用以產生脈寬調變信號PWM,其中最大功率電壓命令Vmp*為對應依據功率漸近線530或540所產生對應當下照度的最大功率電壓,亦即最大功率電壓命令Vmp*可視為對應當下照度的最大功率電壓。控制單元650依據第二偵測電壓VVPV 與最大功率電壓命令Vmp*的比較結果調整脈寬調變信號PWM的脈波寬度,其中控制單元650可利用比例積分(proportional integral,PI)控制方法調整脈寬調變信號PWM的脈波寬度。The current detecting unit 630 is coupled to the solar cell 610 for detecting the output current Ipv to output the first detecting voltage V IPV , wherein the value of the first detecting voltage V IPV can be equal to the value of the output current Ipv, such as the output current Ipv For 900 mA, the first detection voltage V IPV is 900 mV. The voltage detecting unit 640 is coupled to the solar cell 610 for detecting the output voltage Vpv to output a second detecting voltage V VPV , wherein the second detecting voltage V VPV can be equal to the output voltage Vpv. The control unit 650 is coupled to the voltage detecting unit 640 and receives the maximum power voltage command Vmp* for generating the pulse width modulation signal PWM, wherein the maximum power voltage command Vmp* is corresponding to the power asymptote 530 or 540. The maximum power voltage of the illuminance, that is, the maximum power voltage command Vmp* can be regarded as the maximum power voltage corresponding to the illuminance. The control unit 650 adjusts the pulse width of the pulse width modulation signal PWM according to the comparison result of the second detection voltage V VPV and the maximum power voltage command Vmp*, wherein the control unit 650 can adjust by using a proportional integral (PI) control method. Pulse width modulation signal PWM pulse width.

進一步來說,當第二偵測電壓VVPV 高於最大功率電壓命令Vmp*時,代表直流對直流轉換電路620應從太陽能電池610汲取更多電流,因此會調寬脈寬調變信號PWM的脈波寬度,以使太陽能電池610的輸出電壓Vpv降低至第二偵測電壓VVPV 等於最大功率電壓命令Vmp*,亦即使太陽能電池610的輸出電壓Vpv降低至對應當下照度的最大功率電壓;當第二偵測電壓VVPV 低於最大功率電壓命令Vmp*時,代表直流對直流轉換電路620從太陽能電池610中汲取過多電流,因此會調窄脈寬調變信號PWM的脈波寬度,以使太陽能電池610的輸出電壓Vpv提高至第二偵測電壓VVPV 等於最大功率電壓命令Vmp*,亦即使太陽能電池610的輸出電壓Vpv提高至對應當下照度的最大功率電壓。Further, when the second detection voltage V VPV is higher than the maximum power voltage command Vmp*, it means that the DC-to-DC conversion circuit 620 should draw more current from the solar cell 610, thus widening the pulse of the PWM signal PWM. Wave width, such that the output voltage Vpv of the solar cell 610 is lowered to a second detection voltage V VPV equal to the maximum power voltage command Vmp*, even if the output voltage Vpv of the solar cell 610 is reduced to a maximum power voltage corresponding to the lower illumination; When the detection voltage V VPV is lower than the maximum power voltage command Vmp*, it represents that the DC-to-DC conversion circuit 620 draws too much current from the solar cell 610, thereby narrowing the pulse width of the PWM signal to make the solar energy The output voltage Vpv of the battery 610 is increased until the second detected voltage V VPV is equal to the maximum power voltage command Vmp*, even if the output voltage Vpv of the solar cell 610 is increased to the maximum power voltage for the lower illuminance.

類比式最大功率追蹤電路660耦接電流偵測單元630、電壓偵測單元640及控制單元650,用以依據第二偵測電壓VVPV 與功率漸近線530及540的交叉點電壓Vx的比較結果選擇功率漸近線530及540的其中之一,並依據選擇的功率漸近線(如530或540)及第一偵測電壓VIPV 產生最大功率電壓命令Vmp*。亦即,當第二偵測電壓VVPV 小於等於交叉點電壓Vx時,類比式最大功率追蹤電路660選擇的功率漸近線530並配合第一偵測電壓VIPV 產生最大功率電壓命令Vmp*;當第二偵測電壓VVPV 大於交叉點電壓Vx時,類比式最大功率追蹤電路660選擇的功率漸近線540並配合第一偵測電壓VIPV 產生最大功率電壓命令Vmp*。The analog-type maximum power tracking circuit 660 is coupled to the current detecting unit 630, the voltage detecting unit 640, and the control unit 650 for comparing the cross-point voltage Vx of the second detecting voltage V VPV with the power asymptote lines 530 and 540. One of the power asymptote lines 530 and 540 is selected, and a maximum power voltage command Vmp* is generated according to the selected power asymptote (such as 530 or 540) and the first detection voltage V IPV . That is, when the second detection voltage V VPV is less than or equal to the cross-point voltage Vx, the power-asymptotic line 530 selected by the analog-type maximum power tracking circuit 660 and the first detection voltage V IPV generates a maximum power voltage command Vmp*; When the second detection voltage V VPV is greater than the intersection voltage Vx, the power asymptote 540 selected by the analog maximum power tracking circuit 660 and the first detection voltage V IPV generates a maximum power voltage command Vmp*.

並且,由於第一偵測電壓VIPV 的數值在此設定為等於輸出電流Ipv的數值,因此依據選擇的功率漸近線(如530或540)及第一偵測電壓VIPV 產生最大功率電壓命令Vmp*等同於依據所選擇的功率漸近線(如530或540)及輸出電流Ipv產生最大功率電壓命令Vmp*。Moreover, since the value of the first detection voltage V IPV is set here to be equal to the value of the output current Ipv, the maximum power voltage command Vmp is generated according to the selected power asymptote (such as 530 or 540) and the first detection voltage V IPV . * Equivalent to generate the maximum power voltage command Vmp* based on the selected power asymptote (such as 530 or 540) and the output current Ipv.

圖7為圖6依據本發明一實施例的類比式最大功率追蹤電路的電路示意圖。請參照圖5、圖6及圖7,在本實施例中,類比式最大功率追蹤電路660包括電阻R1~R5(分別對應第一電阻、第二電阻、第三電阻、第四電阻及第五電阻)、開關SW、比較器(在此以運算放大器OP1來實現)、運算放大器OP2、單位增益反向放大器UA及電壓補償單元710。開關SW具有第一端A、第二端B及第三端C,並受控於運算放大器OP1的輸出端的電壓決定第三端C為電性連接第一端A或第二端B,其中本實施例為預設第三端C耦接第一端A,並且開關SW可以為為類比開關。7 is a circuit diagram of an analog-like maximum power tracking circuit according to an embodiment of the invention. Referring to FIG. 5, FIG. 6, and FIG. 7, in the embodiment, the analog-type maximum power tracking circuit 660 includes resistors R1 R R5 (corresponding to the first resistor, the second resistor, the third resistor, the fourth resistor, and the fifth, respectively). Resistor), switch SW, comparator (implemented here by operational amplifier OP1), operational amplifier OP2, unity gain inverting amplifier UA, and voltage compensation unit 710. The switch SW has a first end A, a second end B, and a third end C, and is controlled by the voltage of the output end of the operational amplifier OP1 to determine that the third end C is electrically connected to the first end A or the second end B, wherein The embodiment is that the preset third end C is coupled to the first end A, and the switch SW can be an analog switch.

電阻R1耦接於電流偵測單元630與開關SW的第一端A之間,以接收第一偵測電壓VIPV 。電阻R2耦接於參考電壓Vref與開關SW的第一端A之間。電阻R3耦接於電流偵測單元630與開關SW的第二端B之間,以接收第一偵測電壓VIPV 。電阻R4耦接於參考電壓Vref與開關SW的第二端B之間。其中,參考電壓Vref可以為圖5所示電壓Vini,但亦可為任意的正電壓值。The resistor R1 is coupled between the current detecting unit 630 and the first end A of the switch SW to receive the first detecting voltage V IPV . The resistor R2 is coupled between the reference voltage Vref and the first end A of the switch SW. The resistor R3 is coupled between the current detecting unit 630 and the second end B of the switch SW to receive the first detecting voltage V IPV . The resistor R4 is coupled between the reference voltage Vref and the second end B of the switch SW. The reference voltage Vref may be the voltage Vini shown in FIG. 5, but may be any positive voltage value.

運算放大器OP1的正輸入端接收第二偵測電壓VVPV ,運算放大器OP1的負輸入端接收功率漸近線530及540的交叉點電壓Vx,運算放大器OP1的輸出端耦接開關SW。運算放大器OP1用以比較第二偵測電壓VVPV 與交叉點電壓Vx,並且當比較結果表示第二偵測電壓VVPV 小於等於交叉點電壓Vx時,控制開關SW的第三端C為耦接其第一端A,當比較結果表示第二偵測電壓VVPV 大於交叉點電壓Vx時,控制開關SW的第三端C為耦接其第二端B。進一步來說,當比較結果表示第二偵測電壓VVPV 小於等於交叉點電壓Vx時,運算放大器OP1的輸出端的電壓會為低準位以控制開關SW的第三端C為耦接其第一端A,當比較結果表示第二偵測電壓VVPV 大於交叉點電壓Vx時,運算放大器OP1的輸出端的電壓會為高準位以控制開關SW的第三端C為耦接其第二端B。The positive input terminal of the operational amplifier OP1 receives the second detection voltage V VPV , the negative input terminal of the operational amplifier OP1 receives the intersection voltage Vx of the power asymptote lines 530 and 540, and the output end of the operational amplifier OP1 is coupled to the switch SW. The operational amplifier OP1 is configured to compare the second detection voltage V VPV with the intersection voltage Vx, and when the comparison result indicates that the second detection voltage V VPV is less than or equal to the intersection voltage Vx, the third end C of the control switch SW is coupled. The first end A of the control switch SW is coupled to the second end B when the comparison result indicates that the second detection voltage V VPV is greater than the intersection voltage Vx. Further, when the comparison result indicates that the second detection voltage V VPV is less than or equal to the cross-point voltage Vx, the voltage of the output terminal of the operational amplifier OP1 is at a low level to control the third end C of the switch SW to be coupled to the first Terminal A, when the comparison result indicates that the second detection voltage V VPV is greater than the intersection voltage Vx, the voltage at the output of the operational amplifier OP1 is at a high level to control the third end C of the switch SW to be coupled to the second end B thereof. .

運算放大器OP2的負輸入端(對應第一輸入端)耦接開關SW的第三端C,運算放大器OP2的正輸入端(對應第二輸入端)耦接接地電壓。第五電阻耦接於運算放大器OP2的負輸入端與輸出端之間。單位增益反向放大器UA耦接運算放大器OP2的輸出端,用以輸出未加溫度補償之最大功率電壓命令Vmp。電壓補償單元710耦接單位增益反向放大器UA的輸出端,用以對未加溫度補償之最大功率電壓命令Vmp進行溫度補償後輸出最大功率電壓命令Vmp*。The negative input terminal (corresponding to the first input terminal) of the operational amplifier OP2 is coupled to the third terminal C of the switch SW, and the positive input terminal (corresponding to the second input terminal) of the operational amplifier OP2 is coupled to the ground voltage. The fifth resistor is coupled between the negative input terminal and the output terminal of the operational amplifier OP2. The unity gain inverting amplifier UA is coupled to the output of the operational amplifier OP2 for outputting the maximum power voltage command Vmp without temperature compensation. The voltage compensation unit 710 is coupled to the output end of the unity gain inverting amplifier UA for temperature compensation of the temperature-compensated maximum power voltage command Vmp and outputs a maximum power voltage command Vmp*.

在本實施例中,電阻R1、R2、R5、第一偵測電壓VIPV 及參考電壓Vref用以形成第一功率漸近線530,電阻R3、R4、R5、第一偵測電壓VIPV 及參考電壓Vref形成用以第二功率漸近線540。進一步來說,假設第一功率漸近線530的方程式為a‧Ipv+b,由於第一偵測電壓VIPV 的數值設定為等於輸出電流Ipv的數值,因此第一功率漸近線530的方程式可以替代為a‧VIPV +b。其中,a=R5/R1,b=Vref×R5/R2,上述R1為第一電阻的電阻值,上述R2為第二電阻的電阻值,上述R5為第五電阻的電阻值,上述VIPV 為第一偵測電壓VIPV 的電壓值,上述Vref為參考電壓Vref電壓值。同理,假設第二功率漸近線為c‧Ipv+d,則可替代為c‧VIPV +d。其中,c=R5/R3,d=Vref×R5/R4,上述R3為第三電阻的電阻值,上述R4為第四電阻的電阻值,上述R5為第五電阻的電阻值,上述VIPV 為第一偵測電壓VIPV 的電壓值,上述Vref為參考電壓Vref的電壓值。In this embodiment, the resistors R1, R2, R5, the first detection voltage V IPV and the reference voltage Vref are used to form a first power asymptote 530, resistors R3, R4, R5, a first detection voltage V IPV and a reference. Voltage Vref is formed for a second power asymptote 540. Further, assuming that the equation of the first power asymptote 530 is a‧Ipv+b, since the value of the first detection voltage V IPV is set equal to the value of the output current Ipv, the equation of the first power asymptote 530 can be replaced. For a‧V IPV +b. Wherein, a=R5/R1, b=Vref×R5/R2, wherein R1 is a resistance value of the first resistor, R2 is a resistance value of the second resistor, and R5 is a resistance value of the fifth resistor, and the V IPV is The voltage value of the first detection voltage V IPV , and the above Vref is the voltage value of the reference voltage Vref. Similarly, assuming the second power asymptote is c‧Ipv+d, it can be replaced by c‧V IPV +d. Wherein, c=R5/R3, d=Vref×R5/R4, wherein R3 is a resistance value of the third resistor, R4 is a resistance value of the fourth resistor, and R5 is a resistance value of the fifth resistor, and the V IPV is The voltage value of the first detection voltage V IPV , and the above Vref is a voltage value of the reference voltage Vref.

如圖5所示,功率漸近線530的斜率會不同功率漸近線540的斜率,亦即上述a會不同於c,因此電阻R1的電阻值會不同於電阻R3的電阻值。As shown in FIG. 5, the slope of the power asymptote 530 will be different from the slope of the power asymptote 540, that is, the above a will be different from c, so the resistance of the resistor R1 will be different from the resistance of the resistor R3.

在本實施例中,電壓補償單元710包括加法器711,用以總和單位增益反向放大器UA輸出的未加溫度補償之最大功率電壓Vmp與溫度補償電壓VT ,其中溫度補償電壓VT 反向於太陽能電池610的運作溫度,亦即太陽能電池610的運作溫度增加時,溫度補償電壓VT 為負電壓,太陽能電池610的運作溫度減少時,溫度補償電壓VT 為正電壓。其中,溫度補償電壓VT 可依據太陽能電池的技術手冊的內容而取得。In the present embodiment, the voltage compensating unit 710 includes an adder 711 for summing the uncompensated maximum power voltage Vmp and the temperature compensating voltage V T output by the unity gain inverting amplifier UA, wherein the temperature compensating voltage V T is reversed. When the operating temperature of the solar cell 610, that is, the operating temperature of the solar cell 610 increases, the temperature compensation voltage V T is a negative voltage, and when the operating temperature of the solar cell 610 decreases, the temperature compensation voltage V T is a positive voltage. The temperature compensation voltage V T can be obtained according to the content of the technical manual of the solar cell.

依據表一所示,本發明實施例以功率漸近線530及540來近似特徵線501~520的最大功率點MPP的效果會較佳於以直線近似法來近似特徵線501~520的最大功率點MPP的效果,亦即本發明實施例的功率耗損會低於直線近似法。According to Table 1, the effect of approximating the maximum power point MPP of the feature lines 501-520 with the power asymptotes 530 and 540 is better than approximating the maximum power point of the feature lines 501-520 by a linear approximation. The effect of the MPP, that is, the power consumption of the embodiment of the present invention, is lower than the linear approximation.

此外,在上述實施例中,第一偵測電壓VIPV 的數值等於輸出電流IpV的數值,第二偵測電壓VVPV 等於輸出電壓Vpv,亦即電流偵測單元630輸出的第一偵測電壓VIPV 的數值為1倍於輸出電流Ipv的數值,電壓偵測單元640輸出的第二偵測電壓VVPV 的數值為1倍於輸出電壓Vpv的數值。但在其他實施例中,電流偵測單元630輸出的電壓值可以k倍於輸出電流Ipv的數值(亦即為k倍於第一偵測電壓VIPV ),電壓偵測單元640輸出的電壓值可以k倍於輸出電壓Vpv的數值(亦即為k倍於第二偵測電壓VVPV ),並且類比式最大功率追蹤電路660為接收k倍的交叉點電壓Vx,以致於類比式最大功率追蹤電路660輸出k倍的最大功率電壓Vmp*,其中k為任意數。In addition, in the above embodiment, the value of the first detection voltage V IPV is equal to the value of the output current IpV, and the second detection voltage V VPV is equal to the output voltage Vpv, that is, the first detection voltage output by the current detecting unit 630. The value of V IPV is 1 times the value of the output current Ipv, and the value of the second detection voltage V VPV output by the voltage detecting unit 640 is 1 times the value of the output voltage Vpv. However, in other embodiments, the voltage value output by the current detecting unit 630 can be k times the value of the output current Ipv (that is, k times the first detecting voltage V IPV ), and the voltage value output by the voltage detecting unit 640. It can be k times the value of the output voltage Vpv (that is, k times the second detection voltage V VPV ), and the analog-type maximum power tracking circuit 660 receives k times the cross-point voltage Vx, so that the analogy maximum power tracking Circuit 660 outputs k times the maximum power voltage Vmp*, where k is an arbitrary number.

並且,在上述實施例中,是以功率漸近線530及540來近似特徵線501~520的最大功率點MPP,但在其他實施例中,可利用3條以上的功率漸近線來近似特徵線501~520的最大功率點MPP,例如以兩條功率漸近線來近似特徵線501~506的最大功率點MPP,且本發明實施例不以此為限。Moreover, in the above embodiment, the maximum power point MPP of the feature lines 501-520 is approximated by the power asymptote lines 530 and 540. However, in other embodiments, more than three power asymptotes may be used to approximate the feature line 501. The maximum power point MPP of ~520, for example, the power point MPP of the characteristic lines 501-506 is approximated by two power asymptotes, and is not limited thereto.

綜上所述,本發明實施例的太陽能發電裝置及其類比式最大功率追蹤電路,其利用對應不同照度範圍的兩條功率漸近線來近似不同照度的多個最大功率點,以降低因最大功率電壓與對應的最大功率點的差距所造成的功率耗損,以及透過類比操作方式來提高最大功率電壓的找尋速度。並且,會對最大功率電壓進行溫度補償,以提高最大功率電壓的準確度。In summary, the solar power generation device and the analog-type maximum power tracking circuit of the embodiments of the present invention use two power asymptotes corresponding to different illumination ranges to approximate multiple maximum power points of different illumination levels to reduce the maximum power. The power loss caused by the difference between the voltage and the corresponding maximum power point, and the speed of finding the maximum power voltage through the analog operation mode. Also, the maximum power voltage is temperature compensated to increase the accuracy of the maximum power voltage.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

410、530、540...功率近似線410, 530, 540. . . Power approximation line

501~520...特徵線501~520. . . Characteristic line

600...太陽能發電裝置600. . . Solar power plant

610...太陽能電池610. . . Solar battery

620...直流對直流轉換電路620. . . DC to DC conversion circuit

630...電流偵測單元630. . . Current detection unit

640...電壓偵測單元640. . . Voltage detection unit

650...控制單元650. . . control unit

660...類比式最大功率追蹤電路660. . . Analogous maximum power tracking circuit

710...電壓補償單元710. . . Voltage compensation unit

711...加法器711. . . Adder

A...第一端A. . . First end

B...第二端B. . . Second end

C...第三端C. . . Third end

Iopt...最佳電流Iopt. . . Optimum current

Ipv...輸出電流Ipv. . . Output current

Isc...短路電流Isc. . . Short circuit current

MPP...最大功率點MPP. . . Maximum power point

OP1、OP2...運算放大器OP1, OP2. . . Operational Amplifier

Pmax...最大功率Pmax. . . Maximum power

PWM...脈寬調變信號PWM. . . Pulse width modulation signal

R1~R5...電阻R1~R5. . . resistance

SW...開關SW. . . switch

UA...單位增益反向放大器UA. . . Unity gain inverting amplifier

Vcc...操作電壓Vcc. . . Operating voltage

VIPV ...第一偵測電壓V IPV . . . First detection voltage

Vmax...最大功率點電壓Vmax. . . Maximum power point voltage

Vmp...未加溫度補償之最大功率電壓命令Vmp. . . Maximum power voltage command without temperature compensation

Vmp*...最大功率電壓命令Vmp*. . . Maximum power voltage command

Voc...開路電流Voc. . . Open circuit current

VOP、Vini...電壓VOP, Vini. . . Voltage

Vopt...最佳電壓Vopt. . . Optimum voltage

Vpv...輸出電壓Vpv. . . The output voltage

Vref...參考電壓Vref. . . Reference voltage

VT ...溫度補償電壓V T . . . Temperature compensation voltage

VVPV ...第二偵測電壓V VPV . . . Second detection voltage

Vx...交叉點電壓Vx. . . Crosspoint voltage

圖1為太陽能電池的輸出功率與輸出電壓對應照度的變化示意圖。FIG. 1 is a schematic diagram showing changes in illumination intensity corresponding to output power and output voltage of a solar cell.

圖2為增量電導法的操作示意圖。Figure 2 is a schematic diagram of the operation of the incremental conductance method.

圖3為定電壓控制法的操作示意圖。Figure 3 is a schematic diagram of the operation of the constant voltage control method.

圖4為直線性近似法的操作示意圖。Figure 4 is a schematic diagram of the operation of the linear approximation.

圖5為依據本發明一實施例的太陽能電池於不同照度下的輸出電流及輸出電壓與功率漸近線的對應示意圖。FIG. 5 is a schematic diagram showing the correspondence between output current and output voltage and power asymptote of a solar cell under different illumination levels according to an embodiment of the invention.

圖6為依據本發明一實施例的太陽能發電裝置的系統示意圖。6 is a schematic diagram of a system of a solar power generating apparatus according to an embodiment of the present invention.

圖7為圖6依據本發明一實施例的類比式最大功率追蹤電路的電路示意圖。7 is a circuit diagram of an analog-like maximum power tracking circuit according to an embodiment of the invention.

660...類比式最大功率追蹤電路660. . . Analogous maximum power tracking circuit

710...電壓補償單元710. . . Voltage compensation unit

711...加法器711. . . Adder

A...第一端A. . . First end

B...第二端B. . . Second end

C...第三端C. . . Third end

OP1、OP2...運算放大器OP1, OP2. . . Operational Amplifier

R1~R5...電阻R1~R5. . . resistance

SW...開關SW. . . switch

UA...單位增益反向放大器UA. . . Unity gain inverting amplifier

VIPV ...第一偵測電壓V IPV . . . First detection voltage

Vmp...未加溫度補償之最大功率電壓命令Vmp. . . Maximum power voltage command without temperature compensation

Vmp*...最大功率電壓命令Vmp*. . . Maximum power voltage command

Vref...參考電壓Vref. . . Reference voltage

VT ...溫度補償電壓V T . . . Temperature compensation voltage

VVPV ...第二偵測電壓V VPV . . . Second detection voltage

Vx...交叉點電壓Vx. . . Crosspoint voltage

Claims (10)

一種類比式最大功率追蹤電路,適用於一太陽能發電裝置,包括:一開關,其具有一第一端、一第二端及一第三端;一第一電阻,其係耦接於一第一電壓與該第一端之間,其中該第一電壓對應一太陽能電池的一輸出電流;一第二電阻,其係耦接於一參考電壓與該第一端之間;一第三電阻,其係耦接於該第一電壓與該第二端之間;一第四電阻,其係耦接於該參考電壓與該第二端之間;一比較器,其係耦接至該開關,以將一第二電壓以及一第一功率漸近線與一第二功率漸近線的一交叉點電壓進行比較,並依據比較結果來控制該第三端為耦接至該第一端或該第二端,其中該第二電壓係對應於該太陽能電池的一輸出電壓;一運算放大器,其具有一第一輸入端、一第二輸入端以及一輸出端,該第一輸入端係耦接至該第三端,該第二輸入端係耦接至一接地電壓;一第五電阻,其係耦接於該第一輸入端與該輸出端之間;以及一單位增益反向放大器,其係耦接至該輸出端,以輸出一最大功率電壓;其中,由該第一電阻、該第二電阻、該第五電阻、該第一電壓及該參考電壓的數值,可求得該第一功率漸近線,而由該第三電阻、該第四電阻、該第五電阻、該第一電壓及該參考電壓的數值,則可求得該第二功率漸近線,該第一電阻的電阻值係與該第三電阻的電阻值不同,且該第一功率漸近線以及該第二功率漸近線係對應於不同照度範圍。An analog-type maximum power tracking circuit is applicable to a solar power generation device, comprising: a switch having a first end, a second end and a third end; and a first resistor coupled to the first Between a voltage and the first end, wherein the first voltage corresponds to an output current of a solar cell; a second resistor is coupled between a reference voltage and the first end; a third resistor, The first resistor is coupled between the first voltage and the second end; a fourth resistor is coupled between the reference voltage and the second end; a comparator coupled to the switch Comparing a second voltage and a first power asymptote with a crossover voltage of a second power asymptote, and controlling the third end to be coupled to the first end or the second according to the comparison result The second voltage corresponds to an output voltage of the solar cell; an operational amplifier having a first input end, a second input end, and an output end, the first input end being coupled to the a third end, the second input is coupled to a ground voltage a fifth resistor coupled between the first input terminal and the output terminal; and a unity gain inversion amplifier coupled to the output terminal to output a maximum power voltage; wherein The first power asymptote is obtained by determining a value of the first resistor, the second resistor, the fifth resistor, the first voltage, and the reference voltage, and the third resistor, the fourth resistor, and the fifth And determining, by the resistance, the first voltage and the value of the reference voltage, the second power asymptote, the resistance of the first resistor is different from the resistance of the third resistor, and the first power asymptote and The second power asymptote line corresponds to different illumination ranges. 如申請專利範圍第1項所述之類比式最大功率追蹤電路,其中該第一功率漸近線係為a‧VIPV +b,且a=R5/R1,b=Vref×R5/R2,其中R1為該第一電阻的電阻值,R2為該第二電阻的電阻值,R5為該第五電阻的電阻值,VIPV 為該第一電壓,Vref為該參考電壓。The analogy maximum power tracking circuit according to claim 1, wherein the first power asymptote is a‧V IPV +b, and a=R5/R1, b=Vref×R5/R2, wherein R1 For the resistance value of the first resistor, R2 is the resistance value of the second resistor, R5 is the resistance value of the fifth resistor, V IPV is the first voltage, and Vref is the reference voltage. 如申請專利範圍第1項所述之類比式最大功率追蹤電路,其中該第二功率漸近線係為c‧VIPV +d,且c=R5/R3,d=Vref×R5/R4,其中R3為該第三電阻的電阻值,R4為該第四電阻的電阻值,R5為該第五電阻的電阻值,VIPV 為該第一電壓,Vref為該參考電壓。The analogy maximum power tracking circuit according to claim 1, wherein the second power asymptote is c‧V IPV +d, and c=R5/R3, d=Vref×R5/R4, wherein R3 For the resistance value of the third resistor, R4 is the resistance value of the fourth resistor, R5 is the resistance value of the fifth resistor, V IPV is the first voltage, and Vref is the reference voltage. 如申請專利範圍第1項所述之類比式最大功率追蹤電路,其更包括一電壓補償單元,其係耦接至該單位增益反向放大器的輸出端,以對該最大功率電壓進行溫度補償。The analogy maximum power tracking circuit of claim 1, further comprising a voltage compensation unit coupled to the output of the unity gain inverting amplifier for temperature compensation of the maximum power voltage. 如申請專利範圍第4項所述之類比式最大功率追蹤電路,其中該電壓補償單元包括一加法器,以計算該單位增益反向放大器輸出的該最大功率電壓與一溫度補償電壓的總和,其中當該太陽能電池的運作溫度為增加時,則該溫度補償電壓為一負電壓,當該太陽能電池的運作溫度為減少時,則該補償電壓為一正電壓。The analogy maximum power tracking circuit of claim 4, wherein the voltage compensation unit comprises an adder to calculate a sum of the maximum power voltage and a temperature compensation voltage output by the unity gain inverting amplifier, wherein When the operating temperature of the solar cell is increased, the temperature compensation voltage is a negative voltage, and when the operating temperature of the solar cell is decreased, the compensation voltage is a positive voltage. 如申請專利範圍第1項所述之類比式最大功率追蹤電路,其中該第一功率漸近線係對應於多個第一最大功率點與一第二最大功率點,而該第二功率漸近線係對應於該第二最大功率點及多個第三最大功率點,該些第一最大功率點所對應的照度範圍係與該些第三最大功率點所對應的照度範圍不同。The analogy maximum power tracking circuit of claim 1, wherein the first power asymptote line corresponds to a plurality of first maximum power points and a second maximum power point, and the second power asymptote system Corresponding to the second maximum power point and the plurality of third maximum power points, the illuminance ranges corresponding to the first maximum power points are different from the illuminance ranges corresponding to the third maximum power points. 如申請專利範圍第1項所述之類比式最大功率追蹤電路,其中該第一功率漸近線所對應的照度範圍,係低於該第二功率漸近線所對應的照度範圍。The analogy maximum power tracking circuit according to claim 1, wherein the illumination range corresponding to the first power asymptote is lower than the illumination range corresponding to the second power asymptote. 一種類比式最大功率追蹤電路,適用於一太陽能發電裝置,包括:一類比開關,其具有一第一端、一第二端及一第三端;一第一電阻,其係耦接於一第一電壓與該第一端之間,其中該第一電壓對應一太陽能電池的一輸出電流;一第二電阻,其係耦接於一參考電壓與該第一端之間;一第三電阻,其係耦接於該第一電壓與該第二端之間;一第四電阻,其係耦接於該參考電壓與該第二端之間;一比較器,其係耦接至該類比開關,以將一第二電壓以及一第一功率漸近線與一第二功率漸近線的一交叉點電壓進行比較,並依據比較結果來控制該第三端為耦接至該第一端或該第二端,其中該第二電壓係對應於該太陽能電池的一輸出電壓;一運算放大器,其具有一第一輸入端、一第二輸入端以及一輸出端,該第一輸入端係耦接至該第三端,該第二輸入端係耦接至一接地電壓;一第五電阻,其係耦接於該第一輸入端與該輸出端之間;以及一單位增益反向放大器,其係耦接至該輸出端,以輸出一最大功率電壓;其中,由該第一電阻、該第二電阻、該第五電阻、該第一電壓及該參考電壓的數值,可求得該第一功率漸近線,而由該第三電阻、該第四電阻、該第五電阻、該第一電壓及該參考電壓的數值,則可求得該第二功率漸近線,該第一電阻的電阻值係與該第三電阻的電阻值不同,且該第一功率漸近線以及該第二功率漸近線係對應於不同照度範圍。An analog-type maximum power tracking circuit is applicable to a solar power generation device, comprising: an analog switch having a first end, a second end and a third end; and a first resistor coupled to the first resistor Between the first voltage and the first end, wherein the first voltage corresponds to an output current of a solar cell; a second resistor is coupled between a reference voltage and the first end; a third resistor The first resistor is coupled between the first voltage and the second end; a fourth resistor coupled between the reference voltage and the second end; a comparator coupled to the analogy a switch to compare a second voltage and a first power asymptote with a crossover voltage of a second power asymptote, and control the third end to be coupled to the first end or according to the comparison result a second end, wherein the second voltage corresponds to an output voltage of the solar cell; an operational amplifier having a first input end, a second input end, and an output end, the first input end being coupled Up to the third end, the second input end is coupled to the first a ground voltage; a fifth resistor coupled between the first input terminal and the output terminal; and a unity gain inverting amplifier coupled to the output terminal to output a maximum power voltage; And determining, by the first resistor, the second resistor, the fifth resistor, the first voltage, and the reference voltage, the first power asymptote, and the third resistor, the fourth resistor, And determining, by the fifth resistor, the first voltage, and the reference voltage, the second power asymptote, the resistance of the first resistor is different from the resistance of the third resistor, and the first power The asymptote and the second power asymptote correspond to different illumination ranges. 一種太陽能發電裝置,包括:一太陽能電池,其係用以提供一輸出電壓及一輸出電流;一直流對直流轉換電路,其係耦接至該太陽能電池,並接收一脈寬調變信號,以依據該脈寬調變信號而將該輸出電壓及該輸出電流轉換為一操作電壓;一電流偵測單元,其係耦接至該太陽能電池,以偵測該輸出電流並輸出一第一偵測電壓;一電壓偵測單元,其係耦接至該太陽能電池,以偵測該輸出電壓並輸出一第二偵測電壓;一控制單元,其係耦接至該電壓偵測單元,以接收一最大功率電壓,產生該脈寬調變信號,並依據該第二偵測電壓與該最大功率電壓的比較結果,來調整該脈寬調變信號的脈波寬度;以及一如申請專利範圍第1~8項中之任一項所述的類比式最大功率追蹤電路。A solar power generation device comprising: a solar cell for providing an output voltage and an output current; a DC-to-DC conversion circuit coupled to the solar cell and receiving a pulse width modulation signal to Converting the output voltage and the output current into an operating voltage according to the pulse width modulation signal; a current detecting unit coupled to the solar cell to detect the output current and output a first detection a voltage detecting unit coupled to the solar cell to detect the output voltage and output a second detecting voltage; a control unit coupled to the voltage detecting unit to receive a voltage a maximum power voltage, generating the pulse width modulation signal, and adjusting a pulse width of the pulse width modulation signal according to a comparison result of the second detection voltage and the maximum power voltage; and The analogous maximum power tracking circuit of any of the above. 一種太陽能發電裝置,包括:一太陽能電池,其係用以提供一輸出電壓及一輸出電流;一直流對直流轉換電路,其係耦接至該太陽能電池,並接收一脈寬調變信號,以依據該脈寬調變信號而將該輸出電壓及該輸出電流轉換為一操作電壓;一電流偵測單元,其係耦接至該太陽能電池,以偵測該輸出電流並輸出一第一偵測電壓;一電壓偵測單元,其係耦接至該太陽能電池,以偵測該輸出電壓並輸出一第二偵測電壓;一控制單元,其係耦接至該電壓偵測單元,以接收一最大功率電壓,產生該脈寬調變信號,並依據該第二偵測電壓與該最大功率電壓的比較結果,來調整該脈寬調變信號的脈波寬度;以及一類比式最大功率追蹤電路,其係耦接至該電流偵測單元、該電壓偵測單元及該控制單元,以依據該第二偵測電壓以及一第一功率漸近線與一第二功率漸近線的一交叉點電壓的比較結果,來選擇該第一功率漸近線及該第二功率漸近線的其中之一者,並依據所選擇的該第一功率漸近線或該第二功率漸近線以及該第一偵測電壓,來產生該最大功率電壓,其中該第一功率漸近線及該第二功率漸近線係用以近似於多個最大功率點,該第一功率漸近線及該第二功率漸近線的斜率並不相同,且係對應於不同照度範圍。A solar power generation device comprising: a solar cell for providing an output voltage and an output current; a DC-to-DC conversion circuit coupled to the solar cell and receiving a pulse width modulation signal to Converting the output voltage and the output current into an operating voltage according to the pulse width modulation signal; a current detecting unit coupled to the solar cell to detect the output current and output a first detection a voltage detecting unit coupled to the solar cell to detect the output voltage and output a second detecting voltage; a control unit coupled to the voltage detecting unit to receive a voltage a maximum power voltage, generating the pulse width modulation signal, and adjusting a pulse width of the pulse width modulation signal according to a comparison result of the second detection voltage and the maximum power voltage; and a analogous maximum power tracking circuit Is coupled to the current detecting unit, the voltage detecting unit and the control unit, according to the second detecting voltage and a first power asymptote and a second power asymptote Comparing a cross-point voltage to select one of the first power asymptote and the second power asymptote, and depending on the selected first power asymptote or the second power asymptote and the Detecting a voltage to generate the maximum power voltage, wherein the first power asymptote and the second power asymptote are used to approximate a plurality of maximum power points, the first power asymptote and the second power asymptote The slopes are not the same and correspond to different illumination ranges.
TW100140422A 2011-11-04 2011-11-04 Photovoltaic power apparatus and analog circuit for tracking maximum power thereof TWI419345B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100140422A TWI419345B (en) 2011-11-04 2011-11-04 Photovoltaic power apparatus and analog circuit for tracking maximum power thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100140422A TWI419345B (en) 2011-11-04 2011-11-04 Photovoltaic power apparatus and analog circuit for tracking maximum power thereof

Publications (2)

Publication Number Publication Date
TW201320362A TW201320362A (en) 2013-05-16
TWI419345B true TWI419345B (en) 2013-12-11

Family

ID=48872642

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100140422A TWI419345B (en) 2011-11-04 2011-11-04 Photovoltaic power apparatus and analog circuit for tracking maximum power thereof

Country Status (1)

Country Link
TW (1) TWI419345B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104731157A (en) * 2015-03-16 2015-06-24 北京康拓科技有限公司 Artificial maximum power judgment circuit
TWI669589B (en) * 2018-08-29 2019-08-21 崑山科技大學 Maximum power tracking method for solar cell and system thereof suitable for real-time online environment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI669590B (en) * 2018-09-28 2019-08-21 龍華科技大學 Maximum power tracking method for solar power generation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002214A1 (en) * 2003-05-02 2005-01-06 Ballard Power Systems Corporation Method and apparatus for tracking maximum power point for inverters, for example, in photovoltaic applications
TW200801889A (en) * 2006-06-16 2008-01-01 Ablerex Electronics Co Ltd Maximum power point tracking method and tracker thereof for a solar power system
US20080203994A1 (en) * 2006-05-09 2008-08-28 Min Won Park Control Apparatus and Method of Senseless MPPT Control For Photovoltaic Power Generation System
TW201113661A (en) * 2009-10-01 2011-04-16 Chicony Power Tech Co Ltd Decentralized MPPT execution of a solar power generating system and its solar battery
TW201116966A (en) * 2009-11-12 2011-05-16 Intersil Inc Apparatus and methodology for maximum power point tracking for a solar panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002214A1 (en) * 2003-05-02 2005-01-06 Ballard Power Systems Corporation Method and apparatus for tracking maximum power point for inverters, for example, in photovoltaic applications
US20080203994A1 (en) * 2006-05-09 2008-08-28 Min Won Park Control Apparatus and Method of Senseless MPPT Control For Photovoltaic Power Generation System
TW200801889A (en) * 2006-06-16 2008-01-01 Ablerex Electronics Co Ltd Maximum power point tracking method and tracker thereof for a solar power system
TW201113661A (en) * 2009-10-01 2011-04-16 Chicony Power Tech Co Ltd Decentralized MPPT execution of a solar power generating system and its solar battery
TW201116966A (en) * 2009-11-12 2011-05-16 Intersil Inc Apparatus and methodology for maximum power point tracking for a solar panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104731157A (en) * 2015-03-16 2015-06-24 北京康拓科技有限公司 Artificial maximum power judgment circuit
TWI669589B (en) * 2018-08-29 2019-08-21 崑山科技大學 Maximum power tracking method for solar cell and system thereof suitable for real-time online environment

Also Published As

Publication number Publication date
TW201320362A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
KR100908156B1 (en) Solar maximum power tracking device and method
KR100757320B1 (en) The control apparatus and method of senseless mppt control for photovoltaic power generation system
Scarpa et al. Low-complexity MPPT technique exploiting the PV module MPP locus characterization
Salas et al. Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems
KR0161560B1 (en) Power generating device
JP4791689B2 (en) Power supply
JP5412575B2 (en) Solar power generation system and control system
KR101311528B1 (en) Device and Method for Tracing Maximum Power of Solar Cell
Karanjkar et al. Real time simulation and analysis of maximum power point tracking (MPPT) techniques for solar photo-voltaic system
JP2008166690A (en) Analog optical power generation circuit
CN107992153A (en) A kind of photovoltaic maximum power point-tracing control method
Sharma et al. Maximum power point tracking techniques: A review
KR101256433B1 (en) Photovoltaic system of maximum power point tracking mode using pv current
TWI419345B (en) Photovoltaic power apparatus and analog circuit for tracking maximum power thereof
KR101277762B1 (en) Method for Maximum Power Point Tracking in Mismatched Solar Cell
KR101555274B1 (en) A maximum power point tracking method based on current increment for improving efficiency of the solar inverter
CN102176184A (en) Maximum power point tracking control circuit of photovoltaic cell
KR20120138184A (en) Electronic apparatus, method for power supplying
KR20190101672A (en) Solar generating system of maximum powr tracking control
KR101556386B1 (en) A solar inverter of improving efficiency, using dual maximum power point tracking
CN112187168A (en) MPPT controller suitable for photovoltaic module series system
KR20100098870A (en) Photovoltaic power generation system, apparatus and method for tracking maximum power point
Chen et al. Photovoltaic energy harvesting in indoor environments
KR101554546B1 (en) A method of improving efficiency of the solar inverter using the maximum power point tracking based on variable voltage increment
KR20150025977A (en) Method for tracking maximum power point in phtovoltaic power generating system and system using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees