TWI345794B - Method for making cable - Google Patents

Method for making cable Download PDF

Info

Publication number
TWI345794B
TWI345794B TW97108086A TW97108086A TWI345794B TW I345794 B TWI345794 B TW I345794B TW 97108086 A TW97108086 A TW 97108086A TW 97108086 A TW97108086 A TW 97108086A TW I345794 B TWI345794 B TW I345794B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
layer
nanotube structure
manufacturing
forming
Prior art date
Application number
TW97108086A
Other languages
Chinese (zh)
Other versions
TW200939253A (en
Inventor
Kai-Li Jiang
Liang Liu
Kai Liu
Qing-Yu Zhao
Yong-Chao Zhai
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97108086A priority Critical patent/TWI345794B/en
Publication of TW200939253A publication Critical patent/TW200939253A/en
Application granted granted Critical
Publication of TWI345794B publication Critical patent/TWI345794B/en

Links

Description

1345794 - 100年05月03日梭正替換頁 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種線纜的製造方法,尤其涉及一種基於奈 米碳管的線纜的製造方法。 【先前技術】 [0002] 線纜係電子産業裏較爲常用的信號傳輸線材,微米級尺 寸的線纜更廣泛應用於IT產品、醫學儀器、空間設備中 。傳統的線纜内部設置有兩個導體,内導體用以傳輸電 信號,外導體用以屏蔽傳輸的電信號並且將其封閉於内 部,從而使線纜具有高頻損耗低、屏蔽及抗干擾能力强 、使用頻帶寬等特性,請參見文獻“Electromagnetic Shielding of High-Voltage Cables” (M.De Wu1f, P. Wouters et. a 1., Journal of Magnetism and Magnetic Materials, 316, e908-e901 (2007))。 [0003] 一般情况下,線纜從内至外的結構依次爲形成内導體的 纜芯、包覆於纜芯外表面的絕緣介質層、形成外導體的 屏蔽層和外護套。其中,纜芯用來傳輸電信號,材料以 銅、鋁或銅鋅合金爲主。屏蔽層通常由多股金屬線編織 或用金屬薄膜卷覆於絕緣介質層外形成,用以屏蔽電磁 干擾或無用外部信號干擾。對於以金屬材料形成的纜芯 ,最大問題在於交變電流於金屬導體中傳輸時會産生趨 膚效應(Skin Effect)。趨膚效應使金屬導體中通過電 流時的有效截面積减小,從而使導體的有效電阻變大, 導致線纜的傳輸效率降低或傳輸信號丟失。另外,以金 097108086 表單編號A0101 第3頁/共35頁 1003154725-0 1345794 [0004] [0005] [0006] [0007] 097108086 100年05月03 a>修正替換頁 屬材料作爲纜芯及屏蔽層的線纜,其强度較小,質量及 直徑較大,無法滿足某些特定條件,如航天領域、空間 設備及超細微線纜的應用。 先前技術中,線纜的製造方法一般包括以下步驟:包覆 聚合物於所述纜芯的外表面形成絕緣介質層;將多股金 屬線直接或通過編織包覆在絕緣介質層外形成屏蔽層或 用金屬薄膜卷覆在絕緣介質層外形成屏蔽層;以及包覆 一外護套於所述屏蔽層的外表面。 奈米碳管係一種新型一維奈米材料,其具有優異的導電 性能、高的抗張强度和高熱穩定性,於材料科學、化學 、物理學等交又學科領域已展現出廣闊的應用前景。目 前,已有將奈米碳管與金屬混合形成複合材料,從而用 來製造線纜的纜芯。然而,奈米碳管於金屬中爲無序分 散,仍無法解决上述金屬纜芯中的趨膚效應問題。且該 包含奈米碳管的纜芯的製造方法爲將微量奈米碳管與金 屬通過真空熔融、真空燒結或真空熱壓的方法進行混合 ,製造方法較爲複雜。 有鑒於此,提供一種線纜的製造方法實為必要,該方法 簡單、成本低、易於規模化生產,且所製造的線纜具有 良好的導電性能、較强的機械性能、較輕的質量及較小 的直徑。 【發明内容】 一種線纜的製造方法,包括以下步驟:提供一奈米碳管 陣列;採用一拉伸工具從所述奈米碳管陣列中拉取獲得 一奈米碳管結構,該奈米碳管結構包括多個首尾相連且 表單編號A0101 第4頁/共35頁 1003154725-0 100年05月03日核正替換頁 L345794 定向排列的奈米碳管束;形成至少一層導電材料層於所 述奈米碳管結構表面,形成一奈米碳管長線結構;形成 至少一絕緣介質層於所述奈米碳管長線結構的外表面; 形成至少一屏蔽層於所述絕緣介質層的外表面;以及形 成一外護套於所述屏蔽層的外表面。 [0008] 相較於先前技術,本技術方案採用奈米碳管長線結構作 爲線纜的纜芯的製造方法具有以下優點:其一,由於奈 米碳管長線結構係通過對奈米碳管結構進行扭轉或直接 從奈米碳管陣列中拉取獲得,該方法簡單、成本較低。 其二,所述從奈米碳管陣列中拉取獲得奈米碳管結構的 步驟及形成至少一層導電材料層的步驟均可在一真空容 器中進行,有利於纜芯的規模化生産,從而有利於線纜 的規模化生産。 【實施方式】 [0009] 以下將結合附圖詳細說明本技術方案實施例線纜的結構 及其製備方法。 [0010] 本技術方案實施例提供一種線纜,該線纜包括至少一纜 芯、包覆於纜芯外的至少一絕緣介質層、至少一屏蔽層 和一外護套。 [0011] 請參閱圖1,本技術方案第一實施例的線纜10爲同軸線纜 ,該同軸線纜包括一個纜芯110、包覆於纜芯110外的絕 緣介質層120、包覆於絕緣介質層120外的屏蔽層130和 包覆於屏蔽層130外的外護套140。其中,上述纜芯110 、絕緣介質層120、屏蔽層130和外護套ί 40爲同軸設置 〇 097108086 表單編號Α0101 第5頁/共35頁 1003154725-0 1345794 [0012] 1100年05月03日核正番換頁 該镜心110包括至少一奈米碳管長線結構。具體地該境 芯110可由-個單獨的奈米碳管長線結構構成,也可由多 個奈米碳管長線結構相互纏繞形成。本實施例中,該镜 名110爲一奈米碳管長線結構。該纜芯110的直徑可以爲 4. 5奈米〜1毫米,優選地,該纜芯的直徑爲1〇~3〇微米。 [0013] 該π米碳管長線結構由奈米碳管和導電材料構成。具體 地,該奈米碳管長線結構包括多個奈米碳管,並且,每 個奈米碳管表面均包覆至少一導電材料層。其中,每個 不米故管具有大致相等的長度,並且,多個奈米碳管通 過凡德瓦爾力首尾相連形成一奈米碳管長線結構。於該 奈米碳管長線結構中,奈米碳管沿奈米碳管長線結構的 轴向擇優取向排列。進一步地,該奈米碳管長線結構可 經過一扭轉過程,形成一絞線結構。於上述絞線結構中 ,奈来《反官繞絞線結構的轴向螺旋狀旋轉排列。該奈米 碳管長線結構的直徑可以爲4. 5奈米〜100微米,優選地, 該奈米碳管長線結構的直徑爲1〇~30微米。 [0014] 請參見圖2,該奈米碳管長線結構中每一根奈米碳管ηι 表面均包覆至少一導電材料層。具體地,該導電材料層 包括與奈米碳管111表面直接結合的潤濕層丨丨2、設置於 潤濕層112外的過渡層113、設置於過渡層11 3外的導電 層114及設置於導電層114外的抗氧化層115。 [0015] 由於奈米碳管111與大多數金屬之間的潤濕性不好,故, 上述潤濕層112的作用爲使導電層114與奈米碳管丨丨i更 好的結合。形成該潤濕層112的材料可以爲鎳、把或鈦等 與奈米碳管111潤濕性好的金屬或它們的合金,該潤濕層 097108086 表單編號A0101 第6頁/共35頁 1003154725-0 1345794 100年05月03日梭正替换頁 11 2的厚度爲卜1 〇奈米◊本實施例中,該潤濕層11 2的材 料爲鎳,厚度約爲2奈米。可以理解,該潤濕層i丨2爲可 選擇結構。 [0016] 上述過渡層11 3的作用爲使潤濕層112與導電層114更好 的結合。形成該過渡層11 3的材料可以爲與潤濕層112材 料及導電層114材料均能較好結合的材料,該過渡層113 的厚度爲1〜ίο奈米◎本實施例中,該過渡層113的材料爲 銅,厚度爲2奈米。可以理解,該過渡層113爲可選擇結 構。 [0017] 上述導電層114的作用爲使奈米碳管長線結構具有較好的 導電性此。形成該導電層114的材料可以爲銅、銀或金等 導電性好的金屬或它們的合金,該導電層114的厚度爲 卜20奈米《本實施例中,該導電層114的材料爲銀,厚度 約爲5奈米。 [0018] 上述抗氧化層115的作用爲防止於線纜1〇的製造過程中導 電層114於空氣中被氧化,從而使纜芯11〇的導電性能下 降。形成該抗氧化層115的材料可以爲金或鉑等於空氣中 不易氧化的穩定金屬或它們的合金,該抗氧化層Η5的厚 度爲1〜1〇奈米◊本實施例中,該抗氧化層115的材料爲鉑 ,厚度爲2奈米。可以理解,該抗氧化層115爲可選擇結 構。 進步地,爲提高線缓10的强度,可於該抗氧化層115外 進一步設置一强化層116。形成該强化層116的材料可以 爲聚乙烯醇(PVA)、聚苯撑苯並二噁唑(ρΒ〇)、聚乙 097108086 表單編琥Α0101 第7頁/共35頁 1003154725-0 [0019] 1345794 _. 100年05月03日修正替换頁 烯(PE)或聚氣乙烯(PVC)等强度較高的聚合物,該强 化層11 6的厚度爲0. 1〜1微米。本實施例中,該强化層 116的材料爲聚乙烯醇,厚度爲0. 5微米。可以理解,該 强化層116均爲可選擇結構。 [0020] 絕緣介質層120用於電氣絕緣,可以選用聚四氟乙烯、聚 乙烯、聚丙烯、聚苯乙烯、泡沫聚乙烯組合物或奈米黏 土一高分子複合材料。奈米黏土一高分子複合材料中奈 米黏土係奈米級層狀結構的矽酸鹽礦物,係由多種水合 矽酸鹽和一定量的氧化鋁、鹼金屬氧化物及鹼土金屬氧 化物組成,具耐火阻燃等優良特性,如奈米高嶺土或奈 米蒙脫土。高分子材料可以選用矽樹脂、聚醯胺、聚烯 烴如聚乙烯或聚丙烯等,但並不以此爲限。本實施例優 選泡沫聚乙烯組合物。 [0021] 屏蔽層130由一導電材料形成,用以屏蔽電磁干擾或無用 外部信號干擾。具體地,屏蔽層130可由多股金屬線編織 或用金屬薄膜卷覆於絕緣介質層120外形成,也可由多個 奈米碳管長線、單層有序奈米碳管薄膜、多層有序奈米 碳管薄膜或無序奈米碳管薄膜纏繞或卷覆於絕緣介質層 120外形成,或可由含有奈米碳管的複合材料直接包覆於 絕緣介質層120表面。 [0022] 其中,該金屬薄膜或金屬線的材料可以選擇爲銅、金或 銀等導電性好的金屬或它們的合金。該奈米碳管長線、 單層有序奈米碳管薄膜或多層有序奈米碳管薄膜包括多 個奈米碳管束片段,每個奈米碳管束片段具有大致相等 的長度且每個奈米碳管束片崞由多個相互平行的奈米碳 097108086 表單編號A0101 第8頁/共35頁 1003154725-0 1,345794 100年05月03日核正替換π 管構成,奈米碳管束片段兩端通過凡德瓦爾力相互連接 ,從而形成連續的奈米碳管薄膜或奈米碳管長線。該複 合材料可以爲金屬與奈米碳管的複合或聚合物與奈米碳 管的複合。該聚合物材料可以選擇爲聚對苯二曱酸乙二 醇醋(Polyethylene Terephthalate, PET)、聚碳 酸酯(Polycarbonate, PC)、丙稀腈一丁二稀丙稀一 笨乙稀共聚物(Acrylonitrile-Butadiene Styrene Terpolymer,ABS )、聚碳酸S旨/丙稀腈一丁二稀一苯 乙烯共聚物(PC/ABS)等高分子材料。將奈米碳管均勻 分散於上述聚合物材料的溶液中,並將該混合溶液均勻 塗覆於絕緣介質層120表面,待冷却後形成一含奈米碳管 的聚合物層。可以理解,該屏蔽層130還可由奈米碳管複 合薄膜或奈米碳管複合長線結構包裹或纏繞於絕緣介質 層120外形成。具體地,所述奈米碳管金屬複合薄膜或奈 米碳管金屬複合長線結構中的奈米碳管有序排列,並且 ,該奈米碳管表面包覆至少一導電材料層。進一步地, 該屏蔽層130還可由上述多種材料於絕緣介質層120外組 合構成^ [0023] 外護套140由絕緣材料製成,可以選用奈米黏土 一高分子 材料的複合材料,其中奈米黏土可以爲奈米高嶺土或奈 米蒙脫土,高分子材料可以爲矽樹脂、聚醯胺、聚烯烴 如聚乙烯或聚丙烯等,但並不以此爲限。本實施例優選 奈米蒙脫土一聚乙烯複合材料,其具有良好的機械性能 、耐火阻燃性能、低烟無鹵性能,不僅可以爲線纜10提 供保護,有效抵禦機械、物理或化學等外來損傷,同時 097108086 表單編號A0101 第9頁/共35頁 1003154725-0 1345794 _. 100年05月03日梭正替换頁 還能滿足環境保護的要求。 [0024] 請參閱圖3及圖4,本技術方案實施例卡線纜10的製備方 法主要包括以下步驟: [0025] 步驟一:提供一奈米碳管陣列216,優選地,該陣列爲超 順排奈米碳管陣列。 [0026] 本技術方案實施例提供的奈米碳管陣列2 1 6爲單壁奈米碳 管陣列,雙壁奈米碳管陣列,及多壁奈米碳管陣列中的 一種或多種。本實施例中,該超順排奈米碳管陣列的製 備方法採用化學氣相沈積法,其具體步驟包括:(a)提 供一平整基底,該基底可選用P型或N型矽基底,或選用 形成有氧化層的矽基底,本實施例優選爲採用4英寸的矽 基底;(b)於基底表面均勻形成一催化劑層,該催化劑 層材料可選用鐵(Fe)、鈷(Co)、鎳(Ni )或其任意 組合的合金之一;(c)將上述形成有催化劑層的基底於 700〜900 °C的空氣中退火約30分鐘〜90分鐘;(d)將處 理過的基底置於反應爐中,於保護氣體環境下加熱到 500〜740 °C,然後通入碳源氣體反應約5〜30分鐘,生長 得到超順排奈米碳管陣列,其高度爲200〜400微米。該超 順排奈米碳管陣列爲多個彼此平行且垂直於基底生長的 奈米碳管形成的純奈米碳管陣列。通過上述控製生長條 件,該超順排奈米碳管陣列中基本不含有雜質,如無定 型碳或殘留的催化劑金屬顆粒等。該超順排奈米碳管陣 列中的奈米碳管彼此通過凡德瓦爾力緊密接觸形成陣列 。該超順排奈米碳管陣列與上述基底面積基本相同。 097108086 表單編號A0101 第10頁/共35頁 1003154725-0 L345794 100年05月03日按正替换頁 [0027] 本實施例中碳源氣可選用乙炔、乙烯、曱烷等化學性質 較活潑的碳氫化合物,本實施例優選的碳源氣爲乙炔; 保護氣體爲氮氣或惰性氣體,本實施例優選的保護氣體 爲氬氣。 [0028] 步驟二:採用一拉伸工具從所述奈米碳管陣列21 6中拉取 獲得一奈米碳管結構214。 [0029] 所述奈米碳管結構214的製備方法包括以下步驟:(a) 從上述奈米碳管陣列216中選定一定寬度的多個奈米碳管 束片段,本實施例優選爲採用具有一定寬度的膠帶或一 針尖接觸奈米碳管陣列21 6以選定一定寬度的多個奈米碳 管束片段;(b)以一定速度沿基本垂直於奈米碳管陣列 216生長方向拉伸該多個奈米碳管束片段,以形成一連續 的奈米碳管結構214。 [0030] 於上述拉伸過程中,該多個奈米碳管束片段於拉力作用 下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作 用,該選定的多個奈米碳管束片段分別與其它奈米碳管 束片段首尾相連地連續地被拉出,從而形成一奈米碳管 結構214。該奈米碳管結構214包括多個首尾相連且定向 .排列的奈米碳管束。該奈米碳管結構214中奈米碳管的排 列方向基本平行於奈米碳管結構214的拉伸方向。 [0031] 該奈米碳管結構21 4爲一奈米碳管薄膜或一奈米碳管線" 具體地,當所選定的多個奈米碳管束片段的寬度較大時 ,所獲得的奈米碳管結構214爲一奈米碳管薄膜,其微觀 結構請參閱圖5 ;當所選定的多個奈米碳管束片段的寬度 097108086 表單編號A0101 第11頁/共35頁 1003154725-0 1345794 100年05月03日核正替换頁 較小時,所獲得的奈米碳管結構214可近似爲一奈米碳管 線。 [0032] 該直接拉伸獲得的擇優取向排列的奈米碳管結構214比無 序的奈米碳管結構具有更好的均勻性。同時該直接拉伸 獲得奈米碳管結構214的方法簡單快速,適宜進行工業化 應用。 [0033] 步驟三:形成至少一導電材料層於所述奈米碳管結構214 表面,形成一奈米碳管長線結構222。 [0034] 本實施例採用物理氣相沈積法(PVD)如真空蒸鍍或離子 濺射等沈積導電材料層。優選地,本實施例採用真空蒸 鍍法形成至少一層導電材料層。 [0035] 所述採用真空蒸鍍法形成至少一層導電材料層的方法包 括以下步驟:首先,提供一真空容器210,該真空容器 210具有一沈積區間,該沈積區間底部和頂部分別放置至 少一個蒸發源212,該至少一個蒸發源21 2按形成至少一 層導電材料層的先後順序依次沿奈米碳管結構21 4的拉伸 方向設置,且每個蒸發源212均可通過一個加熱裝置(圖 未示)加熱。將上述奈米碳管結構214放置於上下蒸發源 212中間並與其間隔一定距離,其中奈米碳管結構214正 對上下蒸發源212設置。該真空容器210可通過外接一真 空泵(圖未示)抽氣達到預定的真空度。所述蒸發源212 材料爲待沈積的導電材料。其次,通過加熱所述蒸發源 212,使其熔融後蒸發或升華形成導電材料蒸汽,該導電 材料蒸汽遇到冷的奈米碳管結構214後,於奈米碳管結構 097108086 表單編號A0101 第12頁/共35頁 1003154725-0 1.345794 100年05月03日核正替換頁 214上下表面凝聚,形成導電材料層。由於奈米碳管結構 214中的奈米碳管之間存在間隙,並且奈米碳管結構214 厚度較薄,導電材料可以滲透進入奈米碳管結構214之中 ,從而沈積於每根奈米碳管表面。沈積導電材料層後的 奈米碳管結構214的微觀結構照片請參閱圖6和圖7。 [0036] 可以理解,通過調節奈米碳管結構214和每個蒸發源212 的距離及蒸發源212之間的距離,可使每個蒸發源212具 有一個沈積區。當需要沈積多層導電材料層時,可將多 個蒸發源212依次加熱,使奈米碳管結構214連續通過多 個蒸發源的沈積區,從而實現沈積多層導電材料層。 [0037] 爲提高導電材料蒸汽密度並且防止導電材料被氧化,真 空容器210内真空度應達到1帕(Pa)以上。本技術方案 實施例中,真空容器中的真空度爲4xlO-4Pa。 [0038] 可以理解,也可將步驟一中的奈米碳管陣列216直接放入 上述真空容器210中。首先,於真空容器210中採用一拉 伸工具從所述奈米碳管陣列21 6中拉取獲得一奈米碳管結 構214。然後,加熱上述至少一個蒸發源212,沈積至少 一層導電材料於所述奈米碳管結構214表面。以一定速度 不斷地從所述奈米碳管陣列21 6中拉取奈米碳管結構214 ,且使所述奈米碳管結構214連續地通過上述蒸發源212 的沈積區,進而形成奈米碳管長線結構222。故該真空容 器210可實現奈米碳管長線結構222的連續生産。 [0039] 本技術方案實施例中,所述採用真空蒸鍍法形成至少一 層導電材料層的方法具體包括以下步驟:形成一層潤濕 097108086 表單編號A0101 第13頁/共35頁 1003154725-0 1345794 100年05月03日梭正替换頁 層於所述奈米碳管結構214表面;形成一層過渡層於所述 潤濕層的外表面;形成一層導電層於所述過渡層的外表 面;形成一層抗氧化層於所述導電層的外表面。其中, 上述形成潤濕層、過渡層及抗氧化層的步驟均爲可選擇 的步驟。具體地,可將上述奈米碳管結構214連續地通過 上述各層材料所形成的蒸發源212的沈積區。 [0040] 另外,於所述形成至少一層導電材料層於所述奈米碳管 結構214表面之後,寸進一步包括於所述奈米碳管結構 214表面形成强化層的步驟。所述形成强化層的步驟具體 包括以下步驟:將形成有至少一個導電材料層的奈米碳 管結構214通過一裝有聚合物溶液的裝置220,使聚合物 溶液浸潤整個奈米碳管結構214,該聚合物溶液通過分子 間作用力黏附於所述至少一個導電材料層的外表面;及 凝固聚合物,形成一强化層。 [0041] 當所述奈米碳管結構214爲一奈米碳管線時,所述形成有 至少一個導電材料層的奈米碳管線即爲一奈米碳管長線 結構222,不需要做後續處理。 [0042] 當所述奈米碳管結構214爲一奈米碳管薄膜時,所述形成 奈米碳管長線結構222的步驟可進一步包括對所述奈米碳 管結構214進行機械處理的步驟。該機械處理步驟可通過 以下兩種方式實現:對所述形成有至少一個導電材料層 的奈米碳管結構214進行扭轉,形成奈米碳管長線結構 2 2 2或切割所述形成有至少一個導電材料層的奈米碳管結 構214,形成奈米碳管長線結構222。 097108086 表單編號A0101 第14頁/共35頁 1003154725-0 100年05月03日梭正替换頁 1345794 [0043] 對所述奈米碳管結構214進行扭轉,形成奈米碳管長線結 構222的步驟可通過以下兩種方式實現:其一,通過將黏 附於上述奈米碳管結構214 —端的拉伸工具固定於一旋轉 電機上,扭轉該奈米碳管結構214,從而形成一奈米碳管 長線結構222。其二,提供一個尾部可以黏住奈米碳管結 構214的紡紗轴,將該紡紗軸的尾部與奈米碳管結構214 結合後,使該紡紗軸以旋轉的方式扭轉該奈米碳管結構 214,形成一奈米碳管長線結構222。可以理解,上述紡 紗軸的旋轉方式不限,可以正轉,可以反轉,或者正轉 和反轉相結合。優選地,所述扭轉該奈米碳管結構214的 步驟爲將所述奈米碳管結構214沿奈米碳管結構214的拉 伸方向以螺旋方式扭轉。扭轉後所形成的奈米碳管長線 結構222爲一絞線結構,其掃描電鏡照片請參見圖8。 [0044] 所述切割奈米碳管結構214,形成奈米碳管長線結構222 的步驟爲:沿奈米碳管結構214的拉伸方向切割所述奈米 碳管結構214,形成多個奈米碳管長線結構222。上述多 個奈米碳管長線結構222可進一步進行重叠、扭轉,以形 成一較大直徑的奈米碳管長線結構222。 [0045] 可以理解,本技術方案並不限於上述方法獲得奈米碳管 長線結構222,只要能使所述奈米碳管薄膜214形成奈米 碳管長線結構222的方法都於本技術方案的保護範圍之内 〇 [0046] 所製得的奈米碳管長線結構222可進一步收集於一第一捲 筒224上。收集方式爲將奈米碳管長線結構222纏繞於所 述第一捲筒224上。所述奈米碳管長線結構222用作纜線 097108086 表單編號A0101 第15頁/共35頁 1003154725-0 1345794 100年05月03日核正替换頁 的纜芯。 [0047] 可選擇地,上述奈米碳管結構214的形成步驟、形成至少 一層導電層的步驟、强化層的形成步驟、奈米碳管結構 214的扭轉步驟及奈米碳管長線結構222的收集步驟均可 於上述真空容器中進行,進而實現奈米碳管長線結構222 的連續生産。 [0048] 步驟四:形成至少一絕緣介質層於所述所述奈米碳管長 線結構222的外表面。 [0049] 所述絕緣介質層可通過一第一擠壓裝置230包覆於所述奈 米碳管長線結構222的外表面,該第一擠壓裝置230將聚 合物熔體組合物塗覆於所述奈米碳管長線結構222的表面 。本技術方案實施例中,所述聚合物熔體組合物優選爲 泡沫聚乙烯組合物。一旦奈米碳管長線結構222離開所述 第一擠壓裝置230,聚合物熔體組合物就會發生膨脹,以 形成絕緣介質層。 [0050] 當所述絕緣介質層爲兩層或兩層以上時,可重複上述步 驟。 [0051] 步驟五:形成至少一屏蔽層於所述絕緣介質層的外表面 〇 [0052] 提供一屏蔽帶232,該屏蔽帶232由一第二捲筒234提供 。將該屏蔽帶232圍繞絕緣介質層卷覆,以便形成屏蔽層 。屏蔽帶232可選用一金屬薄膜、奈来碳管薄膜或奈来碳 管複合薄膜等帶狀膜結構或奈米碳管長線、奈米碳管複 合長線結構或金屬線等線狀結構。另外,所述屏蔽帶232 097108086 表單編號A0101 第16頁/共35頁 1003154725-0 1345794 100年05月03日梭正替换頁 也可由上述多種材料形成的編織層共同組成,並通過黏 結劑黏結或直接纏繞於所述絕緣介質層外表面。 [0053] 本技術方案實施例中,所述屏蔽層由多個奈米碳管長線 組成,該奈米碳管長線直接或編織成網狀纏繞於所述絕 緣介質層外。每個奈米碳管長線包括多個從奈米碳管束 陣列長出的奈米碳管束片段,每個奈米碳管束片段具有 大致相等的長度且每個奈米碳管束片段由多個相互平行 的奈米碳管束構成,其中,奈米碳管束片段兩端通過凡 德瓦爾力相互連接。 [0054] 優選地,所述帶狀膜結構的屏蔽帶232沿縱向邊緣進行重 叠,以便完全屏蔽纜芯。所述奈米碳管長線、奈米碳管 複合長線結構或金屬線等線狀結構的屏蔽帶232可直接或 編織成網狀纏繞於絕緣介質層的外表面。具體地,所述 多根奈米碳管長線或金屬線可通過多個繞線架236沿不同 的螺旋方向捲繞於絕緣介質層的外表面。 [0055] 可以理解,當所述屏蔽層爲兩層或兩層以上結構時,可 重複上層步驟。 [0056] 步驟六:形成一外護套於所述屏蔽層的外表面》 [0057] 所述外護套可通過一第二擠壓裝置240施用到所述屏蔽層 外表面。所述聚合物熔體圍繞於所述屏蔽層的外表面被 擠壓,冷却後形成外護套。 [0058] 進一步地,可將所製造的的線纜收集於一第三捲筒260上 ,以利於儲存和裝運。 097108086 表單編號A0101 第17頁/共35頁 1003154725-0 1345794 100年05月03日梭正替換支 [0059] 請參閱圖9,本技術方案第二實施例提供一種線纜30包括 多個纜芯310 (圊9中共顯示七個纜芯)、每一纜芯310外 覆蓋一個絕緣介質層320、包覆於多個纜芯310外的一個 屏蔽層330和一個包覆於屏蔽層330外表面的外護套340 。屏蔽層3 3 0和絕緣介質層3 2 0的間隙内可填充絕緣材料 。其中,每個纜芯310及絕緣介質層320、屏蔽層330和 外護套340的結構、材料及製備方法與第一實施例中的纜 芯110、絕緣介質層120、屏蔽層130和外護套140的結構 、材料及製備方法基本相同。 [0060] 請參閱圖10,本技術方案第三實施例提供一種線纜40包 括多個纜芯410 (圖10中共顯示五個纜芯)、每一纜芯 410外覆蓋一個絕緣介質層420和一個屏蔽層430、及包 覆於多個纜芯410外表面的外護套440。屏蔽層430的作 用於於對各個纜芯410進行單獨的屏蔽,這樣不僅可以防 止外來因素對纜芯410内部傳輸的電信號造成干擾而且可 以防止各纜芯410内傳輸的不同電信號間相互發生干擾。 其中,每個纜芯410、絕緣介質層420、屏蔽層430和外 護套440的結構、材料及製備方法與第一實施例中的纜芯 110、絕緣介質層120、屏蔽層130和外護套140的結構、 材料及製備方法基本相同。 [0061] 本技術方案實施例提供的採用奈米碳管長線結構作爲纜 芯的線纜及其製備方法具有以下優點:其一,奈米碳管 長線結構中包含多個通過凡德瓦爾力首尾相連的奈米碳 管束片段,且每根奈米碳管表面均形成有導電材料層, 其中,奈米碳管束片段起導電及支撑作用,於奈米碳管 097108086 表單編號Α0101 第18頁/共35頁 1003154725-0 1345794 100年05月03日修正替换頁 上沈積金屬導電層後,形成的奈米碳管長線結構比採用 先前技術中的金屬拉絲方法得到的金屬導電絲更細,適 合製作超細微線纜。其二,由於奈米碳管爲中空的管狀 結構,且形成於奈米碳管外表面的金屬導電層厚度只有 幾個奈米,故,電流通過金屬導電層時基本不會産生趨 膚效應,從而避免了信號於線纜中傳輸過程中的衰减。 其三,由於奈米碳管具有優異的力學性能,且具有中空 的管狀結構,故,該含有奈米碳管的線纜具有比採用純 金屬纜芯的線纜更高的機械强度及更輕的質量,適合特 殊領域,如航天領域及空間設備的應用。其四,採用金 屬包覆的奈米碳管形成的奈米碳管長線結構作爲纜芯比 採用純奈米碳管繩作爲纜芯具有更好的導電性。其五, 由於奈米碳管長線結構係通過對奈米碳管薄膜進行旋轉 或直接從奈米碳管陣列中拉取而製造,,該方法簡單、成 本較低。其六,所述從奈米碳管陣列中拉取獲得奈米碳 管結構的步驟及形成至少一層導電材料層的步驟均可於 一真空容器中進行,有利於纜芯的規模化生産,從而有 利於線纜的規模化生産。 [0062] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0063] 圖1係本技術方案第一實施例線纜的截面結構示意圖。 097108086 表單編號A0101 第19頁/共35頁 1003154725-0 1345794 100年05月03日i正替換 [0064] 圖2係本技術方案第一實施例線纜中單根奈米碳管的結構 示意圖。 [0065] 圖3係本技術方案第一實施例線纜的製造方法的流程圖。 [0066] 圖4係本技術方案第一實施例線纜的製造裝置的結構示意 圖。 [0067] 圖5係本技術方案第一實施例奈米碳管薄膜的掃描電鏡照 片。 [0068] 圖6係本技術方案第一實施例沈積導電材料層後的奈米碳 管薄膜的掃描電鏡照片。 [0069] 圖7係本技術方案第一實施例沈積導電材料層後的奈米碳 管薄膜中的奈米碳管的透射電鏡照片。 [0070] 圖8係本技術方案第一實施例對奈米碳管結構進行扭轉後 所形成的絞線結構的掃描電鏡照片。 [0071] 圖9係本技術方案第二實施例線纜的截面結構示意圖。 [0072] 圖10係本技術方案第三實施例線纜的截面結構示意圖。 【主要元件符號說明】 [0073] 線纜:10,30,40 [0074] 纜芯:110,310,410 [0075] 奈米碳管:111 [0076] 潤濕層:112 [0077] 過渡層:113 097108086 表單編號Α0101 第20頁/共35頁 1003154725-0 1345794 [0078] 導電層:114 [0079] 抗氧化層:115 [0080] 强化層:116 [0081] 絕緣介質層:120,320,420 [0082] 屏蔽層:130, 330, 430 [0083] 外護套:140, 340, 440 [0084] 真空容器:210 [0085] 蒸發源:212 [0086] 奈米碳管結構: 214 [0087] 奈米碳管陣列: 216 [0088] 裝有聚合物溶液的裝置:220 [0089] 奈米碳管長線結構:222 [0090] 第一捲筒:224 [0091] 第一擠壓裝置: 230 [0092] 屏蔽帶:232 [0093] 第二捲筒:234 [0094] 繞線架:236 [0095] 第二擠壓裝置: 240 [0096] 第三捲筒:260 097108086 表單編號A0101 第21頁/共35頁 100年05月03日按正替換頁 1003154725-01345794 - May 3, 100, 2014, the replacement of the page, the invention: [Technical Field] [0001] The present invention relates to a method of manufacturing a cable, and more particularly to the manufacture of a cable based on a carbon nanotube method. [Prior Art] [0002] Cable is a commonly used signal transmission wire in the electronics industry. Micron-sized cables are more widely used in IT products, medical instruments, and space equipment. The traditional cable is internally provided with two conductors. The inner conductor is used to transmit electrical signals, and the outer conductor is used to shield the transmitted electrical signal and enclose it inside, so that the cable has low frequency loss, shielding and anti-interference ability. For characteristics such as strong and frequency bandwidth, please refer to the document "Electromagnetic Shielding of High-Voltage Cables" (M. De Wu1f, P. Wouters et. a 1., Journal of Magnetism and Magnetic Materials, 316, e908-e901 (2007) ). [0003] In general, the structure of the cable from the inside to the outside is, in order, a core forming an inner conductor, an insulating dielectric layer covering the outer surface of the core, a shield forming an outer conductor, and an outer sheath. Among them, the core is used to transmit electrical signals, and the material is mainly copper, aluminum or copper-zinc alloy. The shielding layer is usually formed by braiding a plurality of metal wires or wrapping the metal film over the insulating dielectric layer to shield electromagnetic interference or unwanted external signal interference. For a core formed of a metallic material, the biggest problem is that an alternating current causes a skin effect when transmitted in a metallic conductor. The skin effect reduces the effective cross-sectional area when passing current through the metal conductor, thereby increasing the effective resistance of the conductor, resulting in a decrease in the transmission efficiency of the cable or a loss of the transmission signal. In addition, gold 097108086 Form No. A0101 Page 3 / Total 35 Page 1003154725-0 1345794 [0004] [0005] [0006] [0007] 097108086 100 May 03 a> Correction of replacement page material as cable core and shielding layer The cable, which has low strength, large mass and large diameter, cannot meet certain specific conditions, such as aerospace applications, space equipment and ultra-fine cable applications. In the prior art, the method for manufacturing a cable generally includes the steps of: coating a polymer to form an insulating dielectric layer on an outer surface of the core; forming a shielding layer directly or by braiding the outer layer of the insulating dielectric layer Or forming a shielding layer by wrapping a metal film on the outside of the insulating dielectric layer; and coating an outer sheath on the outer surface of the shielding layer. Nano carbon tube is a new type of one-dimensional nano-material, which has excellent electrical conductivity, high tensile strength and high thermal stability. It has shown broad application prospects in the fields of materials science, chemistry and physics. . At present, a carbon nanotube has been mixed with a metal to form a composite material, thereby manufacturing a cable core. However, the carbon nanotubes are disorderly dispersed in the metal and still cannot solve the skin effect problem in the above metal core. Further, the method for manufacturing the core comprising the carbon nanotubes is to mix the trace carbon nanotubes with the metal by vacuum melting, vacuum sintering or vacuum hot pressing, and the manufacturing method is complicated. In view of this, it is necessary to provide a method for manufacturing a cable, which is simple, low in cost, easy to mass-produce, and has good electrical conductivity, strong mechanical properties, and light weight. Smaller diameter. SUMMARY OF THE INVENTION A method for manufacturing a cable includes the steps of: providing a carbon nanotube array; and extracting a carbon nanotube structure from the array of carbon nanotubes by using a stretching tool, the nanometer The carbon tube structure comprises a plurality of end-to-end connections and form number A0101 page 4 / total 35 pages 1003154725-0 100 years of May 3rd nuclear replacement page L345794 aligned carbon nanotube bundles; forming at least one layer of conductive material in said a carbon nanotube structure surface, forming a carbon nanotube long-line structure; forming at least one insulating dielectric layer on an outer surface of the carbon nanotube long-line structure; forming at least one shielding layer on an outer surface of the insulating dielectric layer; And forming an outer sheath on an outer surface of the shielding layer. [0008] Compared with the prior art, the technical solution of the present invention adopts a carbon nanotube long-line structure as a cable core manufacturing method, and has the following advantages: First, since the long-term structure of the carbon nanotube passes through the structure of the carbon nanotube The method is simple and low cost by twisting or directly pulling from the carbon nanotube array. Secondly, the step of extracting the carbon nanotube structure from the carbon nanotube array and the step of forming at least one layer of the conductive material can be carried out in a vacuum vessel, thereby facilitating the scale production of the core, thereby Conducive to the large-scale production of cables. [Embodiment] The structure of a cable of the embodiment of the present technical solution and a preparation method thereof will be described in detail below with reference to the accompanying drawings. [0010] Embodiments of the present technical solution provide a cable including at least one cable core, at least one insulating dielectric layer covering the core, at least one shielding layer, and an outer sheath. [0011] Referring to FIG. 1 , the cable 10 of the first embodiment of the present invention is a coaxial cable, and the coaxial cable includes a cable core 110, an insulating dielectric layer 120 covering the outer core 110, and a cover. The shielding layer 130 outside the insulating dielectric layer 120 and the outer sheath 140 covering the shielding layer 130. Wherein, the above-mentioned cable core 110, insulating dielectric layer 120, shielding layer 130 and outer sheath ί 40 are coaxially arranged 〇097108086 Form No. 1010101 Page 5 / Total 35 Page 1003154725-0 1345794 [0012] Nuclear power of May 3, 1100 The mirror core 110 includes at least one carbon nanotube long-line structure. Specifically, the core 110 may be formed of a single long carbon nanotube structure or a plurality of nanotube long-length structures. In this embodiment, the mirror name 110 is a long carbon nanotube structure. The core 110 may have a diameter of from 4. 5 nm to 1 mm. Preferably, the core has a diameter of from 1 to 3 μm. [0013] The π m carbon tube long-line structure is composed of a carbon nanotube and a conductive material. Specifically, the carbon nanotube long-line structure includes a plurality of carbon nanotubes, and each of the carbon nanotube surfaces is coated with at least one layer of a conductive material. Wherein each of the tubes has substantially the same length, and a plurality of carbon nanotubes are connected end to end by a van der Waals force to form a long carbon nanotube structure. In the long-line structure of the carbon nanotubes, the carbon nanotubes are arranged along the axially preferred orientation of the long-line structure of the carbon nanotubes. Further, the long carbon nanotube structure can undergo a twisting process to form a stranded structure. In the above-mentioned twisted wire structure, Nailai "the axial spiral rotation arrangement of the reverse winding structure. The nano carbon tube long-line structure may have a diameter of 4.5 nm to 100 μm. Preferably, the nano carbon tube long-line structure has a diameter of 1 〇 to 30 μm. [0014] Referring to FIG. 2, the surface of each of the carbon nanotubes η1 in the long carbon nanotube structure is coated with at least one layer of conductive material. Specifically, the conductive material layer includes a wetting layer 2 directly bonded to the surface of the carbon nanotube 111, a transition layer 113 disposed outside the wetting layer 112, a conductive layer 114 disposed outside the transition layer 113, and a setting An oxidation resistant layer 115 outside the conductive layer 114. [0015] Since the wettability between the carbon nanotubes 111 and most of the metals is not good, the above-mentioned wetting layer 112 functions to better bond the conductive layer 114 to the carbon nanotubes. The material forming the wetting layer 112 may be nickel, a metal such as titanium or the like which is wettable with the carbon nanotube 111, or an alloy thereof. The wetting layer 097108086 Form No. A0101 Page 6 of 35 page 1003154725- 0 1345794 On May 3, 100, the thickness of the shuttle replacement page 11 2 is 1 〇 nanometer ◊ In this embodiment, the wetted layer 11 2 is made of nickel and has a thickness of about 2 nm. It will be appreciated that the wetting layer i丨2 is of an alternative construction. [0016] The transition layer 11 3 functions to better bond the wetting layer 112 to the conductive layer 114. The material for forming the transition layer 11 3 may be a material which can be better combined with the material of the wetting layer 112 and the material of the conductive layer 114. The thickness of the transition layer 113 is 1 to ί η ◎ in this embodiment, the transition layer The material of 113 is copper and has a thickness of 2 nm. It will be appreciated that the transition layer 113 is a selectable structure. [0017] The above conductive layer 114 functions to make the carbon nanotube long-line structure have better conductivity. The material for forming the conductive layer 114 may be a metal having good conductivity such as copper, silver or gold or an alloy thereof. The thickness of the conductive layer 114 is 20 nm. In the embodiment, the material of the conductive layer 114 is silver. The thickness is about 5 nm. [0018] The function of the above-mentioned oxidation resistant layer 115 is to prevent the conductive layer 114 from being oxidized in the air during the manufacturing process of the cable 1〇, thereby lowering the electrical conductivity of the core 11〇. The material forming the oxidation resistant layer 115 may be gold or platinum equal to a stable metal which is not easily oxidized in the air or an alloy thereof. The thickness of the anti-oxidation layer Η5 is 1 to 1 nanometer. In the present embodiment, the oxidation resistant layer The material of 115 is platinum and has a thickness of 2 nm. It will be appreciated that the oxidation resistant layer 115 is a selectable structure. Further, in order to increase the strength of the line relaxation 10, a reinforcing layer 116 may be further disposed outside the oxidation resistant layer 115. The material forming the strengthening layer 116 may be polyvinyl alcohol (PVA), polyphenylene benzobisoxazole (ρΒ〇), polyethyl 097108086, form singular Α 0101, page 7 / total 35 pages 1003154725-0 [0019] 1345794 〜1微米。 The thickness of the thickness of the layer is 0. 1~1 micron. 5微米。 The thickness of the thickness of 0. 5 microns. It will be understood that the reinforcing layer 116 is of an alternative construction. [0020] The insulating dielectric layer 120 is used for electrical insulation, and may be selected from a polytetrafluoroethylene, a polyethylene, a polypropylene, a polystyrene, a foamed polyethylene composition, or a nano-viscosity-polymer composite. Nano-clay-polymer composites of nano-layered silicate minerals of nano-clay, composed of a variety of hydrated silicates and a certain amount of alumina, alkali metal oxides and alkaline earth metal oxides. It has excellent properties such as fire retardant and flame retardant, such as nano kaolin or nano montmorillonite. The polymer material may be selected from the group consisting of an anthracene resin, a polyamide, a polyolefin such as polyethylene or polypropylene, but is not limited thereto. This embodiment is preferably a foamed polyethylene composition. [0021] The shielding layer 130 is formed of a conductive material for shielding electromagnetic interference or unwanted external signal interference. Specifically, the shielding layer 130 may be formed by braiding a plurality of metal wires or wrapping the metal film on the outside of the insulating dielectric layer 120, or may be a plurality of carbon nanotube long wires, a single-layer ordered carbon nanotube film, and a multilayer ordered Nye. The carbon nanotube film or the disordered carbon nanotube film is wound or wound around the insulating dielectric layer 120, or may be directly coated on the surface of the insulating dielectric layer 120 by a composite material containing a carbon nanotube. [0022] wherein the material of the metal thin film or the metal wire may be selected from a conductive metal such as copper, gold or silver or an alloy thereof. The carbon nanotube long-line, single-layer ordered carbon nanotube film or multi-layer ordered carbon nanotube film comprises a plurality of carbon nanotube bundle segments, each of the carbon nanotube bundle segments having substantially equal lengths and each nanometer The carbon nanotube bundle 崞 consists of a plurality of mutually parallel nano carbon 097108086 Form No. A0101 Page 8 / Total 35 pages 1003154725-0 1,345794 100 May 3rd nuclear replacement π tube composition, nano carbon tube bundle fragment two The ends are connected to each other by van der Waals forces to form a continuous carbon nanotube film or a long carbon nanotube tube. The composite may be a composite of a metal and a carbon nanotube or a composite of a polymer and a carbon nanotube. The polymer material may be selected from the group consisting of Polyethylene Terephthalate (PET), Polycarbonate (PC), and acrylonitrile-butadiene-propylene-diethylamide (Acrylonitrile). -Butadiene Styrene Terpolymer (ABS), a polymeric material such as polyacrylic acid S/acrylonitrile butadiene styrene copolymer (PC/ABS). The carbon nanotubes are uniformly dispersed in the solution of the above polymer material, and the mixed solution is uniformly applied to the surface of the insulating dielectric layer 120, and after cooling, a polymer layer containing a carbon nanotube is formed. It can be understood that the shielding layer 130 can also be formed by wrapping or wrapping the carbon nanotube composite film or the carbon nanotube composite long-line structure outside the insulating dielectric layer 120. Specifically, the carbon nanotubes in the carbon nanotube metal composite film or the carbon nanotube metal composite long-line structure are arranged in an order, and the surface of the carbon nanotube is coated with at least one conductive material layer. Further, the shielding layer 130 may also be formed by combining the above various materials on the outside of the insulating dielectric layer 120. [0023] The outer sheath 140 is made of an insulating material, and a nano-clay-polymer composite material may be selected, wherein the nanometer is used. The clay may be nacre kaolin or nano montmorillonite, and the polymer material may be an anthracene resin, a polyamide, a polyolefin such as polyethylene or polypropylene, but is not limited thereto. The present embodiment is preferably a nano montmorillonite-polyethylene composite material, which has good mechanical properties, fire-retardant properties, low smoke and halogen-free properties, and can not only provide protection for the cable 10, but also effectively resist mechanical, physical or chemical. Foreign damage, at the same time 097108086 Form No. A0101 Page 9 / Total 35 pages 1003154725-0 1345794 _. On May 3, 100, the shuttle replacement page can also meet the requirements of environmental protection. [0024] Referring to FIG. 3 and FIG. 4, the method for preparing the card cable 10 according to the embodiment of the present technical solution mainly includes the following steps: [0025] Step 1: providing a carbon nanotube array 216, preferably, the array is super Align the array of carbon nanotubes. [0026] The carbon nanotube array 2 16 provided in the embodiments of the present technical solution is one or more of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. In this embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or The germanium substrate formed with the oxide layer is selected, and the present embodiment preferably uses a 4 inch germanium substrate; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be iron (Fe), cobalt (Co) or nickel. (Ni) one of the alloys of any combination thereof; (c) annealing the substrate on which the catalyst layer is formed in air at 700 to 900 ° C for about 30 minutes to 90 minutes; (d) placing the treated substrate In the reaction furnace, it is heated to 500 to 740 ° C under a protective gas atmosphere, and then reacted with a carbon source gas for about 5 to 30 minutes to grow to obtain a super-aligned carbon nanotube array having a height of 200 to 400 μm. The super-sequential carbon nanotube array is a plurality of pure carbon nanotube arrays formed of a plurality of carbon nanotubes that are parallel to each other and grown perpendicular to the substrate. By controlling the growth conditions as described above, the super-aligned carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles. The carbon nanotubes in the super-sequential carbon nanotube array are in close contact with each other to form an array by van der Waals force. The super-sequential carbon nanotube array is substantially the same area as the above substrate. 097108086 Form No. A0101 Page 10 / Total 35 Page 1003154725-0 L345794 May 03, 100, according to the replacement page [0027] In this embodiment, the carbon source gas can be selected from acetylene, ethylene, decane and other chemically active carbon. The hydrogen source, the preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is argon. [0028] Step 2: Pulling a carbon nanotube structure 214 from the carbon nanotube array 21 6 using a stretching tool. [0029] The preparation method of the carbon nanotube structure 214 includes the following steps: (a) selecting a plurality of carbon nanotube bundle segments of a certain width from the carbon nanotube array 216, and the embodiment preferably has a certain a width of tape or a tip contact with the carbon nanotube array 21 6 to select a plurality of carbon nanotube bundle segments of a certain width; (b) stretching the plurality of segments at a rate substantially perpendicular to the growth direction of the nanotube array 216 The carbon nanotube bundle segments are formed to form a continuous carbon nanotube structure 214. [0030] during the stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the substrate in the stretching direction by the tensile force, and the selected plurality of carbon nanotube bundle segments are respectively separated by the van der Waals force. The other carbon nanotube bundle segments are continuously pulled out end to end to form a carbon nanotube structure 214. The carbon nanotube structure 214 includes a plurality of end-to-end aligned carbon nanotube bundles. The arrangement of the carbon nanotubes in the carbon nanotube structure 214 is substantially parallel to the direction of stretching of the carbon nanotube structure 214. [0031] The carbon nanotube structure 21 4 is a carbon nanotube film or a nano carbon line. Specifically, when the width of the selected plurality of carbon nanotube bundle segments is large, the obtained nai The carbon nanotube structure 214 is a carbon nanotube film, the microstructure of which is shown in Fig. 5; when the selected plurality of carbon nanotube bundle segments have a width of 097108086, form number A0101, page 11 / total 35 pages 1003154725-0 1345794 100 When the nuclear replacement page is small on May 03, the obtained carbon nanotube structure 214 can be approximated as a nano carbon line. [0032] The preferred orientation aligned carbon nanotube structure 214 obtained by direct stretching has better uniformity than the disordered carbon nanotube structure. At the same time, the direct stretching method for obtaining the carbon nanotube structure 214 is simple and rapid, and is suitable for industrial application. [0033] Step 3: forming at least one conductive material layer on the surface of the carbon nanotube structure 214 to form a carbon nanotube long-line structure 222. [0034] This embodiment deposits a layer of a conductive material by physical vapor deposition (PVD) such as vacuum evaporation or ion sputtering. Preferably, this embodiment forms at least one layer of a conductive material by vacuum evaporation. [0035] The method for forming at least one layer of conductive material by vacuum evaporation comprises the following steps: First, a vacuum vessel 210 is provided, the vacuum vessel 210 having a deposition interval, at least one evaporation is placed at the bottom and the top of the deposition interval, respectively. The source 212, the at least one evaporation source 21 2 is sequentially disposed along the stretching direction of the carbon nanotube structure 21 4 in the order of forming at least one layer of the conductive material, and each of the evaporation sources 212 can pass through a heating device (not shown) Show) heating. The carbon nanotube structure 214 is placed in the middle of the upper and lower evaporation sources 212 at a distance therefrom, wherein the carbon nanotube structure 214 is disposed opposite the upper and lower evaporation sources 212. The vacuum vessel 210 can be evacuated to a predetermined degree of vacuum by an external vacuum pump (not shown). The evaporation source 212 material is a conductive material to be deposited. Next, by heating the evaporation source 212, melting it, evaporating or sublimating to form a conductive material vapor, the conductive material vapor encounters the cold carbon nanotube structure 214, after the carbon nanotube structure 097108086 Form No. A0101 No. 12 Page / Total 35 pages 1003154725-0 1.345794 On May 3, 100, the replacement surface 214 of the nuclear replacement page condensed to form a layer of conductive material. Since there is a gap between the carbon nanotubes in the carbon nanotube structure 214, and the thickness of the carbon nanotube structure 214 is thin, the conductive material can penetrate into the carbon nanotube structure 214 and deposit on each nanometer. Carbon tube surface. See Figure 6 and Figure 7 for a photomicrograph of the carbon nanotube structure 214 after deposition of a layer of conductive material. [0036] It will be appreciated that each evaporation source 212 can have a deposition zone by adjusting the distance between the carbon nanotube structure 214 and each evaporation source 212 and the distance between the evaporation sources 212. When it is desired to deposit a plurality of layers of the conductive material, the plurality of evaporation sources 212 may be sequentially heated to continuously pass the carbon nanotube structure 214 through the deposition regions of the plurality of evaporation sources, thereby realizing deposition of the plurality of layers of the conductive material. [0037] In order to increase the vapor density of the conductive material and prevent the conductive material from being oxidized, the vacuum in the vacuum container 210 should be at least 1 Pa (Pa). In the embodiment of the present invention, the degree of vacuum in the vacuum vessel is 4 x 10 -4 Pa. It will be understood that the carbon nanotube array 216 in step one can also be placed directly into the vacuum vessel 210 described above. First, a carbon nanotube structure 214 is taken from the carbon nanotube array 216 by a drawing tool in the vacuum vessel 210. Then, the at least one evaporation source 212 is heated to deposit at least one layer of electrically conductive material on the surface of the carbon nanotube structure 214. The carbon nanotube structure 214 is continuously drawn from the carbon nanotube array 21 6 at a constant speed, and the carbon nanotube structure 214 is continuously passed through the deposition zone of the evaporation source 212 to form a nanometer. Carbon tube long line structure 222. Therefore, the vacuum container 210 can realize continuous production of the carbon nanotube long-line structure 222. [0039] In the embodiment of the technical solution, the method for forming at least one layer of conductive material by vacuum evaporation comprises the following steps: forming a layer of wetting 097108086 Form No. A0101 Page 13 / Total 35 Page 1003154725-0 1345794 100 On May 03, the shuttle is replacing the surface layer on the surface of the carbon nanotube structure 214; forming a transition layer on the outer surface of the wetting layer; forming a conductive layer on the outer surface of the transition layer; forming a layer The oxidation resistant layer is on the outer surface of the conductive layer. Wherein, the steps of forming the wetting layer, the transition layer and the oxidation resistant layer are all optional steps. Specifically, the above-described carbon nanotube structure 214 may be continuously passed through the deposition zone of the evaporation source 212 formed by the respective layers of materials. [0040] In addition, after forming the at least one layer of conductive material on the surface of the carbon nanotube structure 214, the step further comprises the step of forming a strengthening layer on the surface of the carbon nanotube structure 214. The step of forming the strengthening layer specifically includes the steps of: impregnating the entire carbon nanotube structure 214 with the polymer solution through a device 220 containing the polymer solution through a carbon nanotube structure 214 formed with at least one layer of a conductive material. And the polymer solution is adhered to the outer surface of the at least one conductive material layer by an intermolecular force; and the polymer is solidified to form a strengthening layer. [0041] When the carbon nanotube structure 214 is a nano carbon pipeline, the nano carbon pipeline formed with at least one conductive material layer is a carbon nanotube long-line structure 222, which does not require subsequent processing. . [0042] When the carbon nanotube structure 214 is a carbon nanotube film, the step of forming the carbon nanotube long-line structure 222 may further include the step of mechanically treating the carbon nanotube structure 214 . The mechanical treatment step can be achieved by twisting the carbon nanotube structure 214 formed with at least one layer of conductive material to form a long-length structure of the carbon nanotube 2 2 2 or cutting the formed at least one The carbon nanotube structure 214 of the conductive material layer forms a carbon nanotube long-line structure 222. 097108086 Form No. A0101 Page 14 / Total 35 Page 1003154725-0 100th May, 2003 Shuttle Replacement Page 1345792 [0043] Step of twisting the carbon nanotube structure 214 to form a carbon nanotube long-line structure 222 It can be realized in the following two ways: First, by fixing a stretching tool adhered to the end of the above-mentioned carbon nanotube structure 214 to a rotating electric machine, the carbon nanotube structure 214 is twisted to form a carbon nanotube length. Line structure 222. Secondly, a spinning shaft is provided which can adhere to the carbon nanotube structure 214, and the tail of the spinning shaft is combined with the carbon nanotube structure 214, so that the spinning shaft twists the nanometer in a rotating manner. The carbon tube structure 214 forms a carbon nanotube long-line structure 222. It can be understood that the above-mentioned spinning shaft is not limited in rotation, and can be rotated forward, reversed, or combined with forward rotation and reverse rotation. Preferably, the step of twisting the carbon nanotube structure 214 is to twist the carbon nanotube structure 214 in a helical manner along the direction of extension of the carbon nanotube structure 214. The long carbon nanotube structure 222 formed after twisting is a twisted wire structure, and the scanning electron micrograph is shown in Fig. 8. [0044] The step of cutting the carbon nanotube structure 214 to form the nano carbon tube long-line structure 222 is: cutting the carbon nanotube structure 214 along the stretching direction of the carbon nanotube structure 214 to form a plurality of naphthalenes The carbon nanotube long line structure 222. The plurality of carbon nanotube long-line structures 222 may be further overlapped and twisted to form a larger diameter carbon nanotube long-line structure 222. [0045] It can be understood that the technical solution is not limited to the above method to obtain the carbon nanotube long-line structure 222, as long as the carbon nanotube film 214 can be formed into the nano-carbon tube long-line structure 222. Within the scope of protection [0046] The carbon nanotube long-line structure 222 produced can be further collected on a first reel 224. The collection is by winding a carbon nanotube long wire structure 222 onto the first reel 224. The carbon nanotube long-line structure 222 is used as a cable 097108086 Form No. A0101 Page 15 of 35 1003154725-0 1345794 On May 3, 100, the core of the replacement page is verified. [0047] Optionally, the forming step of the carbon nanotube structure 214, the step of forming at least one conductive layer, the forming step of the strengthening layer, the twisting step of the carbon nanotube structure 214, and the long carbon nanotube structure 222 of the carbon nanotube structure The collection step can be carried out in the above vacuum vessel to achieve continuous production of the carbon nanotube long-line structure 222. [0048] Step 4: forming at least one insulating dielectric layer on the outer surface of the carbon nanotube long-line structure 222. [0049] The insulating dielectric layer may be coated on the outer surface of the carbon nanotube long-line structure 222 by a first pressing device 230, and the first pressing device 230 applies the polymer melt composition to The surface of the carbon nanotube long-line structure 222. In an embodiment of the present technical solution, the polymer melt composition is preferably a foamed polyethylene composition. Once the nanotube longwall structure 222 exits the first extrusion device 230, the polymer melt composition expands to form an insulating dielectric layer. [0050] When the insulating medium layer is two or more layers, the above steps may be repeated. [0051] Step 5: Forming at least one shielding layer on the outer surface of the insulating dielectric layer. [0052] A shielding tape 232 is provided. The shielding tape 232 is provided by a second reel 234. The shield tape 232 is wrapped around the insulating dielectric layer to form a shield layer. The shielding tape 232 may be a strip film structure such as a metal film, a carbon nanotube film or a nylon tube composite film or a linear structure such as a long carbon nanotube tube, a carbon nanotube composite long-line structure or a metal wire. In addition, the shielding tape 232 097108086 Form No. A0101 Page 16 / Total 35 pages 1003154725-0 1345794 The replacement page of the shuttle is also composed of a woven layer formed of the above various materials, and is bonded by a bonding agent or Directly wound on the outer surface of the insulating dielectric layer. In the embodiment of the technical solution, the shielding layer is composed of a plurality of long carbon nanotube tubes, and the long carbon nanotubes are wound directly or woven into a mesh shape outside the insulating dielectric layer. Each nanocarbon tube long line includes a plurality of carbon nanotube bundle segments grown from a carbon nanotube bundle array, each of the carbon nanotube bundle segments having substantially equal lengths and each of the carbon nanotube bundle segments being parallel to each other The carbon nanotube bundle is composed of a bundle of carbon nanotube bundles connected to each other by van der Waals force. Preferably, the strip of film 232 of the strip film structure is overlapped along the longitudinal edges to completely shield the core. The shielded tape 232 of the linear structure of the carbon nanotube long wire, the carbon nanotube composite long wire structure or the metal wire may be directly or woven into a mesh shape wound on the outer surface of the insulating dielectric layer. Specifically, the plurality of carbon nanotube long wires or metal wires may be wound around the outer surface of the insulating dielectric layer in a plurality of winding frames 236 in different spiral directions. [0055] It can be understood that when the shielding layer is of two or more layers, the upper layer step can be repeated. [0056] Step 6: Forming an outer sheath on the outer surface of the shielding layer. [0057] The outer sheath may be applied to the outer surface of the shielding layer by a second pressing device 240. The polymer melt is extruded around the outer surface of the shield layer and, after cooling, forms an outer jacket. [0058] Further, the manufactured cable can be collected on a third reel 260 to facilitate storage and shipping. 097108086 Form No. A0101 Page 17 / Total 35 Page 1003154725-0 1345794 May 3, 2014 Shuttle Replacement Branch [0059] Referring to FIG. 9, a second embodiment of the present invention provides a cable 30 including a plurality of cores. 310 (a total of seven cores are displayed in the 圊9), each of the cores 310 is covered with an insulating dielectric layer 320, a shielding layer 330 covering the plurality of cores 310, and a cladding layer covering the outer surface of the shielding layer 330. Outer sheath 340. The insulating layer may be filled in the gap between the shielding layer 3 30 and the insulating dielectric layer 3 2 0 . The structure, material and preparation method of each of the cable core 310 and the insulating dielectric layer 320, the shielding layer 330 and the outer sheath 340, and the cable core 110, the insulating dielectric layer 120, the shielding layer 130 and the external protection in the first embodiment The structure, material and preparation method of the sleeve 140 are basically the same. [0060] Referring to FIG. 10, a third embodiment of the present invention provides a cable 40 including a plurality of cores 410 (five cores are shown in FIG. 10), each core 410 is covered with an insulating dielectric layer 420 and A shielding layer 430 and an outer sheath 440 covering the outer surfaces of the plurality of cores 410. The shielding layer 430 acts to separately shield the respective cores 410, so that not only external factors can be prevented from interfering with electrical signals transmitted inside the core 410 but also different electrical signals transmitted in the respective cores 410 can be prevented from occurring with each other. interference. The structure, material and preparation method of each of the core 410, the insulating dielectric layer 420, the shielding layer 430 and the outer sheath 440, and the cable core 110, the insulating dielectric layer 120, the shielding layer 130 and the external protection in the first embodiment The structure, material and preparation method of the sleeve 140 are basically the same. [0061] The cable using the nano carbon tube long-line structure as the core of the present invention and the preparation method thereof have the following advantages: First, the long-term structure of the carbon nanotube includes multiple passes through the van der Waals force Connected carbon nanotube bundle segments, and a layer of conductive material is formed on each surface of the carbon nanotubes, wherein the carbon nanotube bundle segments are electrically conductive and supporting, in the carbon nanotubes 097108086 Form No. 1010101 Page 18 of 35 pages 1003154725-0 1345794 On May 3, 2014, after modifying the deposited metal conductive layer on the replacement page, the formed long carbon nanotube structure is finer than the metal conductive wire obtained by the prior art metal wire drawing method, and is suitable for making super Fine cable. Second, since the carbon nanotube is a hollow tubular structure, and the thickness of the metal conductive layer formed on the outer surface of the carbon nanotube is only a few nanometers, the skin effect is not substantially generated when the current passes through the metal conductive layer. This avoids attenuation of the signal during transmission in the cable. Third, because the carbon nanotubes have excellent mechanical properties and have a hollow tubular structure, the carbon nanotube-containing cable has higher mechanical strength and lighter than a cable with a pure metal core. The quality is suitable for special fields such as aerospace and space equipment applications. Fourth, the long carbon nanotube structure formed by the metal-coated carbon nanotubes has better conductivity than the pure carbon nanotube rope as the core. Fifth, since the long-chain structure of the carbon nanotubes is manufactured by rotating the carbon nanotube film or directly pulling it from the carbon nanotube array, the method is simple and low in cost. Sixth, the step of extracting the carbon nanotube structure from the carbon nanotube array and forming the at least one layer of the conductive material can be carried out in a vacuum vessel, thereby facilitating large-scale production of the core, thereby Conducive to the large-scale production of cables. [0062] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0063] FIG. 1 is a schematic cross-sectional view of a cable of a first embodiment of the present technical solution. 097108086 Form No. A0101 Page 19 of 35 1003154725-0 1345794 May 3, 2010 i is replacing [0064] FIG. 2 is a schematic view showing the structure of a single carbon nanotube in the cable of the first embodiment of the present technical solution. 3 is a flow chart of a method of manufacturing a cable according to a first embodiment of the present technical solution. 4 is a schematic structural view of a manufacturing apparatus of a cable of a first embodiment of the present technical solution. 5 is a scanning electron microscope photograph of a carbon nanotube film of the first embodiment of the present technical solution. 6 is a scanning electron micrograph of a carbon nanotube film deposited by depositing a conductive material layer in the first embodiment of the present technical solution. 7 is a transmission electron micrograph of a carbon nanotube in a carbon nanotube film after depositing a conductive material layer in the first embodiment of the present technical solution. 8 is a scanning electron micrograph of a twisted wire structure formed by twisting a carbon nanotube structure according to a first embodiment of the present technical solution. 9 is a schematic cross-sectional view of a cable of a second embodiment of the present technical solution. 10 is a schematic cross-sectional structural view of a cable of a third embodiment of the present technical solution. [Main component symbol description] [0073] Cable: 10, 30, 40 [0074] Cable core: 110, 310, 410 [0075] Carbon nanotube: 111 [0076] Wetting layer: 112 [0077] Transition layer : 113 097108086 Form No. 101 0101 Page 20 / Total 35 Page 1003154725-0 1345794 [0078] Conductive Layer: 114 [0079] Antioxidant Layer: 115 [0080] Strengthening Layer: 116 [0081] Insulating Medium Layer: 120, 320, 420 [0082] Shielding layer: 130, 330, 430 [0083] Outer sheath: 140, 340, 440 [0084] Vacuum vessel: 210 [0085] Evaporation source: 212 [0086] Carbon nanotube structure: 214 [0087] ] Carbon nanotube array: 216 [0088] Device with polymer solution: 220 [0089] Nano carbon tube long wire structure: 222 [0090] First reel: 224 [0091] First extrusion device: 230 Shielding tape: 232 [0093] Second reel: 234 [0094] Winding bobbin: 236 [0095] Second squeezing device: 240 [0096] Third reel: 260 097108086 Form No. A0101 Page 21 / Total 35 pages 100 years, May 03, according to the replacement page 1003154725-0

Claims (1)

1345794 __. 100年05月03日按正替換π 七、申請專利範圍: 1 . 一種線纜的製造方法,包括以下步驟: 提供一奈米碳管陣列; 採用一拉伸工具從所述奈米碳管陣列中拉取獲得一奈米碳 管結構,該奈米碳管結構包括多個首尾相連且定向排列的 奈米碳管束; 形成至少一層導電材料層於所述奈米碳管結構表面,形成 一奈米碳管長線結構; 形成至少一絕緣介質層於所述奈米碳管長線結構的外表面 形成至少一屏蔽層於所述絕緣介質層的外表面;以及 形成一外護套於所述屏蔽層的外表面。 2 .如申請專利範圍第1項所述的線纜的製造方法,其中,所 述奈米碳管結構的製備過程包括以下步驟: 從上述奈米碳管陣列中選定一定寬度的多個奈米碳管束片 段;以及 以一定速度沿基本垂直於奈米碳管陣列生長方向拉伸該多 個奈米碳管束片段,以形成一連續的奈米碳管結構。 3. 如申請專利範圍第1項所述的線纜的製造方法,其中,所 述奈米碳管結構包括一奈米碳管薄膜或一奈米碳管線。 4. 如申請專利範圍第3項所述的線纜的製造方法,其中,當 所述奈米碳管結構爲一奈米碳管薄膜時,可進一步包括對 所述奈米碳管結構進行機械處理的步驟。 5. 如申請專利範圍第4項所述的線纜的製造方法,其中,所 述機械處理的步驟包括:對所述奈米碳管結構進行扭轉, 097108086 表單編號Α0101 第22頁/共35頁 1003154725-0 134.5794 100年05月03日修正替换頁 形成奈米碳管長線結構;或切割所述奈米碳管結構,形成 奈米碳管長線結構。 6 .如申請專利範圍第5項所述的線纜的製造方法,其中,所 述對奈米碳管結構進行扭轉,形成奈米碳管長線結構的步 驟具體包括以下步驟:將黏附於上述奈米碳管結構一端的 拉伸工具固定於一旋轉電機上;扭轉該奈米碳管結構,從 而形成一奈米碳管長線結構。 7 .如申請專利範圍第5項所述的線纜的製造方法,其中,所 述對奈米碳管結構進行扭轉,形成奈米碳管長線結構的步 驟具體包括以下步驟:提供一個尾部可以黏住奈米碳管結 構的紡紗軸,將該紡紗軸的尾部與奈米碳管結構結合;使 該紡紗軸以旋轉的方式扭轉該奈米碳管結構,形成一奈米 碳管長線結構。 8 .如申請專利範圍第6項或第7項所述的線纜的製造方法,其 中,所述扭轉該奈米碳管結構的過程包括沿奈米碳管結構 的拉伸方向以螺旋方式扭轉該奈米碳管結構的步驟。 9.如申請專利範圍第5項所述的線纜的製造方法,其中,所 述切割奈米碳管結構,形成奈米碳管長線結構的步驟包括 以下步驟:沿奈米碳管結構的拉伸方向切割所述奈米碳管 結構,形成奈米碳管長線結構。 10 .如申請專利範圍第1項所述的線纜的製造方法,其中,所 述形成至少一層導電材料層的方法包括真空蒸鍍法或濺射 法。 11 .如申請專利範圍第10項所述的線纜的製造方法,其中,所 述形成至少一層導電材料層的方法為真空蒸鍍法,該方法 包括以下步驟: 097108086 表單編號A0101 第23頁/共35頁 1003154725-0 1345794 100年05月ϋ3日梭正替換頁 提供一真空容器,該真空容器具有一沈積區間,該沈積區 間底部和頂部分別放置至少一個蒸發源,該至少一個蒸發 源按形成至少一層導電材料層的先後順序依次沿奈米碳管 結構的拉伸方向設置,且每個蒸發源均可通過一個加熱裝 置加熱; 將奈米碳管結構置於上下蒸發源中間並與其間隔一定距離 ,其中奈米碳管結構正對上下蒸發源設置;以及 依次加熱所述蒸發源,使其熔融後蒸發或升華形成導電材 料蒸汽,該導電材料蒸汽遇到冷的奈米碳管結構後,於奈 米碳管結構上下表面凝聚,形成導電材料層。 12 .如申請專利範圍第11項所述的線纜的製造方法,其中,所 述形成至少一層導電材料層的過程包括形成一層導電層於 所述奈米碳管結構的外表面的步驟。 13 .如申請專利範圍第12項所述的線纜的製造方法,其中,所 述導電層的材料爲金、銀、銅或其合金,該導電層的厚度 爲1~20奈米。 14 .如申請專利範圍第12項所述的線纜的製造方法,其中,在 所述形成導電層的步驟之前進一步包括以下步驟:形成一 層潤濕層於所述奈米碳管結構的外表面;以及形成一層過 渡層於所述潤濕層的外表面,上述導電層形成在所述過渡 層的外表面。 15 .如申請專利範圍第12項所述的線纜的製造方法,其中,在 所述形成導電層的步驟之後進一步包括形成一層抗氧化層 於所述導電層的外表面。 16 .如申請專利範圍第12項所述的線纜的製造方法,其中,在 所述形成至少一層導電材料層於所述奈米碳管結構表面之 097108086 表單編號Α0101 第24頁/共35頁 1003154725-0 1.345794 100年05月03日核正替換頁 後,可進一步包括在所述奈米碳管結構外表面形成强化層 的步驟。 17.如申請專利範圍第16項所述的線纜的製造方法,其中,所 述形成强化層的步驟具體包括以下步驟:將形成有至少一 層導電材料層的奈米碳管結構通過一裝有聚合物溶液的裝 置,使聚合物溶液浸潤整個奈米碳管結構,該聚合物溶液 通過分子間作用力黏附於所述至少一層導電材料層的外表 面;以及凝固聚合物,形成一强化層。 18 .如申請專利範圍第1項所述的線纜的製造方法,其中,所 述絕緣介質層的材料選用聚四氟乙烯、聚乙烯、聚丙烯、 聚苯乙烯、泡沫聚乙烯組合物或奈米黏土一高分子複合材 料。 19 .如申請專利範圍第1項所述的線纜的製造方法,其中,所 述屏蔽層的材料爲金屬薄膜、奈米碳管薄膜或奈米碳管複 合薄膜等帶狀膜結構或奈米碳管長線、奈米碳管複合長線 結構或金屬線。 20 .如申請專利範圍第19項所述的線纜的製造方法,其中,所 述形成屏蔽層的過程進一步包括將金屬薄膜、奈米碳管薄 膜或奈米碳管複合薄膜通過黏結劑黏結或直接纏繞在所述 絕緣介質層的外表面的步驟。 21 .如申請專利範圍第19項所述的線纜的製造方法,其中,所 述形成屏蔽層的過程進一步包括將所述奈米碳管長線、奈 米碳管複合長線結構或金屬線直接或編織成網狀纏繞在所 述絕緣介質層的外表面的步驟。 097108086 表單編號A0101 第25頁/共35頁 1003154725-01345794 __. On May 3, 100, according to the positive replacement π. VII. Patent application scope: 1. A method for manufacturing a cable, comprising the steps of: providing a carbon nanotube array; using a stretching tool from the nanometer Pulling a carbon nanotube array to obtain a carbon nanotube structure, the carbon nanotube structure comprising a plurality of carbon nanotube bundles connected end to end and oriented; forming at least one layer of conductive material on the surface of the carbon nanotube structure, Forming a carbon nanotube long-line structure; forming at least one insulating dielectric layer to form at least one shielding layer on an outer surface of the insulating dielectric layer on an outer surface of the nanocarbon long-length structure; and forming an outer sheath The outer surface of the shielding layer. 2. The method of manufacturing a cable according to claim 1, wherein the preparation process of the carbon nanotube structure comprises the steps of: selecting a plurality of nanometers of a certain width from the array of carbon nanotubes; a carbon tube bundle segment; and stretching the plurality of carbon nanotube bundle segments at a rate substantially perpendicular to the growth direction of the nanotube array to form a continuous carbon nanotube structure. 3. The method of manufacturing a cable according to claim 1, wherein the carbon nanotube structure comprises a carbon nanotube film or a nano carbon line. 4. The method of manufacturing a cable according to claim 3, wherein when the carbon nanotube structure is a carbon nanotube film, the method further comprises mechanically mechanically modifying the carbon nanotube structure. The steps of processing. 5. The method of manufacturing a cable according to claim 4, wherein the step of mechanically processing comprises: twisting the carbon nanotube structure, 097108086 Form No. 1010101 Page 22 of 35 1003154725-0 134.5794 On May 3, 100, the replacement page was modified to form a long-line structure of the carbon nanotubes; or the carbon nanotube structure was cut to form a long-line structure of the carbon nanotubes. 6. The method of manufacturing a cable according to claim 5, wherein the step of twisting the carbon nanotube structure to form a long-line structure of the carbon nanotube comprises the following steps: adhering to the naphthalene The drawing tool at one end of the carbon tube structure is fixed on a rotating electric machine; the carbon nanotube structure is twisted to form a long carbon nanotube structure. The method for manufacturing a cable according to claim 5, wherein the step of twisting the carbon nanotube structure to form a long-length structure of the carbon nanotube comprises the following steps: providing a tail to be adhered a spinning shaft of a carbon nanotube structure, the tail of the spinning shaft is combined with a carbon nanotube structure; the spinning shaft is twisted to twist the carbon nanotube structure to form a long carbon nanotube line structure. 8. The method of manufacturing a cable according to claim 6 or claim 7, wherein the process of twisting the carbon nanotube structure comprises twisting in a spiral manner along a stretching direction of the carbon nanotube structure. The steps of the carbon nanotube structure. 9. The method of manufacturing a cable according to claim 5, wherein the step of cutting the carbon nanotube structure to form a long-line structure of the carbon nanotube comprises the following steps: pulling along the structure of the carbon nanotube The carbon nanotube structure is cut in the extending direction to form a long-line structure of the carbon nanotube. The method of manufacturing a cable according to claim 1, wherein the method of forming the at least one layer of the conductive material comprises a vacuum evaporation method or a sputtering method. The method of manufacturing a cable according to claim 10, wherein the method of forming at least one layer of a conductive material is a vacuum evaporation method, the method comprising the steps of: 097108086 Form No. A0101 Page 23 / A total of 35 pages 1003154725-0 1345794 The 50th of May, 100th, the 3rd page of the shuttle is provided with a vacuum container having a deposition interval, at least one evaporation source is placed at the bottom and the top of the deposition interval, and the at least one evaporation source is formed. The order of at least one layer of conductive material is sequentially arranged along the stretching direction of the carbon nanotube structure, and each evaporation source can be heated by a heating device; the carbon nanotube structure is placed in the middle of the upper and lower evaporation sources and spaced apart therefrom a distance, wherein the carbon nanotube structure is disposed opposite to the upper and lower evaporation sources; and sequentially heating the evaporation source to melt, evaporate or sublimate to form a conductive material vapor, and the conductive material vapor encounters a cold carbon nanotube structure The upper and lower surfaces of the carbon nanotube structure are agglomerated to form a conductive material layer. The method of manufacturing a cable according to claim 11, wherein the forming of the at least one layer of the conductive material comprises the step of forming a conductive layer on the outer surface of the carbon nanotube structure. The method of manufacturing a cable according to claim 12, wherein the conductive layer is made of gold, silver, copper or an alloy thereof, and the conductive layer has a thickness of 1 to 20 nm. 14. The method of manufacturing a cable according to claim 12, wherein the step of forming the conductive layer further comprises the step of forming a wetting layer on the outer surface of the carbon nanotube structure. And forming a transition layer on an outer surface of the wetting layer, the conductive layer being formed on an outer surface of the transition layer. The method of manufacturing a cable according to claim 12, wherein after the step of forming the conductive layer, further comprising forming an oxidation resistant layer on an outer surface of the conductive layer. The method of manufacturing a cable according to claim 12, wherein the forming at least one layer of a conductive material on the surface of the carbon nanotube structure is 097108086. Form No. 1010101 Page 24 of 35 1003154725-0 1.345794 After the nuclear replacement page is issued on May 03, 100, a step of forming a strengthening layer on the outer surface of the carbon nanotube structure may be further included. The method for manufacturing a cable according to claim 16, wherein the step of forming the reinforcing layer comprises the steps of: passing a carbon nanotube structure formed with at least one layer of a conductive material through a The apparatus of the polymer solution causes the polymer solution to wet the entire carbon nanotube structure, the polymer solution is adhered to the outer surface of the at least one layer of the conductive material by intermolecular force; and the polymer is solidified to form a strengthening layer. The method for manufacturing a cable according to claim 1, wherein the material of the insulating dielectric layer is selected from the group consisting of polytetrafluoroethylene, polyethylene, polypropylene, polystyrene, foamed polyethylene composition or nai. Rice clay a polymer composite. The method for manufacturing a cable according to claim 1, wherein the material of the shielding layer is a strip film structure such as a metal film, a carbon nanotube film or a carbon nanotube composite film or a nano film. Carbon tube long line, nano carbon tube composite long line structure or metal line. The method for manufacturing a cable according to claim 19, wherein the process of forming the shielding layer further comprises bonding the metal film, the carbon nanotube film or the carbon nanotube composite film through a bonding agent or The step of directly winding on the outer surface of the insulating dielectric layer. The method for manufacturing a cable according to claim 19, wherein the process of forming the shielding layer further comprises directly connecting the carbon nanotube long wire, the carbon nanotube composite long wire structure or the metal wire or The step of woven into a mesh shape on the outer surface of the insulating dielectric layer. 097108086 Form No. A0101 Page 25 of 35 1003154725-0
TW97108086A 2008-03-07 2008-03-07 Method for making cable TWI345794B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97108086A TWI345794B (en) 2008-03-07 2008-03-07 Method for making cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97108086A TWI345794B (en) 2008-03-07 2008-03-07 Method for making cable

Publications (2)

Publication Number Publication Date
TW200939253A TW200939253A (en) 2009-09-16
TWI345794B true TWI345794B (en) 2011-07-21

Family

ID=44867652

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97108086A TWI345794B (en) 2008-03-07 2008-03-07 Method for making cable

Country Status (1)

Country Link
TW (1) TWI345794B (en)

Also Published As

Publication number Publication date
TW200939253A (en) 2009-09-16

Similar Documents

Publication Publication Date Title
TWI345792B (en) Cable
CN105244071B (en) cable
TWI345793B (en) Cable
CN101556839B (en) Cable
CN101499337B (en) Cable production method
CN101499328B (en) Stranded wire
CN101499338B (en) Stranded wire production method
EP2451635B1 (en) Hybrid conductors and method of making same
KR102003577B1 (en) Carbon nanotube conductor with enhanced electrical conductivity
TWI380949B (en) Carbon nanotube yarn strucutre
KR101189858B1 (en) Cable and methods for making the same
CN102110501B (en) Preparation method of wire cable and cable core thereof
TWI345794B (en) Method for making cable
TW201222563A (en) Cable
TWI335036B (en) Electro magnetic shielding cable
TWI329324B (en) Electro magnetic shielding cable