TWI331132B - Method of fabricating thermal interface material - Google Patents

Method of fabricating thermal interface material Download PDF

Info

Publication number
TWI331132B
TWI331132B TW94122304A TW94122304A TWI331132B TW I331132 B TWI331132 B TW I331132B TW 94122304 A TW94122304 A TW 94122304A TW 94122304 A TW94122304 A TW 94122304A TW I331132 B TWI331132 B TW I331132B
Authority
TW
Taiwan
Prior art keywords
thermal interface
interface material
carbon nanotubes
manufacturing
material according
Prior art date
Application number
TW94122304A
Other languages
Chinese (zh)
Other versions
TW200702297A (en
Inventor
Bor Yuan Hsiao
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW94122304A priority Critical patent/TWI331132B/en
Publication of TW200702297A publication Critical patent/TW200702297A/en
Application granted granted Critical
Publication of TWI331132B publication Critical patent/TWI331132B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

WU32 __ 099年06月21日梭正替換頁 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明關於一種熱介面材料,特別涉及一種具有奈米碳 管之熱介面材料製造方法。 【先前技術】 [0002] 隨著積體電路之密集化及微型化程度越來越高,電子元 件變得更小並且以更高速度運行,使其對散熱之要求越 來越高。因此,為儘快將熱量從熱源散發出去,於電子WU32 __June 21, 2001, the replacement page of the shuttle 6. Description of the invention: [Technical field of the invention] [0001] The present invention relates to a thermal interface material, and more particularly to a method for manufacturing a thermal interface material having a carbon nanotube. [Prior Art] [0002] With the increasing density and miniaturization of integrated circuits, electronic components have become smaller and operate at higher speeds, making them more demanding for heat dissipation. Therefore, in order to dissipate heat from the heat source as soon as possible, in the electron

[0003] 094122304 元件表面安裝一散熱裝置成為業内普遍之做法,其利用 散熱裝置材料之高熱傳導性能,將熱量迅速向外部散發 ,然,散熱裝置與熱源表面之接觸經常存在一定間隙, 使散熱裝置與熱源表面未能緊密接觸,成為散熱裝置散 熱之-大缺陷。針對散熱裝置與熱源表面之接觸問題, 業内應對辦法-般係於電子Μ與散熱裝置之間添加__ 熱介面材料,利賴介面材料之可及高導熱性能 使電子元件産生之熱量迅速傳到散熱裝置,然後再通過 散熱裝置把熱量散發出去。通常’熱介面材料主要由熱 塑性樹脂與高導狀填充粉_以,㈣絲體之熱 傳性質對熱介面材料之性能至關重要。 先前技術揭示一種低溫軟化,装 备純I . 通過於導熱膠材中添加 氧化銘、氧化鋅、氮化鋁,氮化堋 米枯土等導熱劑,以增加導、金屬粉或奈 熱膠材組合物在電子元件產生熱量^致果,,該導 電子元件表面所發生熱變形並不高溫時,其與 熱膠與電子元件之接觸面積降低 k將直接導致導 而降低其散熱效果 表單編號A0101 第3頁/共16頁 0993215295-0 1331132 _ 099年06月21日核正替無頁 。而且,這些材料存在一個普遍缺陷,即整個材料之導 熱係數比較小,典型值在1W/mK,如此則不適應當前半導 體集成化程度之提高而對散熱之需求。 [0004] 目前,許多熱介面材料採用奈米碳管作為增強其導熱性 能之填充材料,因為奈米碳管在轴向具有極高導熱性能 ,根據理論計算,一個單壁奈米碳管在室溫下軸向具有 高達6600W/mK之導熱係數,而徑向幾乎為零。一些實驗 亦表明單個離散之多壁奈米碳管在室溫下具有約 3000W/mK之導熱係數。因而,如僅僅將奈米碳管雜亂無 | 序地填充於導熱基體中,勢必會造成許多奈米碳管之交 疊,這種奈米碳管交疊導致奈米碳管導熱通道之交疊, 並引起整體熱阻提升。故,若能以奈米碳管作為填充材 料,利用其奈米碳管在軸向之極高導熱性能,則熱介面 材料之導熱性能可大幅度提昇。 [0005] 先前技術提供一種製造奈米碳管陣列熱介面材料方法, 其包括以下步驟:先提供一種單分散混合液,其包含液 態聚合物材料及複數單壁奈米碳管;供一電場於該混合 < 液以調整該奈米碳管方向與電楊方向一致;固化該混合 液,形成熱介面材料。惟,該熱介面材料製造方法相當 於將製成之單壁奈米碳管通過電場進行重組,此法會由 於電場強度及方向分佈不均勻,造成複數單壁奈米碳管 在熱界面結構局部密集而局部稀疏之不均勻分佈,同樣 會增加熱傳介面熱阻,使該熱介面材料導熱效率下降。 [0006] 有鑒於此,提供一種能保持生長時複數奈米碳管之排列 順序,並能預設熱介面材料厚度之熱介面材料製造方法 094122304 表單編號 A0101 第 4 頁/共 16 頁 0993215295-0 099年06月21日核正替換頁 1331132 實為必要。 【發明内容】 [0007] 以下,將以實施例說明一種熱介面材料製造方法。 [0008] 為實現上述内容,提供一種熱介面材料製造方法,其包 括以下步驟:提供兩相對且間隔預定距離之基底;於所 述兩基底之相對兩表面之一生長複數奈米碳管;於所述 複數奈米碳管間注入液態基體,形成一複合材料;固化 所述複合材料,得到一熱介面材料。 • [0009] 其中,所述兩基底中至少一基底形成有一通孔;利用所 述通孔,複數奈米碳管間注入液態基體可採用以下方法 :在所述基體相變溫度以上,將液態基體由所述通孔注 入複數奈米碳管間。 [0010] 所述複數奈米碳管間注入液態基體還可採用以下步驟: 在所述基體相變溫度以上,將複數奈米碳管浸入液態基 體材料中,使液態基體材料滲透進入所述複數奈米碳管 間。 [0011] 優選地,所述基體中添加有硬化劑。 [0012] 所述固化步驟包括熱壓及硬化處理。 [0013] 所述兩基底採用一載具固定,並通過載具調整兩基底之 間距。 [0014] 所述基底選自矽晶圓或金屬基底。 [0015] 所述生長複數奈米碳管採用以下步驟:將欲生長奈米碳 管之基底上沈積一催化劑層;通入碳源氣,於所述催化 094122304 表單編號A0101 第5頁/共16頁 0993215295-0 1331132 _ 099年06月21日修正替族頁 劑層上化學氣相沈積法生長複數奈米碳管。 [0016] 所述催化劑包括鐵、鈷、鎳或其合金,並可採用離子鍍 膜法、射頻磁控濺鍍、真空蒸發法或化學氣相沈積法沈 積在欲生長奈米碳管之該基底上。 _ [0017] 所述複數奈米碳管沈積生長過程中,通過控制反應時間 ,使複數奈米碳管成長至接觸或靠近於與其相對之基底 〇 [0018] 所述沈積生長之複數奈米碳管包括奈米碳管陣列。 [0019] 所述複數奈米碳管相互基本平行且垂直於兩基底之兩相 對表面。 [0020] 所述基體選自高分子材料或相變材料,其中,所述高分 子材料選自下列材料:矽橡膠、聚酯、聚氣乙烯、聚乙 烯醇、聚乙烯、聚丙烯、環氧樹脂、聚碳酸酯、聚甲醛 或聚縮醛;所述相變材料選自下列材,料:石蠟、聚烯烴 、低分子量聚酯、低分子量環氧樹脂或低分子量丙烯酸 [0021] 所述預定距離範圍為1微米〜100微米。 [0022] 另,所述複合材料固化後,進一步包括移除兩基底之步 驟。 [0023] 所述兩基底移除後,進一步對露出之基體表面進行蝕刻 處理,使所述複數奈米碳管末端伸出基體表面。 [0024] 與先前技術相比,本實施例提供之熱介面材料製造方法 利用兩相對且間隔預定距離之基底,然後於其間生長複 094122304 表單編號A0101 第6頁/共16頁 0993215295-0 1331.132 099年06月21日梭正替换百 數奈米碳管,可控制奈米碳管之生長高度,同時可預設 熱介面材料之厚度;並直接於複數奈米碳管生長後即時 原位注入基體材料,既能促進複數奈米碳管與基體材料 相互均勻混合效果,又不影響複數奈米碳管之原先排列 順序。另,由該方法所製得之熱介面材料應用時可利用 奈米碳管之極高導熱性,於導熱介面形成一定向導熱通 道,極大地減小導熱介面間熱阻,提高熱介面材料熱傳 效率。 【實施方式】[0003] 094122304 component surface mounting a heat sink device has become a common practice in the industry, which utilizes the high thermal conductivity of the heat sink material to rapidly dissipate heat to the outside. However, there is often a gap between the heat sink and the heat source surface to allow heat dissipation. The device does not come into close contact with the surface of the heat source, which becomes a heat dissipation of the heat sink. In response to the problem of contact between the heat sink and the surface of the heat source, the industry's solution is to add __ thermal interface material between the electronic raft and the heat sink. The high thermal conductivity of the ray interface material enables the heat generated by the electronic component to pass quickly. Go to the heat sink and then dissipate the heat through the heat sink. Generally, the thermal interface material is mainly composed of a thermoplastic resin and a highly conductive filler powder, and (b) the heat transfer property of the filament is critical to the performance of the thermal interface material. The prior art discloses a low temperature softening, and the equipment is pure I. By adding a thermal conductive agent such as oxidized inscription, zinc oxide, aluminum nitride, strontium nitride, or the like to the thermal conductive adhesive to increase the combination of the conductive, metallic powder or nano thermal adhesive. The object generates heat in the electronic component, and the thermal deformation of the surface of the conductive sub-element is not high temperature, and the contact area between the thermal adhesive and the electronic component is reduced, which directly leads to the conduction and reduces the heat dissipation effect. Form No. A0101 3 pages / a total of 16 pages 0993215295-0 1331132 _ June 21, 099 nuclear replacement for no pages. Moreover, there is a general defect in these materials that the thermal conductivity of the entire material is relatively small, typically 1 W/mK, which is not suitable for the heat dissipation of the current semiconductor integration. [0004] At present, many thermal interface materials use carbon nanotubes as a filling material to enhance their thermal conductivity, because the carbon nanotubes have extremely high thermal conductivity in the axial direction. According to theoretical calculation, a single-walled carbon nanotube is in the chamber. The lower temperature axis has a thermal conductivity of up to 6600 W/mK, while the radial direction is almost zero. Some experiments have also shown that a single discrete multi-walled carbon nanotube has a thermal conductivity of about 3000 W/mK at room temperature. Therefore, if only the carbon nanotubes are randomly filled in the heat-conducting matrix, it will inevitably cause the overlap of many carbon nanotubes, which overlap the heat conduction channels of the carbon nanotubes. And cause an increase in overall thermal resistance. Therefore, if the carbon nanotubes can be used as the filler material and the carbon nanotubes have extremely high thermal conductivity in the axial direction, the thermal conductivity of the thermal interface material can be greatly improved. [0005] The prior art provides a method for fabricating a carbon nanotube array thermal interface material, comprising the steps of: first providing a monodisperse mixed liquid comprising a liquid polymer material and a plurality of single-walled carbon nanotubes; The mixing < liquid adjusts the direction of the carbon nanotubes to coincide with the direction of the electric yang; the mixture is solidified to form a thermal interface material. However, the method for manufacturing the thermal interface material is equivalent to recombining the fabricated single-walled carbon nanotubes by an electric field. This method causes a plurality of single-walled carbon nanotubes to be partially in the thermal interface structure due to uneven electric field strength and direction distribution. The dense and partially sparse uneven distribution also increases the heat transfer interface thermal resistance, which reduces the thermal conductivity of the thermal interface material. [0006] In view of the above, there is provided a method for manufacturing a thermal interface material capable of maintaining a sequence of a plurality of carbon nanotubes during growth and capable of presetting a thickness of a thermal interface material 094122304 Form No. A0101 Page 4 of 16 0993215295-0 On June 21, 099, the nuclear replacement page 1331132 was necessary. SUMMARY OF THE INVENTION [0007] Hereinafter, a method of manufacturing a thermal interface material will be described by way of examples. [0008] In order to achieve the above, a method for manufacturing a thermal interface material includes the steps of: providing two substrates that are opposite and spaced apart by a predetermined distance; and growing a plurality of carbon nanotubes on one of opposite surfaces of the two substrates; The liquid matrix is injected between the plurality of carbon nanotubes to form a composite material; the composite material is cured to obtain a thermal interface material. [0009] wherein at least one of the two substrates is formed with a through hole; and the through hole is used to inject a liquid matrix between the plurality of carbon nanotubes by adopting the following method: at a temperature above the phase transition temperature of the substrate, the liquid is The substrate is injected between the plurality of carbon nanotubes through the through holes. [0010] The injection of the liquid matrix between the plurality of carbon nanotubes may further comprise the steps of: immersing the plurality of carbon nanotubes in the liquid matrix material above the phase transition temperature of the substrate, so that the liquid matrix material penetrates into the plurality Carbon nanotubes. [0011] Preferably, a hardener is added to the matrix. [0012] The curing step includes hot pressing and hardening treatment. [0013] The two substrates are fixed by a carrier, and the distance between the two substrates is adjusted by the carrier. [0014] The substrate is selected from a germanium wafer or a metal substrate. [0015] The growing plurality of carbon nanotubes adopts the following steps: depositing a catalyst layer on a substrate on which a carbon nanotube is to be grown; and introducing a carbon source gas in the catalyst 094122304 Form No. A0101 Page 5 of 16 Page 0993215295-0 1331132 _ On June 21, 099, a plurality of carbon nanotubes were grown by chemical vapor deposition on a substitute page layer. [0016] The catalyst comprises iron, cobalt, nickel or an alloy thereof, and may be deposited on the substrate on which the carbon nanotubes are to be grown by ion plating, radio frequency magnetron sputtering, vacuum evaporation or chemical vapor deposition. . [0017] during the deposition of the plurality of carbon nanotubes, by controlling the reaction time, the plurality of carbon nanotubes are grown to contact or close to the substrate 〇[0018] The tube includes an array of carbon nanotubes. [0019] The plurality of carbon nanotubes are substantially parallel to each other and perpendicular to the opposite surfaces of the two substrates. [0020] The substrate is selected from a polymer material or a phase change material, wherein the polymer material is selected from the group consisting of ruthenium rubber, polyester, polyethylene, polyvinyl alcohol, polyethylene, polypropylene, epoxy. a resin, polycarbonate, polyoxymethylene or polyacetal; the phase change material is selected from the group consisting of paraffin wax, polyolefin, low molecular weight polyester, low molecular weight epoxy resin or low molecular weight acrylic acid [0021] The distance ranges from 1 micron to 100 micron. [0022] In addition, after the composite is cured, the step of removing the two substrates is further included. [0023] After the two substrates are removed, the exposed substrate surface is further etched to extend the ends of the plurality of carbon nanotubes beyond the surface of the substrate. [0024] Compared with the prior art, the thermal interface material manufacturing method provided by the present embodiment utilizes two opposite and spaced apart substrates, and then grows between them 094122304 Form No. A0101 Page 6 / 16 Page 0993215295-0 1331.132 099 On June 21st, the shuttle is replacing the hundred carbon nanotubes, which can control the growth height of the carbon nanotubes, and can preset the thickness of the thermal interface material; and inject the matrix directly in situ immediately after the growth of the plurality of carbon nanotubes. The material can promote the uniform mixing effect of the plurality of carbon nanotubes and the matrix material without affecting the original arrangement order of the plurality of carbon nanotubes. In addition, the thermal interface material prepared by the method can utilize the extremely high thermal conductivity of the carbon nanotubes to form a certain guiding heat passage on the heat conducting interface, thereby greatly reducing the thermal resistance between the thermal interface and improving the heat of the thermal interface material. Pass efficiency. [Embodiment]

[0025] 下面結合附圖對本技術方案作進一步詳細說明。 [0026] 請參閱第一圖,為本技術方案提供之熱介面材料製造方 法流程圖。該製造方法包括步驟:提供兩相對且間隔預 定距離之基底;於所述兩基底之一相對表面上生長複數 奈米碳管;於所述複數奈米碳管間注入液態基體,形成 一複合材料;固化所述複合材料,得到一熱介面材料。 另,該製造方法進一步包括移除兩基底之步驟;在移除 兩基底後,暴露出基體之表面,即可進一步對基體表面 進行蝕刻處理,使複數奈米碳管末端伸出基體表面。兩 基底之間距範圍為1微米〜100微米,其可對應於熱介面材 料厚度,因而具體間距大小可視熱介面材料之實際應用 厚度而預設之。 [0027] 其中,兩基底可選自以下材料:矽、玻璃或金屬,所述 玻璃可採用石英玻璃,所述金屬可採用Ta、Ni、Ag、Fe 、Cu或其合金;兩基底可採用相同或相異之材料。 [0028] 094122304 基體可選自一高分子材料或相變材料。所述高分子材料 表單編號A0101 第7頁/共16頁 0993215295-0 1331132 099年06月21日修正替故頁 包括矽橡膠、聚酯、聚氣乙烯、聚乙烯醇、聚乙烯、聚 丙烯、環氧樹脂、聚碳酸酯、聚甲醛或聚縮醛等,所述 相變材料如石蠟、聚烯烴、低分子量聚酯、低分子量環 氧樹脂或低分子量丙烯酸等。 [0029] 請參閱第二圖,為本技術方案實施例提供之熱介面材料 製造方法流程示意圖,本實施例之熱介面材料製造方法 採用於第一基底11表面上沈積生長複數奈米碳管,此時 ,熱介面材料製造方法具體包括以下步驟: [0030] (1)提供第一基底11以及於其相對且間隔預定距離之第 二基底11’ ,所述兩基底11、11’分別具有一相對之第 一表面110及第二表面110’ 。具體地,先提供第一基底 11及第二基底11’ ,然後可利用一載具(圖未示)將兩基 底11、11’固定,並使兩基底11、11’相對間隔一定距 離,則兩基底11、11’各具有一相對之第一表面110與第 二表面110’ 。優選地,第一基底11或第二基底11’具有[0025] The technical solution is further described in detail below with reference to the accompanying drawings. Please refer to the first figure for a flow chart of a method for manufacturing a thermal interface material provided by the present technical solution. The manufacturing method includes the steps of: providing two substrates which are opposite and spaced apart by a predetermined distance; growing a plurality of carbon nanotubes on opposite surfaces of the two substrates; and injecting a liquid matrix between the plurality of carbon nanotubes to form a composite material Curing the composite material to obtain a thermal interface material. In addition, the manufacturing method further includes the step of removing the two substrates; after the two substrates are removed, the surface of the substrate is exposed, and the surface of the substrate is further etched to extend the ends of the plurality of carbon nanotubes beyond the surface of the substrate. The distance between the two substrates ranges from 1 micrometer to 100 micrometers, which may correspond to the thickness of the thermal interface material, and thus the specific spacing may be preset according to the practical application thickness of the thermal interface material. [0027] wherein, the two substrates may be selected from the following materials: germanium, glass or metal, the glass may be quartz glass, the metal may be Ta, Ni, Ag, Fe, Cu or alloys thereof; Or different materials. [0028] 094122304 The matrix may be selected from a polymeric material or a phase change material. The polymer material form No. A0101 Page 7 / 16 pages 0993215295-0 1331132 The revised page of June 21, 2008 includes 矽 rubber, polyester, polyethylene, polyvinyl alcohol, polyethylene, polypropylene, Epoxy resin, polycarbonate, polyoxymethylene or polyacetal, etc., such as paraffin wax, polyolefin, low molecular weight polyester, low molecular weight epoxy resin or low molecular weight acrylic acid. [0029] Please refer to the second figure, which is a schematic flowchart of a method for manufacturing a thermal interface material according to an embodiment of the present invention. The method for manufacturing a thermal interface material of the present embodiment is to deposit a plurality of carbon nanotubes on the surface of the first substrate 11. At this time, the method of manufacturing the thermal interface material specifically includes the following steps: [0030] (1) providing a first substrate 11 and a second substrate 11' opposite thereto and spaced apart by a predetermined distance, the two substrates 11, 11' respectively having one The first surface 110 and the second surface 110' are opposite to each other. Specifically, the first substrate 11 and the second substrate 11' are first provided, and then the two substrates 11, 11' can be fixed by a carrier (not shown), and the two substrates 11, 11' are relatively spaced apart. The two substrates 11, 11' each have an opposite first surface 110 and second surface 110'. Preferably, the first substrate 11 or the second substrate 11' has

I 一通孔112,用於往後面步驟中生長之複數奈米碳管間注 入液態基體,本實施例使第二基底11’具有通孔112,兩 基底11、11’分別為一矽晶圓。 [0031] (2)於所述第一基底11之第一表面110上採用化學氣相 沈積法生長複數奈米碳管12。本步驟可採用以下步驟: 於第一基底11上沈積一催化劑層;通入碳源氣,於所述 催化劑層上化學氣相沈積法生長複數奈米碳管12。上述 反應過程中,可通過控制反應時間,控制奈米碳管之生 長長度,直至複數奈米碳管12接觸或接近於第二表面110 ’。關於奈米碳管生長方法詳細步驟請參考台灣公開之 094122304 表單編號 A0101 第 8 頁/共 16 頁 0993215295-0 099年06月21日梭正替換頁 第200407260號專利申請。 其中,所述複數奈米碳管12優選為奈米碳管陣列,即複 數奈米碳管12相互基本平行並垂直於兩基底11、11’之 第一表面110及第二表面110’ ,而且奈米碳管陣列中每 個奈米碳管兩末端分別接觸或接近於第一表面110及第二 表面110’ ,從而使得後面製得之熱介面材料熱傳遞時可 通過該等奈米碳管12於熱介面間形成一定向導熱通道。 (3) 於所述複數奈米碳管12間注入液態基體13,形成一 複合材料。本實施例於第二基底11’具有一通孔112,因 而可直接由該通孔112將液態基體13注入複數奈米碳管12 間。然後靜置一段時間,待液態基體13完全滲透注滿複 數奈米碳管12間之間隙後,即停止注入液態基體13,即 形成包括液態基體13及複數奈米碳管12€複合材料。優 選地,可使複數奈米碳管12之末端未覆蓋液態基體13, 從而使得複數奈米碳管12之末端伸出基體13表面。另, 亦可在基體13相變溫度以上,將所述複數奈米碳管12浸 入基體13溶液或基體13熔融液中,使基體13溶液或基體 13熔融液滲透至複數奈米碳管間,同樣可形成包括液態 基體13及複數奈米碳管12之複合材料,此法可適於基底 未設通孔之情況。 (4) 固化所述複合材料,得到一熱介面材料10。此步驟 可通過加熱硬化或紫外固化等方法實現,本實施例採用 加熱硬化方法,包括下列步驟:先將經步驟(3)獲得之複 合材料及基底11、11’放入一熱壓機中在175°C溫度及 50Kg/cm2壓力之條件下熱壓5分鐘,再置入真空烘箱中於 表單編號A0101 第9頁/共16頁 0993215295-0 1331132 099年06月21日梭正替我頁 180°C溫度下硬化6小時,最後將兩基底11、11’移除後 ,即得到具有複數奈米碳管之熱介面材料10。 [0035] 另外,優選地,經過步驟(4)後,還可進一步對基體13表 面進行蝕刻處理,可採用乾式蝕刻法、濕式蝕刻法或反 應離子姓刻法(Reactive Ion Etching,RIE),本實 施例採用反應離子蝕刻法蝕刻基體13兩表面,使複數奈 米碳管12兩末端分別伸出基體13兩表面。 [0036] 本實施例提供之熱介面材料製造方法利用兩相對且間隔 預定距離之基底11、11’ ,然後於其間生長複數奈米碳 管12,可控制複數奈米碳管12之生長高度,同時可預設 熱介面材料10之厚度;並直接於複數奈米碳管12生長後 即時原位注入基體13,既能促進複數奈米碳管12與基體 13相互均勻混合效果,又不影響複數奈米碳管12之原先 排列順序。另,由該方法所製得之熱介面材料應用時可 利用奈米碳管之極高導熱性,於導熱介面形成一定向導 熱通道,極大地減小導熱介面間熱阻,因而,本實施例 提供之熱介面材料製造方法可獲得介面熱阻小、導熱效 率高之熱介面材料。 [0037] 綜上所述,本技術方案確已符合發明專利之要件,茲依 法提出專利申請。另,以上所述僅為本技術方案之較佳 實施例,自不能以此限制本案之申請專利範圍。舉凡熟 悉本案技藝之人士,在援依本案發明精神所作等效修飾 或變化,皆應包含在以下申請專利範圍内。 【圖式簡單說明】 [0038] 第一圖係本技術方案之熱介面材料製造方法流程圖。 094122304 表單編號 A0101 第 10 頁/共 16 頁 0993215295-0 1331132I - a through hole 112 for injecting a liquid substrate between a plurality of carbon nanotubes grown in a later step. In this embodiment, the second substrate 11' has a through hole 112, and the two substrates 11, 11' are respectively a single wafer. [0031] (2) The plurality of carbon nanotubes 12 are grown by chemical vapor deposition on the first surface 110 of the first substrate 11. In this step, the following steps may be employed: depositing a catalyst layer on the first substrate 11; introducing a carbon source gas, and growing a plurality of carbon nanotubes 12 by chemical vapor deposition on the catalyst layer. During the above reaction, the growth length of the carbon nanotubes can be controlled by controlling the reaction time until the plurality of carbon nanotubes 12 are in contact with or close to the second surface 110'. For detailed steps on the growth method of the carbon nanotubes, please refer to Taiwan's published 094122304 Form No. A0101 Page 8 of 16 0993215295-0 June 21, 2009, the shuttle is replaced by the patent application No. 200407260. Wherein, the plurality of carbon nanotubes 12 are preferably carbon nanotube arrays, that is, the plurality of carbon nanotubes 12 are substantially parallel to each other and perpendicular to the first surface 110 and the second surface 110' of the two substrates 11, 11', and The two ends of each of the carbon nanotubes in the array of carbon nanotubes are respectively in contact with or close to the first surface 110 and the second surface 110', so that the heat exchange material prepared later can pass through the carbon nanotubes during heat transfer. 12 forms a certain guiding hot channel between the thermal interfaces. (3) A liquid matrix 13 is injected between the plurality of carbon nanotubes 12 to form a composite material. In this embodiment, the second substrate 11' has a through hole 112, so that the liquid substrate 13 can be directly injected into the plurality of carbon nanotubes 12 from the through hole 112. Then, it is allowed to stand for a period of time, and after the liquid substrate 13 is completely infiltrated into the gap between the plurality of carbon nanotubes 12, the liquid substrate 13 is stopped, i.e., a composite material comprising a liquid matrix 13 and a plurality of carbon nanotubes 12 is formed. Preferably, the ends of the plurality of carbon nanotubes 12 are not covered with the liquid substrate 13, so that the ends of the plurality of carbon nanotubes 12 extend beyond the surface of the substrate 13. Alternatively, the plurality of carbon nanotubes 12 may be immersed in the matrix 13 solution or the matrix 13 melt at a temperature higher than the phase transition temperature of the substrate 13, so that the matrix 13 solution or the matrix 13 melt penetrates between the plurality of carbon nanotubes. It is also possible to form a composite material comprising a liquid matrix 13 and a plurality of carbon nanotubes 12, which is suitable for the case where the substrate is not provided with a through hole. (4) Curing the composite material to obtain a thermal interface material 10. This step can be achieved by a method such as heat hardening or ultraviolet curing. This embodiment adopts a heat hardening method, and includes the following steps: first, the composite material obtained by the step (3) and the substrate 11, 11' are placed in a hot press. Pressurize at 175 ° C temperature and 50Kg / cm 2 pressure for 5 minutes, then put into a vacuum oven in the form number A0101 page 9 / a total of 16 pages 0993215295-0 1331132 099 June 21 shuttle for me page 180 After hardening for 6 hours at a temperature of ° C, and finally removing the two substrates 11, 11', a thermal interface material 10 having a plurality of carbon nanotubes was obtained. [0035] In addition, preferably, after the step (4), the surface of the substrate 13 may be further etched, and dry etching, wet etching or Reactive Ion Etching (RIE) may be used. In this embodiment, both surfaces of the substrate 13 are etched by reactive ion etching, so that both ends of the plurality of carbon nanotubes 12 respectively protrude from both surfaces of the substrate 13. [0036] The thermal interface material manufacturing method provided in this embodiment utilizes two opposite and spaced apart substrates 11, 11', and then grows a plurality of carbon nanotubes 12 therebetween to control the growth height of the plurality of carbon nanotubes 12, At the same time, the thickness of the thermal interface material 10 can be preset; and the substrate 13 can be injected in situ immediately after the growth of the plurality of carbon nanotubes 12, which can promote the uniform mixing effect of the plurality of carbon nanotubes 12 and the substrate 13 without affecting the plural The original order of the carbon nanotubes 12 is arranged. In addition, the thermal interface material prepared by the method can utilize the extremely high thermal conductivity of the carbon nanotubes to form a certain guiding heat passage on the heat conducting interface, thereby greatly reducing the thermal resistance between the heat conducting interfaces, and thus, the embodiment The thermal interface material manufacturing method provided can obtain a thermal interface material with small interface thermal resistance and high thermal conductivity. [0037] In summary, the technical solution has indeed met the requirements of the invention patent, and the patent application is filed according to the law. In addition, the above description is only a preferred embodiment of the technical solution, and the scope of the patent application of the present invention cannot be limited thereby. Anyone who is familiar with the skill of this case shall make the equivalent modifications or changes in the spirit of the invention in the context of the invention. BRIEF DESCRIPTION OF THE DRAWINGS [0038] The first figure is a flow chart of a method for manufacturing a thermal interface material of the present technical solution. 094122304 Form Number A0101 Page 10 of 16 0993215295-0 1331132

099年06月21日修正替换WCorrected replacement W on June 21, 099

[0039] 第二圖係本技術方案實施例之熱介面材料製造方法流程 示意圖。 【主要元件符號說明】 [0040] 熱介面材料 :10 [0041] 第二基底: 11, [0042] 奈米碳管: 12 [0043] 第二表面: 110, [0044] 第一基底: 11 [0045] 基體:13 [0046] 第一表面: 110 [0047] 通孔:112 094122304 表單編號A0101 第11頁/共16頁 0993215295-0[0039] The second figure is a schematic flow chart of a method for manufacturing a thermal interface material according to an embodiment of the present technical solution. [Main component symbol description] [0040] Thermal interface material: 10 [0041] Second substrate: 11, [0042] Nano carbon tube: 12 [0043] Second surface: 110, [0044] First substrate: 11 [ 0045] Base: 13 [0046] First surface: 110 [0047] Through hole: 112 094122304 Form number A0101 Page 11 / Total 16 pages 0993215295-0

Claims (1)

1331132 _ 099年06月21日修正替無頁· 七、申請專利範圍: 1 . 一種熱介面材料製造方法,其包括以下步驟: 提供兩相對且間隔預定距離之基底; 於所述兩基底中之相對兩表面之一上生長複數奈米碳管; · 於所述複數奈米碳管間注入液態基體,形成一複合材料; - 固化所述複合材料,得到一熱介面材料。 2 .如申請專利範圍第1項所述之熱介面材料製造方法,其中 ,至少一基底形成有一通孔。 3 .如申請專利範圍第2項所述之熱介面材料製造方法,其中 | ,所述複數奈米碳管間注入液態基體採用以下方法:在所 述基體相變溫度以上,將液態基體由所述通孔注入複數奈 · 米碳管間。 ‘ 4 .如申請專利範圍第1項所述之熱介面材料製造方法,其中 ,所述複數奈米碳管間注入液態基體採用下列方法:在基 體相變溫度以上,將複數奈米碳管浸入液態基體材料中, 使液態基體材料滲透進入所述複數奈米碳管間。 5 .如申請專利範圍第1項所述之熱介面材料製造方法,其中 φ ,所述基體中添加有硬化劑。 6 .如申請專利範圍第5項所述之熱介面材料製造方法,其中 ,所述固化步驟包括熱壓及硬化處理。 7.如申請專利範圍第1項所述之熱介面材料製造方法,其中 ,所述兩基底採用一載具固定,並通過所述載具調整兩基 底之間距。 8 .如申請專利範圍第1項所述之熱介面材料製造方法,其中 ,所述基底選自石夕晶圓或金屬基底。 094122304 表單编號A0101 第12頁/共16頁 0993215295-0 1331,132 099年06月21日核正替换頁 9 .如申請專利範圍第1項所述之熱介面材料製造方法,其中 ,所述生長複數奈米碳管採用以下步驟:將欲生長奈米碳 管之基底上沈積一催化劑層;通入碳源氣,於所述催化劑 層上化學氣相沈積法生長複數奈米碳管。 10.如申請專利範圍第9項所述之熱介面材料製造方法,其中 ,所述催化劑包括鐵、鈷、錄或其合金。 11 .如申請專利範圍第10項所述之熱介面材料製造方法,其中 ^ ,所述催化劑採用離子鍍膜法、射頻磁控濺鍍、真空蒸發 法或化學氣相沈積法沈積在欲生長奈米碳管之該基底上。 12 .如申請專利範圍第1項所述之熱介面材料製造方法,其中 ,所述複數奈米碳管生長過程中,通過控制反應時間,使 複數奈米碳管成長接觸或靠近於與其相對之基底。 13 .如申請專利範圍第1項所述之熱介面材料製造方法,其中 ,所述生長之複數奈米碳管包括奈米碳管陣列。 14 .如申請專利範圍第1項所述之熱介面材料製造方法,其中 ,所述複數奈米碳管相互基本平行且垂直於兩基底之兩相 對表面。 15 .如申請專利範圍第1至14任一項所述之熱介面材料製造方 法,其中,所述基體選自高分子材料或相變材料。 16 .如申請專利範圍第15項所述之熱介面材料製造方法,其中 ,所述高分子材料選自下列材料:矽橡膠、聚酯、聚氣乙 烯、聚乙烯醇、聚乙烯、聚丙烯、環氧樹脂、聚碳酸酯、 聚曱醛或聚缩醛。 17 .如申請專利範圍第15項所述之熱介面材料製造方法,其中 ,所述相變材料選自下列材料:石蠟、聚烯烴、低分子量 聚酯、低分子量環氧樹脂或低分子量丙稀酸。 094122304 表單編號A0101 第13頁/共16頁 0993215295-0 1331132 099年06月21日慘正替#頁 18.如申請專利範圍第1項所述之熱介面材料製造方法,其中 ,所述預定距離範圍為1微米〜100微米。 19 .如申請專利範圍第1項所述之熱介面材料製造方法,其中 ,所述複合材料固化後,進一步包括移除兩基底之步驟。 20 .如申請專利範圍第19項所述之熱介面材料製造方法,其中 ,所述兩基底移除後,進一步對暴露出之基體表面進行蝕 刻處理,使所述複數奈米碳管末端伸出基體表面。 094122304 表單編號A0101 第14頁/共16頁1331132 _ June 21, 099, replaces the page without a page. 7. Patent application scope: 1. A method for manufacturing a thermal interface material, comprising the steps of: providing two substrates which are opposite and spaced apart by a predetermined distance; A plurality of carbon nanotubes are grown on one of the two surfaces; a liquid matrix is injected between the plurality of carbon nanotubes to form a composite material; and the composite material is cured to obtain a thermal interface material. 2. The method of manufacturing a thermal interface material according to claim 1, wherein at least one of the substrates is formed with a through hole. 3. The method of manufacturing a thermal interface material according to claim 2, wherein, the injecting the liquid matrix between the plurality of carbon nanotubes adopts the following method: at a temperature above the phase transition temperature of the substrate, the liquid matrix is The through holes are injected between the plurality of carbon nanotubes. 4. The method of manufacturing a thermal interface material according to claim 1, wherein the injecting the liquid matrix between the plurality of carbon nanotubes comprises the following method: immersing the plurality of carbon nanotubes above the phase transition temperature of the substrate In the liquid matrix material, the liquid matrix material is infiltrated into the plurality of carbon nanotubes. 5. The method of manufacturing a thermal interface material according to claim 1, wherein φ, the matrix is provided with a hardener. 6. The method of manufacturing a thermal interface material according to claim 5, wherein the curing step comprises hot pressing and hardening treatment. 7. The method of manufacturing a thermal interface material according to claim 1, wherein the two substrates are fixed by a carrier and the distance between the two substrates is adjusted by the carrier. 8. The method of manufacturing a thermal interface material according to claim 1, wherein the substrate is selected from a stone wafer or a metal substrate. The method of manufacturing the thermal interface material according to claim 1, wherein the method of manufacturing the thermal interface material according to claim 1, wherein the method of manufacturing the thermal interface material according to claim 1 is as described in claim 1 The growth of the plurality of carbon nanotubes comprises the steps of: depositing a catalyst layer on the substrate on which the carbon nanotubes are to be grown; introducing a carbon source gas, and growing a plurality of carbon nanotubes by chemical vapor deposition on the catalyst layer. 10. The method of producing a thermal interface material according to claim 9, wherein the catalyst comprises iron, cobalt, or an alloy thereof. 11. The method of manufacturing a thermal interface material according to claim 10, wherein the catalyst is deposited by ion plating, radio frequency magnetron sputtering, vacuum evaporation or chemical vapor deposition on the nanometer to be grown. The carbon tube is on the substrate. 12. The method of manufacturing a thermal interface material according to claim 1, wherein during the growth of the plurality of carbon nanotubes, the plurality of carbon nanotubes are grown in contact or close to each other by controlling the reaction time. Substrate. The method of manufacturing a thermal interface material according to claim 1, wherein the growing plurality of carbon nanotubes comprise a carbon nanotube array. The method of manufacturing a thermal interface material according to claim 1, wherein the plurality of carbon nanotubes are substantially parallel to each other and perpendicular to two opposite surfaces of the two substrates. The method of producing a thermal interface material according to any one of claims 1 to 14, wherein the substrate is selected from a polymer material or a phase change material. The method of manufacturing a thermal interface material according to claim 15, wherein the polymer material is selected from the group consisting of ruthenium rubber, polyester, polyethylene, polyvinyl alcohol, polyethylene, polypropylene, Epoxy resin, polycarbonate, polyacetal or polyacetal. The method of manufacturing a thermal interface material according to claim 15, wherein the phase change material is selected from the group consisting of paraffin wax, polyolefin, low molecular weight polyester, low molecular weight epoxy resin or low molecular weight propylene acid. 094122304 Form No. A0101 Page 13 of 16 0993215295-0 1331132 The method of manufacturing the thermal interface material according to claim 1, wherein the predetermined distance is The range is from 1 micron to 100 micron. 19. The method of manufacturing a thermal interface material according to claim 1, wherein the curing of the composite further comprises the step of removing the two substrates. The method of manufacturing a thermal interface material according to claim 19, wherein after the two substrates are removed, the exposed substrate surface is further etched to extend the ends of the plurality of carbon nanotubes The surface of the substrate. 094122304 Form No. A0101 Page 14 of 16 0993215295-00993215295-0
TW94122304A 2005-07-01 2005-07-01 Method of fabricating thermal interface material TWI331132B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94122304A TWI331132B (en) 2005-07-01 2005-07-01 Method of fabricating thermal interface material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94122304A TWI331132B (en) 2005-07-01 2005-07-01 Method of fabricating thermal interface material

Publications (2)

Publication Number Publication Date
TW200702297A TW200702297A (en) 2007-01-16
TWI331132B true TWI331132B (en) 2010-10-01

Family

ID=45074626

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94122304A TWI331132B (en) 2005-07-01 2005-07-01 Method of fabricating thermal interface material

Country Status (1)

Country Link
TW (1) TWI331132B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101275209A (en) 2007-03-30 2008-10-01 清华大学 Thermal interfacial material and method for preparing same
TWI417404B (en) * 2007-04-10 2013-12-01 Hon Hai Prec Ind Co Ltd Thermal interface material and method for making same
US7947331B2 (en) * 2008-04-28 2011-05-24 Tsinghua University Method for making thermal interface material
TWI382083B (en) * 2009-03-06 2013-01-11 Hon Hai Prec Ind Co Ltd Method for manufacturing thermal interface material

Also Published As

Publication number Publication date
TW200702297A (en) 2007-01-16

Similar Documents

Publication Publication Date Title
US7396477B2 (en) Method for manufacturing a thermal interface material
US7438844B2 (en) Thermal interface material and method for manufacturing same
US7674410B2 (en) Method for manufacturing a thermal interface material
CN101372614B (en) Carbon nano-tube array composite heat-conducting fin and manufacturing method thereof
TWI299358B (en) Thermal interface material and method for making same
CN1891780B (en) Thermal interface material, and its preparing method
CN100591613C (en) Carbon nano-tube composite material and preparation method thereof
US7150801B2 (en) Process for producing cold field-emission cathodes
TWI253467B (en) Thermal interface material and method for making same
JP5102328B2 (en) Manufacturing method of heat conduction member
US7608293B2 (en) Field emission device and method for manufacturing same
US20080128122A1 (en) Method for making a thermal interface material
CN108504096B (en) Preparation method of carbon nano tube/polymer composite material
CN101671442A (en) Preparation method of carbon nano tube array composite material
TWI339465B (en) Electromagnetic shielding layer and method for making the same
CN101353785B (en) Preparation of high-density carbon nano-tube array composite material
TWI331132B (en) Method of fabricating thermal interface material
JP6202104B2 (en) Sheet-like structure, electronic device using the same, method for producing sheet-like structure, and method for producing electronic device
WO2014181930A1 (en) Anisotropic liquid crystal composition for thermo-electric conduction and method for preparing heat-dissipating and electromagnetic wave-shielding matrix by using same
US20090061208A1 (en) Carbon nanotube composite preform and method for making the same
CN110002427B (en) High-thermal-conductivity carbon film and preparation method thereof
US7867620B1 (en) Composite plate comprising carbon nanotube bundles with high thermal conductivity and method for making the same
US8808857B1 (en) Carbon nanotube array interface material and methods
TWI378071B (en) Thermal interface material and method for making same
TWI362429B (en) Method of making high-density carbon nanotube array composite material

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees