TWI300801B - Thermal interface material and methode for making same - Google Patents

Thermal interface material and methode for making same Download PDF

Info

Publication number
TWI300801B
TWI300801B TW93110217A TW93110217A TWI300801B TW I300801 B TWI300801 B TW I300801B TW 93110217 A TW93110217 A TW 93110217A TW 93110217 A TW93110217 A TW 93110217A TW I300801 B TWI300801 B TW I300801B
Authority
TW
Taiwan
Prior art keywords
thermal interface
polymer
interface material
carbon
array
Prior art date
Application number
TW93110217A
Other languages
Chinese (zh)
Other versions
TW200533736A (en
Inventor
Hua Huang
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW93110217A priority Critical patent/TWI300801B/en
Publication of TW200533736A publication Critical patent/TW200533736A/en
Application granted granted Critical
Publication of TWI300801B publication Critical patent/TWI300801B/en

Links

Description

1300801 九、發明說明: * · 【發明所屬之技術領域】 本發明係種熱介面材料及其製造方法 碳管導熱之熱介面材料及其製造方法。 凡扣_用奈未 【先前技術】 、近年來,隨著半導體器件集成工藝之快速發展,半導體 成化程度齡越⑧。惟,ϋ倾賴得錄越小 招 來越高,已成為-個越來越重要之_。為献該越 水冷輔助散熱及熱纽鮮各種餘方式被歧運帛 得一二 熱效果,但因散熱器與半導體集成器件之接觸介面不平整, 接觸面積:^丨2% ’未有—個理想之_介面,從根本 導 件向散熱器傳遞熱量之效果,故,於散熱器 件^ 具較高熱傳遞係數之介面材料以增加介面之接難度實^之^曰加一 =熱介,料係將導熱絲較高之雕分散於銀膠基體以形成 複a材料,如石墨、氮化硼、氧化石夕、氧化紹、銀或与金 2料之雜性能取決於銀職體之性^其中峨旨、相變^料為 二體之複合材賴其使㈣為賴,能熟源表面制,故阻 而_與橡膠為健之複合材料接糖__大。該睛料 - w遍缺陷係整個材將熱係數較小,典型值為lw/mK,這已經越來 越^適應半?體集成化程度之提高對散熱之需求,而增加銀膠基體 ,導‘、、、顆粒含量使得顆粒與顆粒之間儘量相互接觸以增加整個複合材 料之導…、係數如某些特殊之介面材料因此可達到4_8W/mK,惟,銀 膠,體之導熱顆粒含量增加至一定程度時,會使銀膠基體失去原本之 性能,如油脂會變硬,從而浸满效果變差,橡膠亦會變得較硬,從而 失去應有之柔勒性,這都將使熱介面材料性能大大降低。 近來有-種熱介面材料’係將定向排列之導熱係數約為ιι〇〇 / κ之%或整體用聚合物固定,從*於熱介面材料之垂直 方向形成定向排列之,纖維陣列,以使每一碳纖維均可形成一導熱通 道該方式可有效提尚熱介面材料之導熱係數,達到5請w/mK。惟, 1300801 該類材料一個缺點係厚度必須大於40微米,而整個熱介面材料之導熱 係數與薄膜之厚度成反比,故當其熱阻降低至一定程度,進一步降低 之空間相當有限。 為改善熱介面材料之性能,提高其熱傳導係數,各種材料被廣泛 試驗。Savas Berber等人於2000年於美國物理學會上發表一篇名為 ’’Unusually High Thermal Co.ctivity of Carb〇n 出,”Z”形(10,10)奈米碳管於室溫下導熱係數可達_〇 ,具體 内容可參閱文獻Phys· Rev· Lett(2000),ν〇1· 84, R 4613。研究如何將^米 碳管用於熱介面材料並充分發揮其優良之導熱性成為提高熱介^料 性能之一個重要方向。 Τ 美國專利第6,407,922號揭示-種利用奈米碳管導埶之 lli係將奈米碳管摻到銀膠基體結成—體,通過注模方式製_介 面材料。該熱介面材料之兩導熱表面之面積不等,孰; 一面之_大_熱源_—面之面積,這樣利散 惟’該方法製得之熱介面材料有不足之處,其―, 面材料厚絲大,_齡珊狀導_數較高, 體積之增加’與H件向小方向發展之趨勢 枓 材料缺乏柔勃性;其二,奈米碳管於基體材料中未有^排^^介面 ,料確保’因而熱傳導之均勻性 : 麵^熱之錄未充分利用,影響熱介面材料之熱傳!^’。不米碳 好,導熱均勻之熱介面材料實t必要'熱係數大,接觸熱阻小,_生 【内容】 為解決先前技術之問題,本發明之目的於於 ίϋϋΓ倾供此軸細_之製妨*。 為貫見本务月之目的’本發 ΠΤ數奈米物於該高分子ί料括:―高 有一第一表面及相對於第—表面之第二表面,該奈形成 I3〇〇8〇i i該高分子材射均勻分佈且沿熱介面材料之第-表面向第二表面延 =^本發狀另-目的,本發賴供—種齡崎料之製 η二匕括以下步驟:提供-奈米碳管陣列;將奈 ,而分子體系;使液相高分子體系轉化為固相,生 =尚分子複合材料;於奈米碳管陣列駄高度,並沿 合材料,形成熱介面材料。 边同刀子複 與習知技術之熱介面材料相較,本發明基於奈米 熱,,面材料具以下優點:其一,本發明製得之教介車之 管陣列具有均勻、超順、⑽排列之優點 科因不米碳 管均於垂直熱介面材料方向形成導熱 管陣列ΐ生長古ϋ,利用本方法製得之熱介面材料,不受奈米碳 料’-方面可提高熱介面材料之導熱效果,介 性,並降低熱介面材料之體積及重量“二二 碳管皆兩端開口,於熱介面材料内從一表至中=米 可直接與熱源以及散熱裝置接觸,而且,二二表面’ 源及散紐軸_、,冑觀舆熱 【實施方式】 ' 下面將結合關及實蘭縣發鴨行詳細說明。 請參閱第-圖及第二圖,首先於—基 薄助,該催化劑薄膜12之形成方法可選 ^ 劑 孔石夕,其表面有—層多孔^孔之本實施例採用多 、之制翻鐵’也可義其他材料,域鱗、銘、錄及其 8 1300801 合金材料等。 氧化催化劑薄膜12 ’形成催化劑顆粒(圖未示),再將分佈有催化劑 顆粒之基底11放入反應爐中(圖未示),於700〜1000攝氏度下,通入碳 源氣’生長出奈米碳管陣列,其中碳源氣可為乙炔、乙烯等氣體,奈 米碳官陣列之高度可通過控制生長時間來控制。有關奈米碳管陣列22 生長之方法已較為成熟,具體可參閱文獻Science,1999,v〇l. 283,p. 512-414 與文獻 j.Am.Chem.Soc,2001,ν〇1· 123, ρ· 11502-11503,此外美 國專利第6,350,488號也公開了一種生長大面積奈米碳管陣列之方法。 請參閱第三圖,將高分子溶液32裝進一容器3〇中,將已生長好 之定向排列之奈米碳管陣列22連同基底u 一起浸到該高分子溶液32 中,直至尚分子溶液32完全浸潤奈米碳管陣列22,高分子溶液兇完 全次潤之時間同奈米碳管陣列22之高度、密度以及整個奈米碳管陣列 =之面積相關。為使高分子溶液32能完全浸潤奈米碳管陣列22,該 冋为子溶液32之枯度最好小於2〇〇cPs。本發明高分子溶液32之高分 子材料選自樹脂、石夕橡膠或橡膠。本發明高分子溶液32為液相高分子 體^,該高分子溶液32射麟鋪高分子或聚合物單齡液替代, 本貫施例採用之高分子溶液32為矽橡膠高分子溶液。 睛參閱第四圖與第五目,將被高分子溶液Μ完全浸潤之奈米碳管 絲連同基底U 一起從容器3〇中取出,使該液相高分子溶液32 ,化為固相,形成高分子材料34。然後將固化後之高分子材料%從基 上揭下,於奈米碳管陣列a預定高度,用切片機(圖 該高 1子材料34沿垂直於奈米碳管陣列22之軸㈣向進行切割,形成献 科40 ’其中,於切割前還可進一步將固化後之高分子材料34從 土底1上揭下再進行蝴,形成熱介面材料40。 32並面轉敏製造綠巾也可以細b該高分子溶液 同其广Γ轉為固相高分子材料34,再將固化後之高分子材料34連 二紐容^ 3G巾M,織直接用切域於奈米碳管陣列 車向方向_該高分子材料%形雜介面材料4〇。 本發明液相高分子溶_化制相高分子㈣之方法需依據所選 1300801 ,之高分子材料。本實施例矽橡膠高分子溶液之固化由於選用之矽橡 膠高分子溶液為兩組份矽橡膠高分子混合溶液,故,當將生長有奈米 奴官22之基底11浸入該兩組份石夕橡膠高分子混合溶液後,於室溫固化 24小時或於6〇c固化2小時,其自身之反應即可使該石夕橡膠高分子溶 液轉化為固相。本實施例中之兩組份矽橡膠高分子溶液可以由市場上 、本發明用切片機切割高分子材料34形成熱介面材料4〇之具體方 法,:首先根據奈米碳管陣%22之生長高度將分佈有奈米碳管陣列2 之高分子材料34沿垂直於奈雜22軸向方向進行切割,除去 奈米碳管陣歹ij 22上方多餘之高分子材料34,同時使奈米碳管之尖端開 口;然後按照熱介面材料40之所需厚度沿同一方向進行切割,即得到 所需之熱介面材料40,該熱介面材料4〇中之奈米碳管兩端開口,於應 用時能熱源或散熱裝置直接接觸,避免因為過量之高分子材“ 於不米碳管與熱源或散熱器之間影響熱介面材料4 40 ..coo « , =^為20微米。通過控制切片機進行切割的位置,熱介面材料4〇 旱又可根據需求由切片時直接控制,方法簡單,且容易控制。 ^ ’為使切割後得到之熱介面材料表面更加平整,可將已經固化 =回二子材料34浸人舰態石蟻材料中,經過冷卻固化後再進行切 i之表編度”後制之熱介面材 料ίΓt熱介爾料4G,奈米碳管_ 22經高分子㈣34固结 垂米碳管陣列22於高分子材料34中具有分佈均勾、 科’於垂直薄膜方向形成導熱通道,卿成之熱介面材 枓40具有導熱健冑、導辆自之_。 崎 22之St;法:Ϊ口=料40中,基本保持原來奈米碳管陣列 束’保持原有定向排列之狀態,並且此熱介* !3〇〇8〇1 .凊參閲第六圖,本發明製得之奈米碳管陣列孰介 佳之導熱性能,可廣泛應用於包括中央處理器(CPU)、功率雷1具有極 頻圖形陣列晶片_)、射頻晶片於内之電子L牛i中2體、視 4〇置於電子器件8〇與散熱器6 一丨面材料 :之間i良熱接觸,熱介面材料40之第一 未標示)接觸,與第-表面42相對應之熱介面材料40之第Γ =散熱器60之底面(未標示)接觸。由於本發 熱介面材料4〇可將其厚度控制於微米級 官陣列 即使於電子器件之表面參差不齊之情況下,而, 提供電子器件80與散熱器60之間一良好之熱接^之=面ft能 明熱介面材料40中之奈米碳管皆兩端開口,沿熱介面材料;發 表面42向第而44千古以从rn 、 材料40之弟一 • D。弟—表垂直延伸,因而,奈米碳管可與電子器件80乃 政,,,、益60直接接觸,而且,熱介面材料4〇之表面平 8〇及散熱H 60接職阻小,使得奈米碳管之 得2 = 度之利用,熱介面材料4〇具有導熱係數高且導熱限 综^所述,本發明符合發明專利之要件,爱依法提出專利申請。 二以上所述者縣本發歡雛實施例’舉凡縣本紐 内案發明精神所作之等效修飾或變化,皆應包含於^下之申請 【圖式簡單說明】 第一圖係本發明中形成有催化劑薄膜之基底之示意圖。 第-圖係第-圖所示基底上生長有定向排列之奈米碳管陣列之示 思圖。 、、包之係第IK*之奈米碳管陣列連同基底於高分子溶液中浸 第四圖係本發财浸有高分子溶液之奈米碳管_之固化之示意 圖。 〜 第五圖係本發明中含奈米碳管陣列之熱介面材料示意圖。 第六圖係本發明熱介面材料之應用示意圖。 〜 11 1300801 【主要元件符號說明】 基底 11 催化劑層 12 奈米碳管陣列 22 容器 30 高分子溶液 32 高分子材料 34 熱介面材料 40 第一表面 42 第二表面 44 散熱器 60 電子器件 801300801 IX. Description of the Invention: * · Technical Field of the Invention The present invention relates to a thermal interface material and a method of manufacturing the same, a carbon tube heat conductive thermal interface material, and a method of manufacturing the same.凡扣_用奈未 [Previous technology] In recent years, with the rapid development of semiconductor device integration technology, the degree of semiconductor formation is 8 years old. However, the higher the levy, the higher the levy, the more important it has become. In order to provide the water-cooling auxiliary heat dissipation and the heat fresh-keeping method, the contact surface of the heat sink and the semiconductor integrated device is not flat, and the contact area is: ^丨2% 'unexistent' The ideal interface is the effect of transferring heat from the basic guide to the heat sink. Therefore, the heat transfer element has a higher heat transfer coefficient interface material to increase the interface connection difficulty ^ ^ plus one = heat medium, material system Dispersing the higher heat-conducting wire into the silver-based matrix to form a complex a material, such as graphite, boron nitride, oxidized stone, oxidized, silver, or with gold, depends on the properties of the silver body. The purpose of the composition, the phase change material is the two-component composite material, which relies on (4) as the Lai, can be cooked on the surface of the surface, so it is _ _ with the rubber for the health of the composite material __ large. The focus material - w-pass defect system has a small thermal coefficient, typically lw/mK, which has become more and more suitable for the increase in the degree of integration of the semi-body, and the need for heat dissipation, and the addition of the silver-gel matrix. ',,, the particle content makes the particles and particles as close to each other as possible to increase the whole composite material..., the coefficient, such as some special interface materials, can reach 4_8W/mK, but the silver rubber, the body's thermal conductivity particles increase To a certain extent, the silver matrix will lose its original properties, such as the oil will become hard, so the impregnation effect will be worse, the rubber will become harder, and the softness will be lost, which will make the heat The performance of the interface material is greatly reduced. Recently, a kind of thermal interface material has a thermal conductivity of about ιι〇〇 / κ% or is fixed entirely by a polymer, and an array of fibers arranged in an orientation from the vertical direction of the thermal interface material, so that Each carbon fiber can form a heat conduction channel, which can effectively improve the thermal conductivity of the thermal interface material, reaching 5 w/mK. However, 1300801 has a disadvantage that the thickness of the material must be greater than 40 microns, and the thermal conductivity of the entire thermal interface material is inversely proportional to the thickness of the film. Therefore, when the thermal resistance is reduced to a certain extent, the space for further reduction is rather limited. In order to improve the performance of the thermal interface material and increase its heat transfer coefficient, various materials have been extensively tested. Savas Berber et al. published an article entitled 'Unusually High Thermal Co.ctivity of Carb〇n' at the American Physical Society in 2000, "Z-shaped (10,10) carbon nanotubes at room temperature thermal conductivity Up to _ 〇, the specific content can be found in the literature Phys· Rev· Lett (2000), ν〇1· 84, R 4613. It is an important direction to study how to use the carbon nanotubes for thermal interface materials and give full play to their excellent thermal conductivity. U.S. Patent No. 6,407,922 discloses the use of a carbon nanotube-guided lli system to incorporate a carbon nanotube into a silver-based matrix to form a body material by injection molding. The area of the two heat-conducting surfaces of the thermal interface material is not equal, 孰; the area of the _large_heat source_-the surface of the surface, so that the thermal interface material obtained by the method has disadvantages, and the surface material The thickness of the wire is large, the number of _ age is higher, the volume increases, and the trend of the development of the H piece to the small direction 枓 the material lacks flexibility; secondly, the carbon nanotubes are not arranged in the matrix material. ^ Interface, material to ensure 'the heat transfer uniformity: surface heat record is not fully utilized, affecting the heat transfer of the thermal interface material! ^’. The carbon interface is good, and the thermal interface material with uniform heat conduction is necessary. 'The thermal coefficient is large, and the contact thermal resistance is small. _[Content] In order to solve the problems of the prior art, the object of the present invention is to provide the fineness of the shaft. System*. For the purpose of the first month of the month, the present invention has a number of nano-materials in the polymer: the high surface has a first surface and the second surface relative to the first surface, and the nano-form forms I3〇〇8〇ii The polymer material is uniformly distributed and extends along the first surface of the thermal interface material to the second surface = the present hair shape is another purpose, and the present invention is based on the following steps: providing - The carbon nanotube array; the Nai, and the molecular system; the liquid phase polymer system is converted into a solid phase, the raw = still molecular composite material; the carbon nanotube array is at a height, and the material is formed along the composite material to form a thermal interface material. Compared with the hot interface material of the prior art, the present invention is based on nano heat, and the surface material has the following advantages: First, the tube array of the teachings prepared by the invention has uniformity and super smoothness, (10) Advantages of Arrangement Coin is not formed in the direction of the vertical thermal interface material to form a heat transfer tube array, and the thermal interface material obtained by the method is not affected by the nano-carbon material. Thermal conductivity, medium, and reduce the volume and weight of the thermal interface material. "The two carbon nanotubes are open at both ends. From the surface to the medium = meter in the thermal interface material, it can directly contact the heat source and the heat sink. Moreover, 22 Surface 'source and loose shaft _,, 胄 舆 【 heat [implementation] ' The following will be combined with the Guanlan County duck line detailed description. Please refer to the first and second pictures, first in the base The method for forming the catalyst film 12 can be selected as a porous agent, and the surface of the catalyst film 12 has a porous layer. The embodiment of the present invention uses a plurality of layers of turning iron, and can also be used for other materials, domain scales, Ming, and 8 1300801 alloy material, etc. Oxidation catalyst The film 12' forms catalyst particles (not shown), and then the substrate 11 on which the catalyst particles are distributed is placed in a reaction furnace (not shown), and a carbon source gas is introduced to grow nanocarbon at 700 to 1000 degrees Celsius. The tube array, wherein the carbon source gas can be a gas such as acetylene or ethylene, and the height of the carbon carbon array can be controlled by controlling the growth time. The method for growing the carbon nanotube array 22 is relatively mature, and can be found in the literature Science. 1999, v.l. 283, p. 512-414 and the document j. Am. Chem. Soc, 2001, ν 〇 1 · 123, ρ 11502-11503, and U.S. Patent No. 6,350, 488 also discloses a large area for growth. The method of the carbon nanotube array. Referring to the third figure, the polymer solution 32 is placed in a container 3, and the well-aligned aligned carbon nanotube array 22 is immersed together with the substrate u to the polymer. In the solution 32, until the molecular solution 32 completely infiltrate the carbon nanotube array 22, the time at which the polymer solution is completely wetted is related to the height and density of the carbon nanotube array 22 and the area of the entire carbon nanotube array. In order to make the polymer solution 32 fully dip The carbon nanotube array 22 has a dryness of less than 2 〇〇 cPs. The polymer material of the polymer solution 32 of the present invention is selected from the group consisting of a resin, a stone rubber or a rubber. For the liquid phase polymer, the polymer solution 32 is replaced by a polymer or polymer single-age liquid, and the polymer solution 32 used in the present embodiment is a ruthenium rubber polymer solution. In the fifth mesh, the carbon nanotube wire which is completely infiltrated by the polymer solution is taken out from the container 3 together with the substrate U, and the liquid phase polymer solution 32 is turned into a solid phase to form a polymer material 34. Then, After curing, the % of the polymer material is removed from the substrate, and at a predetermined height of the carbon nanotube array a, the slicer is used to cut along the axis (four) perpendicular to the array of carbon nanotube tubes 22. Forming the 40', the cured polymer material 34 can be further removed from the soil base 1 before being cut and then butterflyed to form the thermal interface material 40. 32 face-to-face transfiguration to make green towel can also be fine b. The polymer solution is transferred to the solid phase polymer material 34 with the broad-grained solution, and then the cured polymer material 34 is connected with the two-capacity ^ 3G towel M. The tangential field is in the direction of the carbon nanotube array vehicle _ the polymer material % shaped hetero interface material 4 〇. The method for preparing a liquid phase polymer-soluble phase-phase polymer (4) according to the present invention is based on a polymer material selected from 1300801. In the present embodiment, the rubber polymer solution is solidified because the selected rubber polymer solution is a two-component rubber polymer mixed solution, so when the base 11 on which the nano slave 22 is grown is immersed in the two sets of stones After the rubber polymer is mixed, it is cured at room temperature for 24 hours or at 6 〇c for 2 hours, and its own reaction can convert the Shishi rubber polymer solution into a solid phase. The two-component ruthenium rubber polymer solution in this embodiment can be formed by the method of cutting the polymer material 34 into a thermal interface material by using a slicer in the present invention, and firstly, according to the growth of the carbon nanotube array%22. The height of the polymer material 34 having the carbon nanotube array 2 is cut perpendicularly to the axial direction of the nano 22 to remove the excess polymer material 34 above the carbon nanotube array 歹 ij 22 while making the carbon nanotubes The tip opening; then cutting in the same direction according to the desired thickness of the thermal interface material 40, thereby obtaining the desired thermal interface material 40, wherein the carbon nanotubes in the thermal interface material are open at both ends, and can be applied at the time of application. The heat source or the heat sink is in direct contact to avoid the excessive heat of the high-mole material “between the carbon nanotubes and the heat source or the heat sink. 4 40 ..coo « , =^ is 20 μm. Cutting by controlled slicer The position, the thermal interface material 4 drought can be directly controlled by the slice according to the demand, the method is simple and easy to control. ^ 'In order to make the surface of the hot interface material obtained after cutting more flat, it can be cured = The second sub-material 34 is immersed in the ship-like stone ant material, and after cooling and solidifying, the surface is edited. The post-made thermal interface material Γ 热 hot element 4G, carbon nanotube _ 22 by polymer (four) 34 consolidation The carbon nanotube array 22 has a distribution in the polymer material 34, and a thermal conduction channel is formed in the direction of the vertical film. The thermal interface material 40 of the kiln has a heat conduction and a self-contained conduction. Saki 22's St; method: Ϊ口 = material 40, basically keep the original carbon nanotube array bundle 'maintaining the original orientation state, and this heat medium *!3〇〇8〇1.凊See the sixth The carbon nanotube array prepared by the invention has good thermal conductivity and can be widely applied to an electronic L cow including a central processing unit (CPU), a power lightning 1 chip with an extreme frequency pattern array, and a radio frequency chip. The second body of the i body is placed between the electronic device 8 and the heat sink 6 and the surface of the heat sink 6 is in contact with the first surface 42 of the thermal interface material 40. The third layer of the thermal interface material 40 = the bottom surface (not labeled) of the heat sink 60 is in contact. Since the heat generating interface material 4〇 can control the thickness thereof to the micro-scale official array, even if the surface of the electronic device is jagged, a good thermal connection between the electronic device 80 and the heat sink 60 is provided. The surface of the ft can be in the thermal interface material 40, the carbon nanotubes are open at both ends, along the thermal interface material; the surface 42 is the first and the 44th is from the rn, the material 40 is the younger brother. The younger-span extends vertically. Therefore, the carbon nanotubes can be in direct contact with the electronic device 80, and the surface of the thermal interface material is flat and the thermal resistance of the H 60 is small. The use of the carbon nanotubes is 2 = the use of the degree, the thermal interface material 4 〇 has a high thermal conductivity and the thermal conductivity limit is described above, and the invention complies with the requirements of the invention patent, and loves to file a patent application according to law. The equivalent modification or change made by the invention of the second embodiment of the present invention shall be included in the application of the invention. [First description of the drawings] The first figure is in the present invention. A schematic diagram of a substrate on which a catalyst film is formed. Fig. 1 is a diagram showing the arrangement of aligned carbon nanotube arrays on the substrate shown in Fig. The package of the IK* carbon nanotube array of the IK* together with the substrate is immersed in the polymer solution. The fourth figure is a schematic diagram of the solidification of the carbon nanotubes immersed in the polymer solution. ~ Figure 5 is a schematic view of a thermal interface material comprising a carbon nanotube array in the present invention. The sixth drawing is a schematic diagram of the application of the thermal interface material of the present invention. ~ 11 1300801 [Description of main component symbols] Substrate 11 Catalyst layer 12 Carbon nanotube array 22 Container 30 Polymer solution 32 Polymer material 34 Thermal interface material 40 First surface 42 Second surface 44 Heat sink 60 Electronics 80

1212

Claims (1)

1300801 十、申請專利範圍: 1·一種熱介面材料,其包括: 一高分子材料;及 複數奈米碳管分佈於該高分子材料中;其中 該熱介面材料形成有一第一表面及相對於第一表面之 二於該高分子材料中均勻分佈且沿熱介面材=二= ^申破請管專陣^圍第1項所述之熱介面材料,其中該複數奈米碳管係形成- 《如申請專利範圍第城所述之熱介面材料, 與-熱源相接觸,該第二表面與一散熱器相接觸广、〃材料之第-表面 ’㈣齡蝴之第-表面 ===利範圍幻項所述之熱介面材料,其中該熱介面材料之厚度為 7. 一種熱介爾料之製造方法,其包細下步驟: 提供一奈米碳管陣列; 將奈米碳管陣列浸潤於液相高分子體系· 使液相高分子體系轉化為固相, 於奈米碳管降列預定高度,並沿刀有乎二^二高二分子複合料; 高分子複合材料,去除奈米碳管陣 、巧^ _麵方向切割該 端開口; 碥之焉分子材料並使得奈米碳管尖 按照預定厚度切割上述高分子複合材 8. 如申__第觸述之熱介面二之製m 複合材料以前進一步包括以下步驟:+之方法,其中切割該高分子 用熔融態石蟻材料浸潤分佈有奈 冷卻固化該溶融態錢材料。之_子複合材枓; 13 1300801 9.如申請專聰圍第7項所狀熱介面材料之製^ 系枯度於2〇〇cPs以下。 ^万去其中液相尚分子體 1〇.如申請專利範圍第7項所述之熱介面材料之 體系包括縣態高分子、高分子雜麵合鱗體溶液Γ巾凝相间刀子 其中該南分子溶 11.如申請專利範圍第10項所述之熱介面材料之製造方法 液包括樹脂、矽橡膠與橡膠。 =長申嫩之編敝觀杨射絲米碳管陣 所狀齡崎歡料綠,射切觀高分 ==—步_將該分佈有奈米碳管之高分子複合材料從基 概則付奈米破管陣 熟化學乳相沈積法、電漿增強化學氣相沈積法。 1300801 七、指定代表圖: •(一)本案指定代表圖為:第(六)圖。 (二)本代表圖之元件符號簡單說明: 熱界面材料 40 第一表面 42 第二表面 44 散熱器 60 電子器件 80 八、本案若有化學式時,請揭示最能顯示發明特徵之化學式:1300801 X. Patent application scope: 1. A thermal interface material comprising: a polymer material; and a plurality of carbon nanotubes distributed in the polymer material; wherein the thermal interface material forms a first surface and is opposite to the first A surface of the second layer is uniformly distributed in the polymer material and along the thermal interface material = two = ^ 申 破 请 请 请 请 请 请 请 请 第 第 第 第 第 第 第 第 第 第 第 第 第 热 第 热 热 热 热 热 热 热 热 热For example, the thermal interface material described in the patent application scope is in contact with the heat source, and the second surface is in contact with a heat sink, and the first surface of the 〃 material is a surface-surface === range The thermal interface material described in the phantom, wherein the thickness of the thermal interface material is 7. A method for manufacturing a thermal matrix, comprising the steps of: providing a carbon nanotube array; impregnating the carbon nanotube array with Liquid phase polymer system · Convert liquid phase polymer system into solid phase, drop the predetermined height in the carbon nanotubes, and have two or two high molecular composites along the knife; polymer composite material to remove the carbon nanotubes Array, clever ^ _ face direction cutting The end opening; the molecular material of the crucible and the carbon carbon nanotube tip to cut the polymer composite according to a predetermined thickness. 8. The composite material of the thermal interface of the second embodiment further comprises the following steps: The method wherein the cutting of the polymer is carried out by infiltrating the molten stone ant material to cool and solidify the molten state material. _Sub-composite 枓; 13 1300801 9. If the application of the hot interface material in the seventh item of the special Congwei section is less than 2〇〇cPs. ^ Wan goes to the liquid phase is still a molecular body 1 〇. The system of the thermal interface material according to the scope of claim 7 includes a county polymer, a polymer heterogeneous scaly solution, a smear phase knives, wherein the southern molecule 11. The method for producing a thermal interface material according to claim 10, which comprises a resin, a ruthenium rubber and a rubber. =Changshen Nen's compilation, Yang Yang, silk carbon tube, array, age, stagnation, green, shot cut, high score ==—step _ the distribution of carbon nanotubes polymer composites from the basic principles Fu Nai broken tube array mature chemical emulsion phase deposition method, plasma enhanced chemical vapor deposition method. 1300801 VII. Designated representative map: • (1) The representative representative of the case is: (6). (2) Brief description of the symbol of the representative figure: Thermal interface material 40 First surface 42 Second surface 44 Heat sink 60 Electronic device 80 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW93110217A 2004-04-13 2004-04-13 Thermal interface material and methode for making same TWI300801B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93110217A TWI300801B (en) 2004-04-13 2004-04-13 Thermal interface material and methode for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93110217A TWI300801B (en) 2004-04-13 2004-04-13 Thermal interface material and methode for making same

Publications (2)

Publication Number Publication Date
TW200533736A TW200533736A (en) 2005-10-16
TWI300801B true TWI300801B (en) 2008-09-11

Family

ID=45070057

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93110217A TWI300801B (en) 2004-04-13 2004-04-13 Thermal interface material and methode for making same

Country Status (1)

Country Link
TW (1) TWI300801B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101121791B (en) 2006-08-09 2010-12-08 清华大学 Method for preparing carbon nano-tube/polymer composite material
CN101323759B (en) 2007-06-15 2014-10-08 清华大学 Conducting adhesive tape and manufacturing method thereof

Also Published As

Publication number Publication date
TW200533736A (en) 2005-10-16

Similar Documents

Publication Publication Date Title
TWI299358B (en) Thermal interface material and method for making same
TWI253467B (en) Thermal interface material and method for making same
CN100383213C (en) Thermal interface material and its manufacturing method
CN105733191B (en) Different dimensions highly heat-conductive material enhances polymer matrix composite and preparation method
CN1891780B (en) Thermal interface material, and its preparing method
JP5364905B2 (en) Metal matrix composite containing co-containing micron-sized and nano-sized carbon fibers
Jakubinek et al. Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays
US7674410B2 (en) Method for manufacturing a thermal interface material
Cai et al. Improved thermal conductivities of vertically aligned carbon nanotube arrays using three-dimensional carbon nanotube networks
TWI344487B (en) Thermal interface material
CN101899288A (en) Thermal interface material and preparation method thereof
CN101456277A (en) Method for preparing carbon nanotube composite material
CN1681381A (en) Thermal-interface material and production thereof
TW201024399A (en) Metal based composites material containing carbon and manufacturing method thereof
JPWO2007126133A1 (en) Carbon fiber composite sheet
CN109093108A (en) High starch breeding alkene-carbon nanotube mixing Cu-base composites and preparation method thereof
JP2009191392A (en) Pitch-based carbon fiber filer and molded article using the same
Jiao et al. Pie-rolling-inspired construction of vertical carbon fiber high thermal conductivity hybrid networks
CN103922316A (en) Foamed carbon nano tube material, preparation method, heat dissipation structure and determination method
TWI300801B (en) Thermal interface material and methode for making same
Li et al. Isotropic porous graphite foam/epoxy composites with outstanding heat dissipation and excellent electromagnetic interference shielding performances
TW200934725A (en) Carbon nanotube composite and method for making the same
CN100356556C (en) Thermal interfacial material and method of manufacture
TWI246879B (en) Thermal interface material and method for making same
JP4545247B2 (en) Method for producing thermally conductive silicone molded body