TWI284654B - Method for forming exfoliated polymer-clay nanocomposite latex and its application - Google Patents

Method for forming exfoliated polymer-clay nanocomposite latex and its application Download PDF

Info

Publication number
TWI284654B
TWI284654B TW95108581A TW95108581A TWI284654B TW I284654 B TWI284654 B TW I284654B TW 95108581 A TW95108581 A TW 95108581A TW 95108581 A TW95108581 A TW 95108581A TW I284654 B TWI284654 B TW I284654B
Authority
TW
Taiwan
Prior art keywords
clay
water
polymer composite
delaminated
radical
Prior art date
Application number
TW95108581A
Other languages
Chinese (zh)
Other versions
TW200734386A (en
Inventor
King-Fu Lin
Shanq-Chyang Lin
An-Ting Chien
Chi-Chun Hsieh
Ming-Huei Yen
Original Assignee
King-Fu Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by King-Fu Lin filed Critical King-Fu Lin
Priority to TW95108581A priority Critical patent/TWI284654B/en
Application granted granted Critical
Publication of TWI284654B publication Critical patent/TWI284654B/en
Publication of TW200734386A publication Critical patent/TW200734386A/en

Links

Abstract

The first purpose of this invention is ready to create the latex of the nanocomposites by way of the water soluble initiator to treat the laminated clay material in advance to form an intermediate solution, then adding at least one kind of polarity singler into the intermediate solution to perform an emulsion polymerization without an emulsifier. The water soluble initiator decomposes to form an initiating radicals to react with monomers to form a monolic free radical with polarity. The laminated clay keeps attracting monolic radicals with polarity to polymerize to form a peeled off polymer-clay solution. The second purpose is to crate the nanosheets of the clay by way of a solvent to eliminate the macromolecule part of the latex. The peeled off clay with latex of the nanocomposites are directed used as the material of the latex paint or the clay material to crate the nanosheet.

Description

1284654 〆 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種形成奈米複合材料乳液的方法,特別 是關於一種形成脫層型黏土-高分子奈米複合材料乳液的方法 及其應用。 【先前技術】 奈米複合材料(nanocomposites)之名詞首見於1982〜1983 年間,由Roy和Komameni及其同僚所提出,此定義是當無 機材料分散於有機基材,而將無機分散相以奈米級的分散程度 分散在高分子機材所構成的複合材料,分散相粒徑通常在 1〜100 nm的範圍。欲製成奈米級複合材料,須考慮到其無機 層材的分散情況,因為不同分散程度的無機層材會使得製出奈 米級複合材料在-些基本性質上的不同差異一般而言,以無 機層材來當作添加物之奈米級複合機,时散程度的不同有 三種基本_ :傳_複合材w_ntk)nal、嵌 。型複u材料(Intercalated Nanocomposites)與脫層型複合材料 ^foliatecma^mpGsites) ’其中一般認為脫層型複合材料 是混成最均勻的奈米級複合材料。 黏土係屬於天然的陽離子型層狀材料,其結構主要由石夕 1284654 酸鹽層(layered silicate)所組成’層狀結構具有優良的機械性 質、耐熱性、耐化學腐蝕性與低膨脹係數等。黏土的層與層間 所夾繫的陽離子多為 Li+、Na+、K+、Ca2+、Mg2+、Ba2+、La3+、1284654 发明9, invention description: [Technical field of invention] The present invention relates to a method for forming a nanocomposite emulsion, in particular to a method for forming a delaminated clay-polymer nanocomposite emulsion and application thereof . [Prior Art] The nouns of nanocomposites were first seen between 1982 and 1983 by Roy and Kommeni and their colleagues. This definition is when the inorganic material is dispersed on the organic substrate and the inorganic dispersed phase is in the nanometer. The degree of dispersion is dispersed in a composite material composed of a polymer material, and the particle diameter of the dispersed phase is usually in the range of 1 to 100 nm. In order to make nano-scale composites, the dispersion of inorganic layers must be considered, because inorganic layers with different degrees of dispersion will make different differences in the basic properties of nano-composites. Nano-composite machine with inorganic layer material as additive, there are three basic differences in the degree of dispersion: _ _ composite material w_ntk) nal, embedded. Intercalated Nanocomposites and delaminated composites ^foliatecma^mpGsites) 'The delaminated composites are generally considered to be the most homogeneous nanocomposites. Clay is a natural cationic layered material whose structure is mainly composed of layered silicate. The layered structure has excellent mechanical properties, heat resistance, chemical resistance and low expansion coefficient. The cations between the layers and the layers of clay are mostly Li+, Na+, K+, Ca2+, Mg2+, Ba2+, La3+,

Ce…等。由於黏土大都屬親水性之物質,而高分子屬親油 性,兩者_雜並不佳,傳驗術常使祕騎性劑來做為 插層劑’因為界面活性綱分子賴之—端為長碳鏈,其與親 油生之物相谷性佳’而另—端為離子態,其與親水性之物相容 性佳,亦可行離子交換反應。由於黏土的石夕酸鹽層中夾繫之物 夕為陽離子,所以陽離子界面活性劑是較常見的選擇,其中, 又以四級胺之陽離子界面活性舰用最為廣泛。所謂「黏 土的有機化反應」係藉由有機四級胺鹽與黏土層間金屬離子之 交換而同時撐開黏土層之間隙,之後才加人單體使其插入黏土 層間進行聚合反應’以分散黏土層。然而,傳統黏土的有機化 與早體的聚合反應僅能加大層間距離,無法完全制黏土脫層 的目的,亦即無法使黏土層狀結構均勻分散於高分子基質中。 有鐘於此,仍有需魏的脫層魏合材料之製造方法以均 2分散黏土的雜結·高分子歸巾,此齡脫層型複 合材料的機械強度、熱穩定性、喊性與阻水性等。 【發明内容】 繁於上述之發明背景中,為了符合產業上之要求,本發 1284654 供-種新的形成脫層齡土 .高分子複合材料乳液的方 , 法。 、,本發明之-目的在於藉由水雜起始劑先處理層狀黏土 材沪然後再與欲聚合的單體進行聚合反應,使黏土之層狀結 構月b夠脫層並能均勻分散於高分子基質中,藉此製備奈米複合 材料乳液。 > 、本發明之另一目的在於使用溶劑以移除黏土_高分子複合 材料乳液中之高分子部分,藉此製造該奈米片狀黏土。據此, 本發明能符合轉上敝雜產冑上力個性。 根據以上所述之目的,本發明揭示了—種形成脫層型黏 土-高分子複合材料餘財法,首級供舰合—層狀黏土 材料與-水溶性起始劑在水巾形成—巾液,使得層狀黏土 材料可以吸附或插層水溶性起始劑。然後,加入至少一種具有 極性之單體財間溶財,直接進行—無乳化航化聚合反 應’其中’ _或麵的水雜起始劑分卿成始劑自由 基與附近單體反應形成—具有極性之單體自由基或寡聚物自 由基’且層狀黏土材料陸續吸引具有極性之單體與具有極性之 單體自由基或S聚物自自基進端土賴断聚合反應,以形 成脫層型黏土-高分子複合材料乳液,其可直接做為乳膠漆的 原料,或利用溶劑移除乳液内的聚合物製造單片奈米厚度的黏 土材料。 8 1284654 【實施方式】 本發明在此雌討的方向為—獅細層雜土 高分子 奈米複合材魏㈣綠及其翻。為了驗舰瞭解本發 明,將在下列的描述中提出詳盡的步驟及其組成。顯然地,本 發月的施行並未限疋於該領域之技藝者所熟習的特殊細節。另 一方面,騎周知敝成或步驟並未描述於細節中,以避免造 成本發明不必要之限制。本發明雜佳實_會詳細描述如 下’然而除了這些詳細描述之外,本發明還可以廣泛地施行在 其他的實施例中,且本發明的範圍不受限定,其以之後的專利 範圍為準。 乳化I合反應是一種非均相(heterogeneous)的自由基加 成聚合反應,自由基加成聚合反應包括三個主要的機構:起始 (initiation )反應、成長(pr〇pagati〇n )反應和終止(terminati〇n ) 反應。當反應開始時,起始劑I經由熱分解,形成起始劑自由 基R* ’此自由基再與一個單體分子反應形成單體自由基。其 反應如下: I — R* R* + M — Ml* 在成長反應過程中,單體自由基可繼續和其它單體,產 1284654 .. 生連鎖反應’而形成更長的高分子自由基鏈。Ce...etc. Because clay is mostly hydrophilic, and the polymer is lipophilic, the two are not good. The test often makes the secret agent act as an intercalation agent because the interface activity is based on the end of the molecule. The long carbon chain has good glutinous properties with the oleophilic material, and the other end is ionic. The compatibility with the hydrophilic substance is good, and the ion exchange reaction can also be carried out. Cationic surfactants are the more common choice because of the cations in the layer of clay in the clay layer. Among them, the cation interface active carrier of the quaternary amine is the most widely used. The so-called "organic reaction of clay" is to open the gap between the clay layers by exchanging the metal ions between the organic quaternary amine salt and the clay layer, and then adding the monomer to insert it into the clay layer for polymerization. Floor. However, the organicization of conventional clay and the polymerization of the early body can only increase the interlayer distance, and the purpose of detachment of the clay cannot be completely achieved, that is, the layered structure of the clay cannot be uniformly dispersed in the polymer matrix. There is a bell here, there is still a need for Wei's delamination of Weihe material manufacturing method to homogenize 2 disperse clay of hybrids and polymer backing, the mechanical strength, thermal stability, shouting and shouting of this age of delaminated composites Water resistance, etc. SUMMARY OF THE INVENTION In the context of the above-mentioned invention, in order to meet the requirements of the industry, the present invention 1284654 provides a new method for forming a delaminated age soil. The object of the present invention is to treat the layered clay material and then polymerize with the monomer to be polymerized by the water-based initiator, so that the layered structure of the clay is sufficiently delaminated and uniformly dispersed. In the polymer matrix, a nanocomposite emulsion is prepared thereby. > Another object of the present invention is to use a solvent to remove a polymer portion in a clay-polymer composite emulsion, thereby producing the nano-sheet clay. Accordingly, the present invention can be adapted to the personality of the sputum. According to the above-mentioned objects, the present invention discloses a method for forming a delaminated clay-polymer composite material, the first level for the ship-layered clay material and the water-soluble starter in the water towel forming towel. The liquid allows the layered clay material to adsorb or intercalate the water-soluble starter. Then, adding at least one monomer with a polarity to dissolve the money, directly performing the non-emulsifying aeronautical polymerization reaction, wherein the water-based initiator of the _ or surface is formed by reacting with the nearby monomer. a monomeric radical or oligomer radical having a polarity, and the layered clay material successively attracts a monomer having a polarity and a monomeric radical or S polymer having a polarity from the radical polymerization of the radical A delaminated clay-polymer composite emulsion is formed, which can be directly used as a raw material of the latex paint, or a solvent can be used to remove the polymer in the emulsion to produce a single-piece nano-thickness clay material. 8 1284654 [Embodiment] The invention is in the direction of the female lion fine-layer mixed polymer nano-composite Wei (four) green and its turning. For the inspection of the ship to understand the present invention, detailed steps and its composition will be presented in the following description. Obviously, the implementation of this month is not limited to the special details familiar to those skilled in the field. On the other hand, riding the steps or steps is not described in detail to avoid unnecessary limitations of the invention. The present invention will be described in detail below. However, the present invention may be widely practiced in other embodiments, and the scope of the present invention is not limited thereto, which is subject to the scope of the following patents. . The emulsification I reaction is a heterogeneous free radical addition polymerization. The free radical addition polymerization includes three main mechanisms: initiation reaction, growth (pr〇pagati〇n) reaction and Terminate (terminati〇n) reaction. When the reaction starts, the initiator I is thermally decomposed to form a starter free radical R*' which is then reacted with a monomer molecule to form a monomer radical. The reaction is as follows: I — R* R* + M — Ml* During the growth reaction, the monomer radicals can continue to react with other monomers, producing 1,284,654.. .

Ml* + M — M2* M2*+M M3* 其通式為:Μη* + M — Mn+1* ^ 在聚合反應進行期間,終止反應隨時可以發生,而終止 反應可分為併合終止(termination by combination)和不均勻終 φ 止(terminati〇n by disproportionation)兩種形式。而兩個高分 子自由基鍵經由併合終止反應而結合成一個不具反應活性的 高分子鏈,或經由不均勻終止反應而形成兩個高分子。 併合終止· Mn* +Mm* —> Μη+πι 不均勻終止:Μη* + Mm* Mu + Mm 早自1955年起,即有人利用乳化聚合法合成均一粒徑的 • 粒子。傳統乳化聚合法的成核機構可分為微胞成核、均相成 • 核、凝聚成核及單體液滴成核。一般而言,傳統乳化聚合均加 入超過臨界微胞濃度(critical micelle concentration)的乳化劑 而這些過量的乳化劑為了使系統中的自由能達到最低,會聚集 而形成微胞(micelles)結構。此時的單體大多數(>95%) 皆以單體液滴(monomerdroplet)的形式存在,小部分的單體 會進入微胞中使其膨潤,直至其與微胞表面張力的收縮力達成 平衡為止,接著在水相巾祕始劑分紐生的自由基會進入微 1284654 胞中’在此產生聚合。因微胞的濃度很高,且表面積大的關係, 所以能成為反應場所。微胞内的單體發生聚合後使單體濃度降 低,補充的單體則由未引發反應的微胞或單體胞經水相擴散到 微胞中再進行反應,此部分稱為微胞成核(micellar nucleation);此外,起始劑在水相中生成自由基後,會先與溶 在水中的部分單體進行反應而形成寡分子自由基(〇Ug〇meric radicals) ’當此寡分子自由基成長至一臨界鏈長後便沈澱成一 初始粒子(primarypartide),這些粒子會為了達到表面電荷的 穩疋,而與水相中的其他粒子碰撞而形成更大的粒子,此及成 為聚合的所在,這就是均勻相成核(h〇mogene〇usnucleati〇n) 之成核機構。此兩種成核方式在乳化聚合反應中互相競爭,可 由單體的親疏水性和乳化劑的濃度來決定。總而言之,一般所 稱的「乳化聚合」是指有添加乳化劑的乳化聚合;若沒有添加 乳化劑的乳化聚合,一般稱之為「無乳化劑乳化聚合」。 本發明之第一實施例揭露一種形成脫層型黏土·高分子複 s材料乳液的方法,首先提供並混合一層狀黏土材料(其陽離 子交換當量範圍約為7〜300 meq/100g)與一水溶性起始劑在 水中形成一中間溶液,以使得層狀黏土材料可以吸附或插層有 水溶性起始劑,其中,水溶性起始劑約為層狀黏土材料重量的 10 wt°/〇至200 wt%。然後,加入至少一種具有極性之單體於中 間/谷液中’並進行一無乳化劑乳化聚合反應(犯叩也從emUlSi〇n 1284654 polymerization) ’其中,水溶性起始劑分解形成一起始劑自由 基,部分具有極性之單體與起始劑自由基反應形成一具有極性 之單體自由基或寡聚物自由基,且層狀黏土材料吸引具有極性 之單體與具有極性之單體自由基或寡聚物自由基進入層狀黏 土材料之黏土層間進行聚合反應,以形成脫層型黏土 _高分子 複合材料乳液,直接使用於油漆、乳膠漆、表面塗料、接著劑、 紙張塗料、浸塗、皮革處理、纖維處理、乳沫橡膠…等當做主 要成份。 於本實施例中,上述之層狀黏土材料包含下列族群中之 一者:滑潤石(smectite clay)、蛭石(vermiculite)、埃洛石 (halloysite)、絹雲母Sericite與雲母(mica)。上述之滑潤石 (smectite clay )包含下列族群中之一者:蒙脫石 (montmorillonite,以下簡稱為 mmt)、皂石(sap〇nite)、鋰 息石(hectorite)、鋁滑潤石(beidellite)、鐵滑潤石(nontr〇nite, 部分鋁被鐵取代)及鎂滑潤石(stevensite,部分鋁被鎮取代)。 此外,上述之水溶性起始劑包含下列族群中之一者··過硫酸鉀 (potassium persulfate ; KPS )、過硫酸銨(amm〇nium persulfate ; APS )與水溶性偶氮起始劑(water s〇luWe azo-initiator)。上述之水溶性偶氮起始劑包含下列族群中之一 者: (a)252?-Azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride 12 C§) 1284654 ' 裂解溫度為44°C ; (b) 2,2’-Azobis(2_methylpropionamide)dihydrochloride 裂解溫度為57°C ; (c) 2,2f-Azobis {2-methyl-N-[2-( 1 -hydroxybuthyl)]propi〇namide} 裂解溫度為85°C。 於本實施例中,上述之具有極性之單體或寡聚物具有乙 烯基(vinyl)或丙烯基(allyl),且包含下列族群中之一者: ’丙烯酸甲酯(methyl acrylate )、丙烯酸乙酯(ethyl acrylate )、 甲基丙烯酸曱酯(Methyl Methacrylate ; MMA )、hydroxy methacrylate、amine methacrylate、丙烯酸(acrylic acid)、曱基 丙烯酸(methacrylic acid)、TV-isopropylacrylamide (NIPAAm)、 hydroxylethyl acrylate、醋酸乙烯酯(Vinyiacetate ; VAc)或其 共聚物混合單體。一般而言,傳統乳膠漆中單一聚醋酸乙烯酯 (PVAc)乳膠具有耐寒性差、乳膠不穩定、耐水性差、耐熱 P 性差…等缺點,但是透過本發明所提供之方法加入脫層型黏土 並共聚VAc單體與其他具有羧基、羥基或多官能團的單體, 可大幅提高聚醋酸乙烯酯(PVAc)乳膠的性能。Ml* + M — M2* M2*+M M3* The general formula is: Μη* + M — Mn+1* ^ During the polymerization reaction, the termination reaction can occur at any time, and the termination reaction can be divided into a combination termination. By combination) and terminati〇n by disproportionation. The two high molecular radical bonds are combined to form an unreactive polymer chain via a concomitant termination reaction, or two polymers are formed by non-uniform termination of the reaction. Merging and termination · Mn* +Mm* —> Μη+πι Uneven termination: Μη* + Mm* Mu + Mm Since 1955, some people have used the emulsion polymerization method to synthesize particles of uniform particle size. The nucleation mechanism of the traditional emulsion polymerization method can be divided into micronucleus nucleation, homogeneous formation, nuclear, condensed nucleation and monomer droplet nucleation. In general, conventional emulsion polymerizations incorporate emulsifiers that exceed the critical micelle concentration and these excess emulsifiers aggregate to form micelle structures in order to minimize free energy in the system. Most of the monomers at this time (>95%) are in the form of monomer droplets, and a small fraction of the monomers will enter the micelles to swell until they contract with the surface tension of the micelles. To reach equilibrium, then the free radicals in the water phase will enter the micro-1284654 cell, where polymerization occurs. Because of the high concentration of the micelles and the large surface area, it can be used as a reaction site. The monomer in the microcell is polymerized to reduce the monomer concentration, and the supplemental monomer is diffused into the microcell by the uninitiated microcell or monomer cell through the aqueous phase and then reacted. This part is called microcell formation. Micellar nucleation; in addition, after the initiator generates a radical in the aqueous phase, it will react with some of the monomers dissolved in water to form oligo-mer radicals (〇Ug〇meric radicals). When the free radical grows to a critical chain length, it precipitates into a primary partide. These particles collide with other particles in the water phase to form larger particles in order to achieve the stability of the surface charge. This is the nucleation mechanism for homogeneous phase nucleation (h〇mogene〇usnucleati〇n). These two nucleation modes compete with each other in the emulsion polymerization, and can be determined by the hydrophilicity of the monomer and the concentration of the emulsifier. In short, the term "emulsification polymerization" generally means emulsion polymerization with an emulsifier added; if emulsion polymerization without an emulsifier is added, it is generally referred to as "emulsifier polymerization without emulsifier". A first embodiment of the present invention discloses a method for forming a delaminated clay-polymer complex s material emulsion, which first provides and mixes a layer of clay material (having a cation exchange equivalent range of about 7 to 300 meq/100 g) and a The water-soluble starter forms an intermediate solution in water such that the layered clay material can be adsorbed or intercalated with a water-soluble starter, wherein the water-soluble starter is about 10 wt/〇 of the weight of the layered clay material. Up to 200 wt%. Then, at least one monomer having polarity is added to the intermediate/column solution and an emulsifier-free emulsion polymerization reaction is carried out (the 叩 is also polymerized from emUlSi〇n 1284654), wherein the water-soluble initiator decomposes to form a starter Free radicals, some polar monomers react with the initiator free radical to form a polar monomer radical or oligomer radical, and the layered clay material attracts polar monomers and polar monomers free The radical or oligomer radicals are polymerized into the clay layer of the layered clay material to form a delaminated clay _ polymer composite emulsion, which is directly used in paints, latex paints, surface coatings, adhesives, paper coatings, dips Coating, leather treatment, fiber treatment, latex rubber, etc. as the main ingredients. In the present embodiment, the layered clay material described above comprises one of the following groups: smectite clay, vermiculite, hallloysite, sericite sericite and mica. The above smectite clay comprises one of the following groups: montmorillonite (hereinafter referred to as mmt), sap〇nite, hectorite, beidellite, Iron talc (nontr〇nite, some aluminum is replaced by iron) and magnesium talc (stevensite, part of the aluminum was replaced by the town). Further, the above water-soluble starter comprises one of the following groups: potassium persulfate (KPS), ammonium persulfate (APS) and water-soluble azo initiator (water s) 〇luWe azo-initiator). The above water-soluble azo initiator comprises one of the following groups: (a) 252?-Azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride 12 C§) 1284654 ' The pyrolysis temperature is 44° C; (b) 2,2'-Azobis(2_methylpropionamide)dihydrochloride pyrolysis temperature is 57 ° C; (c) 2,2f-Azobis {2-methyl-N-[2-( 1 -hydroxybuthyl)]propi〇namide} The cracking temperature was 85 °C. In the present embodiment, the above-mentioned polar monomer or oligomer has a vinyl or allyl group and contains one of the following groups: 'methyl acrylate, acrylic acid B Ethyl acrylate, Methyl Methacrylate (MMA), hydroxy methacrylate, amine methacrylate, acrylic acid, methacrylic acid, TV-isopropylacrylamide (NIPAAm), hydroxylethyl acrylate, vinyl acetate An ester (Vinyiacetate; VAc) or a copolymer thereof. In general, a single polyvinyl acetate (PVAc) latex in a conventional latex paint has disadvantages such as poor cold resistance, latex instability, poor water resistance, poor heat resistance P, etc., but is added to the delaminated clay and copolymerized by the method of the present invention. The VAc monomer and other monomers having a carboxyl group, a hydroxyl group or a polyfunctional group can greatly improve the performance of the polyvinyl acetate (PVAc) latex.

Example 1 蒙脫石(MMT)[陽離子當量數為i27meq/g],其原料取 自台灣東部台東礦場班脫岩(bentonite)或直接向薇商購買。 13 1284654 首先,將過硫酸鉀(KPS)溶解於水溶液中,接著加入蒙脫石 於水溶液中,以獲得吸附或插層有過硫酸鉀的蒙脫石 (KPS-MMT),其中,KPS-MMT可以懸浮水溶液的形式供後 續程序使用,或是可經冷柬乾燥後以粉末形式保存,等需要 時,再溶解於水溶液中使用。當進行無乳化劑乳化聚合反應 、 時’將曱基丙烯酸甲酯(MMA)單體加入KPS-MMT水溶液 中,並於70°C攪拌80分鐘後,可以製成黏土-高分子複合材料 • pMMA-MMT乳膠顆粒(PMMA與MMT重量比例為2〇: 1)。 為了直接觀察MMT的脫層機制,我們每五分鐘藉由溶於甲醇 中的 hydroquinone inhibitor 淬息(quench)聚合反應。此外, 將PMMA-MMT乳膠顆粒填滿一 10 X 1〇 X 3mm的模具中,夢 由熱壓合法(hot-pressing)可以製成無孔隙PMMA-MMT塊 材。 藉由WAXS分析可以驗證上述之KPS-MMT粉末的確有 • KPS插層MMT的情形,第一圖的(b)顯示當KPS插層取代5 CEC蒙脫石的穿透式電子顯微鏡(TEM)照片,其中Kps的 晶粒明顯可見地插入MMT邊緣。第二圖顯示穿透式電子顯微 鏡(TEM)照片與掃描式電子顯微鏡(SEM)照片。可以發 現直徑為300至600 nm的PMMA-MMT乳膠顆粒,部分 PMMA_MMT乳膠顆粒内含或覆蓋同一片脫層的蒙脫石片狀 結構。 !284654 令人驚舒的是,大部分的PMMA高分子鏈係插入ΜΜΤ 的層間區域並聚集形成盤狀結構(參考第一圖的a,右下角) [參考第三圖的(a),其狀態為當聚合反應進行五分鐘後,藉由 >谷於甲醇中的hydroquinone inhibitor淬息聚合反應]。很明顯 地’ MMA單體能夠擴散進入_丁的層間區域内進行聚合反 應,由於層間區域的空間限制,聚合的PMMA分子鏈形成了 盤狀結構,且藉由持續吸收單體與自由基,盤狀結構逐漸增大 與增厚,終於將蒙脫石的層狀結構稱開形成了脫層結構。因為 盤狀PMMA與蒙脫石脫層結構間的吸引力,於聚合反應中兩 者會黏合在一起。當聚合反應持續進行,盤狀結構彼此間也會 聚集成長成顆粒狀最後形成PMMA-MMT乳膠顆粒,上述所 推論之反應機制示意圖顯示於第四圖中。 此外,於聚合反應進行80分鐘後,我們過濾收集乳膠顆 粒並於50°C乾燥之。接著,藉由熱壓合法(hot_pressing)製 成PMMA-MMT塊材,之後切割成超薄試片顯示於第五圖中, 可以發現蒙脫石的脫層結構分散相當均勻。 本發明之第二實施例揭露一種製造奈米片狀(nan〇sheet) 黏土的方法,首先提供並混合一層狀黏土材料(其陽離子交換 當量範圍約為7〜300 meq/100g)、一水溶性起始劑與一水溶液 以形成一中間溶液,以使得層狀黏土材料可以吸附或插層有水 溶性起始劑,其中’水溶性起始劑約為層狀黏土材料重量的 15 1284654 10 wt%至200 Wt%。其次,加入至少一種具有極性之單體或寡 聚物於中間溶液中,並進行一無乳化劑乳化聚合反應 (soap-free emulsion polymerization),其中,水溶性起始劑分 解形成一起始劑自由基,部分具有極性之單體與起始劑自由基 反應形成-具有極性之單體自由基或絲物自由基,且層狀黏 土材料吸引具有極性之單體與具有極性之單體自由基或寡聚 物自由基it人層狀黏土材料之黏土賴進行聚合反應,以形成 -脫層型黏土_高分子複讀概液。織,將脫顧黏土高 分子複合材料乳液加入一溶劑中以移除高分子部分,藉此製造 奈米片狀(nanosheet)黏土。上述之奈米片狀黏土可以應用於 有機-無機奈米複合材料的製備。此外,於本實施例中,上述 之層狀黏土材料、水溶性起始劑、具有極性之單體與第一實施 例之選擇相同。Example 1 Montmorillonite (MMT) [the number of cation equivalents is i27meq/g], the raw materials are taken from Bentonite in the Taitung Mine in eastern Taiwan or purchased directly from Weishang. 13 1284654 First, potassium persulfate (KPS) is dissolved in an aqueous solution, followed by adding montmorillonite to an aqueous solution to obtain montmorillonite (KPS-MMT) adsorbed or intercalated with potassium persulfate, wherein KPS-MMT It can be used in the form of a suspension aqueous solution for subsequent procedures, or it can be stored as a powder after cold-drying, and then dissolved in an aqueous solution if necessary. When the emulsifier-free emulsion polymerization is carried out, the methyl methacrylate (MMA) monomer is added to the KPS-MMT aqueous solution and stirred at 70 ° C for 80 minutes to prepare a clay-polymer composite material. pMMA -MMT latex particles (PMMA to MMT weight ratio is 2〇: 1). To directly observe the delamination mechanism of MMT, we quenched the polymerization by a hydroquinone inhibitor dissolved in methanol every five minutes. In addition, the PMMA-MMT latex particles were filled into a 10 X 1 〇 X 3 mm mold, and the non-porous PMMA-MMT block was made by hot-pressing. It can be verified by WAXS analysis that the above KPS-MMT powder does have KPS intercalated MMT, and the first figure (b) shows a transmission electron microscope (TEM) photo of KPS intercalation replacing 5 CEC montmorillonite. , in which the crystal grains of Kps are clearly visible to be inserted into the edge of the MMT. The second image shows a transmission electron microscopy (TEM) photograph and a scanning electron microscope (SEM) photograph. PMMA-MMT latex particles with a diameter of 300 to 600 nm can be found, and some PMMA_MMT latex particles contain or cover the same delaminated smectite sheet structure. !284654 It is striking that most of the PMMA polymer chains are inserted into the interlaminar regions of the crucible and aggregate to form a disc-like structure (refer to a in the first figure, bottom right corner) [refer to (a) of the third figure, The state is that after the polymerization reaction is carried out for five minutes, the polymerization reaction is quenched by the hydroquinone inhibitor in the methanol. It is obvious that the 'MMA monomer can diffuse into the interlayer region of the butyl group for polymerization. Due to the space limitation of the interlayer region, the polymerized PMMA molecular chain forms a disc-like structure, and by continuously absorbing monomer and free radicals, the disk The structure is gradually enlarged and thickened, and the layered structure of montmorillonite is finally formed to form a delamination structure. Because of the attraction between the disc-shaped PMMA and the montmorillonite delamination structure, the two will stick together during the polymerization. When the polymerization is continued, the disc-like structures are also aggregated and grown into pellets to form PMMA-MMT latex particles. The mechanism of the reaction mechanism described above is shown in the fourth graph. Further, after 80 minutes from the polymerization, we collected the latex particles by filtration and dried at 50 °C. Next, a PMMA-MMT bulk material was produced by hot pressing (hot_pressing), and then cut into an ultrathin test piece, which is shown in the fifth figure, and it was found that the delamination structure of the smectite was dispersed fairly uniformly. A second embodiment of the present invention discloses a method for producing a nanosheet-like clay, which first provides and mixes a layer of clay material (having a cation exchange equivalent range of about 7 to 300 meq/100 g), and is dissolved in water. The initiator is combined with an aqueous solution to form an intermediate solution such that the layered clay material can be adsorbed or intercalated with a water-soluble starter, wherein the 'water-soluble starter is about 15 1284654 10 wt of the weight of the layered clay material. % to 200 Wt%. Next, at least one polar monomer or oligomer is added to the intermediate solution, and an emulsion-free emulsion polymerization is carried out, wherein the water-soluble initiator decomposes to form a radical free radical. a part of the polar monomer reacts with the initiator radical to form a monomeric radical or a filament radical having a polarity, and the layered clay material attracts a polar monomer and a polar monomer radical or oligomer The polymer free radicals of the human layered clay material are polymerized to form a delaminated clay _ polymer re-reading solution. Weaving, the clay high molecular composite emulsion is added to a solvent to remove the polymer portion, thereby producing a nanosheet clay. The above-mentioned nano flaky clay can be applied to the preparation of an organic-inorganic nano composite. Further, in the present embodiment, the above-mentioned layered clay material, water-soluble starter, and monomer having polarity are the same as those of the first embodiment.

Example 2 取部分Example 1的產物乳液,藉由溶劑 甲苯溶解移除複合材料中的高分子部分,反覆利用甲 苯沖洗數次後剩下已脫層的片狀蒙脫石[奈米片狀蒙脫石 (MMT nanosheet)]水溶液,接著再以链碳銅網取樣以便於 穿透式電子顯微鏡(TEM)觀察,或是以平板雲母片取樣以便 於原子力顯微鏡(AFM)觀察。此外,上述被萃取的pMMA高 1284654 分子具有重量平均分子量162,4〇〇與分子量分佈指數 (polydispersityindex) 1.36 (量測所用標準品為聚笨乙稀 參考第六圖的(a)所示,奈米片狀蒙脫石基本上屬於平板 形狀。當使用HK) KeV電子束去產生電子繞射圖譜時 (diffractionpattern),圖譜的型態為分佈成三層同心圓的點, ^ 它顯示了六重次對稱(six-fold symmetric)圖形[參考第丄圖的 # (b)所示],經鑑定奈米片狀蒙脫石上附着了-層極薄的冰,可 能是在以冷柬乾燥法製造KPS-MMT _時水氣凝結所形 成。當電子束強度增加至200KeV時,只要幾秒鐘的時間,電 子繞射圖譜即變的不穩定且形成一代表非晶形的圖譜[參考第 六圖的(〇所示],因此斷定原本的奈米片狀蒙脫石係為無結晶 型結構。所製成的奈米片狀蒙脫石厚度約為以⑽參考第: 圖所示)。因為奈米片狀蒙脫石的厚度極薄,因此古 , 分子附着糾狀蒙脫石時,蒙脫石薄片顯得相當柔軟容^ 在上述本發明之實施例中,本發明藉由水溶性起始劑先 處理層狀黏土材料’然後再與欲聚合的單體絲聚物進行聚人 反應’_ 土之層狀結構能夠脫層並能哨分散於高分子基質 製備奈料合娜乳液m於絲複合材料 礼液製以紐,本㈣使贿_移 料乳液中之高分子部分,藉此製造該奈料鋒土。 17 1284654 •、 發明能符合經濟上的效益與產業上的利用性。 綜合以上所述,本發明揭示了一種形成脫層型黏土_高分 子複合材料乳液的方法,首先提供並混合一層狀黏土材料與一 水溶性起始劑在水中形成一中間溶液,使得層狀黏土材料可以 吸附或插層水溶性起始劑。然後,加入至少一種具有極性之單 ‘ 體於㈣溶液巾,直接進行-無乳化劑乳化聚合反應,其中, _ &quot;及附或插層的水溶性缺劑分解形成-起始劑自由基與附近 單體反應形成-具有極性之單體自由基或絲物自由基,且層 狀黏土材料_吸引具有紐之單體與具有極性之單體自由 基或寡聚物自域進场土層騎行聚合反應,⑽彡成脫層型 黏土-高分子複合觀乳液,討直接做為乳轉的原料,或 利用溶劑移除乳液内的聚合物製造單片奈米厚度的黏土材料。 顯然地,依照上面實施例中的描述,本發明可能有許多 Φ ❸修正與差異。因此需要在其附加的權利要求項之範圍内加以 理解’除了上述詳細的描述外,本發明還可以廣;乏地在其他的 實施例中施行。上述僅為本發明之較佳實施例而已,並非用以 限定本發明之ΐ請專概圍;凡其它未麟本發明所揭示之精 神下所完成的等效改變或修飾,均應包含在下述申請專利範圍 【圖式簡單說明】 第一圖顯示⑻MMT*與(b)KPS_MMT的穿透式電子顯微 鏡(TEM)照片;*左上角的插入圖係為其低倍數照片,右下 角的插入圖係為聚合反應於7〇°c進行5分鐘後,pM]y[A所聚 集形成的盤狀物插層於MMT的層間區域的TEm照片; 第二圖顯示⑻聚合反應於70°C進行80分鐘後, PMMA_MMT乳膠顆粒的穿透式電子顯微鏡(TEM)照片⑼ 其低倍數TEM照片與(c)其掃描式電子顯微鏡(SEM)照片; 第二圖係為聚合反應於7〇乞進行5分鐘後,PMMA高分 子區域與脫層蒙脫石的穿透式電子顯微鏡(TEM)照片; 第四圖的(a)MMA的起始與成長反應方程式(b)推論 ΡΜΜΑ·ΜΜΤ娜雛之無乳化魏錄合反應_示意圖; 第五圖係為ΡΜΜΑ-ΜΜΤ乳膠顆粒之穿透式電子顯微鏡 (ΤΕΜ)照片; 第六圖的⑻奈米片狀蒙脫石之穿透式電子顯微鏡 (丽)照片⑼使用麵KeV電子束所形成電子繞射圖譜 (diffractionpattern)⑹使用200KeV電子束所形成電子繞^ 圖譜(diffraction pattern );與 第七圖係為以平板雲母片收集奈米片狀蒙脫石之原子力 顯微鏡(AFM)照片。 'Example 2 Take part of the product emulsion of Example 1 and remove the polymer part of the composite by solvent toluene, and then rinse it with toluene several times to leave the delaminated flaky montmorillonite [nano flaky montmorillonite] An aqueous solution of MMT nanosheet was then sampled with a chain of carbon-copper mesh for observation by a transmission electron microscope (TEM) or with a plate of mica flakes for observation by atomic force microscopy (AFM). In addition, the above-mentioned extracted pMMA high 1,284,654 molecules have a weight average molecular weight of 162,4 Å and a molecular weight distribution index (polydispersity index) of 1.36 (the standard used for the measurement is polystyrene, referenced to (a) of the sixth figure, The rice flaky smectite is basically in the shape of a flat plate. When the HK) KeV electron beam is used to generate an electron diffraction pattern (diffraction pattern), the pattern is a point distributed into three concentric circles, ^ which shows six weights A semi-fold symmetric pattern [refer to # (b) in Figure ,], identified as a thin layer of ice attached to the nano-lamellar smectite, possibly in a cold-crack drying process KPS-MMT _ when water vapor condensation is formed. When the electron beam intensity is increased to 200 keV, the electron diffraction pattern becomes unstable and forms a map representing an amorphous shape as long as a few seconds [refer to the sixth figure (〇), thus determining the original The rice flaky montmorillonite is a non-crystalline structure. The thickness of the nano flaky montmorillonite produced is about (10) reference: Figure). Since the thickness of the nano flaky smectite is extremely thin, the montmorillonite sheet appears to be quite soft when the molecules are attached to the smectite smectite. In the above embodiment of the present invention, the present invention is made by water solubility. The initial agent first treats the layered clay material 'and then aggregates with the monomeric filament polymer to be polymerized'. The layered structure of the soil can be delaminated and can be dispersed in the polymer matrix to prepare the naphtha emulsion. The silk composite material ritual system is made of New Zealand, and this (4) makes the bribe _ the polymer part of the emulsion, thereby manufacturing the raw material. 17 1284654 • The invention can meet economic benefits and industrial applicability. In summary, the present invention discloses a method for forming a delaminated clay-polymer composite emulsion by first providing and mixing a layer of clay material with a water-soluble starter to form an intermediate solution in water to form a layer. The clay material can adsorb or intercalate the water-soluble starter. Then, adding at least one polar single body to the (iv) solution towel, directly performing an emulsifier-free emulsion polymerization reaction, wherein _ &quot; and the water-soluble deficiency agent attached or intercalated to form a decomposition agent The nearby monomer reacts to form a monomeric radical or a filament radical having polarity, and the layered clay material _ attracts the monomer having a nucleus and the monomeric radical or oligomer having polarity from the domain approaching soil layer The polymerization reaction, (10) decomposes into a delaminated clay-polymer composite emulsion, and directly uses as a raw material for milk transfer, or uses a solvent to remove the polymer in the emulsion to produce a single-thickness nano-thick clay material. Obviously, the present invention may have many Φ ❸ corrections and differences as described in the above embodiments. Therefore, it is to be understood that within the scope of the appended claims, the invention may be <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The above are only the preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Any equivalent changes or modifications made in the spirit of the present invention should be included in the following. Patent application scope [simplified description of the drawings] The first figure shows (8) MCT* and (b) KPS_MMT transmission electron microscope (TEM) photos; * the upper left corner of the insertion map is its low magnification photo, the lower right corner of the insertion diagram After the polymerization reaction was carried out at 7 ° C for 5 minutes, pM]y [the disc formed by the aggregation of A was intercalated into the TEm photograph of the interlayer region of MMT; the second graph shows that (8) the polymerization was carried out at 70 ° C for 80 minutes. Thereafter, a transmission electron microscope (TEM) photograph of the PMMA_MMT latex particles (9) its low-magnification TEM photograph and (c) its scanning electron microscope (SEM) photograph; the second graph is a polymerization reaction at 7 Torr for 5 minutes. , Penetrating electron microscopy (TEM) photograph of PMMA polymer region and delaminated montmorillonite; Fig. 4 (a) Initial and growth reaction equation of MMA (b) Inference of 无·ΜΜΤ娜雏's emulsified Wei Luhe Reaction_schematic; the fifth picture is ΡΜΜΑ-Μ Penetrating electron microscopy (ΤΕΜ) photograph of Τ latex particles; (8) Transmissive electron microscope (L) photo of nano flaky montmorillonite in Fig. 6 (9) Electron diffraction pattern formed by surface KeV electron beam (diffractionpattern (6) An electron diffraction pattern formed by using a 200 keV electron beam; and a seventh atomic force microscope (AFM) photograph of a nano flaky montmorillonite collected by a flat mica plate. '

Claims (1)

1284654 十、申請專利範圍: 1·一種形成脫層型黏土_高分子複合材料乳液的方法,該形成脫層 型黏土 _高分子複合材料乳液的方法包含: 提供並混合一層狀黏土材料與一水溶性起始劑於水中以形 成一中間溶液; 加入至少一種具有極性之單體於該中間溶液中,並進行一無 Φ 乳化劑乳化聚合反應,其中,該水溶性起始劑分解形成一起始 劑自由基,部分該具有極性之單體與該起始劑自由基反應形成 -具有極性之單體自由基或絲物自由基,且騎狀黏土材料 吸引該具有極性之單體或寡聚物與具有極性之單體自由基或募 聚物自由基進入該層狀黏土材料之黏土層間進行聚合反應,以 形成咸脫層型黏土 _高分子複合材料乳液。 • 2·如申請專利範圍第1項所述之形成脫層型黏土 高分子複合材料 乳液的方法,其中上述之層狀黏土材料包含下列族群中之一 者:滑潤石(smectite clay)、蛭石(vermiculite)、埃洛石 (halloysite)、絹雲母 Sericite 與雲母(mica)。 3·如申請專纖圍第2項所述之形成脫層麵土高分子複合材料 乳液的方法,其中上述之滑潤石(smectiteday)包含下列族群 中之者•象脫石(montmorillonite)、息石(saponite)、鯉息 1284654 .· 石(hectorite)、鋁滑潤石(beidellite)、鐵滑潤石(nontronite) . 及鎮滑潤石(stevensite )。 4·如申請專利範圍第1項所述之形成脫層型黏土 _高分子複合材料 乳液的方法,其中上述之層狀黏土材料的陽離子交換當量範圍 約為 7〜300meq/100g。 • 5·如申請專利範圍第1項所述之形成脫層型黏土-高分子複合材料 乳液的方法,其中上述之水溶性起始劑包含下列族群中之一 者:過硫酸鉀(potassium persulfate; KPS )、過硫酸銨(ammonium persulfate ; APS )與水溶性偶氮起始劑(water s〇luWe azo-initiator)。 6·如申請專利範圍第5項所述之形成脫層型黏土-高分子複合材料 # 乳液的方法,其中上述之水溶性偶氮起始劑包含下列族群中之 一者· 2,2 -Azobis[2-(2_imidazolin-2-yl)propane] dihydrochloride、 2.2 &quot;Azobis(2-methylpropi〇namide)dihydrochloride 與 2.2 -Azobis{2-methyl_N-P-(l-hydroxybuthyl)]propionamide}。 7·如申請專利範圍第1項所述之形成脫層齡土 高分子複合材料 乳液的方法,其中上述之水溶性起始劑約為該層狀黏土材料重 21 1284654 量的 10 wt% 至 200 wt%。 8·如申晴專娜ϋ第1項所述之軸脫層雜土_高分子複合材料 乳液的方法,其中上述之中間溶液内的該層狀黏土材料吸附或 插層有該水溶性起始劑。 9.如申請專利範圍第1項所述之形成脫層讎土 高分子複合材料 乳液的方法,其中上述之具有極性之單體具有乙稀基(vinyl) 或丙稀基(allyl)。 10·如申請專利範圍第1項所述之形成脫層型黏土 ·高分子複合材料 乳液的方法,其中上述之具有極性之單體包含下列族群中之一 者·丙烯酸甲酯(methyl acrylate )、丙烯酸乙醋(ethyl acrylate )、 甲基丙烯酸甲酯(Methyl Methacrylate ; MMA )、hydroxy methacrylate、amine methacrylate、丙稀酸(acrylic acid)、甲基 丙稀酸(methacrylie acid)、AMsopropylacrylamide (NIPAAm)、 hydroxylethyl acrylate、醋酸乙稀醋(vinyl acetate ; VAc)或其 共聚物混合單體。 11·如申請專利範圍第1項所述之形成脫層型黏土-高分子複合材料 乳液的方法,其中上述之脫層型黏土-高分子複合材料乳液係應 22 (s) 1284654 - 用於乳膠漆的製備。 12·-種製造奈料狀(n_heet)黏土的方法該製造奈米片狀 (nanosheet)黏土的方法包含·· 提供並混合-層狀黏土材料與—水溶麵始劑於水中以形 成一中間溶液; 加入至少-種具有極性之單體或寡聚物於該中間溶液 中’並進行-無乳化劑乳化聚合反應,其中,該水溶性起始劑 分解形成-起始劑自由基,部分該具有極性之單體與該起始劑 自由基反應形成-具有極性之單體自由基或絲物自由基,且 該層狀黏土材料吸引該具有極性之單體或寡聚物與具有極性之 單體自由基或寡聚物自由基進入該層狀黏土材料之黏土層間進 仃聚合反應,以形成一脫層型黏土·高分子複合材料乳液;與 將該脫層型黏土-高分子複合材料乳液加入一溶劑中以移 除咼刀子部分’藉此製造該奈米片狀(nan〇sheet)黏土。 13·如申請專利範圍第12項所述之製造奈米片狀黏土的方法,其中 上述之層狀黏土材料包含下列族群中之一者:滑潤石(smectite day )、經石(vermiculite)、埃洛石(hall〇ysite)、絹雲母 Seridte 與雲母(mica)。 23 Cs) 1284654 .14.如中請專利範圍第13項所述之製造奈米片狀黏土的方法,其中 ’ 上述之滑潤石(smectiteclay)包含下列族群中之一者:蒙脫石 (m〇ntm〇rillonite)、4石(saponite)、鋰皂石(hect〇rite豕)、^ 滑潤石(beidellite )、鐵滑潤石(n〇n蝴化)及鎂滑潤石 (stevensite ) 〇 I5·如申請專利範圍第12項所述之製造奈米片狀黏土的方法,其中 • 上述之層狀黏土材料的陽離子交換當量範圍約為7〜 meq/100g。 16·如申請專利範圍第12項所述之製造奈米片狀黏土的方法,其中 上述之水溶性起始劑包含下列族群中之一者:過硫酸鉀 (potassium persulfate ; KPS )、過硫酸錢(ammonium persulfate ; APS )與水溶性偶氮起始劑(water soluble azo-initiator )。 17·如申請專利範圍第16項所述之製造奈米片狀黏土的方法,其中 上述之水溶性偶氮起始劑包含下列族群中之一者: 2?2,-Azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride 、 252f-Azobis(2-methylpropionamide)dihydrochloride 與 2,2?-Azobis {2-methy 1-N- [2-( 1 -hydroxybuthyl)]propionamide} 0 24 1284654 Wt% 19.如申請專利細第u撕狀觀奈米__方法,其令 上述之中間溶液内的該層狀黏土材料吸附或插層有該水溶性起 始劑。 20.如申請專利範圍第12項所述之製造奈米片狀黏土的方法,其中 上述之具有極性之單體具有乙烯基(vinyl)或丙婦基(allyl)。 21·如申請專利範圍第12項所述之製造奈米片狀黏土的方法,其中 上述之具有極性之單體包含下列族群中之一者:丙烯酸甲酯 (methyl acrylate)、丙烯酸乙醋(ethyl acrylate)、甲基丙烯酸曱 酯(Methyl Methacrylate ; MMA)、hydroxy methacrylate、amine methacrylate、丙烯酸(acrylic acid)、甲基丙烯酸(methacrylie acid )、7V_isopropylacrylamide ( NIPAAm )、 hydroxylethyl acrylate、醋酸乙烯酯(vinyl acetate ; VAc)或其共聚物混合單 體。 22·如申請專利範圍第12項所述之製造奈米片狀黏土的方法,其中 25 1284654 上述之溶齡含下職群巾之—者:甲苯(她辦)、苯、四氮 咬喃(她咖論咖;聊)、環己烧、四氯甲烧、三氯甲烧等。 23.如申請專利範圍第12項所述之 上述之奈米片狀黏土係應用於有^米片狀黏土的方法’其中 _無機奈米複合材料的製備。1284654 X. Patent application scope: 1. A method for forming a delaminated clay _ polymer composite emulsion, the method for forming a delaminated clay _ polymer composite emulsion comprises: providing and mixing a layer of clay material with a a water-soluble initiator in water to form an intermediate solution; adding at least one monomer having polarity in the intermediate solution, and performing an emulsion polymerization without Φ emulsifier, wherein the water-soluble initiator decomposes to form an initial a free radical, a portion of the polar monomer reacting with the initiator radical to form a monomeric radical or a filament radical having a polarity, and the riding clay material attracts the polar monomer or oligomer Polymerization is carried out between a layer of clay having a polar monomer radical or a condensed polymer radical entering the layered clay material to form a salty delaminated clay _ polymer composite emulsion. 2. The method for forming a delaminated clay polymer composite emulsion according to claim 1, wherein the layered clay material comprises one of the following groups: smectite clay, vermiculite (vermiculite), halloysite, sericite sericite and mica. 3. A method for forming a de-soiled polymer composite emulsion as described in item 2 of the special fiber, wherein the above-mentioned smectite day comprises the following groups: montmorillonite, and stone ( Saponite), suffocation 1,284,654. · stone (hectorite), aluminum talc (beidellite), iron terrazzo (nontronite) and town slate (stevensite). 4. The method of forming a delaminated clay-polymer composite emulsion according to claim 1, wherein the layered clay material has a cation exchange equivalent ratio of about 7 to 300 meq/100 g. 5. The method of forming a delaminated clay-polymer composite emulsion according to claim 1, wherein the water-soluble starter comprises one of the following groups: potassium persulfate (potassium persulfate; KPS), ammonium persulfate (APS) and water s〇luWe azo-initiator. 6. The method of forming a delaminated clay-polymer composite # emulsion according to claim 5, wherein the water-soluble azo initiator comprises one of the following groups: 2,2 -Azobis [2-(2_imidazolin-2-yl)propane] dihydrochloride, 2.2 &quot;Azobis(2-methylpropi〇namide)dihydrochloride and 2.2-Azobis{2-methyl_N-P-(l-hydroxybuthyl)]propionamide}. 7. The method for forming a delaminated age-earth polymer composite emulsion according to claim 1, wherein the water-soluble starter is about 10 wt% to 200 of the layered clay material weighing 21 1284654. Wt%. 8. The method of claim 1, wherein the layered clay material in the intermediate solution adsorbs or intercalates the water-soluble start. Agent. 9. The method of forming a delaminated alumina polymer composite emulsion according to claim 1, wherein the polar monomer has a vinyl or allyl group. 10. The method for forming a delaminated clay-polymer composite emulsion according to claim 1, wherein the polar monomer comprises one of the following groups, methyl acrylate; Ethyl acrylate, Methyl Methacrylate (MMA), hydroxy methacrylate, amine methacrylate, acrylic acid, methacrylie acid, AMsopropylacrylamide (NIPAAm), hydroxylethyl Acrylate, vinyl acetate; VAc or its copolymer mixed monomer. 11. The method for forming a delaminated clay-polymer composite emulsion according to claim 1, wherein the delaminated clay-polymer composite emulsion system is 22 (s) 1284654 - for latex Preparation of paint. 12. A method for producing a nanosheet (n_heet) clay. The method for producing a nanosheet clay comprises: providing and mixing a layered clay material and a water-soluble surface initiator in water to form an intermediate solution. Adding at least one polar monomer or oligomer to the intermediate solution and performing an emulsifier-free emulsion polymerization reaction, wherein the water-soluble starter decomposes to form a starter radical, and the portion has The polar monomer reacts with the initiator radical to form a monomeric radical or a filament radical having polarity, and the layered clay material attracts the polar monomer or oligomer and the monomer having polarity Free radical or oligomer radicals enter the clay layer of the layered clay material to form a delaminated clay-polymer composite emulsion; and the delaminated clay-polymer composite emulsion is added The knives are removed in a solvent to thereby produce the nanosheet. 13. The method of producing a nano-sheet clay according to claim 12, wherein the layered clay material comprises one of the following groups: smectite day, vermiculite, angstrom Hall〇ysite, sericite Seridte and mica. A method for producing a nano-sheet clay according to claim 13 wherein the above-mentioned smectiteclay comprises one of the following groups: montmorillonite (m〇) Ntm〇rillonite), 4 saponite, hect〇rite豕, ^beidellite, iron slick (n〇n butterfly) and magnesium shale (stevensite) 〇I5·If applying The method for producing a nano-sheet clay according to the invention of claim 12, wherein the layered clay material has a cation exchange equivalent ratio of about 7 to meq/100 g. The method for producing a nano-sheet clay according to claim 12, wherein the water-soluble starter comprises one of the following groups: potassium persulfate (KPS), persulfate (ammonium persulfate; APS) and water soluble azo-initiator. The method for producing a nano-sheet clay according to claim 16, wherein the water-soluble azo initiator comprises one of the following groups: 2?2,-Azobis[2-(2) -imidazolin-2-yl)propane] dihydrochloride, 252f-Azobis(2-methylpropionamide)dihydrochloride with 2,2?-Azobis {2-methy 1-N- [2-( 1 -hydroxybuthyl)]propionamide} 0 24 1284654 Wt % 19. The method of claiming a patented fine-grained nano- __ method for adsorbing or intercalating the layered clay material in the intermediate solution described above with the water-soluble starter. 20. The method of producing a nano-sheet clay according to claim 12, wherein the polar monomer has a vinyl or allyl. The method for producing a nano-sheet clay according to claim 12, wherein the polar monomer comprises one of the following groups: methyl acrylate, ethyl acrylate (ethyl) Acrylate), Methyl Methacrylate (MMA), hydroxy methacrylate, amine methacrylate, acrylic acid, methacrylie acid, 7V_isopropylacrylamide (NIPAAm), hydroxylethyl acrylate, vinyl acetate VAc) or a copolymer thereof is a mixed monomer. 22. The method for producing a nano-sheet clay according to claim 12, wherein 25 1284654 the above-mentioned immersion age comprises a lower group towel: toluene (she), benzene, tetrazole ( She talks about coffee; chat), ring-burning, tetrachloromethane, trichloromethane and so on. 23. The above-described nano-sheet clay according to claim 12, which is applied to a method of forming a sheet of clay, wherein the preparation of the inorganic nano composite is carried out.
TW95108581A 2006-03-14 2006-03-14 Method for forming exfoliated polymer-clay nanocomposite latex and its application TWI284654B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95108581A TWI284654B (en) 2006-03-14 2006-03-14 Method for forming exfoliated polymer-clay nanocomposite latex and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95108581A TWI284654B (en) 2006-03-14 2006-03-14 Method for forming exfoliated polymer-clay nanocomposite latex and its application

Publications (2)

Publication Number Publication Date
TWI284654B true TWI284654B (en) 2007-08-01
TW200734386A TW200734386A (en) 2007-09-16

Family

ID=39445915

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95108581A TWI284654B (en) 2006-03-14 2006-03-14 Method for forming exfoliated polymer-clay nanocomposite latex and its application

Country Status (1)

Country Link
TW (1) TWI284654B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513519B2 (en) 2009-08-04 2013-08-20 National Taiwan University Use of exfoliated clay nanoplatelets and method for encapsulating cations

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398265B (en) * 2011-12-13 2013-06-11 Univ Nat Taiwan Sunscreen cosmetics having exfoliated clay and method for preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513519B2 (en) 2009-08-04 2013-08-20 National Taiwan University Use of exfoliated clay nanoplatelets and method for encapsulating cations

Also Published As

Publication number Publication date
TW200734386A (en) 2007-09-16

Similar Documents

Publication Publication Date Title
Jeon et al. Characterization of polyisoprene–clay nanocomposites prepared by solution blending
Zhao et al. Investigation of dispersion behavior of GO modified by different water reducing agents in cement pore solution
Chiu et al. Intercalation strategies in clay/polymer hybrids
Voulgaris et al. Emulsifying effect of dimethyldioctadecylammonium-hectorite in polystyrene/poly (ethyl methacrylate) blends
Jing et al. From graphene oxide to reduced graphene oxide: Enhanced hydration and compressive strength of cement composites
Uthirakumar et al. Preparation of polystyrene/montmorillonite nanocomposites using a new radical initiator-montmorillonite hybrid via in situ intercalative polymerization
Alshabanat et al. Polystyrene/montmorillonite nanocomposites: study of the morphology and effects of sonication time on thermal stability
Letaief et al. Clay− polymer nanocomposite material from the delamination of kaolinite in the presence of sodium polyacrylate
Mallakpour et al. Recent developments in the synthesis of hybrid polymer/clay nanocomposites: properties and applications
JP2004509986A (en) Modified nanocomposite compositions and methods of making and using the same
US9133314B2 (en) Anisotropic self-assembly of nanoparticles in composites
WO2009081700A1 (en) Polymer-coated fine inorganic particle and process for producing the same
Borthakur et al. Development of core–shell nano composite of poly (styrene-co-methyl acrylate) and bentonite clay by ultra sonic assisted mini-emulsion polymerization
Xu et al. Preparation and properties of poly (vinyl alcohol)–vermiculite nanocomposites
Mrah et al. In situ polymerization of styrene–clay nanocomposites and their properties
TW200844148A (en) Method for forming polymer-clay nanocomposite latex and its application on sealing and semi-conductive materials
Haiyan et al. Preparation and characterization of poly (vinyl chloride)/organoclay nanocomposites by in situ intercalation
Jlassi et al. Efficient photoinduced In situ preparation of clay/poly (glycidyl methacrylate) nanocomposites using hydrogen‐donor silane
TW200925110A (en) Organized clay complex, method for producing the same, and resin complex containing organized clay complex
TWI284654B (en) Method for forming exfoliated polymer-clay nanocomposite latex and its application
Wang et al. Influence of MCM-41 particle on mechanical and morphological behavior of polypropylene
CN111040355A (en) Random stripping type polymethyl methacrylate/montmorillonite nano composite material and preparation method thereof
Billon et al. Surface-initiated nitroxide-mediated polymerization
Miao et al. Effects of Hybrid Graphene Oxide-Nanosilica on Calcium Silicate Hydrate in the Simulation Environment and Cement
JP2003327851A (en) Method for producing layer inorganic crystal substance- polymer composite

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees