TW201615536A - Method for manufacturing metallic compound nanotube arrays - Google Patents

Method for manufacturing metallic compound nanotube arrays Download PDF

Info

Publication number
TW201615536A
TW201615536A TW103137120A TW103137120A TW201615536A TW 201615536 A TW201615536 A TW 201615536A TW 103137120 A TW103137120 A TW 103137120A TW 103137120 A TW103137120 A TW 103137120A TW 201615536 A TW201615536 A TW 201615536A
Authority
TW
Taiwan
Prior art keywords
manufacturing
etching
nanowire
array
solvent
Prior art date
Application number
TW103137120A
Other languages
Chinese (zh)
Other versions
TWI562956B (en
Inventor
莊振富
鄭紹良
Original Assignee
國立中央大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中央大學 filed Critical 國立中央大學
Priority to TW103137120A priority Critical patent/TWI562956B/en
Publication of TW201615536A publication Critical patent/TW201615536A/en
Application granted granted Critical
Publication of TWI562956B publication Critical patent/TWI562956B/en

Links

Landscapes

  • Micromachines (AREA)

Abstract

The present invention provides a method for manufacturing metallic compound nanotube arrays. The method includes following steps: providing a nanowire-template; forming a plurality of nanorods, wherein its core is the nanowire and its shell is metallic compound; performing a first selective etching; performing a second selective etching; and performing a third selective etching. The nanowire-template includes a plurality of nanowires formed as an array and a top end of each of the nanowires is covered by a polymer mask. The first selective etching is to remove the excess metallic material from a surface of each of the nanorods; the second selective etching is to remove the polymer mask from the top end of each of the nanowires; and the third selective etching is to remove each of the nanowires from each of the nanorods and leave the metallic compound as the shell, thereby to manufacture metallic compound nanotube arrays.

Description

金屬化合物奈米管陣列之製造方法 Method for manufacturing metal compound nanotube array

本發明關於一種奈米管陣列之製造方法,特別為一種金屬化合物奈米管陣列之製造方法。 The invention relates to a method for manufacturing a nanotube array, in particular to a method for manufacturing a metal compound nanotube array.

奈米管是一種具有奈米級尺寸的元件,其具有在塊狀態下無法發現的新特性,可應用於各種不同的領域中。例如,碳奈米管可被應用於平面顯示面板(flat display panel)中,也可以被應用在燃料電池領域。此外,利用奈米管也能做出超微細配線的配線材料,是過去的技術無法實現的。 The nanotube is a nanometer-sized component that has new properties that cannot be found in the block state and can be applied to various fields. For example, carbon nanotubes can be used in flat display panels or in the field of fuel cells. In addition, wiring materials that can be made with ultra-fine wiring by using a nanotube can not be realized by the prior art.

然而,在奈米管的製造技術中大多需要先提供具有複數個貫通孔的模板,再於模板表面使用蒸鍍法形成金(Au)層作為陰極,並使用電解液利用電化學方法,讓金屬化合物在模板的貫通孔壁面上形成奈米管。但是,利用電化學方法形成的奈米管的膜厚難以控制,並且需要很長的反應時間。 However, in the manufacturing technology of the nanotubes, it is often necessary to first provide a template having a plurality of through holes, and then form a gold (Au) layer as a cathode by vapor deposition on the surface of the template, and use an electrochemical method to make the metal using an electrolytic solution. The compound forms a nanotube on the through-hole wall surface of the template. However, the film thickness of the nanotube formed by the electrochemical method is difficult to control and requires a long reaction time.

因此,如何改善奈米管的製造方法,使奈米管的膜厚可有效控制,並讓複數個奈米管能準確定位排列成陣列,將是目前亟需研究的技術。 Therefore, how to improve the manufacturing method of the nanotubes, the film thickness of the nanotubes can be effectively controlled, and the plurality of nanotubes can be accurately positioned and arrayed, which will be an urgent research technique.

本發明為一種金屬化合物奈米管陣列之製造方法,其係利用以自組裝奈米球陣列製成之奈米線模板,使奈米線可準直定位且規則有序的排列成陣列,再於高分子遮罩及奈米線表面披覆金屬層,以構成核心為奈米線而核殼為金屬化合物之金屬化合物奈米柱結構,再進行多次選擇性蝕刻分別移除多餘之金屬層、高分子遮罩及作為核心之奈米線,藉此在不使用昂貴機台設備及複雜的半導體微影製程的條件下,在基板上製備出準直排列之奈米管陣列。 The invention relates to a method for manufacturing a metal compound nanotube array, which utilizes a nanowire template made of a self-assembled nanosphere array, so that the nanowires can be collimated and arranged in an orderly array, and then arranged. The metal layer is coated on the surface of the polymer mask and the nanowire to form a metal compound nano-column structure in which the core is a nanowire and the core shell is a metal compound, and then multiple selective etching is performed to remove the excess metal layer. The polymer mask and the core nanowire are used to prepare a collimated array of nanotubes on the substrate without using expensive machine equipment and complicated semiconductor lithography processes.

本發明提供一種金屬化合物奈米管陣列之製造方法,其包括下列步驟:提供一奈米線模板,奈米線模板包括一基板及生長於其上並呈陣列排列之複數根奈米線,且每一奈米線之頂端具有一高分子遮罩;披覆一金屬層於每一高分子遮罩及每一奈米線之表面後進行退火,以形成核心為奈米線且核殼為金屬化合物之一金屬化合物奈米柱結構;進行第一次選擇性蝕刻,其係使用第一蝕刻材料移除每一金屬化合物奈米柱結構表面多餘之金屬層;進行第二次選擇性蝕刻,其係使用第二蝕刻材料移除每一高分子遮罩;以及進行第三次選擇性蝕刻,其係使用第三蝕刻材料移除每一核心之奈米線並留下核殼,以製成一金屬化合物奈米管陣列。 The invention provides a method for manufacturing a metal compound nanotube array, comprising the steps of: providing a nanowire template, the nanowire template comprising a substrate and a plurality of nanowires grown thereon and arranged in an array, and A polymer mask is arranged on the top of each nanowire; a metal layer is coated on each polymer mask and the surface of each nanowire to be annealed to form a core of nanowires and a core shell of metal a metal compound nanocolumn structure of a compound; performing a first selective etching using a first etching material to remove an excess metal layer on the surface of each metal compound nanocolumn structure; performing a second selective etching, Removing each of the polymer masks using a second etch material; and performing a third selective etch using a third etch material to remove the nanowires of each core and leaving a core shell to form a Metal compound nanotube array.

藉由本發明的實施,至少可達到下列進步功效:一、可製造出準直排列之奈米管陣列;及二、能準確控制奈米管之厚度。 By the implementation of the present invention, at least the following advancements can be achieved: first, a collimated array of nanotubes can be fabricated; and second, the thickness of the nanotubes can be accurately controlled.

為了使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點,因此將在實施方式中詳細敘述本發明之詳細特徵以及優點。 In order to make those skilled in the art understand the technical content of the present invention and implement it, and according to the disclosure, the patent scope and the drawings, the related objects and advantages of the present invention can be easily understood by those skilled in the art. The detailed features and advantages of the present invention will be described in detail in the embodiments.

10‧‧‧奈米線模板 10‧‧‧Nami line template

11‧‧‧基板 11‧‧‧Substrate

12‧‧‧奈米線 12‧‧‧Nami Line

13‧‧‧高分子遮罩 13‧‧‧ Polymer mask

20‧‧‧基材 20‧‧‧Substrate

21、21'‧‧‧奈米球 21, 21'‧‧‧Nami Ball

30‧‧‧金屬層 30‧‧‧metal layer

31‧‧‧金屬化合物 31‧‧‧Metal compounds

D‧‧‧間隙 D‧‧‧ gap

L‧‧‧長度 L‧‧‧ length

T‧‧‧厚度 T‧‧‧ thickness

第1圖為本發明實施例之一種金屬化合物奈米管陣列之製造方法流程圖;第2圖為本發明實施例之一種奈米線模板之示意圖;第3圖為本發明實施例之一種奈米線模板之製造方法流程圖;第4A圖為本發明實施例之一種自組裝奈米球陣列形成於基材上表面之示意圖;第4B圖為本發明實施例之一種調變奈米球直徑後之示意圖;第4C圖為本發明實施例之一種奈米線模板之立體示意圖;第5圖為本發明實施例之一種披覆金屬層於高分子遮罩及奈米線表面之示意圖;第6圖為第5圖中之結構進行退火後之示意圖;第7圖為第6圖中之結構進行第一次選擇性蝕刻後之示意圖;第8圖為第7圖中之結構進行第二次選擇性蝕刻後之示意圖;及第9圖為第8圖中之結構進行第三次選擇性蝕刻後之示意圖。 1 is a flow chart of a method for manufacturing a metal compound nanotube array according to an embodiment of the present invention; FIG. 2 is a schematic diagram of a nanowire template according to an embodiment of the present invention; and FIG. 3 is a diagram of an embodiment of the present invention. A flow chart of a method for manufacturing a rice noodle template; FIG. 4A is a schematic view showing a self-assembled nanosphere array formed on an upper surface of a substrate according to an embodiment of the present invention; and FIG. 4B is a modified nanosphere diameter according to an embodiment of the present invention; FIG. 4C is a schematic perspective view of a nanowire template according to an embodiment of the present invention; FIG. 5 is a schematic view showing a metal layer covering a polymer mask and a surface of a nanowire according to an embodiment of the present invention; 6 is a schematic view of the structure in FIG. 5 after annealing; FIG. 7 is a schematic view of the structure in FIG. 6 after the first selective etching; and FIG. 8 is the second time in the structure in FIG. A schematic view after selective etching; and FIG. 9 is a schematic view of the structure of FIG. 8 after a third selective etching.

如第1圖所示,本實施例提供一種金屬化合物奈米管 陣列之製造方法,其包括下列步驟:提供奈米線模板(步驟S10);形成金屬化合物奈米柱結構(步驟S20);進行第一次選擇性蝕刻(步驟S30);進行第二次選擇性蝕刻(步驟S40);以及進行第三次選擇性蝕刻(步驟S50)。 As shown in FIG. 1, the embodiment provides a metal compound nanotube A method of manufacturing an array, comprising the steps of: providing a nanowire template (step S10); forming a metal compound nanocolumn structure (step S20); performing a first selective etching (step S30); performing a second selectivity Etching (step S40); and performing a third selective etching (step S50).

提供奈米線模板(步驟S10):如第2圖所示,奈米線模板10包括一基板11及複數根奈米線12,奈米線12生長於基板11上並呈陣列形式排列,並且每一奈米線12的頂端具有一高分子遮罩13。 Providing a nanowire template (step S10): as shown in FIG. 2, the nanowire template 10 includes a substrate 11 and a plurality of nanowires 12 grown on the substrate 11 and arranged in an array, and The top end of each nanowire 12 has a polymer mask 13.

如第3圖所示,上述奈米線模板10的製造方法包括下列步驟:形成自組裝奈米球陣列於基材表面(步驟S11);調變奈米球之直徑(步驟S12);及進行蝕刻(步驟S13)。 As shown in FIG. 3, the method for manufacturing the nanowire template 10 includes the steps of: forming a self-assembled nanosphere array on a surface of the substrate (step S11); modulating the diameter of the nanosphere (step S12); Etching (step S13).

形成自組裝奈米球陣列於基材表面(步驟S11):如第2圖及第4A圖所示,基材20之材質可以為單晶矽或多晶矽,例如是(001)方向的矽晶材,基材20之材質也可以是鎵(Ga)或氧化鋁(Al2O3),而製造出的奈米線12的材質便同樣是單晶矽、多晶矽、鎵或氧化鋁。可透過奈米球自組裝技術,使直徑介於300~5,000奈米之間的奈米球21在基材20的上表面呈大面積有序排列的奈米球陣列,其中奈米球自組裝技術已為習知技術,在此不再多加贅述。 Forming a self-assembled nanosphere array on the surface of the substrate (step S11): as shown in FIG. 2 and FIG. 4A, the material of the substrate 20 may be a single crystal germanium or a polycrystalline germanium, for example, a germanium crystal in the (001) direction. The material of the substrate 20 may be gallium (Ga) or aluminum oxide (Al 2 O 3 ), and the material of the manufactured nanowire 12 is also a single crystal germanium, polycrystalline germanium, gallium or aluminum oxide. Through the nanosphere self-assembly technology, the nanospheres 21 having a diameter between 300 and 5,000 nanometers are arranged on the upper surface of the substrate 20 in a large-area ordered array of nanospheres, wherein the nanospheres are self-assembled. The technology has been a conventional technique and will not be further described herein.

調變奈米球之直徑(步驟S12):如第4B圖及第5圖所示,可再利用電漿蝕刻法調變縮減奈米球21’的直徑,奈米球21’之直徑可被縮減至使相鄰的奈米球21’之間的間隙D大於兩倍金屬層30之厚度T,其中金屬層30為後續欲披覆於奈米線12表面之材質,而調變直徑後之奈米球21’則用來作為後續蝕刻之高分子遮罩13之用。 Modulating the diameter of the nanosphere (step S12): as shown in FIG. 4B and FIG. 5, the diameter of the nanosphere 21' can be modulated by plasma etching, and the diameter of the nanosphere 21' can be The reduction is such that the gap D between the adjacent nanospheres 21' is greater than twice the thickness T of the metal layer 30, wherein the metal layer 30 is a material to be subsequently applied to the surface of the nanowire 12, and the diameter is adjusted. The nanosphere 21' is used as a polymer mask 13 for subsequent etching.

進行蝕刻(步驟S13):在進行蝕刻(步驟S13)之前,可先以電子槍蒸鍍系統蒸鍍金薄膜於基材20及奈米球21’上,接著如第4C圖所示,再以混合蝕刻液於溫度20℃下進行濕式蝕刻或RIE乾式蝕刻,其中金薄膜可用來輔助催化蝕刻的進行。在進行蝕刻時,沒有奈米球21’作為高分子遮罩13的部份將會被蝕刻,並在基材20上蝕刻出呈陣列排列之複數根奈米線12,隨著蝕刻的時間增加,奈米線12的長度也會隨之增長,其中奈米線12之長度L為0.7微米至3微米。 Etching (step S13): before etching (step S13), the gold film may be vapor-deposited on the substrate 20 and the nanosphere 21' by an electron gun evaporation system, followed by hybrid etching as shown in FIG. 4C. The solution is subjected to wet etching or RIE dry etching at a temperature of 20 ° C, wherein a gold film can be used to assist in the progress of the catalytic etching. When etching is performed, no portion of the nanosphere 21' as the polymer mask 13 will be etched, and a plurality of nanowires 12 arranged in an array are etched on the substrate 20, as the etching time increases. The length of the nanowire 12 will also increase, wherein the length L of the nanowire 12 is from 0.7 micrometers to 3 micrometers.

上述混合蝕刻液包括雙氧水、氫氟酸及去離子水,其中雙氧水、氫氟酸及去離子水的體積混合比例可以是1:1:1、1:8:12~24或1:4:18,而雙氧水的濃度為35%重量百分比,氫氟酸的濃度為49%重量百分比。 The mixed etching liquid includes hydrogen peroxide, hydrofluoric acid and deionized water, wherein the volume mixing ratio of hydrogen peroxide, hydrofluoric acid and deionized water can be 1:1:1, 1:8:12~24 or 1:4:18 The concentration of hydrogen peroxide was 35% by weight, and the concentration of hydrofluoric acid was 49% by weight.

由於作為高分子遮罩13的奈米球21是以自組裝技術有序定位排列於基材20上,因此蝕刻而成的奈米線12也會是準直規則有序排列的,非常有助於後續製造奈米柱或奈米管的製程中,確保奈米柱或奈米管的準直度。為了便於理解,將蝕刻完成後的基材20部份另定義為基板11,而奈米線12則呈陣列排列於基板11的上表面。 Since the nanospheres 21 as the polymer mask 13 are arranged on the substrate 20 in an orderly manner by self-assembly technology, the etched nanowires 12 are also aligned and arranged in an orderly manner, which is very helpful. In the subsequent manufacturing process of the nano column or the nanotube, the alignment of the nano column or the nanotube is ensured. For ease of understanding, the portion of the substrate 20 after the etching is further defined as the substrate 11, and the nanowires 12 are arranged in an array on the upper surface of the substrate 11.

形成一金屬化合物奈米柱結構(步驟S20):如第5圖所示,其係顯示將金屬層30披覆於奈米線模板10上的狀態,其中金屬層30可以是鎳金屬層。此步驟可使用鍍膜系統或蒸鍍系統使金屬層30均勻披覆於每一高分子遮罩13的表面及每一奈米線12的側邊表面,而在進行披覆金屬層30的過程中,奈米線模板10與鍍膜源或蒸鍍源之間可呈一特定角度,以利用全方位角度方式使金屬 層30均勻地鍍至高分子遮罩13及奈米線12的表面。 A metal compound nanocolumn structure is formed (step S20): as shown in Fig. 5, which shows a state in which the metal layer 30 is coated on the nanowire template 10, wherein the metal layer 30 may be a nickel metal layer. This step may use a coating system or an evaporation system to uniformly coat the metal layer 30 on the surface of each of the polymer masks 13 and the side surfaces of each of the nanowires 12, in the process of coating the metal layer 30. The nanowire template 10 can be at a specific angle with the coating source or the evaporation source to make the metal use the omnidirectional angle The layer 30 is uniformly plated onto the surfaces of the polymer mask 13 and the nanowire 12.

如第6圖所示,接著再進行退火,其係於高溫爐中通入氮氣,並在溫度為200℃~1,000℃的環境下進行退火,使金屬在奈米線12表面形成金屬化合物31,藉此形成金屬化合物奈米柱結構,其中金屬化合物奈米柱結構的核心為奈米線12,而核殼則為金屬化合物31。 As shown in Fig. 6, annealing is further carried out by introducing nitrogen gas into a high-temperature furnace and annealing at a temperature of 200 ° C to 1,000 ° C to form a metal compound 31 on the surface of the nanowire 12 . Thereby, a metal compound nanocolumn structure is formed in which the core of the metal compound nanocolumn structure is the nanowire 12, and the core shell is the metal compound 31.

由於是使用鍍膜系統或蒸鍍系統將金屬層30披覆於奈米線模板10上,因此可控制金屬化合物奈米柱結構的核殼厚度(即金屬化合物31的厚度),而在基材20及奈米線12之材質為單晶矽或多晶矽的情況下,金屬化合物31則可以為金屬矽化物。 Since the metal layer 30 is coated on the nanowire template 10 using a coating system or an evaporation system, the core shell thickness of the metal compound nanocolumn structure (i.e., the thickness of the metal compound 31) can be controlled, and on the substrate 20 When the material of the nanowire 12 is single crystal germanium or polycrystalline germanium, the metal compound 31 may be a metal halide.

進行第一次選擇性蝕刻(步驟S30):如第7圖所示,在完成金屬化合物奈米柱結構的製備(步驟S20)後,使用第一蝕刻材料移除每一金屬化合物奈米柱結構表面多餘之金屬層,例如是披覆於高分子遮罩13表面的金屬層。其中,第一蝕刻材料為硝酸(HNO3)或鹽酸(HCl),而金屬化合物奈米柱結構表面多餘之金屬層則是指經過熱退火步驟後,金屬材料與奈米線12材料反應完後,剩餘的金屬材料。以鎳金屬及矽奈米線為例,就是指鎳與矽反應完成後殘留在金屬化合物奈米柱結構表面的鎳金屬。 Performing a first selective etching (step S30): as shown in FIG. 7, after completing the preparation of the metal compound nanocolumn structure (step S20), each metal compound nanocolumn structure is removed using the first etching material The excess metal layer on the surface is, for example, a metal layer coated on the surface of the polymer mask 13. Wherein, the first etching material is nitric acid (HNO 3 ) or hydrochloric acid (HCl), and the metal layer on the surface of the metal compound nano-column structure refers to the reaction of the metal material with the nanowire 12 material after the thermal annealing step , the remaining metal material. Taking nickel metal and tantalum nanowires as an example, it refers to nickel metal remaining on the surface of the metal compound nanocolumn structure after the reaction of nickel and ruthenium is completed.

進行第二次選擇性蝕刻(步驟S40):如第7圖及第8圖所示,在進行第一次選擇性蝕刻(步驟S30)後,再使用第二蝕刻材料移除位在每一奈米線12頂部的每一高分子遮罩13,使金屬化合物奈米柱結構的核心部份(即奈米線12)的頂部裸露出來,其中第二蝕刻材料可以是聚烷類溶劑,例如是四氫砆喃(Tetrahydrofuran,THF)、具有羰基類溶劑,例如是丁酮(MEK)、苯類溶劑,例如是 甲苯、或芳香族類溶劑,例如是四氯乙烯或乙烯。 Performing a second selective etching (step S40): as shown in FIGS. 7 and 8, after performing the first selective etching (step S30), the second etching material is used to remove the bit in each Each polymer mask 13 on the top of the rice noodle 12 exposes the top of the core portion of the metal compound nano-pillar structure (ie, the nanowire 12), wherein the second etching material may be a polyalkane solvent, for example Tetrahydrofuran (THF), having a carbonyl solvent such as methyl ethyl ketone (MEK), a benzene solvent, for example Toluene or an aromatic solvent such as tetrachloroethylene or ethylene.

進行第三次選擇性蝕刻(步驟S50):如第8圖及第9圖所示,在進行第二次選擇性蝕刻(步驟S40)後,使用第三蝕刻材料移除每一核心之奈米線12並留下核殼(即金屬化合物31),以製成一金屬化合物奈米管陣列。其中,第三蝕刻材料可以是銨鹼類有機溶劑,例如是四甲基氫氧化銨(TMAH)、強鹼氫氧化物有機溶劑,例如是氫氧化鈉(NaOH),或是鉀化合物有機溶劑,例如是氫氧化鉀(KOH),且其濃度為6~13重量百分比(wt%)。 Performing a third selective etching (step S50): as shown in FIGS. 8 and 9, after performing the second selective etching (step S40), the third etching material is used to remove each core of the nanometer. Line 12 leaves a core shell (i.e., metal compound 31) to form a metal compound nanotube array. The third etching material may be an ammonium base organic solvent, such as tetramethylammonium hydroxide (TMAH), a strong alkali hydroxide organic solvent, such as sodium hydroxide (NaOH), or a potassium compound organic solvent. For example, potassium hydroxide (KOH) has a concentration of 6 to 13 weight percent (wt%).

以本創作實施例製成之金屬化合物奈米管陣列具有利用奈米球自組裝技術讓奈米線12可在基板11上準直定位並有序排列之優點,而使得金屬化合物奈米管也可準直排列定位。另外,由於可控制金屬層30披覆於高分子遮罩13及奈米線12的表面的厚度T,因此金屬化合物奈米管陣列中每一金屬化合物奈米管的厚度也可輕易控制。 The metal compound nanotube array prepared by the present embodiment has the advantages of using the nanosphere self-assembly technology to allow the nanowires 12 to be collimated and ordered on the substrate 11, so that the metal compound nanotubes are also Can be aligned and positioned. Further, since the thickness T of the surface of the polymer mask 13 and the nanowire 12 can be controlled by the metal layer 30, the thickness of each metal compound nanotube in the metal compound nanotube array can be easily controlled.

惟上述各實施例係用以說明本發明之特點,其目的在使熟習該技術者能瞭解本發明之內容並據以實施,而非限定本發明之專利範圍,故凡其他未脫離本發明所揭示之精神而完成之等效修飾或修改,仍應包含在以下所述之申請專利範圍中。 The embodiments are described to illustrate the features of the present invention, and the purpose of the present invention is to enable those skilled in the art to understand the present invention and to implement the present invention without limiting the scope of the present invention. Equivalent modifications or modifications made by the spirit of the disclosure should still be included in the scope of the claims described below.

S10‧‧‧提供奈米線模板步驟 S10‧‧‧ provides nanowire template steps

S20‧‧‧形成金屬化合物奈米柱結構步驟 S20‧‧‧Formation of metal compound nanocolumn structure

S30‧‧‧進行第一次選擇性蝕刻步驟 S30‧‧‧First selective etching step

S40‧‧‧進行第二次選擇性蝕刻步驟 S40‧‧‧Second selective etching step

S50‧‧‧進行第三次選擇性蝕刻步驟 S50‧‧‧A third selective etching step

Claims (14)

一種金屬化合物奈米管陣列之製造方法,其包括下列步驟:提供一奈米線模板,該奈米線模板包括一基板及生長於其上並呈陣列排列之複數根奈米線,且每一該奈米線之頂端具有一高分子遮罩;披覆一金屬層於每一該高分子遮罩及每一該奈米線之表面後進行退火,以形成核心為該奈米線且核殼為金屬化合物之一金屬化合物奈米柱結構;進行第一次選擇性蝕刻,其係使用第一蝕刻材料移除每一該金屬化合物奈米柱結構表面多餘之該金屬層;進行第二次選擇性蝕刻,其係使用第二蝕刻材料移除每一該高分子遮罩;以及進行第三次選擇性蝕刻,其係使用第三蝕刻材料移除每一該核心之該奈米線並留下該核殼,以製成一金屬化合物奈米管陣列。 A method for manufacturing a metal compound nanotube array, comprising the steps of: providing a nanowire template, the nanowire template comprising a substrate and a plurality of nanowires grown thereon and arranged in an array, and each The top of the nanowire has a polymer mask; a metal layer is coated on each of the polymer mask and the surface of each of the nanowires to be annealed to form a core for the nanowire and a core shell a metal compound nanocolumn structure which is one of metal compounds; performing a first selective etching by removing the metal layer remaining on the surface of each of the metal compound nanocolumn structures using the first etching material; performing the second selection Scratch, which uses a second etch material to remove each of the polymer masks; and a third selective etch that removes the nanowires of each of the cores using a third etch material and leaves The core shell is formed into an array of metal compound nanotubes. 如申請專利範圍第1項所述之製造方法,其中該奈米線模板之製造方法係包括下列步驟:形成一自組裝奈米球陣列於一基材之上表面;調變該自組裝奈米球陣列中每一奈米球之直徑,其中每一該奈米球係作為一該高分子遮罩;以及進行蝕刻,其係以一混合蝕刻液於溫度20℃下進行濕式蝕刻或RIE乾式蝕刻,在該基板上形成呈陣列排列之複數根該奈米線。 The manufacturing method of claim 1, wherein the method for manufacturing the nanowire template comprises the steps of: forming a self-assembled nanosphere array on a surface of a substrate; and modulating the self-assembled nanometer. The diameter of each nanosphere in the array of spheres, wherein each of the nanospheres serves as a polymeric mask; and etching is performed by wet etching or RIE dry at a temperature of 20 ° C using a mixed etching solution Etching, forming a plurality of the nanowires arranged in an array on the substrate. 如申請專利範圍第1項或第2項所述之製造方法,其中該基板及 該奈米線之材質為單晶矽或多晶矽,而該金屬化合物為金屬矽化物。 The manufacturing method of claim 1 or 2, wherein the substrate and The material of the nanowire is monocrystalline or polycrystalline, and the metal compound is a metal halide. 如申請專利範圍第2項所述之製造方法,其中每一該奈米球之直徑為300~5,000奈米。 The manufacturing method according to claim 2, wherein each of the nanospheres has a diameter of 300 to 5,000 nm. 如申請專利範圍第4項所述之製造方法,其中調變該自組裝奈米球陣列中每一該奈米球之直徑是以電漿蝕刻法將每一該奈米球之直徑縮減至使相鄰之該奈米球之間隙大於兩倍該金屬層之厚度。 The manufacturing method of claim 4, wherein modulating the diameter of each of the nanospheres in the self-assembled nanosphere array reduces the diameter of each of the nanospheres by plasma etching to The gap between adjacent nanospheres is greater than twice the thickness of the metal layer. 如申請專利範圍第5項所述之製造方法,其中該混合蝕刻液包括雙氧水、氫氟酸及去離子水,其體積混合比例為1:1:1、1:8:12~24或1:4:18之,其中該雙氧水之濃度為35%重量百分比,該氫氟酸之濃度為49%重量百分比。 The manufacturing method according to claim 5, wherein the mixed etching solution comprises hydrogen peroxide, hydrofluoric acid and deionized water, and the volume mixing ratio is 1:1:1, 1:8:12~24 or 1: 4:18, wherein the concentration of the hydrogen peroxide is 35% by weight, and the concentration of the hydrofluoric acid is 49% by weight. 如申請專利範圍第1項所述之製造方法,其中該奈米線之長度為0.7微米至3微米。 The manufacturing method according to claim 1, wherein the nanowire has a length of from 0.7 μm to 3 μm. 如申請專利範圍第1項所述之製造方法,其中該金屬層為鎳金屬層,其係以鍍膜系統或蒸鍍系統將鎳金屬均勻披覆於每一該高分子遮罩及每一該奈米線之表面。 The manufacturing method of claim 1, wherein the metal layer is a nickel metal layer, and the nickel metal is uniformly coated on each of the polymer masks and each of the nano-coatings by a coating system or an evaporation system. The surface of the rice noodle. 如申請專利範圍第1項所述之製造方法,其中進行退火時,其係於高溫爐中通入氮氣,且退火溫度為200℃~1,000℃。 The manufacturing method according to claim 1, wherein when annealing is performed, nitrogen gas is introduced into the high-temperature furnace, and the annealing temperature is 200 ° C to 1,000 ° C. 如申請專利範圍第1項所述之製造方法,其中該第一蝕刻材料為硝酸(HNO3)或鹽酸(HCl)。 The manufacturing method of claim 1, wherein the first etching material is nitric acid (HNO 3 ) or hydrochloric acid (HCl). 如申請專利範圍第1項所述之製造方法,其中該第二蝕刻材料為聚烷類溶劑、具有羰基類溶劑、苯類溶劑或芳香族類溶劑。 The manufacturing method according to claim 1, wherein the second etching material is a polyalkyl solvent, a carbonyl solvent, a benzene solvent or an aromatic solvent. 如申請專利範圍第11項所述之製造方法,其中該聚烷類溶劑為 四氫砆喃(Tetrahydrofuran,THF),該具有羰基類溶劑為丁酮(MEK),該苯類溶劑為甲苯,該芳香族類溶劑為四氯乙烯或乙烯。 The manufacturing method according to claim 11, wherein the polyalkane solvent is Tetrahydrofuran (THF), the carbonyl-based solvent is methyl ethyl ketone (MEK), the benzene solvent is toluene, and the aromatic solvent is tetrachloroethylene or ethylene. 如申請專利範圍第1項所述之製造方法,其中該第三蝕刻材料為銨鹼類有機溶劑、強鹼氫氧化物有機溶劑或鉀化合物有機溶劑,且其濃度為6~13重量百分比(wt%)。 The manufacturing method according to claim 1, wherein the third etching material is an ammonium base organic solvent, a strong alkali hydroxide organic solvent or a potassium compound organic solvent, and the concentration thereof is 6 to 13 weight percent (wt %). 如申請專利範圍第13項所述之製造方法,其中該銨鹼類有機溶劑為四甲基氫氧化銨(TMAH),該強鹼氫氧化物有機溶劑為氫氧化鈉(NaOH),該鉀化合物有機溶劑為氫氧化鉀(KOH)。 The manufacturing method according to claim 13, wherein the ammonium base organic solvent is tetramethylammonium hydroxide (TMAH), and the strong alkali hydroxide organic solvent is sodium hydroxide (NaOH), the potassium compound The organic solvent is potassium hydroxide (KOH).
TW103137120A 2014-10-28 2014-10-28 Method for manufacturing metallic compound nanotube arrays TWI562956B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103137120A TWI562956B (en) 2014-10-28 2014-10-28 Method for manufacturing metallic compound nanotube arrays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103137120A TWI562956B (en) 2014-10-28 2014-10-28 Method for manufacturing metallic compound nanotube arrays

Publications (2)

Publication Number Publication Date
TW201615536A true TW201615536A (en) 2016-05-01
TWI562956B TWI562956B (en) 2016-12-21

Family

ID=56508416

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103137120A TWI562956B (en) 2014-10-28 2014-10-28 Method for manufacturing metallic compound nanotube arrays

Country Status (1)

Country Link
TW (1) TWI562956B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229692B2 (en) * 2004-02-09 2007-06-12 Ut-Battelle Llc Nanoconduits and nanoreplicants
KR20120023661A (en) * 2009-04-13 2012-03-13 어플라이드 머티어리얼스, 인코포레이티드 Metallized fibers for electrochemical energy storage
TW201105571A (en) * 2009-08-06 2011-02-16 Univ Nat Cheng Kung Method for fabricating hollow nanotube structure

Also Published As

Publication number Publication date
TWI562956B (en) 2016-12-21

Similar Documents

Publication Publication Date Title
Chang et al. Metal‐Catalyzed Etching of Vertically Aligned Polysilicon and Amorphous Silicon Nanowire Arrays by Etching Direction Confinement
US8802047B2 (en) Embedded nanoparticle films and method for their formation in selective areas on a surface
Chang et al. Densely packed arrays of ultra‐high‐aspect‐ratio silicon nanowires fabricated using block‐copolymer lithography and metal‐assisted etching
TWI557067B (en) Method of making nanowire array
US9102118B2 (en) Forming patterned graphene layers
CN103241728B (en) Porous anodic aluminium oxide is utilized to prepare the method for grapheme nano-pore array for templated chemistry vapour deposition
CN101266919A (en) A method for selectively etching silicon nano line
TW201341309A (en) Method of preparing graphene nanoribbons
JP2006052122A (en) Matrix structure of carbon nanotube and its manufacturing method
CN101560663B (en) Method for electrochemically preparing nano-array structure materials on basis of nano-mask preparation technique
CN105336566B (en) A kind of preparation method of nanoscale microstructures
WO2013063838A1 (en) Method for preparing superfine line
US20140030873A1 (en) Method for fabricating patterned silicon nanowire array and silicon microstructure
KR101671627B1 (en) Method for graphene-assisted chemical etching of silicon
WO2017152500A1 (en) Preparation method for semiconductor layer and thin film transistor (tft), tft, and array substrate
JP2005347378A (en) Pattern forming method for nanocarbon material, semiconductor device, and manufacturing method therefor
Zheng et al. Large-scale pattern transfer based on non-through-hole AAO self-supporting membranes
TW201615536A (en) Method for manufacturing metallic compound nanotube arrays
US10147789B2 (en) Process for fabricating vertically-aligned gallium arsenide semiconductor nanowire array of large area
KR101399347B1 (en) Process for preparing nano channel using carbon nano tube and nano structure using the same
CN206244402U (en) A kind of graphene-based nanowire composite structures
CN109727858A (en) Orient self assembly template transfer method
CN114604865B (en) Graphene nanoribbon composite structure and preparation method thereof
CN102509694B (en) Method for maintaining partial amorphous carbon layer
CN104445057A (en) Gallium arsenide nanowire array and preparation method thereof