TW201506576A - Photovoltaic module array configuration method and system thereof - Google Patents

Photovoltaic module array configuration method and system thereof Download PDF

Info

Publication number
TW201506576A
TW201506576A TW102128869A TW102128869A TW201506576A TW 201506576 A TW201506576 A TW 201506576A TW 102128869 A TW102128869 A TW 102128869A TW 102128869 A TW102128869 A TW 102128869A TW 201506576 A TW201506576 A TW 201506576A
Authority
TW
Taiwan
Prior art keywords
solar photovoltaic
photovoltaic module
module array
output power
particle swarm
Prior art date
Application number
TW102128869A
Other languages
Chinese (zh)
Other versions
TWI524165B (en
Inventor
Kuei-Hsiang Chao
Boj-Yun Liao
Original Assignee
Nat Univ Chin Yi Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chin Yi Technology filed Critical Nat Univ Chin Yi Technology
Priority to TW102128869A priority Critical patent/TWI524165B/en
Publication of TW201506576A publication Critical patent/TW201506576A/en
Application granted granted Critical
Publication of TWI524165B publication Critical patent/TWI524165B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

A photovoltaic module array configuration method and system is disclosed and is applied for a photovoltaic module. As the result, the present invention tracks a maximum power point of the photovoltaic module array based on particle swarm optimization (PSO), and obtains the optimized configuration structure of the photovoltaic module array.

Description

太陽光電模組陣列最佳化配置方法及其系統 Solar photovoltaic module array optimization configuration method and system thereof

本發明是有關於一種太陽光電模組陣列,特別是有關於一種利用粒子群演算法建構有遮蔽或故障情形時之太陽光電模組陣列最佳化配置方法及其系統。 The invention relates to a solar photovoltaic module array, in particular to a solar photovoltaic module array optimization configuration method and system thereof for constructing a shadow or fault condition by using a particle swarm algorithm.

在目前眾多可再生能源中,其中以太陽能佔最重要的一部分,如考量建構太陽光電模組陣列之發電效率,其必需設置於日照時間長且空曠無遮蔭之場所。然而,太陽光受遮蔭之情況在所難免,且太陽光電模組陣列長時間置於戶外,亦可能受自然環境之影響,如颱風、雷擊及長時間使用等,容易導致太陽光電模組陣列劣化而故障,一旦發生遮蔭或故障之情形,將使得其發電輸出功率大幅下降。因此,若要提升太陽光電模組陣列之發電效率,解決太陽光電模組陣列遮蔭與故障之問題將是首要之工作。 Among the many renewable energy sources, solar energy accounts for the most important part. For example, considering the power generation efficiency of the solar photovoltaic module array, it must be set in a place with long sunshine hours and no shade. However, the shade of sunlight is inevitable, and the array of solar photovoltaic modules is placed outdoors for a long time, and may also be affected by the natural environment, such as typhoons, lightning strikes and long-term use, which may easily lead to solar photovoltaic module arrays. Deterioration and failure, once the situation of shading or failure occurs, the power output will be greatly reduced. Therefore, to improve the power generation efficiency of the solar photovoltaic module array, it is the primary task to solve the problem of shading and failure of the solar photovoltaic module array.

然而一般習知的太陽光電模組陣列僅額外具有故障檢測之功能,雖然可立刻得知故障原因,卻仍需專業人員進一步維修方可使太陽光電模組陣列回復正常工作。 However, the conventional solar photovoltaic module array only has the function of fault detection. Although the cause of the fault can be immediately known, it is still necessary for the professional to perform further maintenance to restore the solar photovoltaic module array to normal operation.

此外,若將太陽光電模組陣列直接與供電之負載連接,此時輸出功率將由負載需求之功率所決定,而無法有效將光能轉換而成之電能全部輸出。因此,另有習知之太陽光電模組陣列為使輸出功率在任何工作條件下皆維持在最大功率點,在太陽光電模組陣列與負載之間以最大功率追蹤器(Maximum Power Point Tracking,MPPT)連接,讓其在任何工作情形下進行最大功率點之追蹤。 In addition, if the solar photovoltaic module array is directly connected to the load of the power supply, the output power will be determined by the power of the load demand, and the power converted by the light energy cannot be effectively outputted. Therefore, there is another conventional solar photovoltaic module array in which the output power is maintained at the maximum power point under any working conditions, and the Maximum Power Point Tracking (MPPT) is used between the solar photovoltaic module array and the load. Connect to let you track the maximum power point in any working situation.

然而前述習用太陽光電模組陣列受到遮蔭或發生故障時,導致太陽光電模組陣列受影響而無法正常工作,將引起太陽光電模組陣列之電流-電壓(I-V)特性曲線發生變化,連帶使其功率-電壓(P-V)特性曲線產生雙峰或多峰值之現象。為了解決上述之問題,更有習知技術提出改良太陽光電模組陣列之最大功率追蹤方法,使其能在有多峰值之情況下避開追蹤落在區域之功率極值,而使得最大功率追蹤器能夠追蹤至真正之最大功率點,以降低遮蔭或故障對太陽光電模組陣列之影響程度。上述進一步的習知方法雖可提升發電效率,但因太陽光電模組陣列仍採固定連接方式,若受遮蔭或故障情況太嚴重,仍將導致整體發電效能不佳,故上述之最大功率追蹤技術的改善效果仍然有限。 However, when the array of conventional solar photovoltaic modules is shaded or fails, the solar photovoltaic module array is affected and cannot work normally, which will cause a change in the current-voltage (IV) characteristic curve of the solar photovoltaic module array. Its power-voltage (PV) characteristic produces a bimodal or multi-peak phenomenon. In order to solve the above problems, more conventional techniques propose to improve the maximum power tracking method of the solar photovoltaic module array, so that it can avoid tracking the power extreme value falling in the region with multiple peaks, so that the maximum power tracking The device can track to the true maximum power point to reduce the impact of shading or malfunction on the solar module array. Although the above-mentioned further conventional methods can improve the power generation efficiency, since the solar photovoltaic module array still adopts a fixed connection mode, if the shading or the fault condition is too serious, the overall power generation performance will still be poor, so the above-mentioned maximum power tracking The improvement in technology is still limited.

另有習知技術提出將太陽光電模組陣列分為固定端與適應庫兩部分,在固定端之太陽光電模組陣列發生局部遮蔭時,則將適應庫之太陽光電模組陣列透過陣列開關連接至固定端,如此一來可藉由改變太陽光電模組陣 列連接之特性,降低遮蔭所帶來之負面影響。此方法雖能有效的提升發電效率,但需額外設置相當多的電壓、電流感測器以及連接開關,以便能將適應庫之太陽光電模組陣列連接至固定端之太陽光電模組陣列。然而若要大幅度提升其輸出功率,則必須在適應庫設置更多之太陽光電模組,在成本考量上將會造成相當大的負擔。 Another conventional technology proposes to divide the solar photovoltaic module array into two parts: the fixed end and the adaptive library. When the solar photovoltaic module array at the fixed end is partially shaded, the array of solar photovoltaic modules adapted to the library is transmitted through the array switch. Connected to the fixed end, so by changing the solar module The characteristics of column connections reduce the negative effects of shading. Although this method can effectively improve the power generation efficiency, an additional number of voltage and current sensors and connection switches are needed to connect the solar photovoltaic module array of the adaptation library to the solar photovoltaic module array at the fixed end. However, if the output power is to be greatly increased, more solar photovoltaic modules must be installed in the adaptation library, which will impose a considerable burden on cost considerations.

此外,亦有習知技術提出將原先使用單組最大功率追蹤器之太陽光電模組陣列更改為使用多組最大功率追蹤器,避免其中少數受遮蔭或故障之太陽光電模組影響太陽光電模組陣列之發電效率。此方法雖亦能有效提升發電效率,然而若欲將發電損失降至最低,則必須改由每塊太陽光電模組配接一組最大功率追蹤器,並需額外增設多組直流-直流轉換器(DC-DC Converter),導致整體成本亦隨之增加。 In addition, there are also known techniques to change the solar photovoltaic module array that originally used a single set of maximum power trackers to use multiple sets of maximum power trackers, to avoid the influence of a few shaded or faulty solar photovoltaic modules on the solar photovoltaic mode. The power generation efficiency of the array. Although this method can effectively improve the power generation efficiency, if you want to minimize the power generation loss, you must switch each solar photovoltaic module to a set of maximum power tracker, and add additional sets of DC-DC converters. (DC-DC Converter), resulting in an increase in overall costs.

本發明提出一種太陽光電模組陣列最佳化配置方法及其系統,其僅需單一組最大功率追蹤器,且本發明無須使用過多之陣列開關,藉此降低成本。 The invention provides a solar photovoltaic module array optimization configuration method and system thereof, which only requires a single group maximum power tracker, and the invention does not need to use too many array switches, thereby reducing the cost.

因此,本發明之方法態樣之一實施方式是在提供一種太陽光電模組陣列最佳化配置方法,其係應用於一太陽光電模組陣列,太陽光電模組陣列最佳化配置方法之步驟包含記錄太陽光電模組陣列於一預設條件下之一理想最大功率;追蹤太陽光電模組陣列之一輸出最大功率;比對理想最大功率及輸出最大功率;以及判斷太陽光電模組 陣列是否發生遮蔭或故障情形,若是發生遮蔭或故障情形則對太陽光電模組陣列進行最佳化配置。 Therefore, one embodiment of the method aspect of the present invention provides a method for optimally configuring a solar photovoltaic module array, which is applied to a solar photovoltaic module array, and a solar photovoltaic module array optimization configuration method. Including recording an ideal maximum power of the solar photovoltaic module array under a preset condition; tracking the output maximum power of one of the solar photovoltaic module arrays; comparing the ideal maximum power and outputting maximum power; and determining the solar photovoltaic module Whether the array is shaded or faulty, and if the shade or fault occurs, the solar photovoltaic module array is optimally configured.

依據本發明一實施例,上述追蹤太陽光電模組陣列之輸出最大功率之步驟係採一粒子群演算法(Particle Swarm Optimization,PSO)運算。而上述之方法更包含:一初始步驟,初始化粒子群演算法之相關參數,並輸出粒子群演算法之粒子位置為太陽光電模組陣列之一責任周期。一計算步驟,偵測太陽光電模組陣列之一輸出電壓與一輸出電流,並計算太陽光電模組陣列之一輸出功率為粒子群演算法之一最佳化目標函數值。一比對步驟,比對輸出功率是否大於粒子群演算法之一個體最佳適應值(Particle Best Value),若輸出功率大於個體最佳適應值則修正個體最佳適應值,且比對輸出功率是否大於粒子群演算法之一群體最佳適應值(Globe Best Value),若輸出功率大於群體最佳適應值則以此輸出功率取代群體最佳適應值。一評估步驟,依據粒子群演算法之方程式更新粒子速度及粒子位置。一疊代步驟,重複計算步驟、比對步驟及評估步驟滿足一最大疊代次數。以及一判斷步驟,判斷太陽光電模組陣列之遮蔭或故障情形是否變化,若遮蔭或故障情形發生變化則重新進行初始步驟,若遮蔭或故障情形未發生變化則維持判斷步驟。 According to an embodiment of the invention, the step of tracking the maximum output power of the array of solar photovoltaic modules is performed by a Particle Swarm Optimization (PSO) operation. The above method further comprises: an initial step of initializing the relevant parameters of the particle swarm algorithm, and outputting the particle position of the particle swarm algorithm as one of the duty cycles of the solar photovoltaic module array. A calculating step is to detect an output voltage and an output current of the solar photovoltaic module array, and calculate an output power of one of the solar photovoltaic module arrays as one of the optimized objective function values of the particle swarm algorithm. In an alignment step, whether the output power is greater than one of the Particle Best Values of the particle swarm algorithm, and if the output power is greater than the individual optimal fitness value, the individual optimal fitness value is corrected, and the output power is compared. Whether it is larger than the best value of the population of the particle swarm algorithm (Globe Best Value), if the output power is greater than the optimal fitness value of the group, the output power is used to replace the optimal fitness value of the group. An evaluation step that updates the particle velocity and particle position according to the equation of the particle swarm algorithm. In a stack of steps, the repeating calculation step, the comparison step, and the evaluation step satisfy a maximum number of iterations. And a judging step of determining whether the shading or fault condition of the solar photovoltaic module array changes, and if the shading or fault condition changes, the initial step is performed again, and if the shading or the fault condition does not change, the judging step is maintained.

依據本發明另一實施例,上述判斷太陽光電模組陣列是否發生遮蔭或故障情形,若發生遮蔭或故障情形則對太陽光電模組陣列進行最佳化配置之步驟係採一粒子 群演算法運算。而上述之步驟更包含一初始步驟,初始化粒子群演算法之相關參數,並輸出粒子群演算法之粒子位置為太陽光電模組陣列之一開關控制信號。一確認步驟,等待追蹤太陽光電模組陣列之輸出最大功率之步驟完成。一計算步驟,偵測太陽光電模組陣列之一輸出電壓與一輸出電流,並計算太陽光電模組陣列之一輸出功率為粒子群演算法之一最佳化目標函數值。一比對步驟,比對輸出功率是否大於粒子群演算法之一個體最佳適應值,若輸出功率大於個體最佳適應值則修正個體最佳適應值,且比對輸出功率是否大於粒子群演算法之一群體最佳適應值,若輸出功率大於群體最佳適應值則以此輸出功率取代群體最佳適應值。一評估步驟,依據粒子群演算法之方程式更新粒子速度及粒子位置。一疊代步驟,重複計算步驟、比對步驟及評估步驟滿足一最大疊代次數。以及一判斷步驟,判斷太陽光電模組陣列之遮蔭或故障情形是否變化,若遮蔭或故障情形發生變化則重新進行初始步驟,若遮蔭或故障情形未發生變化則維持判斷步驟。 According to another embodiment of the present invention, the determining whether the solar photovoltaic module array is shaded or faulty, and if the shading or the fault occurs, the step of optimizing the arrangement of the solar photovoltaic module array is to adopt a particle. Group algorithm operation. The above steps further comprise an initial step of initializing the relevant parameters of the particle swarm algorithm and outputting the particle position of the particle swarm algorithm as a switch control signal of the solar photovoltaic module array. In a confirmation step, the step of waiting to track the maximum output power of the solar photovoltaic module array is completed. A calculating step is to detect an output voltage and an output current of the solar photovoltaic module array, and calculate an output power of one of the solar photovoltaic module arrays as one of the optimized objective function values of the particle swarm algorithm. A comparison step, whether the output power is greater than the individual optimal fitness value of the particle swarm algorithm, and if the output power is greater than the individual optimal fitness value, the individual optimal fitness value is corrected, and whether the output power is greater than the particle swarm calculus The optimal fitness value of one of the populations is such that if the output power is greater than the optimal fitness value of the population, the output power is used to replace the optimal fitness value of the population. An evaluation step that updates the particle velocity and particle position according to the equation of the particle swarm algorithm. In a stack of steps, the repeating calculation step, the comparison step, and the evaluation step satisfy a maximum number of iterations. And a judging step of determining whether the shading or fault condition of the solar photovoltaic module array changes, and if the shading or fault condition changes, the initial step is performed again, and if the shading or the fault condition does not change, the judging step is maintained.

依據本發明再一實施例,上述太陽光電模組陣列之預設條件為一日照強度及一溫度。 According to still another embodiment of the present invention, the preset condition of the solar photovoltaic module array is a daylight intensity and a temperature.

本發明之一系統態樣之一實施方式是在提供一種太陽光電模組陣列最佳化配置系統,其係應用於一太陽光電模組陣列,太陽光電模組陣列最佳化配置系統包含一升壓型轉換器、一最大功率追蹤器、至少一連接開關以及一最佳化配置控制器。升壓型轉換器電性連接太陽光電 模組陣列。最大功率追蹤器電性連接升壓型轉換器及太陽光電模組陣列,最大功率追蹤器追蹤太陽光電模組陣列之一最大功率點。連接開關電性連接於太陽光電模組陣列。最佳化配置控制器電性連接太陽光電模組陣列、最大功率追蹤器及連接開關,最佳化配置控制器檢測太陽光電模組陣列之一輸出電壓、一輸出電流及一輸出功率,且最佳化配置控制器比對輸出功率及最大功率點並輸出一開關控制信號對應控制連接開關。 One embodiment of a system aspect of the present invention provides a solar photovoltaic module array optimization configuration system applied to a solar photovoltaic module array, and the solar photovoltaic module array optimization configuration system includes one liter. A profiler, a maximum power tracker, at least one connection switch, and an optimized configuration controller. Boost converter electrically connected to solar photovoltaic Module array. The maximum power tracker is electrically connected to the boost converter and the solar photovoltaic module array, and the maximum power tracker tracks the maximum power point of one of the solar photovoltaic module arrays. The connection switch is electrically connected to the solar photovoltaic module array. The optimal configuration controller electrically connects the solar photovoltaic module array, the maximum power tracker and the connection switch, and optimizes the configuration controller to detect one output voltage, one output current and one output power of the solar photovoltaic module array, and the most The configuration controller compares the output power and the maximum power point and outputs a switch control signal corresponding to the control connection switch.

依據本發明另一實施例,上述最佳化配置控制器及最大功率追蹤器係可採一粒子群演算法進行太陽光電模組陣列之最佳化配置及最大功率追蹤。 According to another embodiment of the present invention, the optimized configuration controller and the maximum power tracker can adopt a particle swarm algorithm to optimize the configuration and maximum power tracking of the solar photovoltaic module array.

依據本發明又一實施例,上述太陽光電模組陣列包含複數太陽光電模組,且連接開關數量可為複數,連接開關分別對應連接太陽光電模組。且太陽光電模組可採全部跨接排列成太陽光電模組陣列。太陽光電模組陣列最佳化配置系統更包含一直交流轉換器、一供電負載及一電晶體驅動電路,直交流轉換器電性連接升壓型轉換器,供電負載電性連接直交流轉換器,電晶體驅動電路電性連接電晶體及最大功率追蹤器。而升壓型轉換器可包含一輸入電容、一電感、一電晶體、一二極體以及一輸出電容,其中輸入電容具有一第一端及一第二端,而輸入電容的第一端及輸入電容的第二端電性連接於太陽光電模組陣列。電感具有一第三端及一第四端,電感的第三端電性連接輸入電容的第一端。電晶體具有一第五端及一第六端,電晶體 的第五端電性連接電感的第四端,電晶體的第六端電性連接輸入電容的第二端。二極體具有一第七端及一第八端,二極體的第七端電性連接電晶體的第五端及電感的第四端。輸出電容具有一第九端及一第十端,輸出電容的第九端電性連接二極體之第八端,輸出電容的第十端電性連接於電晶體之第六端及輸入電容之第二端。 According to still another embodiment of the present invention, the solar photovoltaic module array includes a plurality of solar photovoltaic modules, and the number of connection switches may be plural, and the connection switches respectively correspond to the solar photovoltaic modules. And the solar photovoltaic module can be arranged in all spans to form an array of solar photovoltaic modules. The solar photovoltaic module array optimization configuration system further comprises a constant AC converter, a power supply load and a transistor driving circuit, the direct AC converter is electrically connected to the boost converter, and the power supply load is electrically connected to the direct AC converter. The transistor driving circuit is electrically connected to the transistor and the maximum power tracker. The boost converter can include an input capacitor, an inductor, a transistor, a diode, and an output capacitor, wherein the input capacitor has a first end and a second end, and the first end of the input capacitor and The second end of the input capacitor is electrically connected to the solar photovoltaic module array. The inductor has a third end and a fourth end, and the third end of the inductor is electrically connected to the first end of the input capacitor. The transistor has a fifth end and a sixth end, and the transistor The fifth end of the transistor is electrically connected to the fourth end of the inductor, and the sixth end of the transistor is electrically connected to the second end of the input capacitor. The diode has a seventh end and an eighth end, and the seventh end of the diode is electrically connected to the fifth end of the transistor and the fourth end of the inductor. The output capacitor has a ninth end and a tenth end, and the ninth end of the output capacitor is electrically connected to the eighth end of the diode, and the tenth end of the output capacitor is electrically connected to the sixth end of the transistor and the input capacitor Second end.

藉此,一旦太陽光電模組陣列受到局部遮蔭或發生故障時,可透過粒子群演算法運算之最佳化配置控制器控制連接開關,藉此改變太陽光電模組陣列之連結方式,以提升太陽光電模組陣列之發電量。此外,最大功率追蹤器也採粒子群演算法進行太陽光電模組陣列之最大功率追蹤,避免習知技術之最大功率追蹤器容易發生最大功率點誤判之情形。 Therefore, once the solar photovoltaic module array is partially shaded or fails, the optimal configuration controller of the particle swarm algorithm can be used to control the connection switch, thereby changing the connection mode of the solar photovoltaic module array to enhance The amount of electricity generated by the solar photovoltaic module array. In addition, the maximum power tracker also uses the particle swarm algorithm to perform the maximum power tracking of the solar photovoltaic module array, so as to avoid the situation that the maximum power tracker of the prior art is prone to the maximum power point misjudgment.

100‧‧‧太陽光電模組陣列 100‧‧‧Solar Photovoltaic Module Array

200‧‧‧升壓型轉換器 200‧‧‧Boost converter

300‧‧‧最大功率追蹤器 300‧‧‧Max Power Tracker

400‧‧‧連接開關 400‧‧‧Connecting switch

500‧‧‧最佳化配置控制器 500‧‧‧Optimized configuration controller

600‧‧‧電晶體驅動電路 600‧‧‧Crystal drive circuit

700‧‧‧直交流轉換器 700‧‧‧Direct AC Converter

800‧‧‧供電負載 800‧‧‧Power supply load

910~940‧‧‧步驟 910~940‧‧‧Steps

920a~920k‧‧‧步驟 920a~920k‧‧‧Steps

920m‧‧‧步驟 920m‧‧‧ steps

921f、921g、921h、921j‧‧‧步驟 921f, 921g, 921h, 921j‧‧ steps

940a~940k‧‧‧步驟 940a~940k‧‧‧Steps

940m‧‧‧步驟 940m‧‧‧ steps

941f、941g、941h、941j‧‧‧步驟 941f, 941g, 941h, 941j‧‧ steps

f‧‧‧故障太陽光電模組 f‧‧‧Fault solar photovoltaic module

pbest‧‧‧個體最佳適應值 p best ‧ ‧ best individual fitness value

gbest‧‧‧群體最佳適應值 g best ‧‧‧ group best fit value

第1圖係繪示依照本發明之一實施方式的一種太陽光電模組陣列最佳化配置系統之示意圖。 FIG. 1 is a schematic diagram of a solar photovoltaic module array optimization configuration system according to an embodiment of the present invention.

第2圖係繪示依照本發明之一實施方式的一種太陽光電模組陣列最佳化配置系統之操作流程圖。 2 is a flow chart showing the operation of a solar photovoltaic module array optimization configuration system according to an embodiment of the present invention.

第3圖係繪示依照本發明之一實施方式的最大功率追蹤之流程圖。 Figure 3 is a flow chart showing maximum power tracking in accordance with an embodiment of the present invention.

第4圖係繪示依照本發明之一實施方式的最佳化配置之流程圖。 Figure 4 is a flow chart showing an optimized configuration in accordance with an embodiment of the present invention.

第5圖係繪示依照本發明之一實施方式的太陽光電模組陣 列之示意圖。 Figure 5 is a diagram showing a solar photovoltaic module according to an embodiment of the present invention. Schematic diagram of the column.

第6圖係繪示依照本發明之一實施方式的一種太陽光電模組陣列最佳化配置系統之電流-電壓特性曲線模擬圖。 FIG. 6 is a schematic diagram showing a current-voltage characteristic curve of a solar photovoltaic module array optimization configuration system according to an embodiment of the present invention.

第7圖係繪示依照本發明之一實施方式的群體最佳適應值之變化曲線圖。 Figure 7 is a graph showing changes in population optimal fitness values in accordance with an embodiment of the present invention.

第8圖係繪示依照本發明之一實施方式的最佳化陣列之示意圖。 Figure 8 is a schematic illustration of an optimized array in accordance with an embodiment of the present invention.

第9圖係繪示依照第8圖配置前後比較的功率-電壓(P-V)特性曲線圖。 Fig. 9 is a graph showing the power-voltage (P-V) characteristic before and after comparison in accordance with Fig. 8.

第10圖係繪示繪示依照本發明之另一實施方式的太陽光電模組陣列之示意圖。 FIG. 10 is a schematic view showing an array of solar photovoltaic modules according to another embodiment of the present invention.

第11圖係繪示依照本發明之另一實施方式的群體最佳適應值之變化曲線圖。 Figure 11 is a graph showing changes in population optimal fitness values in accordance with another embodiment of the present invention.

第12圖係繪示依照本發明之另一實施方式的最佳化陣列之示意圖。 Figure 12 is a schematic illustration of an optimized array in accordance with another embodiment of the present invention.

第13圖係繪示第12圖配置前後比較的功率-電壓(P-V)特性曲線圖。 Figure 13 is a graph showing the power-voltage (P-V) characteristics of the comparison before and after the configuration of Figure 12.

第14圖係繪示繪示依照本發明之再一實施方式的太陽光電模組陣列之示意圖。 Figure 14 is a schematic view showing an array of solar photovoltaic modules according to still another embodiment of the present invention.

第15圖係繪示依照本發明之再一實施方式的群體最佳適應值之變化曲線圖。 Figure 15 is a graph showing the variation of the optimal population adaptation value according to still another embodiment of the present invention.

第16圖係繪示依照本發明之再一實施方式的最佳化陣列之示意圖。 Figure 16 is a schematic illustration of an optimized array in accordance with yet another embodiment of the present invention.

第17圖係繪示第16圖配置前後比較的功率-電壓(P-V)特性 曲線圖。 Figure 17 shows the power-voltage (P-V) characteristics of the comparison before and after the configuration of Figure 16. Graph.

第18圖係繪示繪示依照本發明之又一實施方式的太陽光電模組陣列之示意圖。 Figure 18 is a schematic view showing an array of solar photovoltaic modules according to still another embodiment of the present invention.

第19圖係繪示依照本發明之又一實施方式的群體最佳適應值之變化曲線圖。 Figure 19 is a graph showing changes in population optimal fitness values in accordance with yet another embodiment of the present invention.

第20圖係繪示依照本發明之又一實施方式的最佳化陣列之示意圖。 Figure 20 is a schematic illustration of an optimized array in accordance with yet another embodiment of the present invention.

第21圖係繪示第20圖配置前後比較的功率-電壓(P-V)特性曲線圖。 Figure 21 is a graph showing the power-voltage (P-V) characteristics of the comparison before and after the configuration of Figure 20.

請參照第1圖,其係繪示依照本發明之一實施方式的一種太陽光電模組陣列最佳化配置系統之示意圖。太陽光電模組陣列最佳化配置系統係應用於一太陽光電模組陣列100,太陽光電模組陣列最佳化配置系統包含一升壓型轉換器200、一最大功率追蹤器300、至少一連接開關400、一最佳化配置控制器500、一電晶體驅動電路600、一直交流轉換器700及一供電負載800。 Please refer to FIG. 1 , which is a schematic diagram of a solar photovoltaic module array optimization configuration system according to an embodiment of the present invention. The solar photovoltaic module array optimization configuration system is applied to a solar photovoltaic module array 100. The solar photovoltaic module array optimization configuration system comprises a boost converter 200, a maximum power tracker 300, and at least one connection. The switch 400, an optimized configuration controller 500, a transistor driving circuit 600, a constant AC converter 700, and a power supply load 800.

太陽光電模組陣列100由複數個太陽光電模組排列連接而成(未圖示)。 The solar photovoltaic module array 100 is formed by arranging a plurality of solar photovoltaic modules (not shown).

升壓型轉換器200電性連接太陽光電模組陣列100。本實施方式中,升壓型轉換器200可包含一輸入電容Cin、一電感L、一電晶體M、一二極體D以及一輸出電容Cout,其中本實施方式之升壓型轉換器200電路架構雖如第1圖所繪示,然而升壓型轉換器200為一習知技術,故上述 電路之架構可由熟習之技術領域者變動,而不做任何限定。升壓型轉換器200進行直流-直流轉換電源,使得升壓型轉換器200輸出之電壓高於太陽光電模組陣列100輸入升壓型轉換器200之電壓。 The boost converter 200 is electrically connected to the solar photovoltaic module array 100. In this embodiment, the boost converter 200 can include an input capacitor Cin, an inductor L, a transistor M, a diode D, and an output capacitor Cout, wherein the boost converter 200 circuit of the present embodiment Although the architecture is as shown in FIG. 1, the boost converter 200 is a conventional technique, so the above The architecture of the circuit can be varied by those skilled in the art without any limitation. The boost converter 200 performs a DC-DC conversion power supply such that the voltage output from the boost converter 200 is higher than the voltage of the input boost converter 200 of the solar photovoltaic module array 100.

最大功率追蹤器300電性連接升壓型轉換器200及太陽光電模組陣列100,且最大功率追蹤器300採用一粒子群演算法,藉此追蹤太陽光電模組陣列100之一最大功率點。 The maximum power tracker 300 is electrically coupled to the boost converter 200 and the solar photovoltaic module array 100, and the maximum power tracker 300 employs a particle swarm algorithm to track the maximum power point of one of the solar photovoltaic module arrays 100.

連接開關400電性連接於太陽光電模組陣列100,用以分別連接太陽光電模組陣列100中之複數太陽光電模組。 The connection switch 400 is electrically connected to the solar photovoltaic module array 100 for respectively connecting the plurality of solar photovoltaic modules in the solar photovoltaic module array 100.

最佳化配置控制器500電性連接太陽光電模組陣列100、最大功率追蹤器300及連接開關400,最佳化配置控制器500檢測太陽光電模組陣列100之一輸出電壓、一輸出電流及一輸出功率,且最佳化配置控制器500同最大功率追蹤器300般採粒子群演算法,藉此進行比對太陽光電模組陣列100之輸出功率及最大功率追蹤器300追蹤獲取之最大功率點並輸出一開關控制信號對應控制連接開關400。 The optimal configuration controller 500 is electrically connected to the solar photovoltaic module array 100, the maximum power tracker 300, and the connection switch 400. The optimization configuration controller 500 detects an output voltage and an output current of the solar photovoltaic module array 100. An output power, and the optimized configuration controller 500 and the maximum power tracker 300 adopt a particle swarm algorithm, thereby comparing the output power of the solar photovoltaic module array 100 and the maximum power tracked by the maximum power tracker 300. Pointing and outputting a switch control signal corresponds to controlling the connection switch 400.

電晶體驅動電路600電性連接電晶體M及最大功率追蹤器300,最大功率追蹤器300輸出脈波寬度調控(Pulse Width Modulation,PWM)訊號,藉此控制電晶體驅動電路600。 The transistor driving circuit 600 is electrically connected to the transistor M and the maximum power tracker 300, and the maximum power tracker 300 outputs a Pulse Width Modulation (PWM) signal, thereby controlling the transistor driving circuit 600.

直交流轉換器700電性連接升壓型轉換器 200,將經由升壓型轉換器200升壓之直流電源轉換為交流電源。 Straight AC converter 700 is electrically connected to the boost converter 200. Convert the DC power source boosted by the boost converter 200 to an AC power source.

供電負載800電性連接直交流轉換器700。 The power supply load 800 is electrically connected to the straight AC converter 700.

本實施方式之太陽光電模組陣列最佳化配置系統透過最大功率追蹤器300來控制升壓型轉換器200,使得太陽光電模組陣列100能進行最大功率轉移。倘若太陽光電模組陣列100正常工作時,則最佳化配置控制器500將不進行動作,並維持其原來之連接方式。反之,當遮蔭或故障情形發生時,則最佳化配置控制器500將會檢測太陽光電模組陣列100之輸出電壓與電流,並進行最佳化功率演算,計算出太陽光電模組陣列100在受遮蔭或故障情況下之最佳化輸出功率的連接架構,並送出開關控制信號控制連接開關400,使太陽光電模組陣列100之太陽光電模組連接成所演算出之最佳化連接架構,藉此提升太陽光電模組陣列100之輸出功率,以降低遮蔭或故障對太陽光電模組陣列100輸出功率之影響。 The solar photovoltaic module array optimization configuration system of the present embodiment controls the boost converter 200 through the maximum power tracker 300 so that the solar photovoltaic module array 100 can perform maximum power transfer. If the solar photovoltaic module array 100 is operating normally, the optimized configuration controller 500 will not operate and maintain its original connection mode. Conversely, when a shading or fault condition occurs, the optimization configuration controller 500 will detect the output voltage and current of the solar photovoltaic module array 100, and perform an optimized power calculation to calculate the solar photovoltaic module array 100. Optimizing the output power connection structure under shading or fault conditions, and sending a switch control signal to control the connection switch 400, so that the solar photovoltaic modules of the solar photovoltaic module array 100 are connected to the optimized connection. The architecture thereby enhances the output power of the solar photovoltaic module array 100 to reduce the effects of shading or failure on the output power of the solar photovoltaic module array 100.

請同時參照第2圖、第3圖及第4圖,其係繪示依照本發明之一實施方式的一種太陽光電模組陣列最佳化配置系統之操作流程圖、最大功率追蹤之流程圖及最佳化配置之流程圖。太陽光電模組陣列最佳化配置系統之操作流程步驟如下:步驟910,紀錄太陽光電模組陣列於一預設條件下之一理想最大功率。步驟920,追蹤太陽光電模組陣列之一輸出最大功率。步驟930,比對理想最大功率及實際輸出最大功率。步驟940,判斷太陽光電模組陣列是否發 生遮蔭或故障情形,若是則對太陽光電模組陣列進行最佳化配置。 Referring to FIG. 2, FIG. 3 and FIG. 4 simultaneously, FIG. 2 is a flow chart showing the operation of the solar photovoltaic module array optimization configuration system and a flow chart of maximum power tracking according to an embodiment of the present invention. Flow chart for optimizing the configuration. The operational flow of the solar photovoltaic module array optimization configuration system is as follows: Step 910, recording an ideal maximum power of the solar photovoltaic module array under a preset condition. Step 920, tracking one of the solar photovoltaic module arrays to output maximum power. In step 930, the ideal maximum power and the actual output maximum power are compared. Step 940, determining whether the solar photovoltaic module array is sent A shade or fault condition, if so, an optimal configuration of the solar module array.

其中追蹤太陽光電模組陣列之一輸出最大功率之步驟請參照第3圖,其詳細的步驟如下:步驟920a,初始化粒子群演算法之相關參數。步驟920b,設定粒子群演算法之粒子為i,其中i=1,2,3…N,由i=1開始計算。步驟920c,輸出粒子i並設定粒子i之位置為太陽光電模組陣列之一責任周期。步驟920d,偵測太陽光電模組陣列之一輸出電壓與一輸出電流。步驟920e,計算太陽光電模組陣列之一輸出功率,此輸出功率為粒子群演算法之一最佳化目標函數值。步驟920f,比對目前輸出功率是否大於粒子群演算法之一個體最佳適應值pbest。步驟921f,若是則修正個體最佳適應值pbest。步驟920g,若否則比對輸出功率是否大於粒子群演算法之一群體最佳適應值gbest。步驟921g,若是則以輸出功率取代群體最佳適應值gbest。步驟920h,若否則確認所有粒子是否完成評估。步驟921h,若所有粒子未完成評估則進行下個粒子i=i+1之評估。步驟920i,若所有粒子完成評估則依據粒子群演算法之方程式更新粒子速度及粒子位置。步驟920j,接著確認是否已滿足一最大疊代次數。步驟921j,若否則回到粒子i之設定再次動作。步驟920k,若是則輸出群體最佳適應值。步驟920m,判斷太陽光電模組陣列之遮蔭或故障情形是否改變,若是則重新進行初始化相關參數之步驟,若否則維持判斷太陽光電模組陣列之步驟。 For the step of tracking the maximum output power of one of the solar photovoltaic module arrays, please refer to FIG. 3, and the detailed steps are as follows: Step 920a, initialize the relevant parameters of the particle swarm algorithm. In step 920b, the particle of the particle swarm algorithm is set to i , where i =1, 2, 3...N, calculated from i =1. In step 920c, the particle i is output and the position of the particle i is set to be one of the duty cycles of the solar photovoltaic module array. Step 920d: detecting an output voltage of an array of solar photovoltaic modules and an output current. In step 920e, an output power of one of the solar photovoltaic module arrays is calculated, and the output power is one of the optimized objective function values of the particle swarm algorithm. Step 920f, comparing whether the current output power is greater than an individual optimal fitness value p best of the particle swarm algorithm. Step 921f, if yes, correct the individual best fitness value p best . Step 920g, if the output power is otherwise greater than the optimal fitness value g best of one of the particle swarm algorithms. Step 921g, if yes, replace the optimal fitness value g best with the output power. Step 920h, if otherwise confirm that all particles have completed the evaluation. In step 921h, if all the particles have not been evaluated, the evaluation of the next particle i = i +1 is performed. In step 920i, if all particles are evaluated, the particle velocity and particle position are updated according to the equation of the particle swarm algorithm. Step 920j, then confirm whether a maximum number of iterations has been met. Step 921j, if otherwise return to the setting of the particle i to operate again. Step 920k, if yes, output the optimal fitness value of the population. In step 920m, it is determined whether the shading or fault condition of the solar photovoltaic module array is changed. If yes, the steps of initializing the relevant parameters are re-executed, otherwise the step of determining the solar photovoltaic module array is maintained.

其中判斷太陽光電模組陣列是否發生遮蔭或故障情形,若是則對太陽光電模組陣列進行最佳化配置之步驟請參照第4圖,詳細之步驟如下:步驟940a,初始化粒子群演算法之相關參數。步驟940b,設定粒子群演算法之粒子j,其中j為一正整數,由j=1開始計算。步驟940c,輸出粒子i並設定粒子i之位置為太陽光電模組陣列之一開關控制訊號。步驟940d,偵測太陽光電模組陣列之一輸出電壓與一輸出電流。步驟940e,計算太陽光電模組陣列之一輸出功率,此輸出功率為粒子群演算法之一最佳化目標函數值。步驟940f,比對目前輸出功率是否大於粒子群演算法之一個體最佳適應值pbest。步驟941f,若是則修正個體最佳適應值pbest。步驟940g,若否則比對輸出功率是否大於粒子群演算法之一群體最佳適應值gbest。步驟941g,若是則以輸出功率取代群體最佳適應值gbest。步驟940h,若否則確認所有粒子是否完成評估。步驟941h,若所有粒子未完成評估則進行下個粒子j=j+1之評估。步驟940i,若所有粒子完成評估則依據粒子群演算法之方程式更新粒子速度及粒子位置。步驟940j,接著確認是否已滿足一最大疊代次數。步驟941j,若否則回到粒子i之設定再次動作,以便進行下一次疊代。步驟940k,若是則輸出群體最佳適應值。步驟940m,判斷太陽光電模組陣列之遮蔭或故障情形是否改變,若是則重新進行初始化相關參數之步驟,若否則維持判斷太陽光電模組陣列之步驟。 In the determination of whether the solar photovoltaic module array is shaded or faulty, if the step of optimizing the arrangement of the solar photovoltaic module array is as follows, please refer to FIG. 4, the detailed steps are as follows: Step 940a, initialize the particle swarm algorithm Related parameters. In step 940b, the particle j of the particle swarm algorithm is set, where j is a positive integer, and is calculated from j =1. In step 940c, the particle i is output and the position of the particle i is set as a switch control signal of the solar photovoltaic module array. In step 940d, an output voltage and an output current of one of the solar photovoltaic module arrays are detected. At step 940e, an output power of one of the solar photovoltaic module arrays is calculated, and the output power is one of the optimized objective function values of the particle swarm algorithm. Step 940f, comparing whether the current output power is greater than an individual optimal fitness value p best of the particle swarm algorithm. Step 941f, if yes, correct the individual best fitness value p best . Step 940g, if otherwise, the output power is greater than the optimal fitness value g best of one of the particle swarm algorithms. Step 941g, if yes, replace the optimal fitness value g best with the output power. Step 940h, if otherwise confirm that all particles have completed the assessment. In step 941h, if all the particles are not evaluated, the evaluation of the next particle j = j +1 is performed. In step 940i, if all particles are evaluated, the particle velocity and particle position are updated according to the equation of the particle swarm algorithm. At step 940j, it is then confirmed whether a maximum number of iterations has been satisfied. Step 941j, if otherwise return to the setting of the particle i , to perform the next iteration. Step 940k, if yes, output the optimal fitness value of the population. In step 940m, it is determined whether the shading or fault condition of the solar photovoltaic module array is changed, and if so, the steps of initializing the relevant parameters are re-executed, otherwise the steps of determining the solar photovoltaic module array are maintained.

上述粒子群演算法之方程式為: 其中粒子群演算法的相關參數為:kk+1為時間點,分別為粒子jk+1及k兩時間點之速度,C 1C 2為學習因子,w為慣性權重,為個體粒子jk時間點之最佳值,g best 為群體最佳適應值,分別為粒子jk+1及k兩時間點之位置,而rand(.)則為介於0到1之隨機實數。 The equation for the above particle swarm algorithm is: The relevant parameters of the particle swarm algorithm are: k and k +1 are time points. versus The velocity of particle j at time points k +1 and k , C 1 and C 2 are learning factors, and w is inertia weight. For the optimal value of individual particle j at time k , g best is the optimal fitness value of the group. versus The position of particle j at k +1 and k , respectively, and rand (.) is a random real number between 0 and 1.

請同時參照第5圖及第6圖,其係繪示依照本發明之一實施例的太陽光電模組陣列之示意圖及其I-V(電流-電壓)特性曲線圖。為了進行模擬實驗,本實施例中之太陽光電模組陣列100係利用連接開關400對太陽光電模組採四串三並之連接方式,且第5圖中繪示太陽光電模組陣列具有三片太陽光電模組受到30%遮蔭。且針對太陽光電模組在不同的遮蔭比例情況下針對電流及電壓繪出曲線圖(如第6圖)。另外請參照表一,其列出太陽光電模組之基本電氣參數規格,其中額定最大輸出功率(Pmax)為27.87瓦(W),最大輸出功率點之電流(Impp)為1.63安培(A),最大輸出功率點之電壓(Vmpp)為17.1伏特(V),短路電流(Isc)為1.82安培(A),開路電壓(Voc)為21.6伏特(V)。 Referring to FIG. 5 and FIG. 6 simultaneously, a schematic diagram of a solar photovoltaic module array and an IV (current-voltage) characteristic diagram thereof according to an embodiment of the present invention are shown. In order to carry out the simulation experiment, the solar photovoltaic module array 100 in the embodiment adopts the connection switch 400 to adopt a four-series connection mode for the solar photovoltaic module, and the fifth embodiment shows that the solar photovoltaic module array has three pieces. The solar photovoltaic module is shaded by 30%. And for the solar photovoltaic module to plot the current and voltage in different shade ratios (as shown in Figure 6). In addition, please refer to Table 1, which lists the basic electrical parameters of the solar photovoltaic module, wherein the rated maximum output power (P max ) is 27.87 watts (W), and the current at the maximum output power point (I mpp ) is 1.63 amps (A). The maximum output power point voltage (V mpp ) is 17.1 volts (V), the short circuit current (I sc ) is 1.82 amps (A), and the open circuit voltage (V oc ) is 21.6 volts (V).

接著本實施例利用模擬軟體(Matlab)針對第6圖中不同的遮蔭比例情況進行太陽光電模組陣列之最佳化配置模擬。而表二列出太陽光電模組陣列之最佳化配置模擬所使用之粒子群演算法之相關參數值,其中粒子數為4,學習因子C 1為1,學習因子C 2為2,慣性權重w為0.8,疊代次數為8。 Then, in this embodiment, the simulation configuration of the solar photovoltaic module array is simulated for different shade ratios in FIG. 6 by using the simulation software (Matlab). Table 2 lists the relevant parameter values of the particle swarm algorithm used in the optimal configuration simulation of the solar photovoltaic module array, where the number of particles is 4, the learning factor C 1 is 1, the learning factor C 2 is 2, and the inertia weight w is 0.8 and the number of iterations is 8.

請參照第7圖、第8圖及第9圖,其係繪示第5圖之太陽光電模組陣列進行粒子群演算法之群體最佳值變化曲線圖、最佳化配置後之示意圖及配置前後比較之功率-電壓曲線圖。第8圖繪示太陽光電模組陣列進行粒子群演算法後,利用最佳化配置控制器輸出控制開關訊號控制連接開關,藉此得到太陽光電模組陣列受遮蔭後之最佳化連接方式。而根據第9圖將太陽光電模組陣列最佳化配置前後之最大輸出功率比較列成表三,由表三可明顯得知太陽光電模組陣列最佳化配置前後比較,其最佳化配置後的 最大輸出功率較最佳化配置前的最大輸出功率高出8.06W(大約3.22%)。 Please refer to FIG. 7 , FIG. 8 and FIG. 9 , which are diagrams showing the optimal group value curve of the particle swarm algorithm of the solar photovoltaic module array in FIG. 5 , and the schematic diagram and configuration after optimization configuration. Power-voltage graph before and after comparison. Figure 8 shows the solar photovoltaic module array after particle swarm optimization, using the optimal configuration controller output control switch signal control connection switch, thereby obtaining the optimal connection mode of the solar photovoltaic module array after shading . According to Figure 9, the maximum output power before and after the optimal configuration of the solar photovoltaic module array is listed in Table 3. From Table 3, it can be clearly seen that the optimal configuration of the solar photovoltaic module array before and after optimization is optimized. After The maximum output power is 8.06W (approximately 3.22%) higher than the maximum output power before the optimized configuration.

請參照第10圖,其係繪示依照本發明之另一實施例的太陽光電模組陣列之示意圖。本實施例中之太陽光電模組陣列100同上個實施例係對太陽光電模組採四串三並之連接方式,且圖中繪示太陽光電模組陣列具有三片太陽光電模組受到30%遮蔭,而另有三片太陽光電模組受到50%遮蔭。 Please refer to FIG. 10, which is a schematic diagram of a solar photovoltaic module array according to another embodiment of the present invention. The solar photovoltaic module array 100 in this embodiment is the same as the previous embodiment, and the solar photovoltaic module adopts a four-string triple connection mode, and the solar photovoltaic module array has three solar photovoltaic modules receiving 30%. Shading, while three other solar modules are shaded by 50%.

請參照第11圖、第12圖及第13圖,其係繪示第10圖之太陽光電模組陣列100進行粒子群演算法之群體最佳值變化曲線圖、最佳化配置後之示意圖及配置前後比較之功率-電壓曲線圖。第12圖繪示太陽光電模組陣列進行粒子群演算法後,利用最佳化配置控制器輸出控制開關訊號控制連接開關,藉此得到太陽光電模組陣列受遮蔭後之最佳化連接方式。而根據第13圖將太陽光電模組陣列最佳化配置前後之最大輸出功率比較列成表四,由表四可明顯得知太陽光電模組陣列最佳化配置前後比較,其最佳化配置後的最大輸出功率較最佳化配置前的最大輸出功率高出31.4W(大約16.68%)。 Please refer to FIG. 11 , FIG. 12 and FIG. 13 , which are diagrams showing the optimal group value curve of the particle swarm algorithm performed by the solar photovoltaic module array 100 of FIG. 10 , and the schematic diagram of the optimal configuration. Power-voltage graph for comparison before and after configuration. Figure 12 shows the solar photovoltaic module array after particle swarm optimization, using the optimal configuration controller output control switch signal control connection switch, thereby obtaining the optimal connection mode of the solar photovoltaic module array after shading . According to Figure 13, the maximum output power before and after the optimal configuration of the solar photovoltaic module array is listed in Table 4. From Table 4, it can be clearly seen that the optimal configuration of the solar photovoltaic module array before and after optimization is optimized. The maximum output power afterwards is 31.4 W (approximately 16.68%) higher than the maximum output power before the optimized configuration.

表四 太陽光電模組陣列最佳化配置前後最大輸出功率比 Table 4 Maximum output power ratio before and after optimal configuration of solar photovoltaic module array

請參照第14圖,其係繪示依照本發明之又一實施例的太陽光電模組陣列之示意圖。本實施例中之太陽光電模組陣列100同上個實施例係對太陽光電模組採四串三並之連接方式,且圖中繪示太陽光電模組陣列具有一故障太陽光電模組f。 Please refer to FIG. 14, which is a schematic diagram of a solar photovoltaic module array according to still another embodiment of the present invention. In the above embodiment, the solar photovoltaic module array 100 is connected to the solar photovoltaic module by a four-string triple connection method, and the solar photovoltaic module array has a faulty solar photovoltaic module f.

請參照第15圖、第16圖及第17圖,其係繪示第14圖之太陽光電模組陣列100進行粒子群演算法之群體最佳值變化曲線圖、最佳化配置後之示意圖及配置前後比較之功率-電壓曲線圖。第16圖繪示太陽光電模組陣列進行粒子群演算法後,利用最佳化配置控制器輸出控制開關訊號控制連接開關,藉此得到太陽光電模組陣列受遮蔭後之最佳化連接方式。而根據第17圖將太陽光電模組陣列最佳化配置前後之最大輸出功率比較列成表五,由表五可明顯得知太陽光電模組陣列最佳化配置前後比較,其最佳化配置後的最大輸出功率較最佳化配置前的最大輸出功率高出9.51W(大約4.12%)。 Please refer to FIG. 15 , FIG. 16 , and FIG. 17 , which are diagrams showing the optimal group value curve of the particle swarm algorithm performed by the solar photovoltaic module array 100 of FIG. 14 , and the schematic diagram of the optimal configuration. Power-voltage graph for comparison before and after configuration. Figure 16 shows the solar photovoltaic module array after particle swarm optimization, using the optimal configuration controller output control switch signal control connection switch, thereby obtaining the optimal connection mode of the solar photovoltaic module array after shading . According to Figure 17, the maximum output power before and after the optimal configuration of the solar photovoltaic module array is listed in Table 5. From Table 5, it can be clearly seen that the optimal configuration of the solar photovoltaic module array before and after optimization is optimized. The maximum output power afterwards is 9.51 W (approximately 4.12%) higher than the maximum output power before the optimized configuration.

請參照第18圖,其係繪示依照本發明之再一實施例的太陽光電模組陣列之示意圖。本實施例中之太陽光電模組陣列同上個實施例係對太陽光電模組採四串三並之連接方式,且圖中繪示太陽光電模組陣列具有二故障太陽光電模組f。 Please refer to FIG. 18, which is a schematic diagram of a solar photovoltaic module array according to still another embodiment of the present invention. The solar photovoltaic module array in this embodiment is the same as the previous embodiment, and the solar photovoltaic module adopts a four-string triple connection mode, and the solar photovoltaic module array has two fault solar photovoltaic modules f.

請參照第19圖、第20圖及第21圖,其係繪示第18圖之太陽光電模組陣列進行粒子群演算法之群體最佳值變化曲線圖、最佳化配置後之示意圖及配置前後比較之功率-電壓曲線圖。第20圖繪示太陽光電模組陣列進行粒子群演算法後,利用最佳化配置控制器輸出控制開關訊號控制連接開關,藉此得到太陽光電模組陣列受遮蔭後之最佳化連接方式。而根據第21圖將太陽光電模組陣列最佳化配置前後之最大輸出功率比較列成表六,由表六可明顯得知太陽光電模組陣列最佳化配置前後比較,其最佳化配置後的最大輸出功率較最佳化配置前的最大輸出功率高出12.16W(大約5.615%)。 Please refer to FIG. 19, FIG. 20 and FIG. 21, which are diagrams showing the optimal group value curve of the particle swarm algorithm of the solar photovoltaic module array in FIG. 18, and the schematic diagram and configuration after optimization configuration. Power-voltage graph before and after comparison. Figure 20 shows the solar photovoltaic module array after particle swarm optimization, using the optimal configuration controller output control switch signal control connection switch, thereby obtaining the optimal connection mode of the solar photovoltaic module array after shading . According to Figure 21, the maximum output power before and after the optimal configuration of the solar photovoltaic module array is listed in Table 6. From Table 6, it can be clearly seen that the optimal configuration of the solar photovoltaic module array before and after optimization is optimized. The maximum output power afterwards is 12.16 W (approximately 5.615%) higher than the maximum output power before the optimized configuration.

藉由上述實施方式可知,本實施方式之太陽光電模組陣列最佳化配置方法及其系統提供一可任意調整太陽光電模組連接方式之太陽光電模組陣列。當太陽光電模組陣列發生部分遮蔭或故障時,不僅最大功率追蹤器透過粒子群演算法追蹤太陽光電模組陣列之最大輸出功率之正確值,且最佳化配置控制器也透過粒子群演算法控制連接開關進行太陽光電模組陣列最佳化配置。由於粒子群演算法係透過觀察鳥類群體捕食行為所發展出來的演算法,其具有分散式的搜尋且具有記憶性,故能使所有粒子產生群體效應而逐漸接近全域最佳值,因此減少太陽光電模組陣列在受到遮蔭或發生故障時所帶來之影響。藉此,太陽光電模組陣列能確實運作在最大功率點,提升太陽光電模組陣列的整體發電效能。 According to the above embodiment, the solar photovoltaic module array optimization method and system thereof of the present embodiment provide a solar photovoltaic module array that can arbitrarily adjust the connection mode of the solar photovoltaic module. When the solar photovoltaic module array is partially shaded or faulty, not only the maximum power tracker tracks the correct value of the maximum output power of the solar photovoltaic module array through the particle swarm algorithm, but also optimizes the configuration controller through the particle swarm calculus. The method controls the connection switch to optimize the configuration of the solar photovoltaic module array. Since the particle swarm algorithm is an algorithm developed by observing the predation behavior of bird populations, it has a decentralized search and memory, so that all particles can produce a group effect and gradually approach the global optimal value, thus reducing solar photovoltaic The array of modules is affected by shading or failure. In this way, the solar photovoltaic module array can operate at the maximum power point and improve the overall power generation performance of the solar photovoltaic module array.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

100‧‧‧太陽光電模組陣列 100‧‧‧Solar Photovoltaic Module Array

200‧‧‧升壓型轉換器 200‧‧‧Boost converter

300‧‧‧最大功率追蹤器 300‧‧‧Max Power Tracker

400‧‧‧連接開關 400‧‧‧Connecting switch

500‧‧‧最佳化配置控制器 500‧‧‧Optimized configuration controller

600‧‧‧電晶體驅動電路 600‧‧‧Crystal drive circuit

700‧‧‧直交流轉換器 700‧‧‧Direct AC Converter

800‧‧‧供電負載 800‧‧‧Power supply load

Claims (15)

一種太陽光電模組陣列最佳化配置方法,其係應用於一太陽光電模組陣列,該太陽光電模組陣列最佳化配置方法包含:記錄該太陽光電模組陣列於一預設條件下之一理想最大功率;追蹤該太陽光電模組陣列之一輸出最大功率;比對該理想最大功率及該輸出最大功率;以及判斷該太陽光電模組陣列是否發生遮蔭或故障情形,若發生遮蔭或故障情形則對該太陽光電模組陣列進行最佳化配置。 A solar photovoltaic module array optimization configuration method is applied to a solar photovoltaic module array, and the solar photovoltaic module array optimization configuration method comprises: recording the solar photovoltaic module array under a preset condition An ideal maximum power; tracking the maximum output power of one of the solar photovoltaic module arrays; comparing the ideal maximum power with the maximum output power; and determining whether the solar photovoltaic module array is shaded or faulty, if shading occurs In the case of a fault, the solar photovoltaic module array is optimally configured. 如請求項1之太陽光電模組陣列最佳化配置方法,其中追蹤該太陽光電模組陣列之該輸出最大功率之步驟係採一粒子群演算法運算。 The solar photovoltaic module array optimization method of claim 1, wherein the step of tracking the maximum output power of the solar photovoltaic module array is performed by a particle swarm algorithm. 如請求項2之太陽光電模組陣列最佳化配置方法,其中追蹤該太陽光電模組陣列之該輸出最大功率之步驟更包含:一初始步驟,初始化該粒子群演算法之相關參數,並輸出該粒子群演算法之粒子位置為該太陽光電模組陣列之一責任周期;一計算步驟,偵測該太陽光電模組陣列之一輸出電壓與一輸出電流,並計算該太陽光電模組陣列之一輸出功率為該 粒子群演算法之一最佳化目標函數值;一比對步驟,比對該輸出功率是否大於該粒子群演算法之一個體最佳適應值,若輸出功率大於該個體最佳適應值則修正該個體最佳適應值,且比對該輸出功率是否大於該粒子群演算法之一群體最佳適應值,若該輸出功率大於該群體最佳適應值則以該輸出功率取代該群體最佳適應值;一評估步驟,依據該粒子群演算法之方程式更新粒子速度及粒子位置;一疊代步驟,重複該計算步驟、該比對步驟及該評估步驟滿足一最大疊代次數;以及一判斷步驟,判斷該太陽光電模組陣列之遮蔭或故障情形是否變化,若遮蔭或故障情形發生變化則重新進行該初始步驟,若遮蔭或故障情形未發生變化則維持該判斷步驟。 The method for optimizing the configuration of the solar photovoltaic module array of claim 2, wherein the step of tracking the maximum output power of the solar photovoltaic module array further comprises: an initial step of initializing the relevant parameters of the particle swarm algorithm and outputting The particle position of the particle swarm algorithm is a duty cycle of the solar photovoltaic module array; a calculation step of detecting an output voltage and an output current of the solar photovoltaic module array, and calculating the solar photovoltaic module array An output power is One of the particle swarm optimization algorithms optimizes the objective function value; a comparison step, whether the output power is greater than an individual optimal fitness value of the particle swarm algorithm, and if the output power is greater than the individual optimal fitness value, the correction is performed. The optimal fitness value of the individual, and whether the output power is greater than a population optimal fitness value of the particle swarm algorithm, and if the output power is greater than the optimal fitness value of the group, the optimal power of the group is replaced by the output power. Value; an evaluation step of updating the particle velocity and the particle position according to the equation of the particle swarm algorithm; repeating the calculation step, the comparison step, and the evaluating step satisfying a maximum iteration number; and a determining step Determining whether the shading or fault condition of the solar photovoltaic module array changes, if the shading or fault condition changes, the initial step is repeated, and the judging step is maintained if the shading or fault condition does not change. 如請求項1之太陽光電模組陣列最佳化配置方法,其中判斷該太陽光電模組陣列是否發生遮蔭或故障情形,若發生遮蔭或故障情形則對該太陽光電模組陣列進行最佳化配置之步驟係採一粒子群演算法運算。 The solar photovoltaic module array optimization method of claim 1, wherein determining whether the solar photovoltaic module array is shaded or faulty, and if the shading or fault occurs, the solar photovoltaic module array is optimal. The steps of the configuration are based on a particle swarm algorithm. 如請求項4之太陽光電模組陣列最佳化配置方法,其中判斷該太陽光電模組陣列是否發生遮蔭或故障情形,若是則對該太陽光電模組陣列進行最佳化配置之步驟更包含:一初始步驟,初始化該粒子群演算法之相關參數,並輸出該粒子群演算法之粒子位置為該太陽光電模組陣列之一 開關控制信號;一確認步驟,等待追蹤該太陽光電模組陣列之該輸出最大功率之步驟完成;一計算步驟,偵測該太陽光電模組陣列之一輸出電壓與一輸出電流,並計算該太陽光電模組陣列之一輸出功率為該粒子群演算法之一最佳化目標函數值;一比對步驟,比對該輸出功率是否大於該粒子群演算法之一個體最佳適應值,若輸出功率大於該個體最佳適應值則修正該個體最佳適應值,且比對該輸出功率是否大於該粒子群演算法之一群體最佳適應值,若該輸出功率大於該群體最佳適應值則以該輸出功率取代該群體最佳適應值;一評估步驟,依據該粒子群演算法之方程式更新粒子速度及粒子位置;一疊代步驟,重複該計算步驟、該比對步驟及該評估步驟滿足一最大疊代次數;以及一判斷步驟,判斷該太陽光電模組陣列之遮蔭或故障情形是否改變,若遮蔭或故障情形發生變化則重新進行該初始步驟,若遮蔭或故障情形未發生變化則維持該判斷步驟。 The solar photovoltaic module array optimization method of claim 4, wherein determining whether the solar photovoltaic module array is shaded or faulty, if yes, the step of optimizing the solar photovoltaic module array further comprises An initial step of initializing the relevant parameters of the particle swarm algorithm and outputting the particle position of the particle swarm algorithm as one of the solar photovoltaic module arrays a switching control signal; a step of confirming, waiting to track the maximum output power of the solar photovoltaic module array; a calculating step of detecting an output voltage of the solar photovoltaic module array and an output current, and calculating the sun The output power of one of the photoelectric module arrays is one of the optimized particle function values of the particle swarm algorithm; a comparison step, whether the output power is greater than the individual optimal fitness value of the particle swarm algorithm, if the output If the power is greater than the optimal fitness value of the individual, the optimal fitness value of the individual is corrected, and the output power is greater than the optimal fitness value of the population of the particle swarm algorithm, and if the output power is greater than the optimal fitness value of the group, Replacing the optimum fitness value of the group with the output power; an evaluation step of updating the particle velocity and the particle position according to the equation of the particle swarm algorithm; repeating the calculation step, the comparison step, and the evaluation step are satisfied in a stack of steps a maximum number of iterations; and a judging step of determining whether the shading or fault condition of the array of solar photovoltaic modules changes, if shading or Fault situation occurs the change in the initial step of re, or if shade does not change the fault condition determination step is maintained. 如請求項1之太陽光電模組陣列最佳化配置方法,其中該預設條件為一日照強度及一溫度。 The solar photovoltaic module array optimization configuration method of claim 1, wherein the preset condition is a daylight intensity and a temperature. 一種太陽光電模組陣列最佳化配置系統,其係應用於一太陽光電模組陣列,該太陽光電模組陣列最佳化配置系 統包含:一升壓型轉換器,電性連接該太陽光電模組陣列;一最大功率追蹤器,電性連接該升壓型轉換器及該太陽光電模組陣列,該最大功率追蹤器追蹤該太陽光電模組陣列之一最大功率點;至少一連接開關,電性連接於該太陽光電模組陣列;以及一最佳化配置控制器,電性連接該太陽光電模組陣列、該最大功率追蹤器及該連接開關,該最佳化配置控制器檢測該太陽光電模組陣列之一輸出電壓、一輸出電流及一輸出功率,該最佳化配置控制器比對該輸出功率及該最大功率點並輸出一開關控制信號對應控制該連接開關。 A solar photovoltaic module array optimization configuration system is applied to a solar photovoltaic module array, and the solar photovoltaic module array optimization configuration system The system includes: a boost converter electrically connected to the solar photovoltaic module array; a maximum power tracker electrically connected to the boost converter and the solar photovoltaic module array, the maximum power tracker tracking the a maximum power point of one of the solar photovoltaic module arrays; at least one connection switch electrically connected to the solar photovoltaic module array; and an optimized configuration controller electrically connected to the solar photovoltaic module array, the maximum power tracking And the connection switch, the optimization configuration controller detects an output voltage, an output current, and an output power of the solar photovoltaic module array, and the optimized configuration controller compares the output power and the maximum power point And outputting a switch control signal correspondingly controlling the connection switch. 如請求項7之太陽光電模組陣列最佳化配置系統,其中該最佳化配置控制器係採一粒子群演算法進行該太陽光電模組陣列之最佳化配置。 The solar photovoltaic module array optimization configuration system of claim 7, wherein the optimized configuration controller adopts a particle swarm algorithm to optimize the solar photovoltaic module array. 如請求項7之太陽光電模組陣列最佳化配置系統,其中該最大功率追蹤器係採一粒子群演算法進行該太陽光電模組陣列之最大功率追蹤。 The solar photovoltaic module array optimization configuration system of claim 7, wherein the maximum power tracker adopts a particle swarm algorithm to perform maximum power tracking of the solar photovoltaic module array. 如請求項7之太陽光電模組陣列最佳化配置系統,其中該太陽光電模組陣列包含複數太陽光電模組,且該連接開關數量為複數,該些連接開關分別對應連接該些太陽光電 模組。 The solar photovoltaic module array optimization configuration system of claim 7, wherein the solar photovoltaic module array comprises a plurality of solar photovoltaic modules, and the number of the connection switches is plural, and the connection switches respectively connect the solar photovoltaics Module. 如請求項10之太陽光電模組陣列最佳化配置系統,其中該些太陽光電模組採全部跨接排列。 The solar photovoltaic module array optimization configuration system of claim 10, wherein the solar photovoltaic modules are all arranged in a span. 如請求項11之太陽光電模組陣列最佳化配置系統,更包含一直交流轉換器,其電性連接該升壓型轉換器。 The solar photovoltaic module array optimization configuration system of claim 11 further includes a constant AC converter electrically connected to the boost converter. 如請求項12之太陽光電模組陣列最佳化配置系統,更包含一供電負載,其電性連接該直交流轉換器。 The solar photovoltaic module array optimization configuration system of claim 12 further includes a power supply load electrically connected to the direct current converter. 如請求項13之太陽光電模組陣列最佳化配置系統,其中該升壓型轉換器包含:一輸入電容,該輸入電容具有一第一端及一第二端,該第一端及該第二端電性連接於該太陽光電模組陣列;一電感,該電感具有一第三端及一第四端,該第三端電性連接該輸入電容的該第一端;一電晶體,該電晶體具有一第五端及一第六端,該第五端電性連接該電感的第四端,該第六端電性連接該輸入電容的該第二端;一二極體,該二極體具有一第七端及一第八端,該第七端電性連接該電晶體的該第五端及該電感的第四端;以及一輸出電容,該輸出電容具有一第九端及一第十端,該第九端電性連接該二極體之該第八端,該第十端電性連接於 該電晶體之該第六端及該輸入電容之該第二端。 The solar photovoltaic module array optimization configuration system of claim 13, wherein the boost converter comprises: an input capacitor having a first end and a second end, the first end and the first The second end is electrically connected to the solar photovoltaic module array; an inductor having a third end and a fourth end, the third end electrically connected to the first end of the input capacitor; a transistor, the The transistor has a fifth end and a sixth end, the fifth end is electrically connected to the fourth end of the inductor, and the sixth end is electrically connected to the second end of the input capacitor; a diode, the second The pole body has a seventh end and an eighth end, the seventh end is electrically connected to the fifth end of the transistor and the fourth end of the inductor; and an output capacitor having a ninth end and a tenth end, the ninth end is electrically connected to the eighth end of the diode, and the tenth end is electrically connected to The sixth end of the transistor and the second end of the input capacitor. 如請求項14之太陽光電模組陣列最佳化配置系統,更包含一電晶體驅動電路,其電性連接該電晶體及該最大功率追蹤器。 The solar photovoltaic module array optimization configuration system of claim 14 further includes a transistor driving circuit electrically connected to the transistor and the maximum power tracker.
TW102128869A 2013-08-12 2013-08-12 Photovoltaic module array configuration method and system thereof TWI524165B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102128869A TWI524165B (en) 2013-08-12 2013-08-12 Photovoltaic module array configuration method and system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102128869A TWI524165B (en) 2013-08-12 2013-08-12 Photovoltaic module array configuration method and system thereof

Publications (2)

Publication Number Publication Date
TW201506576A true TW201506576A (en) 2015-02-16
TWI524165B TWI524165B (en) 2016-03-01

Family

ID=53019362

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102128869A TWI524165B (en) 2013-08-12 2013-08-12 Photovoltaic module array configuration method and system thereof

Country Status (1)

Country Link
TW (1) TWI524165B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790278A (en) * 2016-04-06 2016-07-20 重庆大学 Improved-particle-swarm-algorithm-based multi-target reactive power optimization method in photovoltaic power station
TWI573385B (en) * 2015-12-18 2017-03-01 國立勤益科技大學 Real-time fault detector of photovoltaic module array and method thereof
CN109814651A (en) * 2019-01-21 2019-05-28 中国地质大学(武汉) Photovoltaic cell multi-peak maximum power tracking method and system based on population
CN111399584A (en) * 2020-03-26 2020-07-10 湖南工业大学 Composite MPPT control algorithm of local shadow photovoltaic system
TWI721864B (en) * 2020-04-15 2021-03-11 國立勤益科技大學 Photovoltaic apparatus and maximum power point tracking method using particle swarm optimization

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI573385B (en) * 2015-12-18 2017-03-01 國立勤益科技大學 Real-time fault detector of photovoltaic module array and method thereof
CN105790278A (en) * 2016-04-06 2016-07-20 重庆大学 Improved-particle-swarm-algorithm-based multi-target reactive power optimization method in photovoltaic power station
CN105790278B (en) * 2016-04-06 2018-11-23 重庆大学 Based on multi-objective reactive optimization method in the photovoltaic plant station for improving particle swarm algorithm
CN109814651A (en) * 2019-01-21 2019-05-28 中国地质大学(武汉) Photovoltaic cell multi-peak maximum power tracking method and system based on population
CN111399584A (en) * 2020-03-26 2020-07-10 湖南工业大学 Composite MPPT control algorithm of local shadow photovoltaic system
TWI721864B (en) * 2020-04-15 2021-03-11 國立勤益科技大學 Photovoltaic apparatus and maximum power point tracking method using particle swarm optimization

Also Published As

Publication number Publication date
TWI524165B (en) 2016-03-01

Similar Documents

Publication Publication Date Title
Bahari et al. Modeling and simulation of hill climbing MPPT algorithm for photovoltaic application
KR101520981B1 (en) Localized Power Point Optimizer for Solar Cell Installations
Chafle et al. Incremental conductance MPPT technique FOR PV system
KR100891513B1 (en) Grid-connected hybrid generation system using solar photovoltaic generation system and battery system and generation method using thereof
TWI524165B (en) Photovoltaic module array configuration method and system thereof
TW201013359A (en) Method and system for providing local converters to provide maximum power point tracking in an energy generating system
EP2770539A1 (en) Electronic management system for electricity generating cells, electricity generating system and method for electronically managing energy flow
Bellini et al. MPPT algorithm for current balancing of partially shaded photovoltaic modules
Du et al. Analysis of a battery-integrated boost converter for module-based series connected photovoltaic system
KR20170058218A (en) Method for control hybrid MPPT to mitigate partial shading effects in photovoltaic arrays
KR20120013199A (en) Partial power micro-converter architecture
Dunia et al. Performance comparison between ĆUK and SEPIC Converters for maximum power point tracking using incremental conductance technique in solar power applications
Saranrom et al. The efficiency improvement of series connected PV panels operating under partial shading condition by using per-panel DC/DC converter
A Elbaset et al. A modified perturb and observe algorithm for maximum power point tracking of photovoltaic system using buck-boost converter
Khazain et al. Boost converter of maximum power point tracking (MPPT) using particle swarm optimization (PSO) method
KR20210125834A (en) Differential Power Processor for Improving Performance of Photovoltaic Systems with Multiple Photovoltaic Modules Connected in Series and power control apparatus using the same
Jayashree et al. Implementation of basic MPPT techniques for zeta converter
Jately et al. An efficient hill-climbing technique for peak power tracking of photovoltaic systems
Said et al. Maximum Power Point Tracking of Photovoltaic Generators Partially Shaded Using an Hybrid Artificial Neural Network and Particle Swarm Optimization Algorithm
JP2015194977A (en) Maximum power point constant-tracking system
Jerin Direct control method applied for improved incremental conductance mppt using SEPIC converter
Alenezi et al. A novel method for least differential power processing in PV systems
Ahmed et al. A single-inductor MISO converter with unified decoupled MPPT algorithm for PV systems undergoing shading conditions
Abbas et al. A comparative study between the most used MPPT methods and particle swarm optimization method for a standalone PV system under fast change in irradiance level
Sreekumar et al. Performance enhancement of PV arrays under partial shading conditions using SEPIC converter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees