TW201435924A - Nanostructure transparent conductors having high thermal stability for ESD protection - Google Patents

Nanostructure transparent conductors having high thermal stability for ESD protection Download PDF

Info

Publication number
TW201435924A
TW201435924A TW103102355A TW103102355A TW201435924A TW 201435924 A TW201435924 A TW 201435924A TW 103102355 A TW103102355 A TW 103102355A TW 103102355 A TW103102355 A TW 103102355A TW 201435924 A TW201435924 A TW 201435924A
Authority
TW
Taiwan
Prior art keywords
conductive
conductive film
transparent conductive
layer
transparent
Prior art date
Application number
TW103102355A
Other languages
Chinese (zh)
Inventor
Pierre-Marc Allemand
Paul Mansky
Florian Pschenitzka
Michael A Spaid
Jonathan Westwater
Original Assignee
Cambrios Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cambrios Technologies Corp filed Critical Cambrios Technologies Corp
Publication of TW201435924A publication Critical patent/TW201435924A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0254High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
    • H05K1/0257Overvoltage protection
    • H05K1/0259Electrostatic discharge [ESD] protection
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application

Abstract

Disclosed herein are transparent conductors having high thermal capacity and improved protection against electrostatic discharge.

Description

於靜電放電(ESD)保護具有高熱穩定性之奈米結構透明導體 Protecting nanostructured transparent conductors with high thermal stability by electrostatic discharge (ESD)

本發明係關於靜電放電保護得以改良之基於奈米結構之透明導體。 The present invention relates to a transparent conductor based on a nanostructure in which electrostatic discharge protection is improved.

透明導體係指在高透射率表面或基材上塗佈之薄導電膜。透明導體可經製造成具有表面導電性,同時維持合理的光學透明度。此類表面導電透明導體廣泛用作平面液晶顯示器、觸控面板、電致發光裝置及薄膜光伏打電池中之透明電極;用作抗靜電層;及用作電磁波屏蔽層。 A transparent conductive system refers to a thin conductive film coated on a high transmittance surface or substrate. Transparent conductors can be fabricated to have surface conductivity while maintaining reasonable optical transparency. Such surface conductive transparent conductors are widely used as transparent electrodes in flat liquid crystal displays, touch panels, electroluminescent devices, and thin film photovoltaic cells; as antistatic layers; and as electromagnetic wave shielding layers.

目前,真空沈積之金屬氧化物(諸如氧化銦錫(ITO))為用於向介電質表面(諸如玻璃及聚合物膜)提供光學透明度及導電性之工業標準材料。然而,金屬氧化物膜在彎曲或經受其他物理應力期間易碎且易於損壞。其亦需要高沈積溫度及/或高退火溫度以達成高導電性水準。此外,真空沈積製程並不有助於形成圖案及電路。此通常導致需要高成本的圖案化製程(諸如光微影術)。另外,金屬氧化物膜傾向於難以恰當地黏附至易於吸附水分之某些基材(諸如塑膠及有機基材(例如聚碳酸酯))上。因此在此等可撓性基材上塗覆金屬氧化物膜嚴重受限。 Currently, vacuum deposited metal oxides, such as indium tin oxide (ITO), are industry standard materials for providing optical transparency and electrical conductivity to dielectric surfaces such as glass and polymer films. However, metal oxide films are fragile and susceptible to damage during bending or other physical stresses. It also requires high deposition temperatures and/or high annealing temperatures to achieve high levels of conductivity. In addition, vacuum deposition processes do not contribute to the formation of patterns and circuits. This often results in a costly patterning process (such as photolithography). In addition, metal oxide films tend to be difficult to properly adhere to certain substrates that are susceptible to moisture absorption, such as plastics and organic substrates (e.g., polycarbonate). Therefore, coating a metal oxide film on such flexible substrates is severely limited.

近年來,在平板顯示器中傾向於用嵌入於基質(該基質為絕緣或 導電的)中之互連金屬奈米結構(例如銀奈米線)的複合材料來取代目前工業標準透明導電ITO膜。通常,藉由首先在基材上塗佈包括金屬奈米線、視情況選用之黏合劑及揮發性液體載劑之塗佈溶液來形成透明導電膜。視情況選用之黏合劑在移除油墨組合物之揮發性組分後提供基質。與黏合劑之存在無關,在沈積奈米結構之後,可進一步塗佈外塗層。外塗層通常包含一或多種聚合物或樹脂材料。所得透明導電膜之薄層電阻可與ITO膜之薄層電阻相當或更優越。 In recent years, it has tended to be embedded in a substrate in a flat panel display (the substrate is insulated or A composite of interconnected metal nanostructures (eg, silver nanowires) in conductive) replaces the current industry standard transparent conductive ITO film. Generally, a transparent conductive film is formed by first coating a coating solution including a metal nanowire, optionally a binder, and a volatile liquid carrier on a substrate. The binder, optionally selected, provides a matrix after removal of the volatile components of the ink composition. Regardless of the presence of the binder, the outer coating can be further applied after depositing the nanostructure. The outer coating typically comprises one or more polymeric or resinous materials. The sheet resistance of the obtained transparent conductive film can be comparable to or superior to the sheet resistance of the ITO film.

基於奈米結構之塗佈技術尤其適用於在大面積可撓性基材上產生穩固電子元件。參見Cambrios Technologies Corporation名下之美國專利第8,049,333號、第8,094,247號、第8,018,568號、第8,174,667號及第8,018,563號,其以全文引用之方式併入本文中。用於形成基於奈米結構之薄膜的基於溶液之形式亦與現有塗佈及層疊技術相容。因此,可將外塗層、底塗層、黏著層及/或保護層之額外薄膜在高產量製程中整合以用於形成包括基於奈米結構之透明導體的光學堆疊。 Coating techniques based on nanostructures are particularly useful for creating robust electronic components on large area flexible substrates. See U.S. Patent Nos. 8,049,333, 8,094,247, 8,018,568, 8, 174, 667, and 8, 018, 563, the disclosures of which are incorporated herein by reference. Solution-based forms for forming nanostructure-based films are also compatible with existing coating and lamination techniques. Thus, additional films of overcoat, undercoat, adhesive layer and/or protective layer can be integrated in a high throughput process for forming an optical stack comprising a nanostructure-based transparent conductor.

形成透明導體之其他方法包括使用經精細圖案化之低薄層電阻柵格或網格與經濺鍍之透明導體或導電聚合物,以形成具有所需薄層電阻之複合結構。此外,導電奈米結構與經濺鍍之柵格或網格的組合可用於達成電阻相對較低之透明導體。 Other methods of forming a transparent conductor include the use of a fine patterned low sheet resistive grid or grid with a sputtered transparent conductor or conductive polymer to form a composite structure having the desired sheet resistance. In addition, a combination of a conductive nanostructure and a sputtered grid or grid can be used to achieve a relatively low resistance transparent conductor.

此項技術中仍需要提供具有所需電學、光學及機械特性的基於奈米結構之透明導體,且該等特性在透明導體之整個正常使用期限內得以維持。 There remains a need in the art to provide a nanostructure-based transparent conductor having the desired electrical, optical, and mechanical properties that are maintained throughout the normal life of the transparent conductor.

本文描述在靜電放電(ESD)事件期間熱穩定,特定言之針對高溫梯度(例如經短時間段快速溫度波動)熱穩定的薄膜透明導電層。 Described herein is a thermally stable thin film transparent conductive layer that is thermally stable during an electrostatic discharge (ESD) event, specifically for high temperature gradients (eg, rapid temperature fluctuations over short periods of time).

一個實施例提供一種透明導電膜,其包含基材;導電層,該導電層安置在該基材上,該導電層具有複數個互連導電元件,該等互連 導電元件視情況嵌入黏合劑中;及外塗層,該外塗層覆蓋該導電層,其中該黏合劑及該外塗層中之至少一者為熱穩定材料。 One embodiment provides a transparent conductive film comprising a substrate; a conductive layer disposed on the substrate, the conductive layer having a plurality of interconnected conductive elements, the interconnects The conductive component is optionally embedded in the adhesive; and the outer coating, the outer coating covers the conductive layer, wherein at least one of the adhesive and the outer coating is a heat stable material.

在各種實施例中,黏合劑可為基於熱穩定聚合物(諸如聚醯亞胺或聚苯并噁唑)之熱穩定材料。 In various embodiments, the binder can be a thermally stable material based on a thermally stable polymer such as polyimide or polybenzoxazole.

在其他實施例中,外塗層可為熱穩定之旋塗式介電質,諸如旋塗式玻璃(SOG)。 In other embodiments, the overcoat layer can be a thermally stable spin-on dielectric such as spin on glass (SOG).

在另外之實施例中,外塗層可包含複數個高熱容量奈米粒子。 In other embodiments, the overcoat layer can comprise a plurality of high heat capacity nanoparticles.

在各種實施例中,導電層可為導電奈米結構或導電網格或其組合之網狀結構。 In various embodiments, the conductive layer can be a conductive nanostructure or a conductive mesh or a combination of mesh structures.

100‧‧‧透明導電膜 100‧‧‧Transparent conductive film

110‧‧‧基材 110‧‧‧Substrate

120‧‧‧薄膜導電層 120‧‧‧film conductive layer

124‧‧‧導電奈米結構 124‧‧‧ Conductive nanostructure

126‧‧‧導電網格/導電柵格/低薄層電阻柵格 126‧‧‧Conductive Grid/Conductive Grid/Low Sheet Resistive Grid

130‧‧‧互連導電元件 130‧‧‧Interconnected conductive components

140‧‧‧黏合劑 140‧‧‧Binder

150‧‧‧外塗層 150‧‧‧Ex overcoat

210‧‧‧基材 210‧‧‧Substrate

250‧‧‧外塗層 250‧‧‧Overcoat

260‧‧‧高熱容量奈米粒子 260‧‧‧High heat capacity nano particles

300‧‧‧透明導電膜 300‧‧‧Transparent conductive film

310‧‧‧基材 310‧‧‧Substrate

312‧‧‧硬塗層 312‧‧‧hard coating

314‧‧‧高熱容量奈米粒子 314‧‧‧High heat capacity nano particles

350‧‧‧外塗層 350‧‧‧Overcoat

360‧‧‧高熱容量奈米粒子 360‧‧‧High heat capacity nano particles

400‧‧‧透明導電膜 400‧‧‧Transparent conductive film

在圖式中,相同參考數字標識類似元件。圖式中元件之尺寸及相對位置不必按比例繪製。舉例而言,各種元件之形狀及角度不按比例繪製,且此等元件中之一些經任意放大並定位以提昇圖式可理解性。此外,所繪製元件之特定形狀並不意欲傳達關於特定元件之實際形狀的任何資訊,而僅僅出於在圖式中容易辨識而加以選擇。 In the drawings, like reference numerals identify like elements. The dimensions and relative positions of the elements in the drawings are not necessarily to scale. For example, the shapes and angles of the various elements are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to enhance the intelligibility of the drawings. In addition, the particular shapes of the elements are not intended to convey any information about the actual shape of the particular elements, but are merely chosen for ease of identification in the drawings.

圖1展示具有熱穩定外塗層之透明導體的一個實施例。 Figure 1 shows an embodiment of a transparent conductor having a thermally stable outer coating.

圖2A-2C展示本發明之實施例的導電層之各種組態。 2A-2C show various configurations of conductive layers in accordance with embodiments of the present invention.

圖3展示具有熱穩定外塗層之透明導體的另一個實施例,該外塗層包括具有高熱容量之奈米粒子填充劑。 3 shows another embodiment of a transparent conductor having a thermally stable outer coating comprising a nanoparticle filler having a high heat capacity.

圖4展示具有熱穩定外塗層及熱穩定底塗層之透明導體的另一個實施例。 4 shows another embodiment of a transparent conductor having a thermally stable outer coating and a thermally stable primer.

本文描述關於基於網格或奈米結構之透明導體的各種實施例,該等透明導體在靜電放電(ESD)事件期間為熱穩定的且較不易受到可由瞬時加熱造成之結構損壞。 Various embodiments are described herein with respect to transparent conductors based on mesh or nanostructures that are thermally stable during electrostatic discharge (ESD) events and less susceptible to structural damage that can be caused by transient heating.

在加工或處理透明導體膜之過程中,當足夠靜電電荷累積且達 到足以維持火花之電場強度時,可發生(ESD)事件。在此事件中,所累積之電荷將移動至較低能勢,諸如附近之導電層。隨著靜電能量放電穿過導電層,呈薄膜構造之攜載電流之導電元件(例如網格及/或奈米結構)可瞬時加熱至遠超過200℃。已觀測到在ESD事件之後傾向於發生膜缺陷,產生諸如導電性降低或總導電性損失之衰退。 During the processing or processing of a transparent conductor film, when sufficient electrostatic charge is accumulated and reaches An (ESD) event can occur when the electric field strength is sufficient to maintain the spark. In this event, the accumulated charge will move to a lower energy potential, such as a nearby conductive layer. As the electrostatic energy is discharged through the conductive layer, the conductive elements (eg, mesh and/or nanostructures) that carry the current in a thin film configuration can be instantaneously heated to well over 200 °C. It has been observed that film defects tend to occur after an ESD event, resulting in a decrease such as a decrease in conductivity or a loss in total conductivity.

透明導電膜之SEM影像顯示對有機相(聚合物黏合劑或外塗層)之損壞可能與此等衰退相關。潛在衰退機制為來自導電元件之熱量引起聚合物黏合劑及/或外塗層之汽化及分解,導致局部壓力快速積聚及後續除氣,此過程類似於其中壓力積聚經由急劇氣相擴散而釋放之爆炸。在有機相中所觀測之「爆炸」可為對奈米結構或網格之機械損壞的主要來源。 SEM images of transparent conductive films show that damage to the organic phase (polymer binder or overcoat) may be associated with such degradation. The potential decay mechanism is that the heat from the conductive element causes vaporization and decomposition of the polymer binder and/or the outer coating, resulting in rapid accumulation of local pressure and subsequent degassing, similar to the process in which pressure accumulation is released via sharp gas phase diffusion. explosion. The "explosion" observed in the organic phase can be a major source of mechanical damage to the nanostructure or mesh.

因此,一個實施例提供一種透明導體,其具有在瞬時加熱奈米結構期間可耐受住快速溫度上升之熱穩定外塗層或黏合劑。因此,如本文所用之「熱穩定」材料應能夠耐受高溫梯度,亦即經極短時間段(約微秒或秒)之較大溫度改變(數百度)。 Accordingly, one embodiment provides a transparent conductor having a thermally stable outer coating or adhesive that can withstand rapid temperature rise during the instant heating of the nanostructure. Therefore, a "thermally stable" material as used herein should be able to withstand high temperature gradients, i.e., large temperature changes (hundreds of degrees) over a very short period of time (about microseconds or seconds).

圖1顯示透明導電膜(100),其包含基材(110);薄膜導電層(120),該薄膜導電層安置在基材(110)上,導電層(120)具有嵌入黏合劑(140)中之複數個互連導電元件(130);及外塗層(150),該外塗層覆蓋該奈米結構導電層。黏合劑及外塗層中之至少一者為如本文所定義之熱穩定材料。 1 shows a transparent conductive film (100) comprising a substrate (110); a thin film conductive layer (120) disposed on a substrate (110), the conductive layer (120) having an embedded adhesive (140) a plurality of interconnected conductive elements (130); and an outer coating (150) covering the nanostructure conductive layer. At least one of the binder and the overcoat is a thermally stable material as defined herein.

在各種實施例中,導電元件(130)可為複數個無規交叉之導電奈米結構。在其他實施例中,導電元件為導電網格或柵格。導電網格或柵格可規則或無規地交叉。在其他實施例中,導電元件可為電耦接成一或多個導電網格或柵格之複數個奈米結構的組合膜。此類膜揭示於同在申請中的美國專利申請案第13/287,881號,其以引用之方式併入本文中。 In various embodiments, the conductive element (130) can be a plurality of randomly crossed conductive nanostructures. In other embodiments, the conductive elements are conductive grids or grids. Conductive grids or grids can intersect regularly or randomly. In other embodiments, the conductive element can be a composite film of a plurality of nanostructures that are electrically coupled into one or more conductive meshes or grids. Such a film is disclosed in U.S. Patent Application Serial No. 13/287,881, the disclosure of which is incorporated herein by reference.

圖2A-圖2B示意性地顯示形成圖1之薄膜導電層(120)的各種導電元件。 2A-2B schematically illustrate various conductive elements forming the thin film conductive layer (120) of FIG.

在圖2A中,導電元件包括複數個導電奈米結構(124),特定言之,金屬奈米線。在一個尤佳實施例中,導電奈米結構為銀奈米線。導電層可藉由將奈米結構之塗佈組合物塗佈在基材(例如圖1之110)上來形成。奈米結構無規分佈在基材上,然而充足量之奈米結構彼此交叉以形成導電網狀結構,該導電網狀結構能夠攜載電流。 In Figure 2A, the conductive element comprises a plurality of conductive nanostructures (124), in particular, metal nanowires. In a particularly preferred embodiment, the electrically conductive nanostructure is a silver nanowire. The conductive layer can be formed by coating a coating composition of a nanostructure on a substrate (e.g., 110 of Figure 1). The nanostructures are randomly distributed on the substrate, however a sufficient amount of nanostructures cross each other to form a conductive network that is capable of carrying current.

在圖2B中,導電層(120)包括導電網格或柵格(126)。導電網格(柵格)為用於電流流動、分佈及/或收集的低電阻路徑或路徑之網狀結構。低薄層電阻柵格126包括任何類型之具有適當電學及物理特性的導電結構,包括金屬、非金屬、或含有金屬及非金屬結構之組合的複合結構。 In FIG. 2B, the conductive layer (120) includes a conductive mesh or grid (126). A conductive grid (grid) is a network of low resistance paths or paths for current flow, distribution, and/or collection. The low sheet resistance grid 126 includes any type of electrically conductive structure having suitable electrical and physical properties, including metal, non-metal, or composite structures containing a combination of metallic and non-metallic structures.

在圖2C中,導電層(120)包括複數個奈米結構(124)及網格(126)之組合。 In Figure 2C, the conductive layer (120) includes a combination of a plurality of nanostructures (124) and a grid (126).

熱穩定材料具有高熱容量及/或可引起快速熱耗散,以使熱分解或釋氣最少。更特定言之,高熱穩定性之外塗層或黏合劑在加熱至200℃以上、或300℃以上、或400℃以上持續有限持續時間(諸如持續至少10秒、或至少30秒、或至少60秒、或至少2分鐘、或至少4分鐘),或加熱至高達1000℃持續約微秒(例如至少10微秒、或至少100微秒)時能夠維持其結構完整性。結構完整性可包括物理完整性(例如不崩解)及/或化學完整性(例如不分解),但熱穩定材料能夠耐受某些結構變形或部分崩解。舉例而言,其可熔融(至少暫時熔融),只要其能夠吸收或耗散來自導電材料的熱量即可。在各種實施例中,熱穩定材料在加熱至400℃以上持續至少10秒、或至少30秒、或至少1分鐘、或至少4分鐘時應能夠引導熱量離開導電材料。 Thermally stable materials have high heat capacity and/or can cause rapid heat dissipation to minimize thermal decomposition or outgassing. More specifically, the high thermal stability outer coating or adhesive is heated to above 200 ° C, or above 300 ° C, or above 400 ° C for a limited duration (such as lasting at least 10 seconds, or at least 30 seconds, or at least 60 The structural integrity can be maintained in seconds, or at least 2 minutes, or at least 4 minutes), or up to 1000 ° C for about microseconds (eg, at least 10 microseconds, or at least 100 microseconds). Structural integrity may include physical integrity (eg, no disintegration) and/or chemical integrity (eg, no decomposition), but the thermally stable material is capable of withstanding certain structural deformations or partial disintegration. For example, it can be melted (at least temporarily melted) as long as it is capable of absorbing or dissipating heat from the conductive material. In various embodiments, the thermally stable material should be capable of directing heat away from the electrically conductive material upon heating to above 400 ° C for at least 10 seconds, or at least 30 seconds, or at least 1 minute, or at least 4 minutes.

在各種實施例中,熱穩定材料可為旋塗式介電材料,其可為無 機物(例如二氧化矽)、聚合物或其混合物。 In various embodiments, the thermally stable material can be a spin-on dielectric material that can be An organic matter (such as cerium oxide), a polymer or a mixture thereof.

可旋塗或塗佈之熱穩定無機材料包括包含矽氧烷(-Si-O-)、矽氮烷(-NH-Si-)或碳化矽(-Si-C-)部分之材料,在本文中統稱為旋塗式玻璃(SOG)。SOG常用作半導體加工中之間隙填充及平坦化介電質層。 The thermally stable inorganic material that can be spin coated or coated includes materials comprising a siloxane (-Si-O-), a decazane (-NH-Si-) or a lanthanum carbide (-Si-C-) moiety, Zhongtong is called spin-on glass (SOG). SOG is commonly used as a gap fill and planarization dielectric layer in semiconductor processing.

SOG通常藉由溶膠-凝膠方法來沈積在基材上,且因此與形成本文所描述之透明導電膜的基於溶液之方法相容。更特定言之,一旦膠態粒子之穩定懸浮液(溶膠)得以沈積,其不可逆地轉變為剛性或多孔膜。通常,溶膠-凝膠方法經由水解-縮合反應產生具有諸如-Si-O-、-Si-NH-或-Si-C或其組合之化學部分的聚合物之網狀結構。 SOG is typically deposited on a substrate by a sol-gel process and is thus compatible with solution-based methods of forming the transparent conductive films described herein. More specifically, once a stable suspension (sol) of colloidal particles is deposited, it irreversibly transforms into a rigid or porous membrane. Generally, a sol-gel process produces a network of polymers having a chemical moiety such as -Si-O-, -Si-NH- or -Si-C, or a combination thereof, via a hydrolysis-condensation reaction.

具有高熱穩定性之有機聚合物傾向於為結晶狀的,具有芳族環(包括與非芳族環稠合之芳族環)及一或多種類型之雜原子(例如氮或氧)。高熱穩定性之例示性聚合物包括(但不限於)具有芳族部分之聚醯亞胺、聚苯并噁唑等。 Organic polymers having high thermal stability tend to be crystalline, having an aromatic ring (including an aromatic ring fused to a non-aromatic ring) and one or more types of heteroatoms (such as nitrogen or oxygen). Exemplary polymers of high thermal stability include, but are not limited to, polybenzimine having an aromatic moiety, polybenzoxazole, and the like.

另一個實施例提供一種透明導體,其具有具高熱容量及導熱性之外塗層,使得由奈米結構或網格釋放之熱量可經快速吸收或移除,以使有機相中之溫度增加最小。 Another embodiment provides a transparent conductor having a coating having a high heat capacity and thermal conductivity such that heat released by the nanostructure or mesh can be rapidly absorbed or removed to minimize temperature increase in the organic phase.

更特定言之,外塗層可為經無機奈米粒子大量填充之聚合物層或樹脂層。圖3顯示透明導電膜(300),其包含基材(210);導電層(120),該導電層安置在基材(210)上,導電層(120)具有複數個互連導電元件(130),該等互連導電元件視情況嵌入基質或黏合劑(140)中;及外塗層(250),該外塗層覆蓋該奈米結構導電層。外塗層(250)包含複數個高熱容量奈米粒子(260)。 More specifically, the overcoat layer may be a polymer layer or a resin layer which is largely filled with inorganic nanoparticles. 3 shows a transparent conductive film (300) comprising a substrate (210); a conductive layer (120) disposed on the substrate (210), the conductive layer (120) having a plurality of interconnected conductive elements (130) The interconnecting conductive elements are optionally embedded in a matrix or adhesive (140); and an outer coating (250) that covers the nanostructured conductive layer. The outer coating (250) comprises a plurality of high heat capacity nanoparticles (260).

導電層(120)可呈圖2A、圖2B及圖2C之任一組態。 The conductive layer (120) can be configured in any of Figures 2A, 2B, and 2C.

由於存在高熱容量奈米粒子,高度填充之外塗層傾向於具有比末填充之外塗層高的熱容量。因此,與末填充之外塗層相比,高度填充之外塗層由熱分解引起總釋氣的可能性低得多,及/或由熱量及壓 力引起之總機械變形少得多。 Due to the presence of high heat capacity nanoparticles, the highly filled outer coating tends to have a higher heat capacity than the outer filled outer coating. Therefore, the highly filled outer coating is much less likely to cause total outgassing by thermal decomposition than the final filled outer coating, and/or by heat and pressure. The total mechanical deformation caused by force is much less.

高熱容量奈米粒子為無機粒子,其至少一個尺寸小於1微米。導熱奈米粒子可為實質上球形或細長的,例如呈奈米線或奈米管之形狀。金屬或金屬氧化物材料(諸如鈦、鋅、鋯、鋁及鈰之氧化物)的奈米粒子為適合之熱導體。亦可使用某些非金屬奈米粒子(諸如碳奈米管及氧化矽粒子)。 The high heat capacity nanoparticle is an inorganic particle having at least one dimension of less than 1 micron. The thermally conductive nanoparticles can be substantially spherical or elongated, such as in the shape of a nanowire or a nanotube. Nanoparticles of metal or metal oxide materials such as oxides of titanium, zinc, zirconium, aluminum and niobium are suitable thermal conductors. Certain non-metallic nanoparticles (such as carbon nanotubes and cerium oxide particles) can also be used.

外塗層應經導熱奈米粒子以賦予令人滿意之熱容量的負載量填充。奈米粒子可能或可能不彼此物理接觸。對於特定應用,負載量可憑經驗確定。可由填充奈米粒子之量及類型來改變其他因素(諸如混濁度及光透射率),且應考慮平衡任何衝突之需求。在各種實施例中,外塗層可經至少10%或至少20%、或至少30%、或至少40%(v/v)之高熱容量奈米粒子填充。旋塗式介電質外塗層可包含高達約90%之奈米粒子。 The outer coating should be filled with thermally conductive nanoparticles at a loading that imparts a satisfactory heat capacity. The nanoparticles may or may not be in physical contact with each other. For a particular application, the amount of load can be determined empirically. Other factors (such as turbidity and light transmittance) can be varied by the amount and type of filled nanoparticle, and consideration should be given to balancing any conflicting needs. In various embodiments, the overcoat layer can be filled with at least 10% or at least 20%, or at least 30%, or at least 40% (v/v) of high heat capacity nanoparticle. The spin-on dielectric topcoat layer can comprise up to about 90% of nanoparticle.

高熱容量奈米粒子可以預定負載量與聚合物或樹脂一起調配成塗佈溶液,且塗佈在網格或奈米結構導電層上。外塗層可包含聚合物,該等聚合物諸如(但不限於):聚丙烯酸系物(諸如聚甲基丙烯酸酯(例如聚(甲基丙烯酸甲酯))、聚丙烯酸酯及聚丙烯腈)、聚乙烯醇、聚酯(例如聚對苯二甲酸乙二酯(PET)、聚萘二甲酸酯及聚碳酸酯)、具有高度芳香性之聚合物(諸如酚醛樹脂或甲酚-甲醛(Novolacs®)、聚苯乙烯、聚乙烯基甲苯、聚乙烯基二甲苯、聚醯亞胺、聚醯胺、聚醯胺醯亞胺、聚醚醯亞胺、聚硫化物、聚碸、聚苯及聚苯醚)、聚胺基甲酸酯(PU)、環氧樹脂、聚烯烴(例如聚丙烯、聚甲基戊烯及環狀烯烴)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、纖維素系物、聚矽氧及其他含矽聚合物(例如聚倍半矽氧及聚矽烷)、聚氯乙烯(PVC)、聚乙酸酯、聚降冰片烯、合成橡膠(例如EPR、SBR、EPDM)、氟聚合物(例如聚偏二氟乙烯、聚四氟乙烯(TFE)或聚六氟丙烯)、氟烯烴與烴類烯 烴之共聚物(例如Lumiflon®)及非晶形氟碳聚合物或共聚物(例如Asahi Glass Co.之CYTOP®或Du Pont之Teflon® AF)。 The high heat capacity nanoparticle can be formulated into a coating solution with a predetermined loading amount and a polymer or a resin, and coated on a mesh or a nanostructure conductive layer. The overcoat layer may comprise a polymer such as, but not limited to, a polyacrylic acid (such as a polymethacrylate (eg, poly(methyl methacrylate)), a polyacrylate, and a polyacrylonitrile) , polyvinyl alcohol, polyester (such as polyethylene terephthalate (PET), polyphthalate and polycarbonate), highly aromatic polymers (such as phenolic resin or cresol-formaldehyde ( Novolacs ® ), polystyrene, polyvinyltoluene, polyvinyl xylene, polyimide, polyamine, polyamidimide, polyether phthalimide, polysulfide, polyfluorene, polyphenylene And polyphenylene ether), polyurethane (PU), epoxy resin, polyolefin (such as polypropylene, polymethylpentene and cyclic olefin), acrylonitrile-butadiene-styrene copolymer ( ABS), cellulose systems, polyfluorene and other cerium-containing polymers (such as polysulfonium oxide and polydecane), polyvinyl chloride (PVC), polyacetate, polynorbornene, synthetic rubber (eg EPR, SBR, EPDM), fluoropolymers (such as polyvinylidene fluoride, polytetrafluoroethylene (TFE) or polyhexafluoropropylene), copolymers of fluoroolefins and hydrocarbon olefins (eg Lumi Flon ® ) and amorphous fluorocarbon polymers or copolymers (eg CYTOP ® from Asahi Glass Co. or Teflon ® AF from Du Pont).

另一個實施例提供一種透明導體,其除奈米粒子填充之外塗層之外或替代奈米粒子填充之外塗層具有位於網格或奈米結構導電層下方的奈米粒子填充之硬塗層。硬塗層可藉由充當散熱片經由較高熱容量及導熱性進一步改良熱穩定性。圖4因此顯示一種透明導電膜(400),其包含基材(310);硬塗層(312),該硬塗層覆蓋基材(310)且包含第二複數個高熱容量奈米粒子(314);導電層(120),該導電層安置在硬塗層(312)上,導電層(120)具有複數個互連導電元件(130),該等互連導電元件視情況嵌入基質或黏合劑(140)中;及外塗層(350),該外塗層覆蓋該導電層,外塗層(350)進一步包含第一複數個高熱容量奈米粒子(360)。 Another embodiment provides a transparent conductor having a nano-particle-filled hard coat under the mesh or nanostructure conductive layer in addition to or in addition to the nanoparticle-filled coating. Floor. The hard coat layer can further improve thermal stability by acting as a heat sink via higher heat capacity and thermal conductivity. 4 thus shows a transparent conductive film (400) comprising a substrate (310); a hard coat layer (312) covering the substrate (310) and comprising a second plurality of high heat capacity nanoparticles (314) a conductive layer (120) disposed on the hard coat layer (312), the conductive layer (120) having a plurality of interconnected conductive elements (130), the interconnected conductive elements being optionally embedded in the matrix or adhesive (140); and an outer coating (350), the outer coating covers the conductive layer, and the outer coating (350) further comprises a first plurality of high heat capacity nano particles (360).

以下進一步詳細描述透明導電膜之各種成分。 The various components of the transparent conductive film are described in further detail below.

導電奈米結構Conductive nanostructure

如本文所用,「導電奈米結構」一般係指導電性奈米尺寸結構,其至少一個尺寸(亦即寬度或直徑)小於500nm;更通常小於100nm或50nm。在各種實施例中,奈米結構之寬度或直徑在10至40nm、20至40nm、5至20nm、10至30nm、40至60nm、50至70nm範圍內。 As used herein, "conductive nanostructure" generally refers to an electrically conductive nano-sized structure having at least one dimension (i.e., width or diameter) of less than 500 nm; more typically less than 100 nm or 50 nm. In various embodiments, the nanostructures have a width or diameter in the range of 10 to 40 nm, 20 to 40 nm, 5 to 20 nm, 10 to 30 nm, 40 to 60 nm, 50 to 70 nm.

一種界定指定奈米結構之幾何結構的方式為藉由其「縱橫比」,「縱橫比」係指該奈米結構之長度與寬度(或直徑)之比。在較佳實施例中,奈米結構之形狀具有各向異性(亦即縱橫比≠1)。各向異性奈米結構通常沿其長度具有縱向軸線。例示性各向異性奈米結構包括奈米線(縱橫比為至少10且更通常為至少50之固體奈米結構)、奈米棒(縱橫比小於10之固體奈米結構)及奈米管(空心奈米結構)。 One way to define the geometry of a given nanostructure is by its "aspect ratio", which is the ratio of the length to the width (or diameter) of the nanostructure. In a preferred embodiment, the shape of the nanostructure has an anisotropy (i.e., aspect ratio ≠1). Anisotropic nanostructures typically have a longitudinal axis along their length. Exemplary anisotropic nanostructures include nanowires (solid nanostructures having an aspect ratio of at least 10 and more typically at least 50), nanorods (solid nanostructures having an aspect ratio of less than 10), and nanotubes ( Hollow nanostructure).

縱向各向異性奈米結構(例如奈米線)之長度超過500nm,或超過1μm,或超過10μm。在各種實施例中,奈米結構之長度在5至30μm 範圍內,或15至50μm、25至75μm、30至60μm、40至80μm、或50至100μm範圍內。 The length of the longitudinal anisotropic nanostructure (e.g., nanowire) exceeds 500 nm, or exceeds 1 μm, or exceeds 10 μm. In various embodiments, the length of the nanostructure is between 5 and 30 μm Within the range, or in the range of 15 to 50 μm, 25 to 75 μm, 30 to 60 μm, 40 to 80 μm, or 50 to 100 μm.

導電奈米結構通常為金屬材料的,包括元素金屬(例如過渡金屬)或金屬化合物(例如金屬氧化物)。金屬材料亦可為雙金屬材料或金屬合金,其包含兩種或兩種以上類型之金屬。適合之金屬包括(但不限於)銀、金、銅、鎳、鍍金之銀、鉑及鈀。應注意儘管本發明主要描述奈米線(例如銀奈米線),但可同樣採用以上定義內之任何奈米結構。 Conductive nanostructures are typically metallic materials, including elemental metals (eg, transition metals) or metal compounds (eg, metal oxides). The metal material may also be a bimetallic material or a metal alloy containing two or more types of metals. Suitable metals include, but are not limited to, silver, gold, copper, nickel, gold plated silver, platinum, and palladium. It should be noted that although the present invention primarily describes nanowires (e.g., silver nanowires), any nanostructure within the above definitions may equally be employed.

通常,導電奈米結構為縱橫比在10至100,000範圍內之金屬奈米線。較大縱橫比可有利於獲得透明導體層,因為其可使得能夠形成較有效之導電網狀結構同時允許較低總線密度以得到高透明度。換言之,當使用高縱橫比之導電奈米線時,達成導電網狀結構的奈米線之密度可低至足以使該導電網狀結構為實質上透明的。 Typically, the conductive nanostructures are metal nanowires having an aspect ratio in the range of 10 to 100,000. A larger aspect ratio may be advantageous to obtain a transparent conductor layer because it may enable the formation of a more efficient conductive mesh structure while allowing for lower bus density for high transparency. In other words, when a high aspect ratio conductive nanowire is used, the density of the nanowires that achieve the conductive network structure can be low enough to make the conductive network substantially transparent.

可藉由此項技術中已知之方法來製備金屬奈米線。特定言之,可在多元醇(例如乙二醇)及聚(乙烯基吡咯啶酮)存在下,經由銀鹽(例如硝酸銀)之溶液相還原來合成銀奈米線。大規模生產的具有均一尺寸之銀奈米線可根據本發明受讓人Cambrios Technologies Corporation名下的美國公開申請案第2008/0210052號、第2011/0024159號、第2011/0045272號及第2011/0048170號中描述之方法來製備及純化。 Metal nanowires can be prepared by methods known in the art. In particular, silver nanowires can be synthesized by solution phase reduction of a silver salt (e.g., silver nitrate) in the presence of a polyol (e.g., ethylene glycol) and poly(vinylpyrrolidone). Large-scale production of silver nanowires of uniform size can be made in accordance with the disclosure of the present application by the U.S. Patent Application Publication Nos. 2008/0210052, 2011/0024159, 2011/0045272 and 2011/ The process described in 0048170 is prepared and purified.

奈米結構導電層Nanostructured conductive layer

奈米結構導電層為互連導電奈米結構(例如金屬奈米線)之導電網狀結構,其提供透明導體之導電介質。因為導電性係藉由自一個金屬奈米結構向另一個金屬奈米結構進行電荷滲透而達成的,故在導電網狀結構中必須存在充足金屬奈米線,以達到電學滲透閾值且變為導電的。奈米結構導電層之表面導電性與其表面電阻率成反比,表面電阻率有時稱為薄層電阻,其可藉由此項技術中已知之方法來量測。如本 文所用,「導電性(electrically conductive)」或簡言之「導電(conductive)」對應於不超過104Ω/□,或更通常不超過1,000Ω/□,或更通常不超過500Ω/□,或更通常不超過200Ω/□之表面電阻率。表面電阻率視互連導電奈米結構之以下因素而定,諸如縱橫比、對準程度、聚結程度及電阻率。 The nanostructure conductive layer is a conductive mesh structure interconnecting a conductive nanostructure (e.g., a metal nanowire) that provides a conductive medium for the transparent conductor. Since conductivity is achieved by charge infiltration from one metal nanostructure to another metal nanostructure, sufficient metal nanowires must be present in the conductive network to achieve an electrical permeation threshold and become conductive. of. The surface conductivity of the nanostructured conductive layer is inversely proportional to its surface resistivity, which is sometimes referred to as sheet resistance, which can be measured by methods known in the art. As used herein, "electrically conductive" or simply "conductive" corresponds to no more than 10 4 Ω/□, or more typically no more than 1,000 Ω/□, or more typically no more than 500 Ω/□. Or, more typically, does not exceed a surface resistivity of 200 Ω/□. The surface resistivity depends on the following factors of the interconnected conductive nanostructure, such as aspect ratio, degree of alignment, degree of coalescence, and resistivity.

在某些實施例中,導電奈米結構可在無黏合劑的情況下在基材上形成導電網狀結構。在其他實施例中,可存在黏合劑以促進奈米結構與基材之黏著。適合之黏合劑包括光學清澈聚合物,該等光學透明聚合物包括(但不限於):聚丙烯酸系物(諸如聚甲基丙烯酸酯(例如聚(甲基丙烯酸甲酯))、聚丙烯酸酯及聚丙烯腈)、聚乙烯醇、聚酯(例如聚對苯二甲酸乙二酯(PET)、聚萘二甲酸酯及聚碳酸酯)、具有高度芳香性之聚合物(諸如酚醛樹脂或甲酚-甲醛(Novolacs®)、聚苯乙烯、聚乙烯基甲苯、聚乙烯基二甲苯、聚醯亞胺、聚醯胺、聚醯胺醯亞胺、聚醚醯亞胺、聚硫化物、聚碸、聚苯及聚苯醚)、聚胺基甲酸酯(PU)、環氧樹脂、聚烯烴(例如聚丙烯、聚甲基戊烯及環狀烯烴)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、纖維素系物、聚矽氧及其他含矽聚合物(例如聚倍半矽氧及聚矽烷)、聚氯乙烯(PVC)、聚乙酸酯、聚降冰片烯、合成橡膠(例如EPR、SBR、EPDM)、以及氟聚合物(例如聚偏二氟乙烯、聚四氟乙烯(TFE)或聚六氟丙烯)、氟烯烴與烴類烯烴之共聚物(例如Lumiflon®)及非晶形氟碳聚合物或共聚物(例如Asahi Glass Co.之CYTOP®或Du Pont之Teflon® AF)。其他適合之黏合劑包括羧甲基纖維素(CMC)、2-羥基乙基纖維素(HEC)、羥基丙基甲基纖維素(HPMC)、甲基纖維素(MC)、聚乙烯醇(PVA)、三丙二醇(TPG)及三仙膠(xanthan gum,XG)。 In certain embodiments, the conductive nanostructures can form a conductive network on the substrate without a binder. In other embodiments, a binder may be present to promote adhesion of the nanostructure to the substrate. Suitable adhesives include optically clear polymers including, but not limited to, polyacrylic acids (such as polymethacrylates (eg, poly(methyl methacrylate)), polyacrylates, and Polyacrylonitrile), polyvinyl alcohol, polyester (such as polyethylene terephthalate (PET), polyphthalate and polycarbonate), highly aromatic polymers (such as phenolic resin or nail) Phenol-formaldehyde (Novolacs ® ), polystyrene, polyvinyl toluene, polyvinyl xylene, polyimine, polyamine, polyamidimide, polyether phthalimide, polysulfide, poly Bismuth, polyphenylene and polyphenylene ether), polyurethanes (PU), epoxy resins, polyolefins (eg polypropylene, polymethylpentene and cyclic olefins), acrylonitrile-butadiene-benzene Ethylene copolymer (ABS), cellulose compounds, polyfluorene oxide and other cerium-containing polymers (such as polysulfonium oxide and polydecane), polyvinyl chloride (PVC), polyacetate, polynorbornene, Synthetic rubber (eg EPR, SBR, EPDM), and fluoropolymers (eg polyvinylidene fluoride, polytetrafluoroethylene (TFE) or polyhexafluoropropylene), fluoroolefins The hydrocarbon olefin copolymer (e.g., Lumiflon ®), and amorphous fluorocarbon polymers or copolymers (e.g., CYTOP ® Asahi Glass Co., or of the Du Pont Teflon ® AF). Other suitable binders include carboxymethyl cellulose (CMC), 2-hydroxyethyl cellulose (HEC), hydroxypropyl methyl cellulose (HPMC), methyl cellulose (MC), polyvinyl alcohol (PVA). ), tripropylene glycol (TPG) and xanthan gum (XG).

「基材」係指上面塗佈或層合有金屬奈米結構之非導電材料。基材可為剛性或可撓性的。基材可為清澈或不透明的。適合之剛性基材 包括例如玻璃、聚碳酸酯、丙烯酸系物及其類似物。適合之可撓性基材包括(但不限於):聚酯(例如聚對苯二甲酸乙二酯(PET)、聚萘二甲酸酯及聚碳酸酯)、聚烯烴(例如線性、分枝及環狀聚烯烴)、聚乙烯(例如聚氯乙烯、聚偏二氯乙烯、聚乙烯縮醛、聚苯乙烯、聚丙烯酸酯及其類似物)、纖維素酯基質(例如三乙酸纖維素、乙酸纖維素)、聚碸(諸如聚醚碸)、聚醯亞胺、聚矽氧及其他習知聚合物膜。適合之基材的其他實例可見於例如美國專利第6,975,067號。 "Substrate" means a non-conductive material coated or laminated with a metallic nanostructure. The substrate can be rigid or flexible. The substrate can be clear or opaque. Suitable for rigid substrates These include, for example, glass, polycarbonate, acrylics, and the like. Suitable flexible substrates include, but are not limited to, polyesters (eg, polyethylene terephthalate (PET), polyphthalate and polycarbonate), polyolefins (eg, linear, branched) And cyclic polyolefin), polyethylene (such as polyvinyl chloride, polyvinylidene chloride, polyvinyl acetal, polystyrene, polyacrylate and the like), cellulose ester matrix (such as cellulose triacetate, Cellulose acetate), polyfluorene (such as polyether oxime), polyimine, polyfluorene, and other conventional polymer films. Other examples of suitable substrates can be found, for example, in U.S. Patent No. 6,975,067.

通常,可藉由包括光透射率及混濁度之參數來定量式確定透明導體(亦即非導電基材上之導電網狀結構)的光學透明度或清澈度。「光透射率(Light transmission/light transmissivity)」係指透射穿過介質之入射光的百分比。在各種實施例中,導電層之光透射率為至少80%,且可高達98%。效能增強層(諸如黏著層、抗反射層或防眩層)可進一步促使降低透明導體之總光透射率。在各種實施例中,透明導體之光透射率(T%)可為至少50%、至少60%、至少70%或至少80%,且可高達至少91%至92%、或至少95%。 Generally, the optical transparency or clarity of a transparent conductor (i.e., a conductive mesh structure on a non-conductive substrate) can be quantitatively determined by parameters including light transmittance and turbidity. "Light transmission/light transmissivity" refers to the percentage of incident light transmitted through the medium. In various embodiments, the conductive layer has a light transmission of at least 80% and can be as high as 98%. A performance enhancing layer, such as an adhesive layer, an anti-reflective layer, or an anti-glare layer, can further contribute to reducing the total light transmission of the transparent conductor. In various embodiments, the transparent conductor may have a light transmission (T%) of at least 50%, at least 60%, at least 70%, or at least 80%, and may be as high as at least 91% to 92%, or at least 95%.

混濁度(H%)為光散射之量度。其係指自入射光分離且在透射期間散射的光之量的百分比。不同於光透射率(其基本上為介質之特性),混濁度常常為生產關注點,且通常由表面粗糙度及介質中之嵌入粒子或組成異質性造成。通常,導電膜之混濁度可明顯受奈米結構之直徑影響。直徑較大之奈米結構(例如較厚之奈米線)通常與較高之混濁度相關。在各種實施例中,透明導體之混濁度不超過10%,不超過8%或不超過5%,且可低至不超過2%,不超過1%或不超過0.5%,或不超過0.25%。 Turbidity (H%) is a measure of light scattering. It refers to the percentage of light that is separated from incident light and scattered during transmission. Unlike light transmission, which is essentially a property of the medium, turbidity is often a production concern and is typically caused by surface roughness and embedded particles or compositional heterogeneity in the medium. Generally, the turbidity of the conductive film can be significantly affected by the diameter of the nanostructure. Larger diameter nanostructures (eg, thicker nanowires) are often associated with higher turbidity. In various embodiments, the haze of the transparent conductor does not exceed 10%, does not exceed 8% or does not exceed 5%, and can be as low as no more than 2%, no more than 1% or no more than 0.5%, or no more than 0.25% .

塗佈組合物Coating composition

藉由將含有奈米結構之塗佈組合物塗佈在非導電基材上來製備本發明之經圖案化透明導體。為形成塗佈組合物,通常將金屬奈米線 分散在揮發性液體中以促進塗佈製程。應理解,如本文所用,可使用其中金屬奈米線可形成穩定分散液的任何非腐蝕性揮發性液體。較佳地,將金屬奈米線分散於水、醇、酮、醚、烴或芳族溶劑(苯、甲苯、二甲苯等)中。更佳地,液體為揮發性的,且其沸點不超過200℃,不超過150℃或不超過100℃。 The patterned transparent conductor of the present invention is prepared by coating a coating composition containing a nanostructure on a non-conductive substrate. To form a coating composition, usually a metal nanowire Dispersed in a volatile liquid to promote the coating process. It should be understood that any non-corrosive volatile liquid in which the metal nanowires can form a stable dispersion can be used as used herein. Preferably, the metal nanowire is dispersed in water, an alcohol, a ketone, an ether, a hydrocarbon or an aromatic solvent (benzene, toluene, xylene, etc.). More preferably, the liquid is volatile and has a boiling point of no more than 200 ° C, no more than 150 ° C or no more than 100 ° C.

另外,金屬奈米線分散液可含有添加劑及黏合劑以控制黏度、腐蝕、黏著及奈米線分散。適合之添加劑及黏合劑的實例包括(但不限於):羧甲基纖維素(CMC)、2-羥基乙基纖維素(HEC)、羥基丙基甲基纖維素(HPMC)、甲基纖維素(MC)、聚乙烯醇(PVA)、三丙二醇(TPG)及三仙膠(XG),及界面活性劑(諸如乙氧基化物、烷氧基化物、環氧乙烷及環氧丙烷)及其共聚物、磺酸鹽、硫酸鹽、二磺酸鹽、磺基丁二酸酯、磷酸酯,及氟界面活性劑(例如DuPont之Zonyl®)。 In addition, the metal nanowire dispersion may contain additives and binders to control viscosity, corrosion, adhesion, and nanowire dispersion. Examples of suitable additives and binders include, but are not limited to, carboxymethyl cellulose (CMC), 2-hydroxyethyl cellulose (HEC), hydroxypropyl methyl cellulose (HPMC), methyl cellulose. (MC), polyvinyl alcohol (PVA), tripropylene glycol (TPG) and Sanxian gum (XG), and surfactants (such as ethoxylates, alkoxylates, ethylene oxide and propylene oxide) and Its copolymers, sulfonates, sulfates, disulfonates, sulfosuccinates, phosphates, and fluorosurfactants (such as Zonyl ® from DuPont).

在一個實例中,奈米線分散液(或「油墨」)包括以重量計0.0025%至0.1%界面活性劑(例如對於Zonyl® FSO-100,較佳範圍為0.0025%至0.05%)、0.02%至4%黏度改質劑(例如對於HPMC較佳範圍為0.02%至0.5%)、94.5%至99.0%溶劑及0.05%至1.4%金屬奈米線。適合之界面活性劑的代表性實例包括Zonyl® FSN、Zonyl® FSO、Zonyl® FSH、Triton(x100、x114、x45)、Dynol(604、607)、正十二烷基b-D-麥芽糖苷及Novek。適合之黏度改質劑的實例包括羥丙基甲基纖維素(HPMC)、甲基纖維素、三仙膠、聚乙烯醇、羧甲基纖維素及羥基乙基纖維素。適合之溶劑的實例包括水及異丙醇。 In one example, a nanowire dispersion (or "ink") comprising by weight from 0.0025 to 0.1% surfactant (for example Zonyl ® FSO-100, preferably in the range from 0.0025 to 0.05%), 0.02% To 4% viscosity modifier (for example, 0.02% to 0.5% for HPMC), 94.5% to 99.0% solvent, and 0.05% to 1.4% metal nanowire. Representative examples of suitable surfactants include Zonyl ® FSN, Zonyl ® FSO, Zonyl ® FSH, Triton (x100, x114, x45), Dynol (604,607), n-dodecyl maltoside and bD- Novek. Examples of suitable viscosity modifiers include hydroxypropyl methylcellulose (HPMC), methylcellulose, trisin, polyvinyl alcohol, carboxymethylcellulose, and hydroxyethylcellulose. Examples of suitable solvents include water and isopropanol.

分散液中之奈米線濃度會影響或決定奈米線網狀結構層之參數,諸如厚度、導電性(包括表面導電性)、光學透明度及機械特性。可調整溶劑之百分比以提供奈米線在分散液中之所需濃度。然而,在較佳實施例中,其他成分之相對比率可保持相同。特定言之,界面活性劑與黏度改質劑之比率較佳在約80至約0.01範圍內;黏度改質劑與 金屬奈米線之比率較佳在約5至約0.000625範圍內;且金屬奈米線與界面活性劑之比率較佳在約560至約5範圍內。視所用之基材及塗覆方法而定,可調節分散液組分之比率。奈米線分散液之較佳黏度範圍為約1至100cP。 The concentration of the nanowires in the dispersion affects or determines the parameters of the nanowire network layer, such as thickness, electrical conductivity (including surface conductivity), optical clarity, and mechanical properties. The percentage of solvent can be adjusted to provide the desired concentration of nanowires in the dispersion. However, in the preferred embodiment, the relative ratios of the other ingredients may remain the same. In particular, the ratio of surfactant to viscosity modifier is preferably in the range of from about 80 to about 0.01; viscosity modifiers and The ratio of the metal nanowires is preferably in the range of from about 5 to about 0.000625; and the ratio of the metal nanowire to the surfactant is preferably in the range of from about 560 to about 5. The ratio of the components of the dispersion can be adjusted depending on the substrate used and the coating method. The preferred viscosity range for the nanowire dispersion is from about 1 to 100 cP.

在塗佈之後,藉由蒸發來移除揮發性液體。可藉由加熱(例如烘烤)來加速蒸發。所得奈米線網狀結構層可能需要後處理以使其具有導電性。此後處理可為如下所述的涉及暴露於熱、電漿、電暈放電、UV-臭氧或壓力之製程步驟。 After coating, the volatile liquid is removed by evaporation. Evaporation can be accelerated by heating (e.g., baking). The resulting nanowire network layer may require post treatment to render it electrically conductive. Thereafter the treatment can be a process step involving exposure to heat, plasma, corona discharge, UV-ozone or pressure as described below.

適合之塗佈組合物的實例描述於本發明受讓人Cambrios Technologies Corporation名下的美國公開申請案第2007/0074316號、第2009/0283304號、第2009/0223703號及第2012/0104374號中。 Examples of suitable coating compositions are described in U.S. Published Application No. 2007/0074316, No. 2009/0283304, No. 2009/0223703, and No. 2012/0104374, the name of the assignee of the present disclosure.

藉由例如薄片塗佈、捲繞塗佈(web-coating)、印刷及層合來將塗佈組合物塗佈在基材上以提供透明導體。用於自導電奈米結構製造透明導體之其他資訊揭示於例如Cambrios Technologies Corporation名下之美國公開申請案第2008/0143906號及第2007/0074316號中。 The coating composition is coated on a substrate by, for example, sheet coating, web-coating, printing, and lamination to provide a transparent conductor. Other information for the manufacture of a transparent conductor from a conductive nanostructure is disclosed in, for example, U.S. Published Application No. 2008/0143906 and No. 2007/0074316, the disclosure of which is incorporated herein by reference.

導電柵格或網格Conductive grid or grid

低薄層電阻柵格(例如圖2B及2C之126)提供用於電流流動、分佈及/或收集的低電阻路徑或路徑之網狀結構。低薄層電阻柵格126包括具有任何類型之適當電學及物理特性的導電結構,包括金屬結構、非金屬結構、或含有金屬及非金屬結構之組合的複合結構。低薄層電阻柵格126之實例包括(但不限於)例如藉由濺鍍或蒸發伴以後圖案化沈積的精細金屬網格(例如銅網格、銀網格、鋁網格、鋼網格等),較佳例如網版印刷之金屬膏(例如Ag膏)、可嵌入之精細金屬線或含有一或多種殘餘低電阻組分之可印刷溶液。 A low sheet resistance grid (e.g., 126 of Figures 2B and 2C) provides a network of low resistance paths or paths for current flow, distribution, and/or collection. The low sheet resistance grid 126 includes a conductive structure having any type of suitable electrical and physical properties, including metal structures, non-metal structures, or composite structures containing a combination of metal and non-metal structures. Examples of low sheet resistance grids 126 include, but are not limited to, fine metal grids (eg, copper grids, silver grids, aluminum grids, steel grids, etc.) that are patterned and deposited, for example, by sputtering or evaporation. Preferably, for example, a screen printing metal paste (for example, an Ag paste), an insertable fine metal wire or a printable solution containing one or more residual low resistance components.

低薄層電阻柵格126之物理尺寸及/或組態完全或部分地基於滿足任何指定之電學需求(例如薄層電阻)及物理需求(例如表面粗糙度及/ 或光透射率)。形成低薄層電阻柵格126之導體的尺寸及選路形成用於在基材上沈積或以其他方式形成低薄層電阻柵格126之至少一部分的柵格圖案。在一些實施例中,形成低薄層電阻柵格126之元件的寬度可在約1微米至約300微米範圍內。在一些實施例中,形成低薄層電阻柵格之元件的高度可在約100nm至約100微米範圍內。在形成低薄層電阻柵格之元件之間的開放距離可在約100微米至約10mm範圍內。 The physical dimensions and/or configuration of the low sheet resistance grid 126 is based, in whole or in part, on meeting any specified electrical requirements (eg, sheet resistance) and physical requirements (eg, surface roughness and/or Or light transmittance). The size and routing of the conductors forming the low sheet resistance grid 126 form a grid pattern for depositing or otherwise forming at least a portion of the low sheet resistance grid 126 on the substrate. In some embodiments, the width of the elements forming the low sheet resistance grid 126 can range from about 1 micron to about 300 microns. In some embodiments, the height of the elements forming the low sheet resistance grid can range from about 100 nm to about 100 microns. The open distance between the elements forming the low sheet resistance grid can range from about 100 microns to about 10 mm.

低薄層電阻柵格126之沈積可使用預圖案化、後圖案化或其任何組合來實現。經預圖案化、印刷之低薄層電阻柵格的實例包括(但不限於)印刷之銀膏柵格、印刷之銅膏柵格、微米粒子或奈米粒子膏柵格、或類似導電膏柵格。實例性經後圖案化之低薄層電阻柵格126藉由使用預先塗覆之導電膜的光微影顯影以產生低薄層電阻柵格126來提供。其他實例性經後圖案化之低薄層電阻柵格126包括(但不限於)經由印刷、蒸發、濺鍍、無電鍍敷或電解電鍍、或溶液加工進行總沈積,接著經由光微影術、網版印刷抗蝕劑、網版印刷蝕刻劑、標準蝕刻、雷射蝕刻及黏著劑揭去印模進行圖案化。 The deposition of the low sheet resistance grid 126 can be accomplished using pre-patterning, post-patterning, or any combination thereof. Examples of pre-patterned, printed low sheet resistance grids include, but are not limited to, printed silver paste grids, printed copper paste grids, microparticle or nanoparticle paste grids, or similar conductive paste grids grid. An exemplary post-patterned low sheet resistance grid 126 is provided by photolithographic development using a pre-coated conductive film to produce a low sheet resistance grid 126. Other exemplary post-patterned low sheet resistance grids 126 include, but are not limited to, total deposition via printing, evaporation, sputtering, electroless plating or electrolytic plating, or solution processing, followed by photolithography, Screen printing resists, screen printing etchants, standard etching, laser etching, and adhesives are used to remove the stamps for patterning.

低薄層電阻柵格可具有達成所需薄層電阻同時保持可接受光學特性所需要的任何二維或三維幾何結構、形狀或組態。儘管較大柵格密度(亦即跨過橫截面積的較大低電阻路徑)可降低透明導體之總薄層電阻,但高柵格密度可使透明導體之不透明度增加至不可接受之程度。因此低薄層電阻柵格126之圖案選擇及物理特性有時可為至少部分基於使透明導體之薄層電阻最小同時不使透明導體之不透明度增加至不可接受之程度的權衡。 The low sheet resistance grid can have any two or three dimensional geometry, shape or configuration required to achieve the desired sheet resistance while maintaining acceptable optical properties. Although a larger grid density (i.e., a larger low resistance path across the cross-sectional area) can reduce the overall sheet resistance of the transparent conductor, the high grid density can increase the opacity of the transparent conductor to an unacceptable extent. Thus, the pattern selection and physical properties of the low sheet resistance grid 126 can sometimes be based, at least in part, on the trade-off that minimizes the sheet resistance of the transparent conductor while not increasing the opacity of the transparent conductor to an unacceptable level.

低薄層電阻柵格126可具有能夠提供可接受之薄層電阻的任何固定、幾何或無規圖案。舉例而言,低薄層電阻柵格126圖案可包括規則或不規則寬度的幾何排列,諸如垂直線、成角線(例如形成「鑽石」圖案)及平行線。其他圖案可使用彎曲或弧形導體以達成具有均 一或不均一薄層電阻之複雜圖案,例如其中透明導體欲用於三維應用之複雜圖案。適當時,例如在一些OLED串聯式互連之電池中及在形成光伏打模組中,可使用兩種或兩種以上圖案來形成低薄層電阻柵格126,例如使用由較大圖案(諸如六角形或矩形)定界之平行線形成的柵格。在另一個實施例中,低薄層電阻柵格126可為連接串聯式互連之薄膜光伏打條帶的梳狀結構。 The low sheet resistance grid 126 can have any fixed, geometric or random pattern capable of providing an acceptable sheet resistance. For example, the low sheet resistance grid 126 pattern can include a geometric arrangement of regular or irregular widths, such as vertical lines, angled lines (eg, forming a "diamond" pattern), and parallel lines. Other patterns can use curved or curved conductors to achieve A complex pattern of one or a non-uniform sheet resistance, such as a complex pattern in which a transparent conductor is intended for three-dimensional applications. Where appropriate, for example, in some OLED series interconnected cells and in forming photovoltaic modules, two or more patterns may be used to form the low sheet resistance grid 126, for example using a larger pattern (such as A hexagonal or rectangular) grid of bounded parallel lines. In another embodiment, the low sheet resistance grid 126 can be a comb structure that connects the tandem interconnected thin film photovoltaic strips.

實例 Instance 實例1 Example 1

導電奈米結構之塗佈組合物的標準製備 Standard preparation of coating compositions for conductive nanostructures

用於沈積金屬奈米線之典型塗佈組合物包含以重量計0.0025%至0.1%界面活性劑(例如對於氟界面活性劑,較佳範圍為0.0025%至0.05%)、0.02%至4%黏度改質劑(例如對於羥丙基甲基纖維素(HPMC),較佳範圍為0.02%至0.5%)、94.5%至99.0%溶劑及0.05%至1.4%金屬奈米線。 A typical coating composition for depositing a metal nanowire comprises 0.0025% to 0.1% by weight of a surfactant (e.g., for a fluorosurfactant, preferably from 0.0025% to 0.05%), 0.02% to 4% viscosity. Modifiers (for example, hydroxypropyl methylcellulose (HPMC), preferably in the range of 0.02% to 0.5%), 94.5% to 99.0% solvent, and 0.05% to 1.4% metal nanowires.

可基於所需奈米線濃度(其為在基材上形成之最終導電膜之負載密度的指數)來製備塗佈組合物。 The coating composition can be prepared based on the desired nanowire concentration, which is an index of the loading density of the final conductive film formed on the substrate.

可根據例如描述於美國專利第8,049,333號及美國公開申請案第2011/0174190號中之方法在基材上沈積塗佈組合物。 The coating composition can be deposited on a substrate according to, for example, the method described in U.S. Patent No. 8,049,333 and U.S. Patent Application Serial No. 2011/0174190.

如熟習此項技術者所理解,可採用其他沈積技術,例如由窄通道計量之沈降流動、模具流動、斜面流動、隙縫塗佈、凹版塗佈、微凹版塗佈、液滴塗佈、浸漬塗佈、槽模塗佈及其類似技術。亦可使用印刷技術來在存在或不存在圖案的情況下將油墨組合物直接印刷在基材上。舉例而言,可採用噴墨、柔版印刷及網版印刷。進一步理解流體之黏度及剪切行為以及奈米線之間的相互作用可影響所沈積奈米線之分佈及互連性。 As will be appreciated by those skilled in the art, other deposition techniques can be employed, such as sedimentation flow metered by narrow channels, mold flow, bevel flow, slot coating, gravure coating, microgravure coating, droplet coating, dip coating. Cloth, slot die coating and similar techniques. Printing techniques can also be used to print the ink composition directly onto the substrate in the presence or absence of a pattern. For example, inkjet, flexographic, and screen printing can be employed. It is further understood that the viscosity and shear behavior of the fluid and the interaction between the nanowires can affect the distribution and interconnectivity of the deposited nanowires.

製備樣品導電奈米結構分散液,其包含如實例1中所製造之銀奈 米線、界面活性劑(例如Triton)及黏度改質劑(例如低分子量HPMC)及水。最終分散液包括約0.4%銀及0.4% HPMC(以重量計),亦即重量比為1:1。 A sample conductive nanostructure dispersion was prepared, which contained the silver neon as manufactured in Example 1. Rice noodles, surfactants (such as Triton) and viscosity modifiers (such as low molecular weight HPMC) and water. The final dispersion included about 0.4% silver and 0.4% HPMC (by weight), that is, a weight ratio of 1:1.

實例2 Example 2

塗佈有旋塗式玻璃(SOG)之銀奈米線層 Silver nanowire layer coated with spin-on glass (SOG)

1. 在進行或不進行Ar電漿處理的情況下製備銀奈米線膜 1. Preparation of silver nanowire film with or without Ar plasma treatment

根據實例1中所述之通用方法來製備銀奈米線(AgNW)之塗佈溶液。HPMC自Dow Chemicals獲得(Methocel® 311及K100)。 A coating solution of silver nanowire (AgNW) was prepared according to the general method described in Example 1. HPMC is available from Dow Chemicals (Methocel ® 311 and K100).

將塗佈溶液旋塗至8個玻璃樣品(載玻片)上。隨後在50℃下乾燥經AgNW塗佈之玻璃樣品90秒,且在140℃下烘烤90秒。將AgNW膜樣品分成兩組,每組四個樣品。量測第一組之初始薄層電阻。使第二組之四個膜經受氬氣(Ar)電漿處理,以移除黏合劑(例如HPMC)。參見表1。在Ar電漿處理之後量測薄層電阻。 The coating solution was spin coated onto 8 glass samples (slides). The AgNW coated glass samples were then dried at 50 °C for 90 seconds and baked at 140 °C for 90 seconds. The AgNW film samples were divided into two groups of four samples each. The initial sheet resistance of the first set was measured. The four membranes of the second set were subjected to an argon (Ar) plasma treatment to remove the binder (eg, HPMC). See Table 1. The sheet resistance was measured after Ar plasma treatment.

2. 在AgNW膜上塗佈旋塗式玻璃 2. Coating spin-on glass on AgNW film

旋塗式玻璃(SOG)自Silec Co獲得,產品編號SG230。 Spin-on glass (SOG) is available from Silec Co, product number SG230.

使用以下製程用SOG塗佈兩組樣品(1-8):(1)用異丙醇(IPA)稀釋SG230(按體積計1:1或按體積計1:3),(2)以1000rpm持續30秒將所得SOG溶液旋塗至AgNW膜上及(3)在140℃下烘烤樣品5分鐘。 Two sets of samples (1-8) were coated with SOG using the following procedure: (1) SG230 diluted with isopropyl alcohol (IPA) (1:1 by volume or 1:3 by volume), (2) continued at 1000 rpm The resulting SOG solution was spin coated onto the AgNW film for 30 seconds and (3) the sample was baked at 140 ° C for 5 minutes.

表2顯示AgNW膜之初始薄層電阻(SR)/光透射率(T)及混濁度 (H)、及經SOG塗佈之AgNW膜的接觸電阻。 Table 2 shows the initial sheet resistance (SR) / light transmittance (T) and turbidity of the AgNW film. (H), and contact resistance of the SOG coated AgNW film.

稀釋度較高之樣品顯示較佳接觸電阻,表明SOG膜較薄。觀測到在SOG沈積之後薄層電阻略有增加,但AgNW之整體完整性仍得以保存。此外,由於光學堆疊中存在SOG,透射率略有增加且混濁度略有降低。 Samples with higher dilutions showed better contact resistance, indicating a thinner SOG film. A slight increase in sheet resistance after SOG deposition was observed, but the overall integrity of the AgNW was preserved. In addition, due to the presence of SOG in the optical stack, the transmittance is slightly increased and the turbidity is slightly lowered.

實例3 Example 3

經SOG塗佈之膜的熱穩定性 Thermal stability of SOG coated film

使實例2之樣品暴露於熱處理以研究AgNW膜之熱穩定性。一組四個樣品在高爐中於350℃下加熱一分鐘(t=1),且另一組四個樣品加熱至400℃持續一分鐘(t=1)。熱處理之後的薄層電阻(SR)、光透射率(T)及混濁度(H)顯示在表3中。 The sample of Example 2 was exposed to heat treatment to investigate the thermal stability of the AgNW film. A set of four samples was heated in a blast furnace at 350 ° C for one minute (t = 1), and another set of four samples was heated to 400 ° C for one minute (t = 1). Sheet resistance (SR), light transmittance (T), and haze (H) after heat treatment are shown in Table 3.

如所示,用Methocel® K100自油墨製得之樣品的薄層電阻比用 Methocel® 311製得之彼等樣品的薄層電阻增長得更急劇。儘管如此,在無SOG外塗層的情況下,奈米線在約180℃下崩解。因此,經SOG塗佈之奈米線膜在長時間內耐受400℃的能力指示SOG提供熱保護且防止奈米線崩解。 As shown, the sheet resistance of samples made with ink from Methocel ® K100 increased more sharply than the sheet resistance of samples made with Methocel ® 311. Nonetheless, in the absence of a SOG overcoat, the nanowires disintegrate at about 180 °C. Thus, the ability of SOG coated nanowire films to withstand 400 °C over a long period of time indicates that SOG provides thermal protection and prevents nanowire collapse.

在使用Methocel® 311之樣品(樣品號1及3)進一步於400℃下加熱4分鐘(t=4)及遠超出4分鐘時,在該等樣品中觀測到可持續之熱穩定性。參見表4。 Sustained thermal stability was observed in these samples when samples of Methocel ® 311 (sample Nos. 1 and 3) were further heated at 400 ° C for 4 minutes (t = 4) and well over 4 minutes. See Table 4.

在使用Methocel® K100之樣品(樣品號6及8)中觀測到混濁度降低,其表明奈米線至少部分崩解。後續光學微觀資料確認此等樣品中之銀奈米線結構崩解及消失。 A decrease in turbidity was observed in samples using Methocel ® K100 (sample numbers 6 and 8) indicating that the nanowires were at least partially disintegrated. Subsequent optical microdata confirmed the disintegration and disappearance of the silver nanowire structure in these samples.

可組合上述各種實施例以提供另外之實施例。本說明書中所提及及/或申請資料表單中所列出之所有美國專利、美國專利申請公開案、美國專利申請案、外國專利、外國專利申請案及非專利出版物均以全文引用之方式併入本文中。必要時可修改該等實施例之態樣以採用各種專利、申請案及公開案之概念來提供又另外之實施例。 The various embodiments described above can be combined to provide additional embodiments. All U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications, and non-patent publications mentioned in the specification and/or application form are referred to in full by reference. Incorporated herein. The embodiments may be modified as necessary to provide further embodiments in the concept of various patents, applications, and publications.

可鑒於以上詳細描述來對實施例進行此等及其他改變。一般而言,在以下申請專利範圍中,所用術語不應解釋為將申請專利範圍限制於說明書及申請專利範圍中所揭示之特定實施例,而應解釋為包括所有可能實施例以及授予該申請專利範圍的等效物之全部範疇。相應 地,申請專利範圍不受揭示內容的限制。 These and other changes can be made to the embodiments in light of the above detailed description. In general, the terms used in the following claims should not be construed as limiting the scope of the claims to the specific embodiments disclosed in the specification and claims. The full range of equivalents of the scope. corresponding The scope of patent application is not limited by the disclosure.

100‧‧‧透明導電膜 100‧‧‧Transparent conductive film

110‧‧‧基材 110‧‧‧Substrate

120‧‧‧薄膜導電層 120‧‧‧film conductive layer

130‧‧‧互連導電元件 130‧‧‧Interconnected conductive components

140‧‧‧黏合劑 140‧‧‧Binder

150‧‧‧外塗層 150‧‧‧Ex overcoat

Claims (17)

一種透明導電膜,其包含:基材;導電層,該導電層安置在該基材上,該導電層具有複數個互連導電元件,該等互連導電元件視情況嵌入黏合劑中;及外塗層,該外塗層覆蓋該導電層,其中該黏合劑及該外塗層中之至少一者為熱穩定材料。 A transparent conductive film comprising: a substrate; a conductive layer disposed on the substrate, the conductive layer having a plurality of interconnected conductive elements, the interconnected conductive elements being embedded in the adhesive as appropriate; and a coating, the outer coating covering the conductive layer, wherein at least one of the adhesive and the outer coating is a heat stable material. 如請求項1之透明導電膜,其中該黏合劑為聚醯亞胺或聚苯并噁唑。 The transparent conductive film of claim 1, wherein the binder is polyimine or polybenzoxazole. 如請求項1或2中任一項之透明導電膜,其中該外塗層為聚醯亞胺或聚苯并噁唑。 The transparent conductive film according to any one of claims 1 to 2, wherein the outer coating layer is polyimide or polybenzoxazole. 如請求項1至3中任一項之透明導電膜,其中該外塗層為旋塗式介電質層。 The transparent conductive film according to any one of claims 1 to 3, wherein the outer coating layer is a spin-on dielectric layer. 如請求項4之透明導電膜,其中該旋塗式介電質層包含具有-Si-O-、-Si-NH-、-Si-C-或其組合之部分的聚合物的網狀結構。 The transparent conductive film of claim 4, wherein the spin-on dielectric layer comprises a network of polymers having a portion of -Si-O-, -Si-NH-, -Si-C-, or a combination thereof. 如請求項4之透明導電膜,其中該外塗層為旋塗式玻璃。 The transparent conductive film of claim 4, wherein the outer coating is a spin-on glass. 如請求項1至6中任一項之透明導電膜,其中該熱穩定材料在加熱至400℃以上持續至少1分鐘時能夠維持其結構完整性。 The transparent conductive film of any one of claims 1 to 6, wherein the heat stable material is capable of maintaining its structural integrity when heated to above 400 ° C for at least 1 minute. 如請求項1至6中任一項之透明導電膜,其中該熱穩定材料在加熱至高達1000℃持續至少100微秒時能夠維持其結構完整性。 The transparent conductive film of any one of claims 1 to 6, wherein the heat stable material is capable of maintaining its structural integrity when heated up to 1000 ° C for at least 100 microseconds. 如請求項1至3中任一項之透明導電膜,其中該外塗層包含第一複數個高熱容量奈米粒子。 The transparent conductive film of any one of claims 1 to 3, wherein the outer coating layer comprises a first plurality of high heat capacity nano particles. 如請求項9之透明導電膜,其進一步包含硬塗層,該硬塗層插入在該基材與該導電層之間,該硬塗層具有第二複數個高熱容量奈米粒子。 The transparent conductive film of claim 9, further comprising a hard coat layer interposed between the substrate and the conductive layer, the hard coat layer having a second plurality of high heat capacity nano particles. 如請求項9至10中任一項之透明導電膜,其中該等高熱容量奈米粒子為矽、鈦、鋅、鋯、鋁及鈰之氧化物。 The transparent conductive film according to any one of claims 9 to 10, wherein the high heat capacity nanoparticles are oxides of cerium, titanium, zinc, zirconium, aluminum and cerium. 如請求項9至10中任一項之透明導電膜,其中該等高熱容量奈米粒子為碳奈米管。 The transparent conductive film of any one of claims 9 to 10, wherein the high heat capacity nanoparticles are carbon nanotubes. 如請求項1至12中任一項之透明導電膜,其中該等導電元件為複數個導電奈米結構。 The transparent conductive film of any one of claims 1 to 12, wherein the conductive elements are a plurality of conductive nanostructures. 如請求項1至12中任一項之透明導電膜,其中該等導電元件形成導電網格。 The transparent conductive film of any one of claims 1 to 12, wherein the conductive elements form a conductive mesh. 如請求項1至12中任一項之透明導電膜,其中該導電層包含電耦接至導電網格的複數個導電奈米結構。 The transparent conductive film of any one of claims 1 to 12, wherein the conductive layer comprises a plurality of conductive nanostructures electrically coupled to the conductive mesh. 如請求項13或15之透明導電膜,其中該等導電奈米結構為銀奈米線。 The transparent conductive film of claim 13 or 15, wherein the conductive nanostructures are silver nanowires. 如請求項14或15之透明導電膜,其中該導電網格由金屬膏或導電線形成。 A transparent conductive film according to claim 14 or 15, wherein the conductive mesh is formed of a metal paste or a conductive wire.
TW103102355A 2013-01-22 2014-01-22 Nanostructure transparent conductors having high thermal stability for ESD protection TW201435924A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361755351P 2013-01-22 2013-01-22

Publications (1)

Publication Number Publication Date
TW201435924A true TW201435924A (en) 2014-09-16

Family

ID=50071786

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103102355A TW201435924A (en) 2013-01-22 2014-01-22 Nanostructure transparent conductors having high thermal stability for ESD protection

Country Status (5)

Country Link
US (1) US20140202738A1 (en)
JP (1) JP2016511913A (en)
KR (1) KR20150113050A (en)
TW (1) TW201435924A (en)
WO (1) WO2014116738A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845842A (en) * 2015-02-03 2016-08-10 三星电子株式会社 Conductor,electronic device and method of manufacturing the same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103109391B (en) 2010-09-24 2016-07-20 加利福尼亚大学董事会 Nanowire-polymer composite electrode
CN104091761B (en) * 2014-06-30 2017-02-08 京东方科技集团股份有限公司 Patterned film preparation method, display substrate and display device
CN104267864B (en) * 2014-10-20 2016-11-16 深圳同兴达科技股份有限公司 A kind of on cell touch LCD display
JP6398624B2 (en) * 2014-11-06 2018-10-03 Tdk株式会社 Transparent conductor and touch panel
GB2535214A (en) * 2015-02-13 2016-08-17 Dst Innovation Ltd Printable conductive ink and method of forming transparent printed electrodes
US20180067602A1 (en) * 2015-03-30 2018-03-08 Rohm And Haas Electronic Materials Llc Transparent pressure sensing film composition
US9947431B2 (en) * 2015-04-21 2018-04-17 The Florida International University Board Of Trustees Anisotropic films templated using ultrasonic focusing
WO2017059444A1 (en) * 2015-10-01 2017-04-06 The Regents Of The University Of California Thermally stable silver nanowire transparent electrode
JP7041674B2 (en) 2016-10-14 2022-03-24 シー3ナノ・インコーポレイテッド Stabilized, thinly spread metal conductive film, and solution for the supply of stabilizing compounds
JP2018141239A (en) * 2017-02-28 2018-09-13 Dowaエレクトロニクス株式会社 Silver Nanowire Ink
KR101986336B1 (en) * 2017-05-30 2019-06-05 한국과학기술연구원 Metal nanowire heater and method of fabricating the same
KR102018336B1 (en) * 2017-05-31 2019-09-05 주식회사 셀코스 conductive stacked film and manufacturing method thereof
KR101977862B1 (en) * 2017-11-29 2019-05-13 서울대학교산학협력단 Electromagnetic interference shielding material, and Preparation method thereof
FI128433B (en) * 2018-05-09 2020-05-15 Canatu Oy An electrically conductive multilayer film including a coating layer
US11089678B2 (en) * 2019-01-31 2021-08-10 Korea Electronics Technology Institute Composite conductive substrate and manufacturing method thereof
KR102176012B1 (en) * 2019-03-20 2020-11-09 한국과학기술연구원 Transparent and flexible electromagnetic shielding interference film and method of manufacturing the same
JP7185071B2 (en) * 2019-04-03 2022-12-06 カンブリオス フィルム ソリューションズ コーポレーション thin conductive film
KR20220097516A (en) 2019-11-18 2022-07-07 시쓰리나노 인크 Coating and processing of transparent conductive films for stabilization of loose metallic conductive layers
TW202206286A (en) 2020-07-28 2022-02-16 美商聖高拜塑膠製品公司 Dielectric substrate and method of forming the same
KR20230119121A (en) 2020-12-16 2023-08-16 생-고뱅 퍼포먼스 플라스틱스 코포레이션 Dielectric substrate and method of forming the same
US20220301739A1 (en) * 2021-03-16 2022-09-22 Cambrios Film Solutions Corporation Optically consistent transparent conductor and manufacturing method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001163A (en) * 1997-04-17 1999-12-14 Sdc Coatings, Inc. Composition for providing an abrasion resistant coating on a substrate
US6975067B2 (en) 2002-12-19 2005-12-13 3M Innovative Properties Company Organic electroluminescent device and encapsulation method
SG183720A1 (en) 2005-08-12 2012-09-27 Cambrios Technologies Corp Nanowires-based transparent conductors
US8454721B2 (en) 2006-06-21 2013-06-04 Cambrios Technologies Corporation Methods of controlling nanostructure formations and shapes
SG10201502808UA (en) * 2006-10-12 2015-05-28 Cambrios Technologies Corp Nanowire-Based Transparent Conductors And Applications Thereof
WO2008147431A2 (en) * 2006-10-12 2008-12-04 Cambrios Technologies Corporation Functional films formed by highly oriented deposition of nanowires
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
JP6098860B2 (en) * 2007-04-20 2017-03-22 シーエーエム ホールディング コーポレーション Composite transparent conductor and device
US7642463B2 (en) * 2008-01-28 2010-01-05 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
EP2252662A1 (en) 2008-02-26 2010-11-24 Cambrios Technologies Corporation Methods and compositions for ink jet deposition of conductive features
KR20100045675A (en) * 2008-10-24 2010-05-04 삼성전자주식회사 Display apparatus
JP5584991B2 (en) * 2009-04-02 2014-09-10 コニカミノルタ株式会社 Transparent electrode, method for producing transparent electrode, and organic electroluminescence element
US20110024159A1 (en) 2009-05-05 2011-02-03 Cambrios Technologies Corporation Reliable and durable conductive films comprising metal nanostructures
US8541098B2 (en) 2009-08-24 2013-09-24 Cambrios Technology Corporation Purification of metal nanostructures for improved haze in transparent conductors made from the same
KR101540951B1 (en) 2009-08-25 2015-08-06 캄브리오스 테크놀로지즈 코포레이션 Methods for controlling metal nanostructures morphology
TWI540593B (en) 2010-01-15 2016-07-01 坎畢歐科技公司 Low-haze transparent conductors
US20120104374A1 (en) 2010-11-03 2012-05-03 Cambrios Technologies Corporation Coating compositions for forming nanocomposite films
KR101927562B1 (en) * 2011-04-15 2018-12-10 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Transparent electrode for electronic displays
EP2727165A4 (en) * 2011-06-28 2015-08-05 Innova Dynamics Inc Transparent conductors incorporating additives and related manufacturing methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845842A (en) * 2015-02-03 2016-08-10 三星电子株式会社 Conductor,electronic device and method of manufacturing the same
CN105845842B (en) * 2015-02-03 2020-03-24 三星电子株式会社 Conductor, electronic device, and method of manufacturing conductor
US11508929B2 (en) 2015-02-03 2022-11-22 Samsung Electronics Co., Ltd. Conductor and method of manufacturing the same

Also Published As

Publication number Publication date
KR20150113050A (en) 2015-10-07
US20140202738A1 (en) 2014-07-24
JP2016511913A (en) 2016-04-21
WO2014116738A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
TW201435924A (en) Nanostructure transparent conductors having high thermal stability for ESD protection
JP6924789B2 (en) How to make a patterned transparent conductor
JP6700787B2 (en) Method for producing transparent conductor on substrate
JP6180468B2 (en) Fluid dispersion for forming layered transparent conductor, and method for producing layered transparent conductor
US9860993B2 (en) Grid and nanostructure transparent conductor for low sheet resistance applications
KR101778738B1 (en) Etch patterning of nanostructure transparent conductors
JP6392213B2 (en) Metal nanostructured network structure and transparent conductive material
JP6843215B2 (en) Transparent conductors and the process of manufacturing transparent conductors
EP2521138A1 (en) Conductive laminated body and touch panel using the same
JP2011090878A (en) Method of manufacturing transparent conductor
US10535792B2 (en) Transparent conductor and preparation method for same
US20160189823A1 (en) Nanostructure Dispersions And Transparent Conductors
JP2011090879A (en) Method of manufacturing transparent conductor
US10645760B2 (en) Heater device and method for producing the same
TW201442042A (en) Two-sided laser patterning on thin film substrates
JP2019517053A (en) Nanowire contact pad with improved adhesion to metal interconnects
EP3028126A1 (en) Bonding electronic components to patterned nanowire transparent conductors
US20140262443A1 (en) Hybrid patterned nanostructure transparent conductors
TW201830130A (en) Methods for preparing electrically conductive patterns and articles containing electrically conductive patterns
TWI764309B (en) Contact area structure
US20220148960A1 (en) Contact area structure