TW201251261A - Battery heating circuit - Google Patents

Battery heating circuit Download PDF

Info

Publication number
TW201251261A
TW201251261A TW100140588A TW100140588A TW201251261A TW 201251261 A TW201251261 A TW 201251261A TW 100140588 A TW100140588 A TW 100140588A TW 100140588 A TW100140588 A TW 100140588A TW 201251261 A TW201251261 A TW 201251261A
Authority
TW
Taiwan
Prior art keywords
battery
switching device
current
charging
circuit
Prior art date
Application number
TW100140588A
Other languages
Chinese (zh)
Other versions
TWI477027B (en
Inventor
Yao-Chuan Han
wen-hui Xu
Wei Feng
Qin-Yao Yang
Wen-Jin Xia
shi-bin Ma
Original Assignee
Byd Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Byd Co Ltd filed Critical Byd Co Ltd
Publication of TW201251261A publication Critical patent/TW201251261A/en
Application granted granted Critical
Publication of TWI477027B publication Critical patent/TWI477027B/en

Links

Classifications

    • Y02T10/7005
    • Y02T10/7077

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The present invention provides a battery heating circuit. The battery comprises a first battery and a second battery, and the heating circuit comprises a first switchgear, a second switchgear, a first damping element, a second damping element, a switch control module and a current storage element. The first battery, the first damping element, the current storage element and the first switchgear are connected in series to form a first charging-discharging circuit. The second battery, the second damping element, the current storage element and the second switchgear are connected in series to form a second charging-discharging circuit. When charging or discharging the current storage element, a charging-discharging direction of the second charging-discharging circuit is contrary to that of the first charging-discharging circuit. The switch control module is electrically connected with the first switchgear and the second switchgear for controlling the first switchgear and the second switchgear to switch on alternately, so as to control energy to flow among the first and second batteries and the current storage element. The heating circuit has advantage of high heating efficiency.

Description

201251261 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明屬於電子設備技術領域 熱電路。 尤其渉及 〜種電池的加 [0002] [先前技術] 考慮到汽車需要在複雜的路況和環±竟條_ 有些電子設備需要在較差的環境條件 下行歇’或者 使用的愔彡牙,所 以,作為電動車或電子設備電源的所 就需要適應這此 複雜的狀況。而且除了需要考慮這此一狀 >兄,還裳老虔雷 池的使用壽命及電池的充放電迴圈 ± n 尤其是當電動 車或電子設備處於低溫環境中時,# 又鬲要電池具有優異 的低溫充放電性能和較高的輸入輪出功率丨生妒 -般而言’如果在低溫條件下對電池充電^,將會導 致電池的阻抗增大,極化增強,從而導致電池的容量下 降’最終導致電池壽命的降低。201251261 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention pertains to a thermal circuit in the field of electronic equipment technology. In particular, the addition of ~ kinds of batteries [0002] [Prior Art] Considering that cars need to be in complex road conditions and loops ± some electronic devices need to go under poor environmental conditions or use cavities, so, As a power source for electric vehicles or electronic equipment, it is necessary to adapt to this complicated situation. In addition to the need to consider this one, the brother, but also the life of the old 虔 雷池 and the charge and discharge cycle of the battery ± n especially when the electric vehicle or electronic equipment is in a low temperature environment, # 鬲 鬲 电池 电池 电池Low-temperature charge and discharge performance and high input wheel power generation - in general - 'If the battery is charged under low temperature conditions ^, the impedance of the battery will increase, the polarization will increase, resulting in a decrease in battery capacity. 'The result is a reduction in battery life.

【發明内容】 [0003]本發明的目的是針對電池在低溫條件下會導致電池的阻 抗增大,極化增強,由此導致電池的容量下降的問題, 為了保持電池在低溫條件下的容量,提高電池的充放電 性能,本發明提供_種電池的加熱電路。 本發明提供了-種用於電池的加熱電路,所述電池包括 第電池和第二電池,其中,所述加熱電路包括第一開 關裝置、第二開關裝置、第一阻尼元件R1、第二阻尼元 件R2、開關控制模組以及電流記憶元件,所述第一電池 、第一阻尼元件、電流記憶元件以及第一開關裝置相SUMMARY OF THE INVENTION [0003] The object of the present invention is to address the problem that the battery will increase the impedance of the battery under low temperature conditions, the polarization is enhanced, thereby causing the capacity of the battery to decrease, in order to maintain the capacity of the battery under low temperature conditions, To improve the charge and discharge performance of the battery, the present invention provides a heating circuit for the battery. The present invention provides a heating circuit for a battery, the battery including a first battery and a second battery, wherein the heating circuit includes a first switching device, a second switching device, a first damping element R1, and a second damping The component R2, the switch control module, and the current memory component, the first battery, the first damping component, the current memory component, and the first switching device phase

麵405#單編號删1 第4頁/共20頁 1013083510-0 201251261 串聯以構成第一充放電電路;所述第二電池、第二阻尼 元件R2、電流記憶元件以及第二開關裝置相串聯以構成 第二充放電電路,在對所述電流記憶元件充放電時,該 第二充放電電路的充放電方向與所述第一充放電電路的 充放電方向相反;所述開關控制模組與所述第一開關裝 置和所述第二開關裝置電連接,用於控制第一開關裝置 和第二開關裝置交替導通,以控制電能在所述第一電池 、電流記憶元件以及所述第二電池之間的流動。 在本發明提供的電池的加熱電路中,可通過開關控制模 〇 組控制所述第一開關裝置和第二開關裝置交替導通,從 而實現電能在第一電池、電流記憶元件以及第二電池之 間的交替往復流動,從而實現第一阻尼元件R1和第二阻 尼元件R2發熱以對第一電池和第二電池進行加熱。由於 以電流記憶元件而言,第二充放電電路的充放電方向與 所述第一充放電電路的充放電方向相反,由第一電池所 充入電流記憶元件的能量可順利轉移至第二電池,加熱 效率高。 〇 本發明的其他特徵和優點將在隨後的具體實施方式部分 予以詳細說明。 【實施方式】 [0004] 以下結合附圖對本發明的具體實施方式進行詳細說明。 應當理解的是,此處所描述的具體實施方式僅用於說明 和解釋本發明,並不用於限制本發明。 需要指出的是,除非特別說明,當下文中提及時,術語 “開關控制模組”為任意能夠根據設定的條件或者設定 的時刻輸出相應的控制指令(例如具有相應占空比的脈 1013083510-0 單編號A〇101 第5頁/共20頁 201251261 衝波形)從而控制與其連接的開關裝置相應地導通或關 斷的控制器,例如可以為PLC (可編程控制器)等;當下 文中提及時,術語“開關”指的是可以通過電信號實現 通斷控制或者根據元裝置自身的特性實現通斷控制的開 關,既可以是單向開關,例如由雙向開關與二極體串聯 構成的可單嚮導通的開關等,也可以是雙向開關,例如 金屬氧化物半導體型場效應管(Metal Oxide Serai conductor Field Effect Transistor, MOSFET)或帶有反並續流二極體的IGBT (Insulated Gate Bipolar Transistor,絕緣柵雙極型電晶體)等 ;當下文中提及時,術語“雙向開關”指的是可以通過 電信號實現通斷控制或者根據元裝置自身的特性實現通 斷控制的可雙嚮導通的開關,例如MOSFET或帶有反並續 流二極體的IGBT等;當下文中提及時,單向半導體元件 指的是具有單嚮導通功能的半導體元件,例如二極體等 ;當下文中提及時,術語“電荷記憶元件”指任意可以 實現電荷存儲的裝置,例如電容等;當下文中提及時, 術語“電流記憶元件”指任意可以對電流進行存儲的裝 置,例如電感等;當下文中提及時,術語“正向”指能 量從電池向儲能電路流動的方向,術語“反向”指能量 從儲能電路向電池流動的方向;當下文中提及時,術語 “電池”包括一次電池(例如乾電池、鹼性電池等)和 二次電池(例如鋰離子電池、鎳鎘電池、鎳氫電池或鉛 酸電池等);當下文中提及時,術語“阻尼元件”指任 意通過對電流的流動起阻礙作用以實現能量消耗的裝置 ,例如可以為電阻等;當下文中提及時,術語“主回路 醒·#科號删1 第6頁/共20頁 1013083510-0 201251261 ”指的是電池與阻尼元件、開關裝置以及儲能電路串聯 組成的回路。 這裏還需要特別說明的是,考慮到不同類型的電池的不 同特性,在本發明中,“電池”可以指不包含内部寄生 電阻和寄生電感、或者内部寄生電阻的阻值和寄生電感 的電感值較小的理想電池,也可以指包含有内部寄生電 阻和寄生電感的電池包。因此,本領域技術人員應當理 解的是,當“電池”為不包含内部寄生電阻和寄生電感 、或者内部寄生電阻的阻值和寄生電感的電感值較小的 〇 理想電池時,第一阻尼元件R1和第二阻尼元件R2分別指 的是第一電池和第二電池外接的阻尼元件;當“電池” 為包含有内部寄生電阻和寄生電感的電池包時,第一阻 尼元件R1和第二阻尼元件R2既可以分別指第一電池和第 二電池外部的阻尼元件,也可以分別指第一電池包和第 二電池包内部的寄生電阻。 在本發明的實施例中,為了保證電池的使用壽命,需要 在低溫情況下對電池進行加熱,當達到加熱條件時,控 〇 制加熱電路開始工作,對電池進行加熱,當達到停止加 熱條件時,控制加熱電路停止工作。 在電池的實際應用中,隨著環境的改變,可以根據實際 的環境情況對電池的加熱條件和停止加熱條件進行設置 ,以對電池的溫度進行更精確的控制,從而保證電池的 充放電性能。 第1圖為本發明提供的加熱電路的電路圖。如第1圖所示 ,本發明提供了一種電池的加熱電路,其中,電池包括 第一電池E1和第二電池E2。加熱電路包括第一開關裝置 1(){)14{)58f單編號A0101 第7頁/共20頁 1013083510-0 201251261 10、第一開關裝置2〇、第一阻尼元件ri、第二阻尼元件 R2、開關控制模組10〇以及第一電流記憶元件“,其中, 第一電池E1、第一阻尼元件ri、第一電流記憶元件以以 及第一開關裝置10相串聯,構成第一充放電電路;第二 電池E2、第二阻尼元件R2、第一電流記憶元件L1以及第 二開關裝置20相串聯,構成第二充放電電路。在對第一 電流記憶元件L1充放電時,該第二充放電電路的充放電 方向與第一充放電電路的充放電方向相反。開關控制模 組100與第一開關裝置1〇和第二開關裝置20電連接,用於 控制第一開關裝置1〇和第二開關裝置20交替導通,從而 1 控制電能在第一電池E1、第一電流記憶元件L1以及第二 電池E2之間的流動。 其中,開關控制模組1〇〇可以在第一電流記憶元件L1中的 電流達到預設值時,控制第一開關裝置10和第二開關裝 置20進行開關狀態切換,例如第一開關裝置10由導通狀 態切換為關斷狀態,而第二開關裝置20由關斷狀態切換 為導通狀態,從而使由一個電池存儲於第一電流記憶元 件L1内的電能流入另一個電池。該電能的流動會伴隨著 1 的電流的產生,通過不斷使電流流經第一阻尼元件和 第二阻尼元件R2,以使第一阻尼元件R1和第二阻尼元件 R2產生熱量,從而對第一電池E1和第二電池E2進行加熱 〇 第2圖為本發明提供的加熱電路的波形時序圖。以下結合 第2圖描述本發明提供的加熱電路的具體工作過程。首先 ,開關控制模組1〇〇控制第一開關裝置10導通、第二開關 裝置20斷開,第一電池E1給第一電流記憶元件L1充電’ 10014058#單編號 A〇101 第 8 頁 / 共 20 頁 1013083510-0 201251261 第一電流記憶元件L1内的電流緩慢增大(如第2圖中的時 間段tl所示)。當第一電流記憶元件L1内的電流Iu增大 至預設值時,開關控制模組1〇〇控制第一開關裝置1〇斷開 、第二開關裝置20導通,第一電流記憶元件L1將自身所 存儲的能量充給第二電池E2,第一電流記憶元件L1内的 電流緩慢降低(如第2圖中的時間段t2所示)。之後,在 第一電流記憶元件L1的能量釋放完畢之後,第二電池E2 進而給第一電流記憶元件L1充電,使得第一電流記憶元 件L1内的電流1^1緩慢增大,此時第一電流記憶元件l1r Ο 的電流IL丨流向與時間段11和12之時的流向相反(如第2 圖中的時間段t3所示)。此後,當第一電流記憶元件!^ 内的電流^丨增大至預設值時,開關控制模組1〇〇控制第 一開關裝置10導通、第二開關裝置2〇斷開,第一電流記 憶元件L1將自身所存儲的能量充給第一電池E1,第一電 流記憶元件L1内的電流I。緩慢降低(如第2圖中的時間 段t4所示,此時該發熱電路已經完成一個完整的工作週 期)。如此循環往復,使得電流不斷流過第一阻尼元件 〇 R1和第二阻尼元件R2,使得第一阻尼元件R1和第二阻尼 元件R2產生熱量,從而對第一電池E1和第二電池E2進行 加熱,直至加熱完畢為止。需要說明的是,第2圖中的Face 405# single number deletion 1 page 4 / total 20 page 1013083510-0 201251261 series to constitute a first charge and discharge circuit; the second battery, the second damping element R2, the current memory element and the second switching device are connected in series Forming a second charging and discharging circuit, when charging and discharging the current storage element, the charging and discharging direction of the second charging and discharging circuit is opposite to the charging and discharging direction of the first charging and discharging circuit; the switch control module and the The first switching device and the second switching device are electrically connected for controlling the first switching device and the second switching device to be alternately turned on to control electrical energy in the first battery, the current storage element, and the second battery The flow between. In the heating circuit of the battery provided by the present invention, the first switching device and the second switching device can be alternately turned on by the switch control mode group, thereby realizing electric energy between the first battery, the current storage element and the second battery. The alternating flow reciprocates to thereby heat the first damping element R1 and the second damping element R2 to heat the first battery and the second battery. In the case of the current storage element, the charge and discharge direction of the second charge and discharge circuit is opposite to the charge and discharge direction of the first charge and discharge circuit, and the energy charged by the first battery into the current memory element can be smoothly transferred to the second battery. , high heating efficiency. Other features and advantages of the present invention will be described in detail in the detailed description that follows. [Embodiment] Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings. It is to be understood that the specific embodiments described herein are intended to be illustrative and not restrictive. It should be noted that, unless otherwise specified, the term "switch control module" is used to output a corresponding control command according to a set condition or a set time (for example, a pulse having a corresponding duty ratio of 1013083510-0). No. A 〇 101 Page 5 of 20 201251261 The waveform is controlled so as to control the switching device connected thereto to be turned on or off accordingly, for example, PLC (Programmable Controller), etc.; when mentioned below, the term “Switch” refers to a switch that can realize on-off control by electrical signals or on-off control according to the characteristics of the meta-device itself. It can be a one-way switch, for example, a one-way switch composed of a bidirectional switch and a diode. The switch, etc., may also be a bidirectional switch, such as a Metal Oxide Serai Conductor Field Effect Transistor (MOSFET) or an IGBT (Insulated Gate Bipolar Transistor) with an anti-free current diode Bipolar transistor), etc.; when referred to below, the term "bidirectional switch" refers to the passage of electricity The signal realizes on-off control or a double-conducting switch that realizes on-off control according to the characteristics of the element device itself, such as a MOSFET or an IGBT with an anti-freewheeling diode; etc.; when mentioned hereinafter, the unidirectional semiconductor element refers to Is a semiconductor element having a unidirectional conduction function, such as a diode or the like; as mentioned hereinafter, the term "charge memory element" refers to any device that can implement charge storage, such as a capacitor, etc.; when referred to hereinafter, the term "current memory" "Element" means any device that can store current, such as an inductor, etc.; as mentioned below, the term "forward" refers to the direction in which energy flows from the battery to the tank circuit, and the term "reverse" refers to energy from the tank circuit to The direction in which the battery flows; when referred to hereinafter, the term "battery" includes primary batteries (eg, dry batteries, alkaline batteries, etc.) and secondary batteries (eg, lithium ion batteries, nickel cadmium batteries, nickel hydride batteries, or lead acid batteries, etc.); When referred to hereinafter, the term "damping element" refers to any energy mitigation by the flow of current to achieve energy dissipation. The device may be, for example, a resistor or the like; when referred to hereinafter, the term "main circuit awake ##科号 deletion 1 page 6 / total 20 pages 1013083510-0 201251261" refers to the battery and the damping element, the switching device and the energy storage A circuit consisting of a series circuit. It should also be noted here that, in consideration of the different characteristics of different types of batteries, in the present invention, "battery" may refer to an inductance value that does not include internal parasitic resistance and parasitic inductance, or internal parasitic resistance and parasitic inductance. A smaller ideal battery can also be a battery pack that contains internal parasitic resistance and parasitic inductance. Therefore, those skilled in the art should understand that when the "battery" is an ideal battery that does not contain internal parasitic resistance and parasitic inductance, or the resistance value of the internal parasitic resistance and the inductance value of the parasitic inductance is small, the first damping element R1 and the second damper element R2 refer to a damper element externally connected to the first battery and the second battery, respectively; when the "battery" is a battery pack including internal parasitic resistance and parasitic inductance, the first damper element R1 and the second damper The element R2 may be referred to as a damping element outside the first battery and the second battery, respectively, or may be referred to as a parasitic resistance inside the first battery pack and the second battery pack, respectively. In the embodiment of the present invention, in order to ensure the service life of the battery, the battery needs to be heated at a low temperature. When the heating condition is reached, the control heating circuit starts to work, and the battery is heated, when the heating condition is reached. , control the heating circuit to stop working. In the practical application of the battery, as the environment changes, the heating condition of the battery and the stop heating condition can be set according to the actual environmental conditions to more accurately control the temperature of the battery, thereby ensuring the charge and discharge performance of the battery. Figure 1 is a circuit diagram of a heating circuit provided by the present invention. As shown in Fig. 1, the present invention provides a heating circuit for a battery, wherein the battery includes a first battery E1 and a second battery E2. The heating circuit includes a first switching device 1 () {) 14 {) 58f single number A0101 page 7 / total 20 pages 1013083510-0 201251261 10, the first switching device 2 〇, the first damping element ri, the second damping element R2 The switch control module 10A and the first current storage element ", wherein the first battery E1, the first damping element ri, the first current memory element and the first switching device 10 are connected in series to form a first charging and discharging circuit; The second battery E2, the second damping element R2, the first current memory element L1 and the second switching device 20 are connected in series to form a second charging and discharging circuit. When charging and discharging the first current memory element L1, the second charging and discharging The charging and discharging direction of the circuit is opposite to the charging and discharging direction of the first charging and discharging circuit. The switch control module 100 is electrically connected to the first switching device 1A and the second switching device 20 for controlling the first switching device 1 and the second The switching device 20 is alternately turned on, so that 1 controls the flow of electric energy between the first battery E1, the first current storage element L1, and the second battery E2. The switch control module 1〇〇 can be in the first current memory element L1. When the current reaches the preset value, the first switching device 10 and the second switching device 20 are controlled to perform switching state switching, for example, the first switching device 10 is switched from the on state to the off state, and the second switching device 20 is switched from the off state. In a conducting state, the electrical energy stored in the first current memory element L1 by one battery flows into the other battery. The flow of the electric energy is accompanied by the generation of a current by continuously flowing a current through the first damping element and The two damping elements R2 are such that the first damping element R1 and the second damping element R2 generate heat to heat the first battery E1 and the second battery E2. FIG. 2 is a waveform timing diagram of the heating circuit provided by the present invention. The specific working process of the heating circuit provided by the present invention is described below with reference to Fig. 2. First, the switch control module 1 〇〇 controls the first switching device 10 to be turned on, the second switching device 20 is turned off, and the first battery E1 gives the first current. Memory element L1 charging '10014058#single number A〇101 Page 8 of 20 1013083510-0 201251261 The current in the first current memory element L1 is slowly increasing ( The time period t1 in the second figure is shown. When the current Iu in the first current memory element L1 is increased to a preset value, the switch control module 1〇〇 controls the first switching device 1 to be turned off and second. The switching device 20 is turned on, the first current memory element L1 charges the energy stored by itself to the second battery E2, and the current in the first current memory element L1 is slowly lowered (as indicated by the time period t2 in Fig. 2). After the energy release of the first current memory element L1 is completed, the second battery E2 further charges the first current memory element L1, so that the current 1^1 in the first current memory element L1 slowly increases, and the first current The current IL 丨 of the memory element l1r Ο flows in the opposite direction to that at the time of the periods 11 and 12 (as indicated by the period t3 in Fig. 2). Thereafter, when the current in the first current memory element is increased to a preset value, the switch control module 1〇〇 controls the first switching device 10 to be turned on, and the second switching device 2 is turned off, the first current The memory element L1 charges its stored energy to the first battery E1, the current I in the first current memory element L1. Slowly decreasing (as indicated by time period t4 in Figure 2, the heating circuit has completed a full duty cycle). The cycle is repeated such that current continuously flows through the first damper element 〇R1 and the second damper element R2, so that the first damper element R1 and the second damper element R2 generate heat, thereby heating the first battery E1 and the second battery E2. Until the heating is completed. It should be noted that in Figure 2

Uli代表第一電流記憶元件!^的電壓,當第一電流記憶元 件L1的電流、】正向增大或反向減小時,該電壓1]第一 L1 電流記憶元件L1為正向恒定值;當第一電流記憶元件u 的電流!li正向減小或反向增大時,該電SUU為反向恒定 值。 在本發明加熱電路的以上工作過程中,可使得電流在第 1〇〇14〇58产單編號A01〇l 第9頁/共2〇頁 1013083510-0 201251261 一電池El和第二之間交替往復流動,實現了兩個 電池的交替加熱’並且加熱效率高。另外電流記憶元 件1的存在可以對流經第—電池E1和第二電池£2以及第一 開關裝置10和第二開關裝置20的電流大小進行限制,還 可通過預設值對流經第1池E1和第二電池£2以及第一 開關裝置10和第二開關m㈣電流大小進行限制,從 而使得流經第一電池E1和第二電池E 2以及第一開關裝置 10和第二開關裝置20的電流較小,達到了保護第一電池 E1和第二電池E2以及第—開關裝置1〇和第二開關裝置2〇 的目的。 第3圖為根據本發明提供的另一種實施例的加熱電路的電 路圖。優選地,如第3圖所示,本發明的加熱電路還可包 括第二電流記憶元件L2。第一電池E1、第一阻尼元件R1 、第二電流記憶元件L2以及第二開關裝置2〇相串聯,構 成第二充放電電路;第二電池E2、第二阻尼元件R2、第 一電"il 6己憶元件L 2以及第一開關裝置1 〇相串聯,構成第 四充放電電路,在對第二電流記憶元件。充放電時,該 第三充放電電路的充放電方向與第四充放電電路的充放 電方向相反;開關控制模組丨〇〇還通過控制第一開關裝置 1 〇和第二開關裝置2 〇交替導通,以控制電能在第一電池 E1、第一電流記憶元件L1、第二電流記憶元件L2以及第 二電池E2之間的流動。 開關控制模組可以在第一電流記憶元件L1或第二電流記 憶元件L2中的電流達到預設值時,控制第一開關裝置1〇 和第二開關裝置20進行開關狀態切換。第4圖為本發明提 供的另一種實施例的加熱電路的波形時序圖。以下結合 1013083510-0 第10頁/共20頁 201251261 第4圖描述本發明提供的另一種實施例的加熱電路的具體 工作過程。 首先’開關控制模組10 0控制第一開關裝置1 〇導通、第二 開關裝置20斷開,第一電池E1給第一電流記憶元件以充 電’第二電池E2給第二電流記憶元件L2充電,第一電流 記憶元件L1和L2内的電流Iu、\2緩慢增大(如第4圖中 的時間段tl所示)。當第一電流記憶元件li或L2内的電 流1L1或1L2增大至預設值時,開關控制模組控制第一 開關裝置10斷開、第二開關裝置2〇導通,第一電流記憶 Ο 元件L1將自身所存儲的能量充給第二電池E2,第二電流 記憶元件L2將自身所存儲的能量充給第一電池μ,第一 電流記憶元件L1和L2内的電流I 、I緩慢降低(如第4 L1 L 2 圖中的時間段t2所示)。之後,在第一電流記憶元件!^ 和L2的能量釋放完畢之後,第二電池μ進而給第一電流 記憶元件L1充電,第一電池El進而給第二電流記憶元件 L2充電’第一電流記憶元件L1*L2内的電流I 、I緩 L1 L 2 慢增大,此時第一電流記憶元件L1>L2内的電流流向與 時間段tl和t2之時的流向相反(如第4圖中的時間段13所 不)。之後,在第一電流記憶元件!^或12内的電流丨或Uli represents the voltage of the first current memory element, when the current of the first current memory element L1 is increased or decreased in the forward direction, the voltage 1] the first L1 current memory element L1 is a positive constant value; When the current of the first current memory element u! When the positive direction decreases or increases in the reverse direction, the electrical SUU is an inverse constant value. In the above working process of the heating circuit of the present invention, the current can be alternately reciprocated between the first and second batteries of the first and second orders, A01〇1, page 9/2, page 1013083510-0, 201251261. Flowing, alternating heating of two batteries is achieved' and heating efficiency is high. In addition, the presence of the current memory element 1 can limit the current flowing through the first battery E1 and the second battery £2 and the first switching device 10 and the second switching device 20, and can also flow through the first pool E1 through a preset value pair. And the second battery £2 and the first switching device 10 and the second switch m (four) current magnitude are limited such that current flowing through the first battery E1 and the second battery E 2 and the first switching device 10 and the second switching device 20 Smaller, the purpose of protecting the first battery E1 and the second battery E2 and the first switching device 1 and the second switching device 2 is achieved. Figure 3 is a circuit diagram of a heating circuit in accordance with another embodiment of the present invention. Preferably, as shown in Fig. 3, the heating circuit of the present invention may further include a second current memory element L2. The first battery E1, the first damping element R1, the second current memory element L2, and the second switching device 2 are connected in series to form a second charging and discharging circuit; the second battery E2, the second damping element R2, and the first electric " The il 6 memory element L 2 and the first switching device 1 are connected in series to form a fourth charge and discharge circuit, in the pair of second current memory elements. During charging and discharging, the charging and discharging direction of the third charging and discharging circuit is opposite to the charging and discharging direction of the fourth charging and discharging circuit; and the switch control module 〇 is further controlled by controlling the first switching device 1 〇 and the second switching device 2 Turning on to control the flow of electrical energy between the first battery E1, the first current memory element L1, the second current memory element L2, and the second battery E2. The switch control module can control the switching between the first switching device 1 〇 and the second switching device 20 when the current in the first current memory element L1 or the second current memory element L2 reaches a preset value. Fig. 4 is a waveform timing chart of a heating circuit of another embodiment of the present invention. The following is a combination of 1013083510-0 page 10/20 pages 201251261 Figure 4 depicts a specific operation of the heating circuit of another embodiment provided by the present invention. First, the 'switch control module 100 controls the first switching device 1 to turn on, the second switching device 20 to turn off, and the first battery E1 charges the first current memory element to charge the second battery E2 to charge the second current memory element L2. The currents Iu, \2 in the first current memory elements L1 and L2 are slowly increased (as indicated by time period t1 in FIG. 4). When the current 1L1 or 1L2 in the first current memory element li or L2 is increased to a preset value, the switch control module controls the first switching device 10 to be turned off, and the second switching device 2 is turned on, the first current memory element L1 charges its stored energy to the second battery E2, and the second current memory element L2 charges its stored energy to the first battery μ, and the currents I and I in the first current memory elements L1 and L2 are slowly lowered ( As shown in time period t2 in the 4th L1 L 2 diagram). Thereafter, after the energy of the first current memory elements !^ and L2 is released, the second battery μ further charges the first current memory element L1, and the first battery E1 further charges the second current memory element L2. The currents I and I in the element L1*L2 are slowly increased by L1 L 2 , and the current flow in the first current memory element L1 > L2 is opposite to that in the time periods t1 and t2 (as in Fig. 4). Time period 13 does not). After that, the current in the first current memory element !^ or 12 is

Lt 1 JL2增大至預設值時’開關控制模組1〇〇控制第一開關裝 置10導通、第二開關裝置20斷開,第一電流記憶元件L1 將自身所存儲的能量充給第一電池E1,第二電流記憶元 件L2將自身所存儲的能量充給第二電池E2,第一電流記 憶兀件L1和L2内的電流、^纟緩慢降低(如第4圖中的 時間段t4所不,此時該發熱電路已經完成一個完整的工 作週期) 顏405#單滅A〇101 如此循環往復,直至加熱完畢為止。需要說 第11頁/共20頁 1013083510-0 201251261 明的是,第4圖中的Uu*l^2分別代表第一電流記憶元件 L1和L2的電壓,當第一電流記憶元件L1的電流Iu正向增 大或反向減小時,該電壓1^1為正向恒定值;當第一電流 記憶元件L1的電流I τ,正向減小或反向增大時,該電壓 Uli為反向恒定值。電壓1^2亦是如此。 在該加熱電路中,通過增設一個第二電流記憶元件L2, 可以使得第一電池E1和第二電池E2無時無刻均處於充放 電的過程,第一阻尼元件R1和第二阻尼元件R2無時無刻 均有電流流過,從而可以增加熱效率。至於流經第一電 池E1和第二電池E2以及第一開關裝置10和第二開關裝置 20的電流,亦可通過第一電流記憶元件L1和L2以及預設 值得到限制,對第一電池E1和第二電池E2以及第一開關 裝置10和第二開關裝置20進行了保護。 另外,需要說明的是,以上所出現的“預設值”應根據 第一電池E1、第二電池E2以及加熱電路中其他元裝置/元 件可承受的電流來設定,該值的設定應同時兼顧加熱效 率以及不對第一電池E1和第二電池E2造成損害,同時也 應考慮加熱電路的體積、重量和成本。 第5圖為本發明提供的加熱電路中的開關裝置的一種實施 方式的電路圖。如第5圖所示,第一開關裝置10和/或第 二開關裝置20可以包括開關K11和與該開關K11反向並聯 的單向半導體元件D11,開關控制模組100與開關K11電 連接,用於通過控制開關K11的導通和關斷來控制開關裝 置10的正向支路導通和關斷。對該開關K11的導通和關斷 的控制可以在第2圖和第4圖中所示的網格區段中進行。 本發明所提供的加熱電路具備以下優點: 匪405#單編號纖01 第12頁/共20頁 1013083510-0 201251261 (1)由於就電流記憶元件而言,第二充放電電路的充放 電方向與第一充放電電路的充放電方向相反,因此電能 可以在第一電池E1、電流記憶元件以及第二電池E2之間 的交替往復流動,藉此所產生的電流使得第一阻尼元件 R1和第二阻尼元件R2發熱,從而對第一電池E1和第二電 池E2進行加熱,實現了對第一電池E1和第二電池E2交替 加熱,加熱效率高。 (2 )由於電流記憶元件的限流作用以及開關控制模組可 根據預設值來控制開關裝置的通斷,從而可對流經第一 〇 電池E1和第二電池E 2以及第一開關裝置1 0和第二開關裝 置20的電流大小進行限制,避免大電流損害第一電池E1 和第二電池E2以及開關裝置。 (3)在使用雙電流記憶元件時,可使得第一電池E1和第 二電池E2内無論何時均處於充放電狀態,第一阻尼元件 R1和第二阻尼元件R2無時無刻均有電流流過,更增加熱 效率。 雖然本發明已通過上述實施例所公開,然而上述實施例 〇 並非用以限定本發明,任何本發明所屬技術領域中技術 人員,在不脫離本發明的精神和範圍内,應當可以作各 種的變動與修改。因此本發明的保護範圍應當以所附申 請專利範圍書所界定的範圍為准。 【圖式簡單說明】 [0005] 附圖是用來提供對本發明的進一步理解,並且構成說明 書的一部分,與下面的具體實施方式一起用於解釋本發 明,但並不構成對本發明的限制。在附圖中: 第1圖為本發明提供的加熱電路的電路圖; 1013083510-0 10014058#單編號A〇101 第13頁/共20頁 201251261 第2圖為本發明提供的加熱電路的波形時序圖; 第3圖為根據本發明提供的另一種實施例的加熱電路的電 路圖; 第4圖為根據本發明提供的另一種實施例的加熱電路的波 形時序圖;以及 第5圖為本發明提供的加熱電路中的開關裝置的一種實施 方式的電路圖。 【主要元件符號說明】 [0006] 10 第一開關裝置 20 第二開關裝置 100 開關控制模組 D11 單向半導體元件 E1 第一電池 E2 第二電池 K11 開關 L1 第一電流記憶元件 L2 第二電流記憶元件 R1 第一阻尼元件 R2 第二阻尼元件 讓405#單驗删1 第14頁/共20頁 1013083510-0When Lt 1 JL2 is increased to a preset value, the switch control module 1 〇〇 controls the first switching device 10 to be turned on, the second switching device 20 is turned off, and the first current memory element L1 charges the energy stored by itself to the first The battery E1 and the second current memory element L2 charge the energy stored in the second battery E2, and the currents in the first current memory elements L1 and L2 are slowly lowered (as in the time period t4 in FIG. 4). No, at this time, the heating circuit has completed a complete working cycle.) 405# single-off A〇101 is cycled until the heating is completed. It should be noted that page 11/20 pages 1013083510-0 201251261 It is clear that Uu*l^2 in Fig. 4 represents the voltages of the first current memory elements L1 and L2, respectively, when the current Iu of the first current memory element L1 When the forward direction increases or decreases in the reverse direction, the voltage 1^1 is a positive constant value; when the current I τ of the first current memory element L1 decreases in the forward direction or increases in the reverse direction, the voltage Uli is reversed. Constant value. The same is true for the voltage 1^2. In the heating circuit, by adding a second current memory element L2, the first battery E1 and the second battery E2 can be charged and discharged all the time, and the first damping element R1 and the second damping element R2 have current all the time. Flow through, which can increase thermal efficiency. The current flowing through the first battery E1 and the second battery E2 and the first switching device 10 and the second switching device 20 may also be limited by the first current memory elements L1 and L2 and a preset value for the first battery E1. The second battery E2 and the first switching device 10 and the second switching device 20 are protected. In addition, it should be noted that the “preset value” appearing above should be set according to the current that the first battery E1, the second battery E2, and other components/components in the heating circuit can withstand, and the setting of the value should be taken into consideration at the same time. The heating efficiency and the damage to the first battery E1 and the second battery E2 are not caused, and the volume, weight and cost of the heating circuit should also be considered. Fig. 5 is a circuit diagram showing an embodiment of a switching device in a heating circuit provided by the present invention. As shown in FIG. 5, the first switching device 10 and/or the second switching device 20 may include a switch K11 and a unidirectional semiconductor component D11 connected in anti-parallel with the switch K11. The switch control module 100 is electrically connected to the switch K11. It is used to control the forward branch of the switching device 10 to be turned on and off by controlling the turning on and off of the switch K11. The control of the on and off of the switch K11 can be performed in the grid sections shown in Figs. 2 and 4. The heating circuit provided by the present invention has the following advantages: 匪 405# single number fiber 01 page 12 / total 20 pages 1013083510-0 201251261 (1) Since the current storage element, the charge and discharge direction of the second charge and discharge circuit The charging and discharging directions of the first charging and discharging circuit are opposite, so that electric energy can alternately reciprocate between the first battery E1, the current storage element, and the second battery E2, whereby the generated current causes the first damping element R1 and the second The damper element R2 generates heat to heat the first battery E1 and the second battery E2, and the first battery E1 and the second battery E2 are alternately heated, and the heating efficiency is high. (2) The current limiting function of the current memory element and the switch control module can control the switching of the switching device according to the preset value, so that the first battery E1 and the second battery E 2 and the first switching device 1 can flow through The magnitude of the current of 0 and the second switching device 20 is limited to prevent the large current from damaging the first battery E1 and the second battery E2 and the switching device. (3) When the dual current memory element is used, the first battery E1 and the second battery E2 can be charged and discharged at all times, and the first damping element R1 and the second damping element R2 have current flowing all the time, and Increase thermal efficiency. Although the present invention has been disclosed by the above embodiments, the above-described embodiments are not intended to limit the invention, and various modifications may be made without departing from the spirit and scope of the invention. With modifications. Therefore, the scope of protection of the present invention should be determined by the scope defined in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS [0005] The accompanying drawings are intended to be a In the drawings: FIG. 1 is a circuit diagram of a heating circuit provided by the present invention; 1013083510-0 10014058#single number A〇101 page 13/total 20 pages 201251261 FIG. 2 is a waveform timing diagram of a heating circuit provided by the present invention 3 is a circuit diagram of a heating circuit according to another embodiment of the present invention; FIG. 4 is a waveform timing chart of a heating circuit according to another embodiment of the present invention; and FIG. 5 is a view of the present invention A circuit diagram of an embodiment of a switching device in a heating circuit. [Main component symbol description] [0006] 10 first switching device 20 second switching device 100 switching control module D11 unidirectional semiconductor component E1 first battery E2 second battery K11 switch L1 first current memory element L2 second current memory Element R1 First Damping Element R2 Second Damping Element Let 405# Single Test Delete 1 Page 14 / Total 20 Page 1013083510-0

Claims (1)

201251261 七、申請專利範圍: 1 · 一種電池的加熱電路,所述電池包括第一電池(El)和第 二電池(E2),其特徵在於,所述加熱電路包括: 第一開關裝置(10); 第二開關裝置(20); 第一阻尼元件(R1)和第二阻尼元件(R2); 開關控制模組(1 〇 〇 );以及 第一電流記憶元件(L1 ), 其中,所述第一電池(E1)、第一阻尼元件(Rl)、第 〇 —電流記憶元件(L1 )以及所述第一開關裝置(1〇)相 串聯以構成第一充放電電路; 所述第二電池(E2)、第二阻尼元件(R2) '第—電流 記憶元件(L1 )以及所述第二開關裝置(2{))相串聯以 構成第二充放電電路,在對所述第一電流記憶元件(L1) 充放電時,所述第二充放電電路的充放電方向與所述第一 充放電電路的充放電方向相反; 所述開關控制模組(100)與所述第一開關裝置(1〇)和 m 所述第二開關裝置(20)電連接,用於控制所述第_開關 裝置(10)和所述第二開關裝置(2〇)交替導通以控制 電能在所述第一電池(E1)、第一電流記憶元件u以及 所述第二電池(E2)之間的流動。 2.如申請專利範圍第1項所述的加熱電路,其特徵在於,所 述第一阻尼元件(R1)和所述第二阻尼元件(R2)分別 為所述第一電池(E1 )和所述第二電池(E2)内部的寄 生電阻,且所述第一電流記憶元件(L1)為電感。 10_8产單職删1 第15頁/共20頁 1013083510-0 201251261 3 ·如申請專利範圍第丨項所述的加熱電路,其特徵在於,所 述開關控制模組(100)用於在所述第一電流記憶元件( L1)中的電流達到預設值時,控制所述第一開關裝置( 10)和所述第二開關裝置(2〇)進行開關狀態切換。 4 .如申請專利範圍第1項所述的加熱電路,其特徵在於,所 述加熱電路還包括第二電流記憶元件(L2), 所述第一電池(El)、第一阻尼元件(R1)、第二電流 記憶元件(L2)以及所述第二開關裝置(2〇)相串聯以 構成第三充放電電路; 所述第二電池(E2)、第二阻尼元件(R2)、第二電流 ◎ 記憶元件(L2)以及所述第一開關裝置〇〇)相串聯以 構成第四充放電電路,在對所述第二電流記憶元件(L2) 充放電時,所述第三充放電電路的充放電方向與所述第四 充放電電路的充放電方向相反; 所述開關控制模組(10 〇 )還通過控制所述第一開關裝置 (10)和所述第二開關裝置(2〇)交替導通以控制電能 在所述第一電池(E1)、第一電流記憶元件(L1)、第 二電流記憶元件(L2)以及所述第二電池(E2)之間的 〇 流動。 5.如申請專利範圍第4項所述的加熱電路,其特徵在於所 述第二電流記憶元件(L2)為電感。 6 .如申請專利範圍第4項所述的加熱電路,其特徵在於,所 述開關控制模組(100)用於在所述第一電流記憶元件( L1)或所述第二電流記憶元件(L2)中的電流達到預設 值時’控制所述第一開關裝置(10)和所述第二開關装置 (20)進行開關狀態切換。 1013083510-0 1001405#單編號A0101 第16頁/共20頁 201251261 .如申請專利範圍第1項至第6項中任一項所述的加熱電路, 其特徵在於’所述第一開關裝置(10)和/或所述第二開 關裝置(20)包括: 開關(K11)和與所述開關(1Π1)反向並聯的單向半導 體元件(D11 )’所述開關控制模組(1 〇 〇 )與所述開關 (K11)電連接,用於通過控制所述開關(κΐι)的導通 和關斷來控制所述第一開關裝置(1〇)的正向支路導通和 關斷。 ❹ 10_5#單編號删1 第17頁/共20頁 1013083510-0201251261 VII. Patent application scope: 1 . A heating circuit for a battery, the battery comprising a first battery (El) and a second battery (E2), wherein the heating circuit comprises: a first switching device (10) a second switching device (20); a first damping element (R1) and a second damping element (R2); a switch control module (1); and a first current memory element (L1), wherein the a battery (E1), a first damping element (R1), a first current-current memory element (L1), and the first switching device (1〇) are connected in series to constitute a first charging and discharging circuit; E2), the second damping element (R2) 'the first current storage element (L1) and the second switching means (2{)) are connected in series to form a second charging and discharging circuit, in the pair of the first current storage element (L1) during charge and discharge, the charge and discharge direction of the second charge and discharge circuit is opposite to the charge and discharge direction of the first charge and discharge circuit; the switch control module (100) and the first switch device (1) 〇) and m the second switching device (20) is electrically connected for Controlling the first switching device (10) and the second switching device (2〇) to be alternately turned on to control electrical energy in the first battery (E1), the first current storage element u, and the second battery (E2) ) The flow between. 2. The heating circuit according to claim 1, wherein the first damping element (R1) and the second damping element (R2) are the first battery (E1) and the The parasitic resistance inside the second battery (E2) is described, and the first current memory element (L1) is an inductance. 10_8Production of a single job 1 page 15 / a total of 20 pages 1013083510-0 201251261 3 The heating circuit of claim 2, wherein the switch control module (100) is used in the When the current in the first current memory element (L1) reaches a preset value, the first switching device (10) and the second switching device (2〇) are controlled to perform switching state switching. 4. The heating circuit of claim 1, wherein the heating circuit further comprises a second current storage element (L2), the first battery (El), the first damping element (R1) The second current storage element (L2) and the second switching device (2〇) are connected in series to form a third charging and discharging circuit; the second battery (E2), the second damping element (R2), and the second current ◎ the memory element (L2) and the first switching device 〇〇) are connected in series to form a fourth charging and discharging circuit, and when the second current storage element (L2) is charged and discharged, the third charging and discharging circuit The charging and discharging direction is opposite to the charging and discharging direction of the fourth charging and discharging circuit; the switch control module (10 〇) further controls the first switching device (10) and the second switching device (2〇) Alternating conduction controls the turbulent flow of electrical energy between the first battery (E1), the first current storage element (L1), the second current storage element (L2), and the second battery (E2). 5. The heating circuit of claim 4, wherein the second current memory element (L2) is an inductor. 6. The heating circuit of claim 4, wherein the switch control module (100) is for the first current memory element (L1) or the second current memory element ( When the current in L2) reaches a preset value, the first switching device (10) and the second switching device (20) are controlled to perform switching state switching. The heating circuit according to any one of the items 1 to 6 is characterized in that the first switching device (10) is characterized by the above-mentioned first switching device (10). And/or said second switching device (20) comprises: a switch (K11) and a unidirectional semiconductor component (D11) in anti-parallel with said switch (1Π1) said switch control module (1 〇〇) Electrically connected to the switch (K11) for controlling the forward branch of the first switching device (1〇) to be turned on and off by controlling the turning on and off of the switch (κΐ). ❹ 10_5# single number deletion 1 page 17 / total 20 pages 1013083510-0
TW100140588A 2010-12-23 2011-11-07 Battery heating circuit TWI477027B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010603669 CN102074754B (en) 2010-12-23 2010-12-23 Heating circuit for batteries

Publications (2)

Publication Number Publication Date
TW201251261A true TW201251261A (en) 2012-12-16
TWI477027B TWI477027B (en) 2015-03-11

Family

ID=44033179

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100140588A TWI477027B (en) 2010-12-23 2011-11-07 Battery heating circuit

Country Status (3)

Country Link
CN (1) CN102074754B (en)
HK (1) HK1158377A1 (en)
TW (1) TWI477027B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103213543B (en) * 2012-01-18 2015-11-25 比亚迪股份有限公司 A kind of battery-driven car running control system
CN103213508B (en) * 2012-01-18 2016-06-01 比亚迪股份有限公司 A kind of electric motor car running control system
CN108767345A (en) * 2018-02-13 2018-11-06 南京博兰得电子科技有限公司 A kind of battery preheating device and method
CN113746152A (en) * 2020-05-29 2021-12-03 比亚迪股份有限公司 Battery energy processing device and vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646534A (en) * 1995-01-06 1997-07-08 Chrysler Corporation Battery monitor for electric vehicles
US5990661A (en) * 1998-04-30 1999-11-23 Daimlerchrysler Corporation Circulating current battery heater
US6072301A (en) * 1998-10-20 2000-06-06 Chrysler Corporation Efficient resonant self-heating battery electric circuit
US6340879B1 (en) * 1999-02-03 2002-01-22 Nokia Mobile Phones Ltd. Device for reactivating an electric battery
CA2539217A1 (en) * 2003-10-03 2005-04-21 Black & Decker, Inc. Methods of discharge control for a battery pack of a cordless power tool system, a cordless power tool system and battery pack adapted to provide over-discharge protection and discharge control
CN201667552U (en) * 2010-03-30 2010-12-08 比亚迪股份有限公司 Battery heating apparatus

Also Published As

Publication number Publication date
CN102074754A (en) 2011-05-25
TWI477027B (en) 2015-03-11
CN102074754B (en) 2012-05-02
HK1158377A1 (en) 2012-07-13

Similar Documents

Publication Publication Date Title
TWI477026B (en) Battery heating circuit
US8823317B2 (en) Circuits and methods for heating batteries in series using resonance components in series
US8829856B2 (en) Circuits and methods for heating batteries in parallel using resonance components in series
US9083196B2 (en) Circuits and methods for heating batteries in parallel using resonance components in series
US9209644B2 (en) Circuits and methods for heating batteries in series using resonance components in series
TW201251261A (en) Battery heating circuit
TWI433429B (en) Battery heating circuit
TWI454012B (en) Battery heating circuit
TWI493830B (en) Battery heating circuit
TWI469473B (en) Battery heating circuit
TWI433430B (en) Battery heating circuit
TWM433983U (en) Battery heating circuit
TWI430537B (en) Battery heating circuit
TWI427894B (en) Battery heating circuit
TWI455443B (en) Battery heating circuit
TWM434312U (en) Battery heating circuit
TW201230607A (en) Battery heating circuit
TW201232995A (en) Battery heating circuit