TW201134754A - Carbon nanotube array and method for making carbon nanotube structure using the same - Google Patents

Carbon nanotube array and method for making carbon nanotube structure using the same Download PDF

Info

Publication number
TW201134754A
TW201134754A TW99110096A TW99110096A TW201134754A TW 201134754 A TW201134754 A TW 201134754A TW 99110096 A TW99110096 A TW 99110096A TW 99110096 A TW99110096 A TW 99110096A TW 201134754 A TW201134754 A TW 201134754A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
array
carbon
nanotube array
dividing line
Prior art date
Application number
TW99110096A
Other languages
Chinese (zh)
Other versions
TWI534077B (en
Inventor
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW099110096A priority Critical patent/TWI534077B/en
Publication of TW201134754A publication Critical patent/TW201134754A/en
Application granted granted Critical
Publication of TWI534077B publication Critical patent/TWI534077B/en

Links

Abstract

The invention relates to a carbon nanotube array. A split line can be employed to divide the carbon nanotube array, thereby forming at least one continuous carbon nanotube banded structure. The maximum length of the carbon nanotube banded structure is longer than the maximum width of the carbon nanotube array. The maximum width can be a distance of two farthest points in the carbon nanotube array. The invention also relates to a method for making a carbon nanotube structure using the carbon nanotube array.

Description

201134754 六、發明說明: 【發明所屬之技術領威】 [0001] 本發明涉及一種奈米碳管陣列及利用該奈米破管陣列製 備奈米碳管結構之方法。 C先前技術] [0002] 奈米碳管係一種由石墨烯片卷成之中空管狀物°奈米破 管具有優異之力學、熱學及電學性質’其應用領域非常 廣闊。例如,奈米碳管可用於製作場效應電晶體、原子 力顯微鏡針尖、場發射電子搶等。上述技術中奈米破管 Ο 之應用主要奈米碳管於微觀尺度上之應用’操作較困難 。故,使奈米碳管具有宏觀尺度之結構並於宏觀上應用 具有重要意義。 [0003] 為克服上述問題’范守善等人於2008年8月16日公開之第 TW200833862號專利申請揭示了一種包括複數奈米碳管 且具有宏觀尺度之奈米碳管薄膜及其製備方法。該奈米 碳管膜狀結構之製備方法主要包括以下步驟:陣列化奈 Q 米碳管以提供一平行排列之奈米碳管陣列;從該奈米碳 管陣列中沿一個方向抽出該奈米碳管,獲得一奈米碳管 膜狀結構。該奈米碳管膜狀結構之最大長度與該奈米碳 管陣列之最大寬度成正比。該奈米碳管陣列之最大寬度 為奈米碳管陣列中距離最大之兩個點之間之距離。該奈 米碳管膜狀結構之最大長度為沿奈米碳管陣列之最大寬 度方向拉伸出來之奈米碳管膜狀結構之長度。然而,由 於生長該奈米破官陣列之基底為一圓形矽片,而矽片製 備工藝使得矽片之最大寬度如直徑得到限制,故,從該 099110096 表單編號A0101 第3頁/共32頁 0992017822-0 201134754 奈米碳管陣列獲得之奈米碳管膜狀結構之長度有所限制 【發明内容】 [0004] 有鑒於此,提供一種奈米碳管陣列及利用該奈米碳管陣 列能夠製備具有較長長度之奈米碳管結構之方法實為必 要。 [0005] [0006] [0007] 一種奈米碳管陣列,該奈米碳管陣列具有一分割線,將該 奈米碳管陣列分割成至少一個連續之奈米碳管帶狀結構 。該奈米碳管帶狀結構之最大長度大於該奈米碳管陣列 之最大寬度,該奈米碳管陣列之最大寬度為奈米碳管陣 列中距離最大之兩個點之間之距離。 一種奈米碳管結構之製備方法,其包括以下步驟:提供 一奈米碳管陣列,該奈米礙管陣列具有至少一分割線, 將該奈米碳管陣列分割成至少一個連續之奈米碳管帶狀 結構,該奈米碳管帶狀結構之最大長度大於該奈米碳管 陣列之最大寬度,該奈米碳管陣列之最大寬度為奈米碳 管陣列中距離最大之兩個點之間之距離;從上述奈米碳 管帶狀結構靠近該分割線之一個端點之一端選定一定寬 度之複數奈米碳管;以一定速度沿基本垂直於奈米碳管 陣列生長方向拉伸該複數奈米碳管,以形成一連續之奈 米碳管膜。 相較於先前技術,該奈米碳管陣列表面具有一分割線, 該奈米碳管陣列經該分割線形成至少一個連續之奈米碳 管帶狀結構。該奈米碳管帶狀結構之最大長度大於該奈 米碳管陣列之最大寬度,從而使得由該奈米碳管陣列製 099110096 表單編號A0101 第4頁/共32頁 0992017822-0 201134754 備形成之奈米碳管結構如奈米碳管膜、奈米 ,^ 久目緣之最 .長度取決於奈米碳管帶狀結構之最大長度,而該奈米 兔管帶狀結構之最大長度能通過控制分割線之分佈來= 制,從而使得該奈米碳管陣列能夠獲得具有較長長度之 奈米碳管結構,從而擺脫該奈米碳管陣列最大寬度之限 【實施方式】 [0008]以 Ο [0009] 〇 [0010] 下將結合附圖對本發明作進一步詳細之說明。 凊參閱圖1及圖2,本發明實施例提供之—種奈米碳管陣 列Μ,該奈米碳管陣列1〇形成於一基底2〇表面。該奈米 碳营陣列10為一超順排陣列,該奈米碳管陣列1〇包括複 數奈米碳管大致平行排列且垂直於該基底2G表面,該^ 數奈米碳管彼此通過凡得瓦爾力緊密接觸。該基底別可 選用石英基底、Ρ型或Ν型石夕基底,或選用形成有敦化層 =夕基底20。在本實施例中,該基底2()採用圓形石夕基底 該奈米碳管陣列10具有一分割線11(),該分割線ιι〇具有 相對之兩個端點12〇、13〇 ’該分割線11()之—端點12〇延 伸至該奈米碳管陣列10之邊緣上。該分割線11{)將該奈米 碳營陣列10分割形成至少一個連續之奈米碳管帶狀結j籌' 140。為了後面之描述簡便,將該奈米碳管帶狀結構ho 沿該分割線110之延伸方向之尺度稱為長度,該奈米碳管 帶狀結構140沿該分割線110之法線方向之尺度為咳齐米 碳管帶狀結構140之寬度。優選地,該奈米碳管帶狀結構 140之寬度大致相等,從而使由該奈米碳管帶狀結構14〇 099110096 表單編號A0101 第5頁/共32頁 0992017822-0 201134754 製備之奈米碳管結構之寬度大致相等。該奈米碳管帶狀 結構140之最大長度大於該奈米碳管陣列1〇之最大寬度, 該奈求碳管陣列ίο之最大寬度為奈米碳管陣列1()外輪廊 中距離最大之兩個點之間之距離,即假設奈米碳管陣列 10為垂直於基底2G表面生長之,那麼所謂奈米碳管陣列 10之最大寬度為沿基底2〇表面上之距離最大之兩個點之 間之間距。在本實施例巾,該奈米碳管㈣1()佈滿該基 底20表面,即該奈米碳管陣列1〇遠離該基底別之表面為 一個圓形,該奈米碳管陣列1〇距離最大之兩個點之間之 距離為該圓形之直徑或該基㈣之直徑。從該奈米碳管 陣列10拉伸出來之奈米碳管結構客最大長度正比於該奈 米碳管帶狀結構140之最大長度,故,當該奈米碳管帶狀 結構14 0之最大長度大於該奈米碳管陣謂之最大寬度時 ’從該奈米碳管陣劃拉伸出來之奈Μ管結構之最大 長度將大於從不具有分割線UG之奈米碳管陣㈣拉伸出 來之奈米碳管結構之最大長度’從而突破奈米碳管結構 之最大長度只能取決於奈米碳物列1Q之最大寬度之限 制’獲得具有較長長度之奈米碳管結構如奈米碳管膜30 、奈米碳管線。理論上,該奈米碳管帶狀結構14〇之最大 長度主要取決於分割線11()之分佈,從較該奈米碳管結 構之最大長度只取決於該奈米碳管帶狀結構…之最大長 度’而不取決於該奈米碳管陣列1G及生長該奈米碳管陣 列10之基底20之最大寬度(如直徑)之限制。 由於該奈米碳㈣㈣中之奈米碳管之長度較小,該夺 米碳管陣列H)於宏觀上為一薄膜結構,可定義該奈米碳 099110096201134754 VI. Description of the Invention: [Technical Leadership of the Invention] [0001] The present invention relates to a carbon nanotube array and a method of fabricating a carbon nanotube structure using the nanotube array. C Prior Art] [0002] The carbon nanotubes are a hollow tube made of graphene sheets. The nanotubes have excellent mechanical, thermal and electrical properties, and their application fields are very broad. For example, carbon nanotubes can be used to make field effect transistors, atomic force microscope tips, field emission electrons, and the like. The application of nanotubes in the above-mentioned techniques is mainly difficult to apply on the microscopic scale of the application of carbon nanotubes. Therefore, it is important to make the carbon nanotubes have a macroscopic structure and apply them at a macroscopic level. [0003] In order to overcome the above problems, the patent application No. TW200833862, which is hereby incorporated by reference in its entirety, the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all The preparation method of the carbon nanotube film structure mainly comprises the steps of: arraying a naphtha carbon nanotube to provide a parallel array of carbon nanotube array; extracting the nanometer from the carbon nanotube array in one direction The carbon tube is obtained as a film structure of a carbon nanotube. The maximum length of the carbon nanotube film structure is proportional to the maximum width of the carbon nanotube array. The maximum width of the array of carbon nanotubes is the distance between the two largest points in the array of carbon nanotubes. The maximum length of the carbon nanotube film structure is the length of the carbon nanotube film structure stretched along the maximum width of the carbon nanotube array. However, since the substrate on which the nano-array array is grown is a circular cymbal, and the cymbal preparation process limits the maximum width of the cymbal such as the diameter, from 099110096, the form number A0101, page 3 of 32 0992017822-0 201134754 The length of the carbon nanotube film structure obtained by the carbon nanotube array is limited. [0004] In view of the above, a carbon nanotube array and a carbon nanotube array can be used. A method of preparing a carbon nanotube structure having a relatively long length is necessary. [0007] [0007] A carbon nanotube array having a dividing line that divides the carbon nanotube array into at least one continuous carbon nanotube ribbon structure. The maximum length of the carbon nanotube ribbon structure is greater than the maximum width of the array of carbon nanotubes, and the maximum width of the array of carbon nanotubes is the distance between two points of the largest distance in the array of carbon nanotubes. A method for preparing a carbon nanotube structure, comprising the steps of: providing an array of carbon nanotubes having at least one dividing line, dividing the array of carbon nanotubes into at least one continuous nanometer a carbon tube ribbon structure, the maximum length of the carbon nanotube ribbon structure is greater than the maximum width of the carbon nanotube array, and the maximum width of the carbon nanotube array is the two largest points in the carbon nanotube array a distance between the plurality of carbon nanotubes of the carbon nanotube ribbon structure adjacent to one end of the dividing line; and a plurality of carbon nanotubes of a certain width; stretching at a constant speed along a direction perpendicular to the growth of the carbon nanotube array The plurality of carbon nanotubes are formed to form a continuous carbon nanotube film. In contrast to the prior art, the surface of the carbon nanotube array has a dividing line through which the array of carbon nanotubes forms at least one continuous carbon nanotube ribbon structure. The maximum length of the carbon nanotube ribbon structure is greater than the maximum width of the carbon nanotube array, so that the carbon nanotube array form 099110096 Form No. A0101 Page 4 / Total 32 Page 0992017822-0 201134754 The structure of the carbon nanotubes, such as the carbon nanotube membrane, nanometer, and the longest of the eyes, depends on the maximum length of the band structure of the carbon nanotubes, and the maximum length of the band structure of the nanotube can pass. Controlling the distribution of the dividing line to the system, so that the carbon nanotube array can obtain a carbon nanotube structure having a longer length, thereby getting rid of the maximum width of the carbon nanotube array [Embodiment] [0008] [0010] The present invention will be further described in detail with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2, an embodiment of the present invention provides a carbon nanotube array, which is formed on a surface of a substrate. The nano carbon camp array 10 is a super-aligned array, and the carbon nanotube array 1 includes a plurality of carbon nanotubes arranged substantially in parallel and perpendicular to the surface of the substrate 2G, and the plurality of carbon nanotubes pass each other Valli is in close contact. The substrate may be a quartz substrate, a ruthenium type or a ruthenium type ruthenium substrate, or a Dunhua layer = 夕 substrate 20 may be selected. In the present embodiment, the substrate 2 () adopts a circular stone base. The carbon nanotube array 10 has a dividing line 11 () having a pair of opposite ends 12 〇, 13 〇 ' The end point 12 of the dividing line 11() extends to the edge of the carbon nanotube array 10. The dividing line 11{) divides the nanocarbon camp array 10 into at least one continuous carbon nanotube ribbon junction 140. For simplicity of description, the dimension of the carbon nanotube ribbon structure ho along the direction in which the dividing line 110 extends is referred to as the length, and the scale of the carbon nanotube ribbon structure 140 along the normal direction of the dividing line 110. It is the width of the carbon nanotube ribbon structure 140. Preferably, the carbon nanotube ribbon structures 140 are substantially equal in width such that the nanocarbon prepared by the carbon nanotube ribbon structure 14〇099110096 Form No. A0101 Page 5 / Total 32 Page 0992017822-0 201134754 The width of the tube structure is approximately equal. The maximum length of the carbon nanotube ribbon structure 140 is greater than the maximum width of the carbon nanotube array 1 , and the maximum width of the carbon nanotube array ίο is the largest distance among the outer diameter of the carbon nanotube array 1 () The distance between the two points, that is, the carbon nanotube array 10 is assumed to grow perpendicular to the surface of the substrate 2G, the maximum width of the so-called carbon nanotube array 10 is the two points along the surface of the substrate 2 The distance between them. In the towel of the embodiment, the carbon nanotube (4) 1 () is covered with the surface of the substrate 20, that is, the surface of the carbon nanotube array 1 is away from the surface of the substrate, and the surface of the substrate is a circle. The distance between the two largest points is the diameter of the circle or the diameter of the base (four). The maximum length of the carbon nanotube structure stretched from the carbon nanotube array 10 is proportional to the maximum length of the carbon nanotube ribbon structure 140, so that when the carbon nanotube ribbon structure is the largest When the length is greater than the maximum width of the carbon nanotube array, the maximum length of the naphthalene tube structure drawn from the carbon nanotube array will be greater than the nano carbon tube array (four) which has no dividing line UG. The maximum length of the carbon nanotube structure that emerges to break through the maximum length of the carbon nanotube structure can only depend on the limitation of the maximum width of the nanocarbon column 1Q' to obtain a carbon nanotube structure with a longer length such as Nai Carbon tube film 30, nano carbon line. Theoretically, the maximum length of the carbon nanotube ribbon structure 14〇 depends mainly on the distribution of the dividing line 11(), and the maximum length of the carbon nanotube structure depends only on the carbon nanotube band structure... The maximum length 'is not limited by the maximum width (e.g., diameter) of the carbon nanotube array 1G and the substrate 20 on which the carbon nanotube array 10 is grown. Since the length of the carbon nanotubes in the nanocarbon (4) (4) is small, the carbon nanotube array H) is macroscopically a thin film structure, and the nanocarbon can be defined as 099110096

表單編號A010I 第6頁/共32頁 0992017822-0 [0011] 201134754 管陣列10遠離該基底20之表面之幾何中心為該奈米碳管 陣列10之幾何中心150。在本實施例中,該分割線11〇中 之一個端點13 0靠近該奈米碳管陣列1 〇之幾何中心15 〇, 該分割線11 〇繞該幾何中.心15 0逐漸向外延伸。優選地 ,該分割線110由複數半圓孤依次相接而形成,該複數半 圓弧之圓心與該幾何中心150位於同一條直線,彼此扣接 之兩個半圓弧之間之直徑之差值k相等,該複數半圓孤之 間之直控構成一等差數列。當該複數半圓弧中直徑最小 之半圓弧之直徑d與該差值k相等(d=k)時,該基底20表 〇 面之直徑可為該差值k之倍數η,即設定該基底20表面之 直徑為D ’則該差值k等於D/n(k=D/n)。通過此設置,最 大限度地使該基底20表面之奈米碳管包含於該奈米碳管 帶狀結構140中。於該基底20之最大長度一定之情況下, 可通過控制該差值k來控制該奈米碳管帶狀結構丨4〇之最 大長度。該差值k越小,該奈米碳管帶狀結構14〇之最大 長度越長,從該奈米碳管帶狀結構140拉出之奈米碳管結 構之最大長度就越長。在本實施例中,選擇直徑為4英寸 〇 之矽基底20,差tfk為0. 4英寸,則該奈米碳管帶狀結構 140之最大長度大於30英寸’遠大於該基底2〇之最大長度 。即理論上利用該奈米碳管帶狀結構14〇製備之奈米碳管 結構如奈米碳管膜30、奈米碳管線之最大長度係直接從 未具有分割線110之奈米碳管陣列1〇製備之奈米碳管結構 之最大長度之7倍以上,從而突破奈米碳管陣列10之最大 寬度或基底2 0之直徑對奈米碳管結構之最大長度之限制 099110096 表單編號A0101 第7頁/共32頁 0992017822-0 201134754 [0012]该基底20及分割線11〇之形狀並不局限於上述實施例列舉 之情況,如圖3至圖6所示,該基底20可為圓形、方形或 其他任意形狀。該分割線Π 0包括直線、曲線或其組合; 該分割線110之長度可大於該基底2〇之最大長度或小於該 基底20之最大長度;該分割線11〇可一端點延伸至該奈米 碳管陣列10邊緣,也可兩個端點均延伸至該奈米碳管陣 列10邊緣,還可兩個端點均分佈於該奈米碳管陣列1〇内 :該奈米碳管陣列10可包括一根或復數根分割線u〇,只 要滿足使至少一條奈米碳管帶狀結構140之最大長度大於 该基底20之最大長度即可。具體地,圖3中之分割線 為一條最大長度小於該基底2〇或奢米碳管陣列1〇之最大 寬度之直線,該奈米碳管帶狀結構14〇之最大長度大致與 圖中虛線s之長度相當。圖4中之分割線Ιί〇為一條兩端分 別自該奈米碳管陣列10表面邊緣伸出之線,從而將該奈 米碳管陣列10分割成兩個連續之奈米碳管帶狀結構14〇, 該分割線110包括曲線與直線,其中一個奈米碳管帶狀結 構140之最大長度與圖中虚線5之養度相當。圖5中之奈米 碳官陣列10包括兩條彼此平行之分割線11〇,分割形成至 少一條沿垂直延伸方向之寬度相等之奈米碳管帶狀結構 140。圖6中之奈米碳管陣列1〇為方形陣列,該方形陣列 包括兩條並排蜿蜒之分割線U0,從而得到一條寬度大致 相等之奈米碳管帶狀結構。 剛請參關7及圖8 ’ -種利財㈣實施例所提供之夺米 碳管陣列_備奈米碳管結構之製備方法,其包括: 步驟。 099110096 表單編號Α0101 第8頁/共32頁 0992017822-0 201134754 [0014] [0015] 步驟si01’提供-奈来碳管陣列10,該奈米碳管陣列10 具有至少—分割線11Q,將該奈米碳管陣列10分割成至少 —個連續之奈米唉管帶狀結構14(),該奈米碳管帶狀結構 140之最大長度大於該奈米碳料mQ之最大寬度,該最 大寬度為奈米碳管P車列1Q中距離最大之兩個點之間之距 離0 ,本實施例中,該奈米碳管陣列1G之製備方法採用化學 氣相沈積法,其具體步驟包括: 〇 闺㈣S1U,提供-平整基底。該基底可選用石英基底、p 型或N型梦基底,或選用形成有氧化層之砍基底。該基底 之形狀不限,可為圓形、方形或多邊形。在本實施例中 ’該基底採用圓形碎基底。 [0017]步驟S112,於基底表面均勻形成一催化劑層。該催化劑 層材料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意 組合之合金之一。 q t°°18^ 步驟S113,將上述形成有催化劑層之基底於700~90〇r 之空氣中退火約30分鐘~90分鐘。 [0019] 步驟S114,將處理過之基底置於反應爐中,於保護氣體 環境下加熱到500〜74(TC,然後通入碳源氣反應約5〜30 分鐘,生長得到高度為200〜400微米之奈米碳管陣列預製 體。該奈米碳管陣列預製體為複數彼此平行且垂直於基 底生長之奈米碳管形成之純奈米碳管陣列預製體。可以 理解,該奈米碳管陣列預製體均勻分佈於整個基底表面 。在本實施例中,該奈米碳管陣列預製體之為一圓形奈 099110096 表單編號A0101 第9頁/共32頁 0992017822-0 201134754 米碳管陣列1 〇。通過上述控制生長條件,該奈米碳管陣 列預製體中基本不含有雜質,如無定型碳或殘留之催化 劑金屬顆粒等。該奈米碳管陣列預製體中之奈米碳管彼 此通過凡得瓦爾力緊密接觸形成陣列。本實施例中碳源 氣可選用乙炔等化學性質較活潑之碳氫化合物,保護氣 體可選用氮氣、氨氣或惰性氣體。 [0020] 步驟S115,於該奈米碳管陣列預製體上刻蝕出該分割線 110,得到該奈米碳管陣列10。通過鐳射等手段於該奈米 碳管陣列預製體刻蝕不同種類之分割線110,可得到不同 種類之奈米碳管帶狀結構140。優選地,該分割線110為 一沿該奈米碳管陣列10中之一點往外逐圈旋繞而成之曲 線,如螺旋線。在本實施例中,該分割線110由複數半圓 弧依次相接而形成,其中,奇數位之半圓弧相互同心設 置,圓心為Ml,偶數位之半圓弧相互同心設置,圓心為 M2。彼此相接之兩個半圓弧之間之直徑之差值k相等,該 複數半圓弧之間之直徑構成一等差數列。當該複數半圓 弧中直徑最小之半圓弧之直徑k與該差值k相等(d = k)時, 該基底20表面之直徑可為該差值k之倍數η,_設定該基 # 底20表面之直徑為L,則該差值k等於L/n。通過此設置, 可最大限度地使該基底20表面之奈米碳管包含於該奈米 碳管帶狀結構140中。於該基底20之最大寬度一定之情況 下,可通過控制該差值k來控制該奈米碳管帶狀結構140 之長度。該差值k越小,該奈米碳管帶狀結構140之最大 長度越長,從該奈米碳管帶狀結構140拉出之奈米碳管結 構之最大長度就越長。在本實施例中,選擇直徑為4英寸 099110096 表單編號A0101 第10頁/共32頁 0992017822-0 201134754 之石夕基底20 ’差值k為0· 4英寸,則該奈米碳管帶狀結構 140之最大長度大於3〇英寸,遠大於該基底2()之最大寬度 。即理論上利用該奈米碳管帶狀結構14◦製備之奈米碳管 結構如奈米碳管膜30、奈米碳管線之最大長度係直接從 未具有分割線110之奈米碳管陣列1〇製備之奈米碳管結構 之取大長度之7倍以上,從而突破奈米碳管陣列1〇之最大 寬度或基底20之直徑對奈米碳管結構之最大長度之限制 〇 ❹剛纟驟S1G2 ’從上述奈米唉管帶狀結構14()靠近該分割線 110之一個端點之一端選定—定寬度之複數奈米碳管。該 一定寬度之複數奈米碳管為奈米碳管陣列1〇之一部分。 本實施例優選為採用具有—定寬度之膠帶或表面塗敷有 黏膠之工具等拉伸工具接觸奈米碳管陣列丨〇以選定一定 寬度之複數奈米碳管。 [0022]步驟S103,以一定速度沿基本垂直於奈米碳管陣列1〇生 長方向拉伸該複數奈米碳管,以形成一連續之奈米碳管 〇 膜30。請參閱圖8,該奈米碳管膜30與該奈米碳管陣列1〇 於相交之位置形成有一平行於該基底2〇表面之交界線AB 。該交界線AB與該切割線至少具有一個交點A。於拉伸該 奈米碳管膜30時,該拉伸工具與該奈米碳管陣列1〇相對 轉動,使拉膜方向或沿奈米碳管臈3〇之延伸方向與該切 割線於該交點A之切線之夾角之角度基本相等,即該切割 線於該交點A或交點B之法線與該交界線AB之夾角恒定。 在本實施例中,該拉伸工具之運動軌跡垂直於連接於該 圓心Ml與M2之-基準線,而該奈来碳管陣列1〇依次沿圓 099110096 表單編號A0101 第Π頁/共32頁 0992017822-0 201134754 心Ml與M2轉動#體體,該奈米碳管陣列⑺第一次轉動 時轉動則,然後往該拉伸工具之方向移動固定距離,該 固定距離為該兩個圓心M1與M2之間之距離。此後,每轉 過180度,即每轉到-個半圓弧,該該奈米碳管陣列1〇往 該拉伸工具之方向移動固定距離,直到奈米碳管帶狀結 構140中之所有不米石厌官全部被拉伸完,該固定距離為兩 個圓心Ml細之間之距離嗜而使得該拉伸工具之之運 動軌跡垂直於切割線於該交财之法線,使該交界線職 該分雜110具有兩個交點Α、β時長度為定值,即該奈米 礙管膜別㈣直妓伸㈣之寬度於财界_與該分 割線110具有兩個交點A、B時為定值。可以理解,大部分 奈米碳管訓純拉伸時,交界_與該分割線ιι〇具有 兩個交點A'Β,即大部分之奈来後管膜3〇之寬度為定值 。在本實細例中’ 3亥交界線AB與切割線於交點八之法線基 本重合。 [0023]請參閱圖9,該奈米碳管膜3〇係由若干奈米碳管組成之自 支樓結構。該若干奈米碳管為沿同—方向擇優取向排列 。該擇優取向係指於奈米碳管膜3〇中大多數奈米碳管之 整體延伸方向基本朝同一方向。而且,該大多數奈米碳 管之整體延伸方向基本平行於奈米碳管膜3〇之表面。進 -步地,該奈米碳管膜30中多數奈米碳管係通過凡得瓦 爾力首尾相連。具體地,該奈米碳管膜3〇中基本朝同一 方向延伸之大多數奈米碳管中每—奈米碳管與於延伸方 向上相鄰之奈米碳管通過凡德瓦爾力首尾相連。當然, 該奈米碳管膜30中存於少數隨機排列之奈米碳管,這些 099110096Form No. A010I Page 6 of 32 0992017822-0 [0011] The geometric center of the surface of the tube array 10 remote from the substrate 20 is the geometric center 150 of the carbon nanotube array 10. In this embodiment, one of the end points 13 0 of the dividing line 11 靠近 is close to the geometric center 15 〇 of the carbon nanotube array 1 , and the dividing line 11 is wound around the geometry. The heart 15 0 gradually extends outward. . Preferably, the dividing line 110 is formed by sequentially connecting a plurality of semicircles, and the center of the complex semicircular arc is in the same line with the geometric center 150, and the difference between the diameters of the two semicircular arcs that are fastened to each other. k is equal, and the direct control between the complex semicircular orphans constitutes an equidistant sequence. When the diameter d of the semi-circular arc having the smallest diameter among the plurality of semi-circular arcs is equal to the difference k (d=k), the diameter of the surface of the base 20 may be a multiple of the difference k, that is, the setting The diameter of the surface of the substrate 20 is D' and the difference k is equal to D/n (k = D / n). With this arrangement, the carbon nanotubes on the surface of the substrate 20 are most contained in the carbon nanotube ribbon structure 140. In the case where the maximum length of the substrate 20 is constant, the maximum length of the carbon nanotube ribbon structure 控制4〇 can be controlled by controlling the difference k. The smaller the difference k, the longer the maximum length of the carbon nanotube ribbon structure 14〇, and the longer the maximum length of the carbon nanotube structure pulled out from the carbon nanotube ribbon structure 140. In this embodiment, the substrate 20 having a diameter of 4 inches is selected, and the difference tfk is 0.4 inches, and the maximum length of the carbon nanotube ribbon structure 140 is greater than 30 inches' is much larger than the maximum of the substrate 2〇. length. That is, the carbon nanotube structure prepared by utilizing the carbon nanotube ribbon structure 14〇, such as the carbon nanotube film 30, and the maximum length of the nano carbon pipeline are directly from the carbon nanotube array having the dividing line 110. 1〇 The maximum length of the prepared carbon nanotube structure is more than 7 times, thereby breaking the maximum width of the carbon nanotube array 10 or the diameter of the substrate 20 to the maximum length of the carbon nanotube structure 099110096 Form No. A0101 7 pages/32 pages 0992017822-0 201134754 [0012] The shape of the substrate 20 and the dividing line 11〇 is not limited to the case exemplified in the above embodiment, and as shown in FIGS. 3 to 6, the substrate 20 may be circular. , square or any other shape. The dividing line Π 0 includes a straight line, a curved line or a combination thereof; the dividing line 110 may have a length greater than a maximum length of the substrate 2〇 or less than a maximum length of the substrate 20; the dividing line 11 may extend to the nano end at one end The carbon tube array 10 edge may also extend to the edge of the carbon nanotube array 10 at both ends, and both ends may be distributed in the carbon nanotube array 1 : the carbon nanotube array 10 One or a plurality of dividing lines u〇 may be included as long as the maximum length of at least one of the carbon nanotube strip structures 140 is greater than the maximum length of the substrate 20. Specifically, the dividing line in FIG. 3 is a straight line whose maximum length is smaller than the maximum width of the substrate 2〇 or the luxury carbon nanotube array 1,, and the maximum length of the carbon nanotube strip structure 14〇 is substantially the same as the dotted line in the figure. The length of s is equivalent. The dividing line 图ί〇 in FIG. 4 is a line extending from the edge of the surface of the carbon nanotube array 10 at both ends, thereby dividing the carbon nanotube array 10 into two continuous carbon nanotube strip structures. 14〇, the dividing line 110 includes curves and straight lines, wherein the maximum length of one of the carbon nanotube strip structures 140 is equivalent to the degree of the dotted line 5 in the figure. The carbon carbon array 10 of Fig. 5 includes two dividing lines 11〇 parallel to each other, and is divided into at least one carbon nanotube strip structure 140 having the same width in the vertical extending direction. The carbon nanotube array 1 in Fig. 6 is a square array comprising two side-by-side dividing lines U0 to obtain a carbon nanotube ribbon structure having substantially the same width. Just take the reference 7 and Figure 8 ’-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 099110096 Form No. 101 0101 Page 8 / Total 32 Pages 0992017822-0 201134754 [0015] [0015] Step si01' provides a carbon nanotube array 10 having at least a dividing line 11Q, the Nai The carbon nanotube array 10 is divided into at least one continuous nano tube bundle structure 14 (), the maximum length of the carbon nanotube ribbon structure 140 is greater than the maximum width of the nano carbon material mQ, the maximum width is The distance between the two points of the largest distance in the carbon nanotube P train 1Q is 0. In this embodiment, the preparation method of the carbon nanotube array 1G adopts a chemical vapor deposition method, and the specific steps thereof include: (d) S1U, providing - leveling the substrate. The substrate may be a quartz substrate, a p-type or an N-type dream substrate, or a chopped substrate formed with an oxide layer. The shape of the substrate is not limited and may be circular, square or polygonal. In this embodiment, the substrate employs a circular base. [0017] Step S112, uniformly forming a catalyst layer on the surface of the substrate. The catalyst layer material may be one selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni), or an alloy of any combination thereof. q t°°18^ Step S113, the substrate on which the catalyst layer is formed is annealed in air of 700 to 90 Torr for about 30 minutes to 90 minutes. [0019] Step S114, the treated substrate is placed in a reaction furnace, heated to 500 to 74 (TC in a protective gas atmosphere, and then reacted with a carbon source gas for about 5 to 30 minutes to grow to a height of 200 to 400. The micron carbon nanotube array preform. The carbon nanotube array preform is a pure carbon nanotube array preform formed by a plurality of carbon nanotubes parallel to each other and perpendicular to the substrate. It is understood that the nano carbon The tube array preform is evenly distributed over the entire surface of the substrate. In this embodiment, the carbon nanotube array preform is a round Nai 099110096 Form No. A0101 Page 9 / Total 32 Page 0992017822-0 201134754 Meter Carbon Tube Array 1 〇. Through the above controlled growth conditions, the carbon nanotube array preform contains substantially no impurities, such as amorphous carbon or residual catalyst metal particles, etc. The carbon nanotubes in the carbon nanotube array preform are mutually The array is formed by close contact of van der Waals force. In this embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, and the protective gas may be nitrogen, ammonia or an inert gas. Step S115, etching the dividing line 110 on the carbon nanotube array preform to obtain the carbon nanotube array 10. The different types of dividing lines are etched on the carbon nanotube array by laser or the like. 110, different types of carbon nanotube ribbon structures 140 are obtained. Preferably, the dividing line 110 is a curve which is spirally wound around a point in the carbon nanotube array 10, such as a spiral. In this embodiment, the dividing line 110 is formed by sequentially connecting a plurality of semi-circular arcs, wherein the semi-circular arcs of the odd-numbered bits are concentrically arranged with each other, the center of the circle is M1, and the semi-arc of the even-numbered bits are concentrically arranged with each other, and the center of the circle is M2. The difference k between the diameters of the two semi-arcs connected to each other is equal, and the diameter between the complex semi-arcs constitutes an arithmetic progression. The diameter of the semi-circular arc having the smallest diameter among the complex semi-arcs When the difference k is equal (d = k), the diameter of the surface of the substrate 20 may be a multiple η of the difference k, and the diameter of the surface of the base 20 is set to L, and the difference k is equal to L/ n. With this setting, the carbon nanotubes on the surface of the substrate 20 can be maximally contained In the carbon nanotube ribbon structure 140, the length of the carbon nanotube ribbon structure 140 can be controlled by controlling the difference k if the maximum width of the substrate 20 is constant. The smaller the difference k is. The longer the maximum length of the carbon nanotube ribbon structure 140, the longer the maximum length of the carbon nanotube structure pulled out from the carbon nanotube ribbon structure 140. In this embodiment, the diameter is selected. 4 inches 099110096 Form No. A0101 Page 10 / Total 32 Pages 0992017822-0 201134754 Shi Xi base 20 'The difference k is 0 · 4 inches, then the maximum length of the carbon nanotube strip structure 140 is greater than 3 inches, Far greater than the maximum width of the substrate 2 (). That is, the carbon nanotube structure prepared by utilizing the carbon nanotube ribbon structure 14◦, such as the carbon nanotube film 30, and the maximum length of the nano carbon pipeline are directly from the carbon nanotube array having the dividing line 110. 1〇 The prepared carbon nanotube structure is more than 7 times of the large length, thereby breaking the maximum width of the carbon nanotube array 1或 or the diameter of the substrate 20 to limit the maximum length of the carbon nanotube structure. Step S1G2 'Selects a plurality of carbon nanotubes of a predetermined width from one end of one end of the above-described nanotube bundle structure 14 () near the dividing line 110. The plurality of carbon nanotubes of a certain width is a part of the carbon nanotube array. In this embodiment, it is preferred to contact the carbon nanotube array with a stretching tool such as a tape having a constant width or a surface coated with a glue to select a plurality of carbon nanotubes of a certain width. [0022] Step S103, stretching the plurality of carbon nanotubes at a constant speed along a growth direction substantially perpendicular to the carbon nanotube array 1 to form a continuous carbon nanotube film 30. Referring to Fig. 8, the carbon nanotube film 30 and the carbon nanotube array 1 are formed at a position intersecting the boundary line AB of the surface of the substrate. The boundary line AB has at least one intersection A with the cutting line. When the carbon nanotube film 30 is stretched, the stretching tool rotates relative to the carbon nanotube array 1 , so that the direction of the film or the direction along which the carbon nanotubes are extended and the cutting line are The angles of the intersections of the tangent points of the intersection point A are substantially equal, that is, the angle between the normal line of the cutting line at the intersection point A or the intersection point B and the boundary line AB is constant. In this embodiment, the movement trajectory of the stretching tool is perpendicular to the reference line connected to the centers M1 and M2, and the carbon nanotube array 1 〇 sequentially follows the circle 099110096. Form number A0101 page/total 32 pages 0992017822-0 201134754 The heart Ml and M2 rotate the body, the carbon nanotube array (7) rotates when it is rotated for the first time, and then moves a fixed distance in the direction of the stretching tool, the fixed distance is the two centers M1 and The distance between M2. Thereafter, each time the rotation is 180 degrees, that is, every turn to a semi-circular arc, the carbon nanotube array 1 is moved a fixed distance in the direction of the stretching tool until all of the carbon nanotube ribbon structure 140 The non-meter stone is completely stretched, and the fixed distance is the distance between the two centers M1, so that the movement track of the stretching tool is perpendicular to the cutting line at the normal of the payment, so that the boundary The line line has the intersection point Α, and the length of β is a fixed value, that is, the width of the nanometer obstruction film (4) is the width of the straight extension (4) in the financial sector _ and the intersection line 110 has two intersection points A, B The time is fixed. It can be understood that when most of the carbon nanotubes are purely stretched, the boundary _ has two intersection points A'Β with the dividing line ιι, that is, the width of the tube film 3〇 is fixed at most. In the present example, the '3H boundary line AB and the cutting line are substantially coincident with the normal line at the intersection point eight. Referring to FIG. 9, the carbon nanotube film 3 is a self-supporting structure composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes are arranged in a preferred orientation along the same direction. The preferred orientation means that the majority of the carbon nanotubes in the carbon nanotube film 3 are substantially oriented in the same direction. Moreover, the overall extension direction of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube membrane. Further, most of the carbon nanotubes in the carbon nanotube membrane 30 are connected end to end by van der Waals force. Specifically, each of the carbon nanotubes in the majority of the carbon nanotube membranes extending in the same direction is connected end to end with the carbon nanotubes adjacent in the extending direction by van der Waals force . Of course, the carbon nanotube film 30 is stored in a small number of randomly arranged carbon nanotubes, these 099110096

表單編號A010I 第12頁/共32頁 0992017822-0 201134754 ❹ [0024] [0025]Form No. A010I Page 12 of 32 0992017822-0 201134754 ❹ [0024] [0025]

[0026] 099110096 奈米碳管不會對奈米碳管膜3〇中大多數奈米碳管之整體 取向排列構成明顯影響。該自支撐為奈米碳管膜 要大面積之載體支撐,而只要相對兩邊提供支撐力即能 整體上懸空而保持自身膜狀狀態,即將該奈米碳管膜如 置於(或固定於)間隔—定距離設置之兩個支撐體上時 ,位於兩個支撐體之間之奈米碳管膜3〇能夠懸空保持自 身膜狀狀怨。該自支撐主要通過奈米碳管膜3〇中存於連 續之通過凡德瓦爾力首尾相連延伸排列之奈米碳管而實 現。 具體地,該奈米碳管膜30中基本朝同一方向延伸之多數 奈米碳管’並非絕對之直線狀,可適當之料;或者並 非完全按照延伸方向上排列,可適當之偏離延伸方向。 故,不能排除奈米碟管膜3G之基本朝同_方向延伸之多 數奈米碳管中並列之奈米碳管之間可能存於部分接觸。 可以理解的’本發明之該奈米碳管結構之製備方法完成 上述步驟81〇3之後還可進一步包括如下步驟: 步驟S104,將拉出之奈米碳管&3〇經過處理形成一奈米 碳管線。該奈米碳管賴之處理方法包括用揮發性有機 溶劑浸潤處理或機械扭轉處理。該揮發性有機溶劑浸潤 處理可通過試管將有機溶咖落於奈米碳管膜30表面浸 潤整個奈米碳管卿’或者,也可將上述形成有奈米碳 管膜30之固定枢架整個浸入盛有有機溶劑之容器中浸潤 。該揮發性有機溶劑為乙醇、甲醇、丙_、二氯乙烧或 氣仿,本實施例中採用乙醇。該有機溶劑於揮發時產生 之張力使該奈米碳管訓收縮形成該“碳管線。請參 表單編號A0101 曾,„ = 0992017822-0 201134754 閱圖ίο,通過揮發性有機溶劑浸潤處理所得到之奈米碳 管線為一非扭轉之奈米碳管線,該非扭轉之奈米碳管線 包括複數沿奈米碳管線長度方向排列之奈米碳管。具體 地,該非扭轉之奈米碳管線包括複數奈米碳管通過凡德 瓦爾力首尾相連且沿奈米碳管線軸向擇優取向排列。該 機械扭轉處理可通過採用一機械力將該奈米碳管拉膜兩 端沿相反方向扭轉。請參閱圖11,通過機械扭轉處理而 得到之奈米碳管線為一扭轉之奈米碳管線,該扭轉之奈 米碳管線包括複數繞奈米碳管線軸向螺旋排列之奈米碳 - f 管。具體地,該扭轉之奈米碳管線包括複數奈米碳管通 ; 過凡德瓦爾力首尾相連且沿奈米碳管線軸向呈螺旋狀延 伸。可以理解,也可對獲得之奈米碳管膜30同時或者依 次進行有機溶劑揮發性有機溶劑浸潤處理或機械扭轉處 理來獲得扭轉之奈米碳管線。在本實施例中,由於大部 分奈米碳管膜30之寬度為定值,故大部分該奈米碳管線 之直徑為定值,通過切割等手段可得到直徑為定值之奈 米碳管線。[0026] The 099110096 carbon nanotubes do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube membrane. The self-supporting is a support for a large area of the carbon nanotube film, and as long as the supporting force is provided on both sides, the whole film can be suspended and maintained in a self-membranous state, that is, the carbon nanotube film is placed (or fixed). When the spacers are placed on two supports at a fixed distance, the carbon nanotube film 3〇 located between the two supports can be suspended to maintain its own film-like resentment. This self-supporting is mainly achieved by the carbon nanotube film 3 存 in the continuous arrangement of the carbon nanotubes extending through the end of the van der Waals force. Specifically, the majority of the carbon nanotubes 30 extending substantially in the same direction in the carbon nanotube film 30 are not absolutely linear, and may be appropriately stocked; or may not be completely aligned in the extending direction, and may be appropriately deviated from the extending direction. Therefore, it cannot be excluded that there may be partial contact between the carbon nanotubes juxtaposed in the majority of the carbon nanotubes extending in the same direction as the nano-disc film 3G. It can be understood that the preparation method of the carbon nanotube structure of the present invention may further comprise the following steps after the completion of the above step 81〇3: Step S104, the drawn carbon nanotubes & Rice carbon pipeline. The treatment of the carbon nanotubes includes treatment with a volatile organic solvent or mechanical torsion. The volatile organic solvent infiltration treatment can infiltrate the entire surface of the carbon nanotube film 30 by the organic solvent in the test tube to infiltrate the entire carbon nanotubes. Alternatively, the above-mentioned fixed pivot frame formed with the carbon nanotube film 30 can also be used. Immerse in a container filled with an organic solvent. The volatile organic solvent is ethanol, methanol, propane, dichloroethane or gas, and ethanol is used in this embodiment. The tension generated by the organic solvent upon volatilization causes the carbon nanotube to shrink to form the "carbon line. Please refer to Form No. A0101, „ = 0992017822-0 201134754 图 οο, obtained by volatile organic solvent infiltration treatment. The nano carbon line is a non-twisted nano carbon line, and the non-twisted nano carbon line includes a plurality of carbon nanotubes arranged along the length of the nano carbon line. Specifically, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes connected end to end by van der Waals force and arranged in an axially preferred orientation along the nanocarbon pipeline. The mechanical torsion treatment can be performed by twisting both ends of the carbon nanotube film in the opposite direction by a mechanical force. Referring to FIG. 11, the nano carbon pipeline obtained by the mechanical torsion treatment is a twisted nano carbon pipeline, and the twisted nanocarbon pipeline includes a plurality of nano carbon-f tubes arranged in an axial spiral arrangement around the carbon nanotubes. . Specifically, the twisted nanocarbon pipeline includes a plurality of carbon nanotube tubes; the van der Waals force is connected end to end and spirally extends axially along the carbon nanotube line. It will be appreciated that the obtained nanocarbon tube film 30 may also be subjected to an organic solvent volatile organic solvent wetting treatment or mechanical torsion treatment simultaneously or sequentially to obtain a twisted nanocarbon line. In this embodiment, since the width of most of the carbon nanotube film 30 is constant, most of the diameters of the carbon nanotubes are constant, and a diameter-constant nano carbon pipeline can be obtained by cutting or the like. .

UU

[0027] 請參閱圖12,另一種利用本發明實施例所提供之奈米碳 管陣列10製備奈米碳管結構之製備方法,其包括如下步 驟。 [0028] 步驟S201,提供一奈米碳管陣列10,該奈米碳管陣列10 具有至少一分割線110,將該奈米碳管陣列10分割成至少 一個連續之奈米碳管帶狀結構140,該奈米碳管陣列10之 最大寬度為奈米碳管陣列1 0中距離最大之兩個點之間之 距離,該奈米碳管帶狀結構140之最大長度大於該奈米碳 099110096 表單編號A0101 第14頁/共32頁 0992017822-0 201134754 管陣列1 〇之最大寬度。 [0029] 該奈米碳管陣列1 0可通過如下步驟製備。 [0030] 步驟S211,提供一平整基底20。 [0031] 步驟S222,於基底20表面形成一催化劑層,該催化劑層 為一最大長度大於該基底表面之最大寬度之帶狀催化劑 結構。該帶狀催化劑結構可通過於該催化劑層刻蝕出該 分割線而形成。 [0032] 步驟S223,將上述形成有帶狀催化劑結構之基底於 700〜900°C之空氣中退火約30分鐘〜90分鐘。 [0.033] 步驟S224,將處理過之基底20置於反應爐中,於保護氣 體環境下加熱到500〜740°C,然後通入碳源氣反應約 5~30分鐘,生長得到高度為200~400微米之奈米碳管帶 狀結構140,該奈米碳管帶狀結構140與該分割線110 — 起形成一奈米碳管陣列10。 [0034] 步驟S202,從上述奈米碳管帶狀結構140靠近該分割線 11 0之一個端點之一端選定一定寬度之複數奈米碳管。 [0035] 步驟S203,以一定速度沿基本垂直於奈米碳管陣列10生 長方向拉伸該複數奈米碳管,以形成一連續之奈米碳管 膜。 [0036] 可以理解的,本發明之該奈米碳管結構之製備方法完成 上述步驟S203之後還可進一步包括如下步驟: [0037] 步驟S204,將拉出之奈米碳管膜經過處理形成一奈米碳 管線。 099110096 表單編號 A0101 第 15 頁/共 32 頁 0992017822-0 201134754 [0038] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0039] 圖1係本發明實施例所提供之一種奈米碳管陣列設置於一 基底上之結構示意圖。 [0040] 圖2係圖1提供之一種奈米碳管陣列之俯視示意圖。 [0041] 圖3係本發明實施例所提供之另一種奈米碳管陣列之俯視 示意圖。 [0042] 圖4係本發明實施例所提供之另一種奈米碳管陣列之俯視 示意圖。 [0043] 圖5係本發明實施例所提供之另一種奈米碳管陣列之俯視 示意圖。 [0044] 圖6係本發明實施例所提供之另一種奈米碳管陣列之俯視 示意圖。 [0045] 圖7係一種利用本發明實施例所提供之奈米碳管陣列製備 奈米碳管結構之製備方法之流程示意圖。 [0046] 圖8係用圖7中之製備方法製備一奈米碳管膜時製備示意 圖。 [0047] 圖9係利用圖7中之製備方法得到之奈米碳管膜掃描電鏡 照片。 099110096 表單編號A0101 第16頁/共32頁 0992017822-0 201134754 [0048] 圖10係利用圖7中之製備方法得到之非扭轉之奈米碳管線 掃描電鏡照片。 [0049] 圖1 1係利用圖7中之製備方法得到之非扭轉之奈米碳管線 掃描電鏡照片。 [0050] 圖1 2係另一種利用本發明實施例所提供之奈米碳管陣列 製備奈米碳管結構之製備方法之流程示意圖。 【主要元件符號說明】 [0051] [0052] [0053] [0054] [0055] [0056] [0057] 奈米碳管陣列:10 Ο 分割線:110 端點:120、130 奈米碳管帶狀結構:140 幾何中心:15 0 基底:20 奈米碳管膜:30 〇 099110096 表單編號A0101 第17頁/共32頁 0992017822-0[0027] Referring to FIG. 12, another method for preparing a carbon nanotube structure using the carbon nanotube array 10 provided by the embodiment of the present invention includes the following steps. [0028] Step S201, providing a carbon nanotube array 10 having at least one dividing line 110, dividing the carbon nanotube array 10 into at least one continuous carbon nanotube band structure 140, the maximum width of the carbon nanotube array 10 is the distance between two points of the largest distance in the carbon nanotube array 10, and the maximum length of the carbon nanotube ribbon structure 140 is greater than the nano carbon 099110096 Form No. A0101 Page 14 of 32 Page 0992017822-0 201134754 The maximum width of the tube array 1 〇. [0029] The carbon nanotube array 10 can be prepared by the following steps. [0030] Step S211, providing a flat substrate 20. [0031] Step S222, forming a catalyst layer on the surface of the substrate 20, the catalyst layer being a strip catalyst structure having a maximum length greater than a maximum width of the surface of the substrate. The strip catalyst structure can be formed by etching the dividing line on the catalyst layer. [0032] Step S223, annealing the substrate on which the strip catalyst structure is formed in air at 700 to 900 ° C for about 30 minutes to 90 minutes. [0.033] Step S224, the treated substrate 20 is placed in a reaction furnace, heated to 500-740 ° C under a protective gas atmosphere, and then reacted with a carbon source gas for about 5 to 30 minutes to grow to a height of 200~. A 400 micrometer carbon nanotube ribbon structure 140, the carbon nanotube ribbon structure 140 forms a carbon nanotube array 10 together with the dividing line 110. [0034] Step S202, selecting a plurality of carbon nanotubes of a certain width from one end of one end of the carbon nanotube strip structure 140 near the dividing line 110. [0035] Step S203, stretching the plurality of carbon nanotubes at a constant speed along a growth direction substantially perpendicular to the carbon nanotube array 10 to form a continuous carbon nanotube film. [0036] It can be understood that the method for preparing the carbon nanotube structure of the present invention may further comprise the following steps after the step S203 is performed: [0037] Step S204, the drawn carbon nanotube film is processed to form a Nano carbon pipeline. 099110096 Form No. A0101 Page 15 of 32 0992017822-0 201134754 [0038] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0039] FIG. 1 is a schematic view showing the structure of a carbon nanotube array provided on a substrate according to an embodiment of the present invention. 2 is a top plan view of a carbon nanotube array provided in FIG. 1. 3 is a top plan view of another carbon nanotube array provided by an embodiment of the present invention. 4 is a top plan view of another carbon nanotube array provided by an embodiment of the present invention. 5 is a top plan view of another carbon nanotube array provided by an embodiment of the present invention. 6 is a top plan view of another carbon nanotube array provided by an embodiment of the present invention. 7 is a schematic flow chart of a method for preparing a carbon nanotube structure by using a carbon nanotube array provided by an embodiment of the present invention. Figure 8 is a schematic view showing the preparation of a carbon nanotube film by the preparation method of Figure 7. 9 is a scanning electron micrograph of a carbon nanotube film obtained by the preparation method of FIG. 7. 099110096 Form No. A0101 Page 16 of 32 0992017822-0 201134754 [0048] FIG. 10 is a scanning electron micrograph of a non-twisted nanocarbon pipeline obtained by the preparation method of FIG. [0049] FIG. 11 is a scanning electron micrograph of a non-twisted nanocarbon pipeline obtained by the preparation method of FIG. 7. [0050] FIG. 12 is a schematic flow chart of another method for preparing a carbon nanotube structure by using the carbon nanotube array provided by the embodiment of the present invention. [Main component symbol description] [0055] [0057] [0057] Carbon nanotube array: 10 分割 dividing line: 110 end point: 120, 130 carbon nanotube tape Structure: 140 Geometric Center: 15 0 Base: 20 Carbon Tube Film: 30 〇099110096 Form No. A0101 Page 17 / Total 32 Pages 0992017822-0

Claims (1)

201134754 七、申請專利範圍: 2不米碳管陣列’該奈米碳管陣列具有—分割線 割線將該奈米碳管_ ”叙少—個料Μ米 =構:=米碳管帶狀結構之最大長度大於該奈米碳管 列之最大見度,該奈米碳管陣列之最大寬度為奈米碳 陣列中距離最大之兩個點之間之距離。 .如申4專利範圍第1項所述之奈米碳管陣列,其中,該齐 米碳管帶狀結構沿分割線之延伸方向彎曲延伸、。 •如申4專利範ϋ第2項所述之奈米碳管㈣n衫 米碳管帶狀結構沿垂直於分割線延伸方向之寬度相等Γ •如申請專利範圍第W所述之奈米碳管陣列,其中,該分 割線之一端延伸至該奈米碳管陣列之邊緣。 V .如申請專利範圍第1項所述之奈米碳管陣列,其t,該分 割線之兩端均延伸至該奈米碳管陣列之邊緣該分割線刀之 長度大於該奈米碳管陣列之最大寬度。 .如申請專利範圍第i項所述之奈米碳管陣列,其中,該分 割線為一螺旋線。 刀 .如申請專利範圍第W所述之奈米碳管陣列,其中,該分 割線由複數半圓弧依次相接而形成,彼此相接之兩個半刀圓 弧之間之直徑之差值相等。 •如申請專利範圍第W所述之奈米碳管陣列,其中,咳太 ,碳管陣列具有兩條分割線,該兩條分割線彼此平行,'丁且 每一分割線之長度均大於該基底之最大寬度。 • 一種奈純管結構之製備料,其包㈣下步驟: 提供-奈米碳管陣列,該奈米碳管陣列具有至少一分割線 099110096 表單編號A0101 第18頁/共32頁 0992017822-0 201134754 ,將該奈米碳管陣列分割成至少一個連續之奈米碳管帶狀 結構,該奈米碳管帶狀結構之最大長度大於該奈米碳管陣 列之最大寬度,該奈米碳管陣列之最大寬度為奈米碳管陣 列中距離最大之兩個點之間之距離; 從上述奈米碳管帶狀結構靠近該分割線之一個端點之一端 選定一定寬度之複數奈米碳管;以及 以一定速度沿基本垂直於奈米碳管陣列生長方向拉伸該複 數奈米碳管,以形成一連續之奈米碳管膜。 10 .如申請專利範圍第9項所述之奈米碳管結構之製備方法, Ο 其中,該奈米碳管陣列之製備方法包括如下步驟: 提供一平整基底; 於基底表面形成一催化劑層,該催化劑層為一最大長度大 於該基底表面之最大寬度之帶狀催化劑結構; 將上述形成有帶狀催化劑結構之基底於700~900°C之空氣 中退火30分鐘〜90分鐘;以及 將處理過之基底置於反應爐中,於保護氣體環境下加熱到 500〜740°C,然後通入碳源氣反應5〜30分鐘,生長得到 〇 高度為200〜400微米之奈米碳管帶狀結構,該奈米碳管帶 狀結構與該分割線一起形成一奈米碳管陣列。 11 .如申請專利範圍第9項所述之奈米碳管結構之製備方法, 其中,該奈米碳管陣列之形成方法包括如下步驟: 提供一奈米碳管陣列預製體形成於一基底表面; 於該奈米碳管陣列預製體上刻蝕出該分割線,得到該奈米 碳管陣列。 12 .如申請專利範圍第9項所述之奈米碳管結構之製備方法, 其t,該分割線由複數半圓弧依次相接而形成且自該奈米 099110096 表單編號A0101 第19頁/共32頁 0992017822-0 201134754 碳管陣列邊緣上-點往内盤旋,彼此相接之兩個半圓弧之 間之直徑之差值相等。 13 14 . 15 . 16 . 17 . 如申請專鋪摘述之奈㈣管結叙製備方法, 其中’該奈《管膜與該奈米碟管陣列相交之位置形成有 —平行於該基底表面之交界線,該交界線與該分割線具有 至少一個交點。 如申請專鄕Ml3韻述之奈米碳管結狀製備方法, 其中’該分㈣交狀法線與較界線之夾角恒定。 如申請專鄕圍第13顧述之奈米碳管結構之製備方法, 其中,該分割線於該交點之法線與該交界線重合。 如申請專㈣®第丨3項所述n切管結構之製備方法, 其中,該奈米碳管膜由-拉具自該奈米碳管陣列拉伸 而出’該拉伸工具與奈米碳”列相對轉動,使奈米碳管 膜之延伸方向與該㈣線於該交點之切線方向之夾角基本 相等。 土 如申請專利範圍第9項所述之奈米碳管結構之製備方法, 其中,其進—步包括如下步驟:將拉出之奈米碳管膜經過 處理形成一奈米碳管線。 099110096 表單編號A0101 第20頁/共32頁 0992017822-0201134754 VII, the scope of application for patents: 2 non-meter carbon tube array 'the carbon nanotube array has - dividing line secant to the carbon nanotube _ 》 少 少 - 个 = = = = = = = = = = = = = = = = = = = = = The maximum length is greater than the maximum visibility of the carbon nanotube array, and the maximum width of the carbon nanotube array is the distance between the two largest points in the nanocarbon array. The carbon nanotube array, wherein the zigzag carbon nanotube strip structure is curved and extended along a direction in which the dividing line extends. • The carbon nanotube (four) n-shirt carbon as described in claim 2 The tubular strip structure is equal in width to the direction perpendicular to the direction in which the dividing line extends. The carbon nanotube array according to claim W, wherein one end of the dividing line extends to the edge of the carbon nanotube array. The carbon nanotube array of claim 1, wherein t, both ends of the dividing line extend to an edge of the carbon nanotube array, the length of the dividing line cutter is greater than the carbon nanotube array The maximum width of the carbon nanotubes as described in claim i The column, wherein the dividing line is a spiral. The knives are the carbon nanotube array according to claim W, wherein the dividing line is formed by a plurality of semi-arcs sequentially connected to each other. The difference between the diameters of the half-knife arcs is equal. • The carbon nanotube array according to claim W, wherein the carbon nanotube array has two dividing lines, and the two dividing lines are mutually Parallel, 'dual and the length of each dividing line is greater than the maximum width of the substrate. · A preparation material of the neat tube structure, the package (4) the next step: providing a carbon nanotube array, the carbon nanotube array has At least one dividing line 099110096 Form No. A0101 Page 18 / Total 32 pages 0992017822-0 201134754, the carbon nanotube array is divided into at least one continuous carbon nanotube band structure, the carbon nanotube band structure The maximum length is greater than the maximum width of the array of carbon nanotubes, and the maximum width of the array of carbon nanotubes is the distance between the two points in the largest array of carbon nanotubes; from the above-mentioned carbon nanotube band structure The dividing line One end of one of the ends selects a plurality of carbon nanotubes of a certain width; and the plurality of carbon nanotubes are stretched at a rate substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous carbon nanotube film. 10. The method for preparing a carbon nanotube structure according to claim 9, wherein the method for preparing the carbon nanotube array comprises the steps of: providing a flat substrate; forming a catalyst layer on the surface of the substrate, The catalyst layer is a strip catalyst structure having a maximum length greater than a maximum width of the surface of the substrate; and the substrate formed with the strip catalyst structure is annealed in air at 700 to 900 ° C for 30 minutes to 90 minutes; The substrate is placed in a reaction furnace, heated to 500-740 ° C under a protective gas atmosphere, and then reacted with a carbon source gas for 5 to 30 minutes to grow a carbon nanotube band structure having a height of 200 to 400 μm. The carbon nanotube ribbon structure together with the dividing line forms an array of carbon nanotubes. 11. The method for preparing a carbon nanotube structure according to claim 9, wherein the method for forming the carbon nanotube array comprises the steps of: providing a carbon nanotube array preform formed on a substrate surface The dividing line is etched on the carbon nanotube array preform to obtain the carbon nanotube array. 12. The method of preparing a carbon nanotube structure according to claim 9, wherein the dividing line is formed by a plurality of semi-arcs sequentially connected from the nanometer 099110096, form number A0101, page 19 / A total of 32 pages 0992017822-0 201134754 On the edge of the carbon tube array, the point is hovering inward, and the difference between the diameters of the two semi-arcs that are connected to each other is equal. 13 14 . 15 . 16 . 17 . If you apply for the preparation of a special narrative ( IV ) tube preparation method, in which the 'the tube film and the array of nanotubes are formed at a position parallel to the surface of the substrate a boundary line having at least one intersection with the dividing line. For example, a method for preparing a carbon nanotube knot prepared by the Ml3 rhyme is applied, wherein the angle between the intersection of the sub-fourth intersection and the boundary line is constant. For example, the method for preparing a carbon nanotube structure of the third aspect of the present invention is applied, wherein the dividing line at the intersection has a normal line coincident with the boundary line. For example, the preparation method of the n-cut pipe structure described in the above (4)®, item 3, wherein the carbon nanotube film is stretched from the array of carbon nanotubes by the puller 'the stretching tool and the nanometer The relative rotation of the carbon column causes the extension direction of the carbon nanotube film to be substantially equal to the angle of the (four) line at the tangential direction of the intersection. The method for preparing the carbon nanotube structure according to claim 9 of the patent application scope, Wherein, the further step comprises the following steps: processing the drawn carbon nanotube film to form a nano carbon line. 099110096 Form No. A0101 Page 20 / Total 32 Page 0992017822-0
TW099110096A 2010-04-01 2010-04-01 Carbon nanotube array and method for making carbon nanotube structure using the same TWI534077B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099110096A TWI534077B (en) 2010-04-01 2010-04-01 Carbon nanotube array and method for making carbon nanotube structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099110096A TWI534077B (en) 2010-04-01 2010-04-01 Carbon nanotube array and method for making carbon nanotube structure using the same

Publications (2)

Publication Number Publication Date
TW201134754A true TW201134754A (en) 2011-10-16
TWI534077B TWI534077B (en) 2016-05-21

Family

ID=46751626

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099110096A TWI534077B (en) 2010-04-01 2010-04-01 Carbon nanotube array and method for making carbon nanotube structure using the same

Country Status (1)

Country Link
TW (1) TWI534077B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447772B (en) * 2012-03-29 2014-08-01 Hon Hai Prec Ind Co Ltd Carbon nanotube field emitter
TWI447778B (en) * 2012-03-29 2014-08-01 Hon Hai Prec Ind Co Ltd Preparation of carbon nanotube field emitter
TWI450312B (en) * 2012-02-23 2014-08-21 Hon Hai Prec Ind Co Ltd Carbon nanotube micro tip structure and carbon nanotube micro tip structure array
TWI450304B (en) * 2012-02-23 2014-08-21 Hon Hai Prec Ind Co Ltd Field emission electron source and field emission device using the same
TWI452604B (en) * 2012-02-23 2014-09-11 Hon Hai Prec Ind Co Ltd Carbon nanotube micro tip structure and method for making the same
TWI481547B (en) * 2012-06-28 2015-04-21 Hon Hai Prec Ind Co Ltd Method for making carbon nanotube field emitter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450312B (en) * 2012-02-23 2014-08-21 Hon Hai Prec Ind Co Ltd Carbon nanotube micro tip structure and carbon nanotube micro tip structure array
TWI450304B (en) * 2012-02-23 2014-08-21 Hon Hai Prec Ind Co Ltd Field emission electron source and field emission device using the same
TWI452604B (en) * 2012-02-23 2014-09-11 Hon Hai Prec Ind Co Ltd Carbon nanotube micro tip structure and method for making the same
TWI447772B (en) * 2012-03-29 2014-08-01 Hon Hai Prec Ind Co Ltd Carbon nanotube field emitter
TWI447778B (en) * 2012-03-29 2014-08-01 Hon Hai Prec Ind Co Ltd Preparation of carbon nanotube field emitter
TWI481547B (en) * 2012-06-28 2015-04-21 Hon Hai Prec Ind Co Ltd Method for making carbon nanotube field emitter
US9171689B2 (en) 2012-06-28 2015-10-27 Tsinghua University Method for making carbon nanotube field emitter

Also Published As

Publication number Publication date
TWI534077B (en) 2016-05-21

Similar Documents

Publication Publication Date Title
US20110140309A1 (en) Method for making carbon nanotube structure
CN101499338B (en) Stranded wire production method
TW201134754A (en) Carbon nanotube array and method for making carbon nanotube structure using the same
US8414859B2 (en) Method for making carbon nanotube structure
JP5175313B2 (en) Carbon nanotube-nanoparticle composite material and method for producing the same
US9840771B2 (en) Method of growing carbon nanotube using reactor
JP5243478B2 (en) Nanomaterial thin film
US8431066B2 (en) Method for making carbon nanotube film
JP5139457B2 (en) Method for producing carbon nanotube structure
US9561962B2 (en) Reactor and method for growing carbon nanotube using the same
CN101499328A (en) Stranded wire
CN102001641A (en) Method for preparing carbon nanotube linear structure
CN103172047B (en) Carbon nano pipe array
US9997323B2 (en) Composite carbon nanotube structure
TW201125814A (en) Method for making carbon nanotube structure
JP2004292302A (en) Matrix structure of carbon nanotube and its manufacturing method
CN105439114A (en) Carbon fiber film and preparation method thereof
TWI477442B (en) Method for making carbon nanotube film
TW200938481A (en) Carbon nanotube yarn strucutre
TWI342027B (en) Method for making twisted yarn
CN103367074B (en) The preparation method of field emission body of Nano carbon tube
CN103515170A (en) Preparation method for carbon nanotube field emitter
CN103367073B (en) Field emission body of Nano carbon tube
US9611148B2 (en) Method for making carbon nanotube film
TW201109275A (en) Mehtod for manufacturing carbon nanotube linear structure