TW201021357A - Power monitoring platform system - Google Patents

Power monitoring platform system Download PDF

Info

Publication number
TW201021357A
TW201021357A TW97145267A TW97145267A TW201021357A TW 201021357 A TW201021357 A TW 201021357A TW 97145267 A TW97145267 A TW 97145267A TW 97145267 A TW97145267 A TW 97145267A TW 201021357 A TW201021357 A TW 201021357A
Authority
TW
Taiwan
Prior art keywords
power
average
monitoring platform
time
platform system
Prior art date
Application number
TW97145267A
Other languages
Chinese (zh)
Other versions
TWI411194B (en
Inventor
shao-yi Guo
kun-ming Wu
ming-zheng Lin
guan-de Li
Original Assignee
Lealea Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lealea Technology Co Ltd filed Critical Lealea Technology Co Ltd
Priority to TW97145267A priority Critical patent/TW201021357A/en
Publication of TW201021357A publication Critical patent/TW201021357A/en
Application granted granted Critical
Publication of TWI411194B publication Critical patent/TWI411194B/zh

Links

Abstract

In the power monitoring platform system of this invention, within the contracted capacity duration, the average electricity usage amount of a user is less than or equal to the contracted capacity of the control center. The procedure comprises: (a) setting ON and OFF of the equipment according to the schedule; (b) capturing electricity meter data (dynamic average sampling); and (c) estimating required amount and unloading/loading. The required amount estimation of this system calculates the load/unload power according to area and reaches to the agreed power value; in addition, the sampling is performed each second such that the average power value within the set duration is kept at the latest state.

Description

201021357 九、發明說明: 【發明所屬之技術領域】 本發明電力監控平台纽’係指m狀需量控伽面積方式計 算負載功率,供用戶端之使用平均電量低於或等於控制中心之契約容量。 【先前技術】 按,能源是發生工作能力的根源,包括煤戾,石油等等。其中,最乾 淨且最便於利用的能源,莫過於電力了;我們的日常生活,都要依靠各種 ®能源,如照明設備、家電設備、空調設備等,都是利用電力能源;此外, 瓦斯爐和熱水關是瓦斯統,交通工具是石·源的汽油來媒 動,可見能源是多麼的重要。 然,於各個加工廉或大型廢房等的運作,皆需使用電力,而電力的供 給是-項不可或缺的能源之-,由於廠房中所運作的設備不計其數,且部 份需24小時不停運轉’則所需的用電量相對增加,又,於各個加工薇或大 型廠房等皆會與電力公司簽署平均功率超約契約,其以每15分鐘之平均功 率之容量作靖’若超過_容量標準,戦付出_容量之,為能 控獅間功率的超標,則使用需量控制方式,利用需量上升的斜率來預測 15分鐘後是否會超過契約容量,而需量控制方式可區分為限定卸載及斜率 預測卸載等方式,其中限定卸載(如第Η囷所示)方式亦將簽訂之契約 容量Ai設定’於該用電使用需量E1上升至契約容量Μ,則用電使用需量 E1開始卸載下降至-定功率,其反覆的卸栽可倾間功率α控制於契約容 量A1範圍内,而此限定卸載方式雖可有效控制用電功率在契約容量範圍 201021357 内,但計算用電的平均需量S1,於每15分麵無法達到所簽訂的契約容量 A1而造成所支出的浪費及損失; 又,該斜率預測域(如第卜2圖所示)方式,該用電使用需量.取每 上升-弧度即計算該弧度之一端點p至契約容量犯之斜率做適當卸載之動 作,而後用電斜率再反覆繼續做上升與卸載之動作,使其可將用電量控制 於契約容量A2内,此種斜率預測卸載方式利用傾斜的角度計算預測下—分 鐘的用電功率,使用電平均需量兑維持在契約容量A2内,而此斜率預測 ❹卸載方式雖可運用斜率計算下一分鐘平均需量是否會超過契約容量,但此 種方式在時間同步上常常會有誤差_題,即使採用了動態_平均也 無法完全保證不超過契約容量A2 ;以上現有的需量控制方式皆將平均需量 標準定在契約容量以内,若平均需量到達契約容量時立即進行卸載動作, 此方式雖剌電#_在契約容量制内,但常有誤差的產生,且平均需 量的使用卻無法100%將契約容量完全使用,造成浪費與損失; 而傳統的需量控制平台系統,在設傷的卸復載順序上是無法自由更動 ❹的,於大型卫業用電戶中,設有多種儀器設備如照明、空調、事務設備等, 若將其-設備作暫時停止動作或更改斷電麟的情瞒,必雖改整想硬 體線路或設備,才能更改卸復載的順序。 緣此,發明人積極深研電能管理控制系統,以消費者的使用作為設計 的考量’本發明電力監控平台系統將每個設備設有獨立控麵組,並將該 各俩獨立模組Φ連至㈣控儀本艘,透過集線器可由pc監控電腦由遠 端Web潘 1覽與監控及管理,而此電力監控平台系統可將電能的需量預測與 6 201021357 卸復載功相面積_絲計算,以每秒方式採樣i5分鐘為例共有_ 秒,其以契约容量為基準,當每秒超約平均喊約時間场制平如抑制時 間小於等於契約容量樹鐘時間,以面積方式來計算超約與抑制的面積差 做填補,如此,與電力公司簽署之契約容量於每15分鐘之任一秒鐘平均功 率皆維持在容量範_,且_簽訂契約容㈣g_,以免除不必 要的超约所帶來的無效的電力成本支出,同時有機會進一步降低整趙用電 成本問題。 ❹ 【發明内容】 本發明電力監控平台系統’係提供用戶端的電力管理方法而管理步 驟包含-步料a),依排程設定啟停設m (b),電表資料操取 (動態平均取樣)、-步驟(c),需量預測與卸復載,藉此,可控制用戶端 的平均用電量’並可將與控制中心簽定之契約容量100%運用且用戶端平 均用電量之總和可小於或等於設定契約容量。 _ 本發明電力監控平台系統之主要目的,可將用戶端之電力相關設備以 獨立控制模式控制,且可設定手動模式或自動模式控制。 本發明電力監控平台系統之次要目的,該相關設備的啟閉設定,可依 優先權順序排列控制。 本發明電力監控平台系統之另一目的,可將電力設備之電壓、電流、 功率等,以每秒鐘擷取做平均紀錄,並提供系統做電力資料分析。 本發明電力監控平台系統之又一目的,該需量預測以面積預測法來計 算,可預測超約部份進行卸載動作,以將使用功率達到一平衡點。 7 201021357201021357 IX. Description of the invention: [Technical field of invention] The power monitoring platform of the invention refers to calculating the load power by the m-shaped demand control gamma area method, and the average power consumption for the user terminal is lower than or equal to the contract capacity of the control center. . [Prior Art] According to, energy is the root of the ability to work, including coal gangue, oil and so on. Among them, the cleanest and most convenient energy source is no more electricity; our daily life depends on various energy sources such as lighting equipment, household electrical appliances, air conditioning equipment, etc., all of which use electric energy; in addition, gas stoves and The hot water is a gas system, and the transportation is the gas source of the stone source. It shows how important energy is. However, in the operation of various low-cost or large-scale waste houses, electricity is required, and the supply of electricity is an indispensable source of energy - because there are countless equipments operating in the plant, and some need 24 The hourly non-stop operation will increase the amount of electricity required. In addition, each processing company or large plant will sign an average power over-contract with the power company, and it will be used for the capacity of the average power every 15 minutes. If the _ capacity standard is exceeded, if the _ capacity is exceeded, the power consumption of the lion can exceed the standard. Then, the demand control method is used, and the slope of the demand increase is used to predict whether the contract capacity will be exceeded after 15 minutes, and the demand control mode It can be divided into a limited unloading and a slope-predicted unloading method. The method of limiting the unloading (as shown in Figure 亦) also sets the contract capacity Ai to be set to 'when the electricity usage demand E1 rises to the contract capacity Μ, then the electricity is used. The demand E1 is used to start the unloading down to the constant power, and the reverse unloading tiltable power α is controlled within the contract capacity A1, and the limited unloading mode can effectively control the electric power in the contract capacity. Within the scope of 201021357, but the average demand S1 for calculating electricity consumption cannot achieve the waste and loss of the contracted capacity A1 every 15 minutes, and the slope prediction domain (as shown in Figure 2) Method, the electricity usage demand. Take each rising-radian, that is, calculate the slope of one end of the arc from the end point p to the contract capacity, and then perform the appropriate unloading action, and then continue to do the lifting and unloading actions with the electric slope. The power consumption can be controlled within the contract capacity A2. The slope prediction unloading method uses the angle of inclination calculation to predict the power consumption of the next minute, and the electricity average demand is maintained within the contract capacity A2, and the slope prediction ❹ Although the unloading method can use the slope to calculate whether the average demand in the next minute will exceed the contract capacity, this method often has an error in the time synchronization. Even if the dynamic _ average is adopted, the contract capacity A2 cannot be completely guaranteed. The above existing demand control methods all set the average demand standard within the contract capacity. If the average demand reaches the contract capacity, the unloading action is immediately performed. Although 剌电#_ is within the contract capacity system, but there are often errors, and the average demand is not 100% full use of the contract capacity, resulting in waste and loss; and the traditional demand control platform system, in In the order of unloading and reloading of wounds, it is not free and more dynamic. In large-scale power users, there are a variety of equipment such as lighting, air conditioning, and business equipment. If the equipment is temporarily stopped or changed. The reason for the electric lining will be to change the order of unloading and reloading, although it is necessary to change the hardware line or equipment. Therefore, the inventors actively studied the power management control system and took the use of the consumer as a design consideration. The power monitoring platform system of the present invention has an independent control panel for each device, and the two independent modules are connected. To (4) the controller of the ship, through the hub can be monitored by the PC and monitored and managed by the remote Web Pan, and the power monitoring platform system can predict the demand of the energy and 6 201021357 unloading the phase of the power phase _ wire calculation In the case of sampling i5 minutes per second, for example, a total of _ seconds, which is based on the contract capacity, when the average time per second is more than about the contract time, the suppression time is less than or equal to the contract capacity tree clock time, and the area is calculated. The difference between the area of the suppression and the suppression is to be filled. Thus, the contracted capacity signed with the power company maintains the capacity of the average power in every second of every 15 minutes, and _ sign the contract (four) g_ to avoid unnecessary over-confidence. Invalid power costs incurred, as well as opportunities to further reduce the cost of electricity. ❹ [Summary of the Invention] The power monitoring platform system of the present invention provides a power management method for the user terminal, and the management step includes - step material a), setting and stopping the setting m (b) according to the scheduling, and operating the meter data (dynamic average sampling) - Step (c), demand forecasting and unloading, thereby controlling the average power consumption of the user's and using 100% of the contract capacity signed with the control center and the average of the user's average power consumption Can be less than or equal to the set contract capacity. The main purpose of the power monitoring platform system of the present invention is to control the power related equipment of the user terminal in an independent control mode, and can set the manual mode or the automatic mode control. The secondary purpose of the power monitoring platform system of the present invention is that the opening and closing settings of the related devices can be arranged in a prioritized order. Another purpose of the power monitoring platform system of the present invention is to take an average record of the voltage, current, power, etc. of the power equipment, and provide a system for power data analysis. According to still another object of the power monitoring platform system of the present invention, the demand forecast is calculated by an area prediction method, and the over-committed portion can be predicted to perform an unloading action to reach a balance point of the used power. 7 201021357

細說明及筏術内容, 細說明及筏術内容,現配合圖式說明如下·· ’然有關本發明之詳 【實施方式】 係為本發明電力監控平台Detailed description and details of the sputum, detailed description and 筏 内容 , , , 现 现 现 现 现 现 现 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’

首先,清參閲『第2圖』所示:圖中見悉,裔 系統結構示意圖,其結構包括複數〇PLC控制器1〇、 一集合式電表12、複數通訊模組13、一隼始砮μ ❹與複數子站’且一組GPLC控(线)1G可連接6Q罐LC控制器(子 站)100 ’又該0PLC控制器(主站)10經由通訊模組13連接至集線器w, 透過PC監控電腦15與集線器14間的傳輸,可於ρς監控電腦15中控管各 式設備的電力輸出先後順序及更改排程;然’ 0PLC控制器(主站)丨〇與〇pLc 控制器(子站)100間的通訊採用CANbus區域網路連結,具有抗干擾能力 強’且通訊距離可達1公里以上’而OPLC控制器(子站)1〇〇於安裝時可 就近設備端安裝,以節省配管拉線的耗時與成本支出,又〇PLC控制器(主 Q 站)10連接至集合式電表12,以供電壓、電流、功率等偵測,而該0PLC 控制器(主站)10具有1.電表資料的擷取、2.需量預測與卸復判斷、3.對 子站下達卸復命令、4·將所有子站以PC監控電腦時間同步或以Ντρ (網際 網路時間伺服器)時間同步等功能,該OPLC控制器(子站)100具有丨接 收主站需量卸復載命令、2_各設備排程控制(如優先權)、3.各設備可手、 自動操作與切換; 該複數溫度控制模組(主控)11係連接於複數OPLC控制器(子站)1〇〇 下,並可連接50組設備,且每一設備下又設置一溫度控制模組(副控)110, 201021357 使其具有i.溫度齡2•風扇風速控制(強、中、弱)、3.熱冰水間控制、 4.冰水機連鎖控制、5.故障檢知等功能; 該集合式電表12係與0PLC控制器(主站)1〇相連接,並監測記錄所 有0PLC控制器(子站)1〇〇所回傳的電流數據,其具有i衝貞測、2電 流個、3.功率债測、4•功率因數侧、5.頻率侧、6•功時累計等功能; 該複數通訊模組13具有數個,且每-模組皆與㈣控制器(主站) 10及複數0PLC控·(子站)10M目連接,主要係提供㈣控制器(主 Φ 站、子站)10、100與PC監控電臞15之間的通訊資料轉換; 該集線器14係為-種串連並接的區域鱗,主要功能是s集所有區域 網路中的電腦,使各分枝電腦可連接到網路主電腦上,其具有較穩定的傳 輸品質’且傳輸速率快並減少干擾之情形; 該PC監控電腦15可為一般電腦或工業用電腦所使用,可於遠端監看 控管或修改設備啟閉先後順序及各參數等設定,其具有丨囷形化監控晝 面、2.參數設定功能、3.即時與歷史趨勢圖功能、4.即時與歷史警報功能、 〇 5.報表功能、6.排程管理功能、7.使用者安全性管理功能、8·提供遠端Web 瀏覽與監控功能,藉由各模組元件的串接透過CANbus通訊技術,可將各數 據、資料、故障檢知及管理等經由集線器14於PC監控電腦15中顯示,並 可於PC監控電腦15修改或管理各部設備’而若PC監控電腦15損壞或異 常時,該0PLC控制器(主站)10仍能繼續運作,不影響其需量控制與排程 功能。 再請參閱『第3囷、第4圖、第5圖』所示:圖中見悉,係為本發明 9 201021357 電力監控Μ Μ之設備啟停設定触表及需量綱與卸復載示意圖,本 發明電力控制平台系統之步驟流程包含一步琢:(a),依排程設定啟停設 備、一步驟.(b),電表資料擷取(動態平均取樣)、一步驟(c),需量預 測與卸復載’該步驟(a),依排程設定啟停設備,係於一廢房中所需的設 備器材S分為照明系統2〇、空調系統2卜電力系統22、散熱系統23等, 而排程設定可將各設備器材的啟閉以一週存取做設定,如週一至週五的 0900至1730及1730至2400時段間各設備皆在運作,於〇_至〇9〇〇為休 參習時間且部份電力則繼續運作,而週六的〇9〇〇至173〇時段各設儀運作, 其於時段及周日僅部分電力輯供應,可有效的控管各設備啟_間且 於每-設備皆設有獨立的㈣模組,可對該設備設定手練式或自動模式 控制’而於手純式下,使用者可隨時·閉該項設備,在自動模式 下,ex備將依設定的排程資料判斷是否需開啟或關閉,然,所設定的排程 資料(一週)存取於OPLC控制器(主站)10 (此未表示,請參閱第2圖所 不)中’於PC監控電腦15 (此未表示,請參閱第2圖所示)端可以以萬年 ❹磨方式存年度排程資料,該PC監控電腦15可自行判斷目前的週設定與於 OPLC控制器(主站)1〇的週設定作資料更新功能,若遇通訊斷線或pc監 控電腦15當機情形時,該OPLC控制器(主站)1〇將保留最新一週的排程 設定讓各設備賴運作,直浙與PC監控賴15連線驗正常運作為止, 而所有的參數設定均可於PC監控電雎15端設定,也可以於oplc控制器(主 站)10上作設定,本系統可自動同步將兩端的參術設定統一使而可對各 設備作有效的啟閉控管及遠端的控制控管; 201021357 3 ,驟(b),電表資料擷取(動態平均取樣),可榻取電堡、電流、 力率力率因數、頻率等數據,除了利用功率做需量控制外,亦可提供系 統作電力資料分析’而本電表_娜採_平均取樣,如使用者與電力 A司簽訂的超觸款是以15分鐘平均功率是否超過契約容量作為罰款標 準’本系_用獨立面積侧方式刪需量,以動態平均方式採集電力資 料,计算出超約部分30的需量面積,並與契約容量32做比較,計算出需 要的反向抑制部分31需量,以求出的抑制需量反推算出當時的瞬間功率33 瘳允許最大值’利用其功率最大值,限制目前的設備運轉的狀態即可非常 精準的抑制需量的超約情況,而動態平均取樣方式,即以15分鐘為單位, 將每秒使用需量E3取樣-次,每次取樣時即做一次15分鐘的平均功率計 算並與以記錄,當最新的—筆資料進來時,會捨棄最舊—筆的資料,讓每 秒鐘的15分鐘平均功率值保持在最新的狀態,將使用需量E3可有效控制, 而控制所有設備輸出平均需量S3值小於或等於契約容量A3值,故,當每 秒鐘的15分鐘平均需量S3必小於或等於契約容量A3,而與電力公司簽訂 ® 每15分鐘平均功率之超罰標準,以本系統為例,無論何時檢測皆不會超過 簽定之契約容量A3,且所簽定之契約容董A3可99. 9%至100%的完全運用。 該步驟(c),需量預測與卸復載,當系統預測需量可能超約時,將進 行卸載動作’卸載時將產生一個卸載數(編號),當此卸載數大於該設備的 優先權號碼’無論設備位於手動或自動模式,該設備將被關閉,達到卸栽 功能,於復載時動作相反,其中優先權設定方式,可自由的讓使用者編輯 該設備的卸復載順序’更可以讓同類型的設備優先權設定在同一群組順 201021357 序;當需量控制時,同-群組的設備,只有一台會開啟,其他設備會關閉, 經過-段時間後(輪替時間可設定),將開啟另一台設傷,如此反覆輪替運 轉,讓使財可以在需量⑽時,可以交替設備,如果同—群組設傷 必須同時卸載並且不希望做交替運轉,可將輪替時間設定為〇,例如學校教 室冷氣兩台,每次需量㈣時,只停止—台,可配合排程表達到無人管理 的節能與需量控制; 然’本發明電力監控平台祕所提供的優點即電力平均使用需量以面 ❹積綱法方式計算復載辨以填補方式制約定功率值,其計算公式如下. 公式 1 : Pavg_axTa +PaVg_ySxT/^Ptotxl5 其中該Ptot為契約容量、該Pavg_a為超約平均量、該pavg^為抑制平 均量、該Τα為超約時間、該τ沒為抑制時間所表示; 又’如第4圓所示,該超_份3〇為超辭均χ超約+抑制部分&為 抑制平均X抑制轉約容量32,如此可控制平均需量S3於契約容量32範圍 内’為了讓系統計算出最佳的允許超約時間與抑制時間,將PaVLα以化狀 ©代入’而Pavg^以Pmin代人,其中該!表示系統最大功率即系統 設備全開的情況,此時需量最大’該_表示系統最小功率,即系統可控 設備都已卸載的情況,此時需量最小; 將其代入公式1,求得公式2如下: (PinaxxT a + PminxT β =Ptotxl 5 )First of all, see "Figure 2": The figure shows the schematic diagram of the system structure of the ethnic group. The structure includes a plurality of PLC controllers, a set of meters, and a plurality of communication modules.砮μ ❹ and plural sub-station 'and a group of GPLC control (line) 1G can be connected to the 6Q tank LC controller (substation) 100 'and the 0PLC controller (master station) 10 is connected to the hub w via the communication module 13 Through the PC monitoring the transmission between the computer 15 and the hub 14, the power output sequence of each device can be controlled and the schedule can be changed in the monitoring computer 15; however, the 0 PLC controller (master station) and the 〇pLc controller (Substation) 100 communication is connected by CANbus area network, which has strong anti-interference ability and the communication distance can reach more than 1 km. The OPLC controller (substation) can be installed near the equipment at the time of installation. In order to save time and cost of piping, the PLC controller (main Q station) 10 is connected to the integrated meter 12 for voltage, current, power, etc., and the 0PLC controller (master station) 10 has 1. extraction of electricity meter data, 2. demand forecasting and unloading judgment Broken, 3. Release the unloading command to the substation, 4. Synchronize all substations with PC monitoring computer time or synchronize with Ντρ (Internet Time Server) time, the OPLC controller (substation) 100 has丨Receive the master station to reload the reload command, 2_ each device scheduling control (such as priority), 3. each device can be hand-held, automatic operation and switching; the complex temperature control module (master) 11 is connected to Multiple OPLC controllers (substation) 1 〇〇, and can connect 50 sets of equipment, and each unit is equipped with a temperature control module (sub-control) 110, 201021357 to make it i. Temperature age 2 • Fan wind speed Control (strong, medium, weak), 3. Hot ice-water control, 4. Ice water machine interlock control, 5. Fault detection and other functions; The integrated electric meter 12 is connected with 0PLC controller (master station) Connect and monitor the current data returned by all 0PLC controllers (substation) 1〇〇, which have i 贞 贞, 2 current, 3. power debt measurement, 4 • power factor side, 5. frequency side , 6 • function accumulation and other functions; the plurality of communication modules 13 have several, and each module is connected with (four) Device (master station) 10 and complex 0 PLC control · (substation) 10M mesh connection, mainly provides (4) communication data conversion between controller (main Φ station, substation) 10, 100 and PC monitoring device 15; The hub 14 is a series of parallel-connected area scales. The main function is to collect computers in all local area networks, so that each branch computer can be connected to the network main computer, which has a relatively stable transmission quality. The transmission rate is fast and the interference is reduced. The PC monitoring computer 15 can be used by a general computer or an industrial computer, and can monitor or control the opening and closing sequence and various parameters of the device at a remote location. Shape monitoring, 2. Parameter setting function, 3. Instant and historical trend graph function, 4. Instant and historical alarm function, 〇 5. Report function, 6. Schedule management function, 7. User security management function 8. Providing remote web browsing and monitoring functions. By serially connecting the module components through CANbus communication technology, each data, data, fault detection and management can be displayed on the PC monitoring computer 15 via the hub 14. And can be modified on the PC monitoring computer 15 Device management departments' and PC computer monitor 15 if damaged or abnormal, the 0PLC controller (master) 10 can continue to operate without affecting the demand control and scheduling functions. Please refer to the "3rd, 4th, and 5th diagrams": It is seen in the figure that it is the invention of the 9 201021357 power monitoring 设备 设备 device start and stop setting touch table and the demand and unloading and reloading diagram The step flow of the power control platform system of the present invention comprises one step: (a) setting the start-stop device according to the schedule, a step, (b), meter data acquisition (dynamic average sampling), and a step (c). Volume prediction and unloading 'This step (a), according to the schedule setting start and stop equipment, is required to be in a waste room equipment equipment S is divided into lighting system 2, air conditioning system 2 power system 22, cooling system 23, etc., and the schedule setting can be used to set the opening and closing of each equipment and equipment for one week. For example, the equipment is in operation from 0900 to 1730 and 1730 to 2400 from Monday to Friday, from 〇 to 〇9〇. 〇 〇 参 参 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 部份 部份 部份 部份 部份 部份 部份 周六 周六 周六 周六 周六 周六 周六_ _ and each device has an independent (four) module, you can set the device to practice or Automatic mode control', while in the pure mode, the user can close the device at any time. In the automatic mode, the ex device will judge whether it needs to be turned on or off according to the set schedule data. However, the scheduled schedule data is set. (One week) access to the OPLC controller (master station) 10 (this is not shown, please refer to Figure 2) in the 'PC monitoring computer 15 (this is not shown, see Figure 2) can be The annual monitoring data is stored in the 10,000-year-old method. The PC monitoring computer 15 can judge the current weekly setting and the data setting function of the OPLC controller (master station) for 1 week. If the communication is disconnected or the PC monitors the computer. 15 When the machine is in the situation, the OPLC controller (master station) will keep the latest week's schedule setting for each device to operate, and the direct connection between the Zhejiang and PC monitoring systems will be normal, and all the parameters are set. It can be set on the PC monitor port 15 or on the oplc controller (master station) 10. The system can automatically synchronize the parameters of both ends to make the device open and close. And remote control and control; 201021357 3 , b), meter data acquisition (dynamic average sampling), can take the electric castle, current, force rate factor, frequency and other data, in addition to using power for demand control, can also provide system for power data analysis' This meter _ Na Cai _ average sampling, if the user and the power A Division signed the ultra-touch is based on whether the 15-minute average power exceeds the contract capacity as a fine standard 'this system _ use the independent area side way to delete the demand, to the dynamic average The method collects the power data, calculates the demand area of the excess portion 30, and compares it with the contract capacity 32, calculates the required reverse suppression portion 31 demand, and calculates the instantaneous demand power by inversely calculating the suppression demand. 33 瘳 Allowable maximum 'Using its maximum power value to limit the current state of operation of the equipment can very accurately suppress the over-subscription of demand, while the dynamic average sampling method, that is, in 15 minutes, will be used per second. The amount of E3 is sampled-times, and the average power calculation of 15 minutes is performed every time the sample is taken and recorded. When the latest data is entered, the oldest-pen data will be discarded. The 15-minute average power value is kept in the latest state, and the demand E3 can be effectively controlled, and the average demand S3 value of all equipment outputs is less than or equal to the contract capacity A3 value, so when the average of 15 minutes per second is required The quantity S3 must be less than or equal to the contract capacity A3, and the electric power company signs the over-penalty standard of the average power per 15 minutes. Taking this system as an example, the test will not exceed the signed contract capacity A3 at any time, and the sign is signed. The contract allows Dong A3 to be 99. 9% to 100% fully utilized. In step (c), demand forecasting and unloading, when the system predicts that the demand may exceed the contract, the unloading action will be performed. When uninstalling, an unloading number (number) will be generated, when the number of unloadings is greater than the priority of the device. Number 'Whether the device is in manual or automatic mode, the device will be turned off to achieve the unloading function. The action is reversed during reloading. The priority setting mode allows the user to edit the unloading sequence of the device. The same type of device priority can be set in the same group in the order of 201021357; when demand control, only one of the same-group devices will be turned on, other devices will be turned off, after a period of time (rotation time) Can be set), will open another set of injuries, so repeat the rotation of the operation, so that the wealth can be used in the demand (10), can alternate equipment, if the same - group injury must be unloaded at the same time and do not want to do alternate operation, Set the rotation time to 〇, for example, the school classroom air-conditioning two, each time the demand (four), only stop - Taiwan, can be combined with the schedule to express unmanned energy-saving and demand control; The advantage provided by the power monitoring platform secret is that the average power usage requirement is calculated by the surface hoarding method. The complex power value is determined by the filling method. The formula is as follows: Equation 1: Pavg_axTa + PaVg_ySxT/^Ptotxl5 where the Ptot The contract capacity, the Pavg_a is an over-average amount, the pavg^ is an average inhibition amount, the Τα is an over-time, and the τ is not a suppression time; and 'as indicated by the fourth circle, the super-part 3 〇 超 超 超 χ χ + 抑制 抑制 & & & & & & & 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为Inhibition time, substituting PaVLα in the form of 'Pavg^ and Pmin's generation, which should be! Indicates the maximum power of the system, that is, the system equipment is fully open. At this time, the maximum demand is 'this _ indicates the minimum power of the system, that is, the system controllable equipment has been unloaded. At this time, the demand is the smallest; substitute it into formula 1 to obtain the formula. 2 is as follows: (PinaxxT a + PminxT β = Ptotxl 5 )

Ta+T)g=15 (T+= (Ptot—Pmin) + (Pmax-Pmin)) 12 201021357 ^-== (Ptot-Pmax) - (Pmin-Pmin)) 將已知的允許超約時間T+取樣出超約平均功率為PaVg_T+,並將求出的 允許超約時㈤T+與抑制時間T_代回公式i得到公式3如下:Ta+T)g=15 (T+= (Ptot—Pmin) + (Pmax-Pmin)) 12 201021357 ^-== (Ptot-Pmax) - (Pmin-Pmin)) The known allowable time for overtime T+ sampling The average power of the super-approximation is PaVg_T+, and the obtained allowable over-period (5) T+ and the suppression time T_ are substituted back to the formula i to obtain the following formula 3:

Pavg_T+ X T++Pavg_^ X T—各pt〇t χ15 - Pavg_ySS (Ptotxl5 — Pavg_T+ ) +T-以求得抑制平均功率; 又’若瞬間功率高於抑制功率,延遲一段時間(可設定)後’則開始 ❺卸載’直到瞬間功率低於抑制功率為止,該系統另外會設定一個復載功率, 間功率與平均需量均低於復載功率,延遲一段時間後,則開始復載, 如此可避免設備敌停頻繁,而造成設備容易損壞的問題, 综合以上所述者,僅為本發明所運用之較佳實施例而已,並非用來限 定本創作實施之範圍。即凡依本創作申請專利範圍所做的均等變化與修 飾’皆為本創作專利範圍所涵蓋。Pavg_T+ X T++Pavg_^ XT—each pt〇t χ15 - Pavg_ySS (Ptotxl5 — Pavg_T+ ) +T- to suppress the average power; and 'if the instantaneous power is higher than the suppression power, delay after a period of time (can be set)' Then start ❺ unloading' until the instantaneous power is lower than the suppression power. The system will also set a reload power. The inter-power and average demand are lower than the re-loading power. After a delay, the re-loading starts. The problem that the device is frequently stopped and the device is easily damaged is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. That is, the equal changes and modifications made by the scope of patent application for this creation are covered by the scope of the patent.

13 201021357 【圖式簡單說明】 第1-1圖:係習知需量控制之限定卸載示意圖。 第1-2圖.係習知需量控制之斜率預測卸載示意圖。 第2圖:係本發明電力監控平台裝置之方塊結構示意圈。 第3圖:係本發明電力監控平台褒置之設備啟停設定拂程表— 第4圖:係本發明電力監控平台裝置之需量預測與卸復載示:圈 第5圖:係本發明電力監控平台裝置之每秒却復載示意圖。 _ 【主要元件符號說明】 電力控制平台裝置1 0PLC主控制器1〇 0PLC子控制器1〇〇 溫度控制模組(主控)11 溫度控制模組(副控)no 集合式電表12 φ 通訊模組13 集線器14 PC監控電腦15 使用需量E1、E2、E3 瞬間功率Cl、C2、C3、33 平均需量SI、S2、S3 契約容量A1、A2、A3、32 照明系統20 20102135713 201021357 [Simple description of the diagram] Figure 1-1: Schematic diagram of the limited unloading of the conventional demand control. Figure 1-2. Schematic diagram of the slope prediction unloading of the conventional demand control. Fig. 2 is a block diagram showing the structure of the power monitoring platform device of the present invention. Figure 3: The equipment start-stop setting schedule of the power monitoring platform of the present invention - Figure 4: The demand forecasting and unloading of the power monitoring platform device of the present invention: Figure 5: The present invention A schematic diagram of the reloading of the power monitoring platform device per second. _ [Main component symbol description] Power control platform device 1 0PLC main controller 1〇0PLC sub-controller 1〇〇temperature control module (master) 11 temperature control module (sub-control) no collective meter 12 φ communication mode Group 13 Hub 14 PC Monitoring Computer 15 Usage Demand E1, E2, E3 Instantaneous Power Cl, C2, C3, 33 Average Demand SI, S2, S3 Contract Capacity A1, A2, A3, 32 Lighting System 20 201021357

空調系統21 電力系統22 散熱系統23 超約部份30 抑制部分31 依排程設定啟停設備 電表資料擷取b 0 需量預測與卸復載 端點PAir Conditioning System 21 Power System 22 Heat Dissipation System 23 Excessive Part 30 Suppression Section 31 Start and Stop Equipment According to Schedule Setting Meter Data Acquisition b 0 Demand Forecasting and Unloading Endpoint P

Claims (1)

201021357 十、申請專利範圍: l —種電力監控平台系統,係提供可控管電力平均使用需量之方法,並以 面積預測方式計算卸復載需量功率,其步驟為: (a) ’依排程設定啟停設備,於各設備皆設有獨立控制模組並可設定 以手動或自動模式控制,且可對各設備設定啟停順序; ⑻,電表資料擷取(動態平均取樣),可對電壓、電流、功率、頻率 作需量的控制,亦提供系統作電力分析; © (C) ’需量預測與卸復載,可依優先權方式對設備進行卸復載順序,且 隨時修改優先權設定,以達到設備的負載分配與調整; 而電力平均使用需量以面積預測法方式計算卸復載功率,以填補方 式達到約定功率值,其計算公式為: pavg_a xTa+Pavg.jg x ^ Ptot χ 15 其中該Ptot為契約容量、該pavg_a為超約平均量該 為抑制平均量、該Τα為超約時間、該τ沒為抑制時間所表示; 〇 ⑥超約部份為超約平均量X超约時間+抑制部分為抑制平均量咖 制時間s契約容量χ15分鐘,如此以面積預測法可將平均需量控制於契 約容量範圍内。 2. 如申請專利範圍第1項所述之電力監控平台系統,其中為了讓系統計算 出最佳的允許超約時間與抑制時間,將 該Pavg_a以⑽代入, 而Pav&_冷以Pmin代入。 3. 如申請專利範圍第2項所述之電力監控平台系統,其中Ρ·χ表示系統 ^大功率’即系統設備全開的情況,此時需量最大。 16 201021357 4. 如申請專利範圍第2項所述之電力監控平台系統,其中pmin表示系統 最小功率,即系統可控設備都已卸載的情況,此時需量最小。 5. 如申請專利範圍第1項或第2項所述之電力監控平台系統,其最佳的允 許超約時間與抑制時間公式為: (PmaxxT a +PminxT β — Ptotxl 5 ) Τα+Τ)8=15 —(Τ+= (Pt〇t—Pmin) + (Pmax-Pmin)) Ο (T—= (Pt〇t-Pmax) + (Pmin—随))。 6. 如申請專利範圍第5項所述之電力監控平台系統,將以之的允許超約時 間T+取樣出超約平均功率為Pavg_j+, 7. 如申請專利範圍第1項或第5項所述之電力監控平台系統,將允許超約 時間T+與抑制時間τ-代入pavg_axTa公 式中,求得 Ρ3ν[Τ+χΤ++Ρ&νδ_^χτ—gptotxl5 — Pavg一泠 ^ (Ptotxl5—Pavg_T+) +T—可計算出抑制平均功率。 © 8·-種電力監控平台系統,係提供可控管電力平均使用需量之方法,包 含: 複數0PLC控制器,係區分為一組〇PLC主控制器及複數组〇pLC子 控制器,並對設備輸出電力做平均需量預測及卸復載動作,可於冗監 控電腦中控管各式設備的電力輸出先後順序及排程變更; 複數溫度控制模組,係連接於複數0PLC子控制器下,且區分為複 數主溫度控制模組及複數副溫度控制模組; 17 201021357 一集合式電表’係與〇PLC主控制器相連接,並監測記錄所有〇plc 子控制器所回傳的電流數據; 複數通訊模組’每一模組皆與0PLC主控制器及複數〇plc子控制器 相連接’係供0PLC主、子控制器與PC監控電腦之間的通訊資料轉換; 一集線器’係為一種串連並接的區域網路,主要匯集所有區域網路 中的電腦,使各分枝電雎可連接到網路主電腦上,其具有較穩定的傳輸 品質’且傳輸速率快並減少干擾之情形; 一 PC監控電腦,係可為一般電腦或工業用電腦所使用,可於遠端 監看控管或修改設備起閉先後順序及各參數等設定。 9·如申請專利範圍第8項所述之電力監控平台系統,其中〇plc控制器為 一可程式控制器。 1〇.如申請專利範圍第8項所述之電力監控平台系統,其中〇plc控制器與 集線器監係由CANbus通訊模組傳輸。 U·如申請專利範圍第8項所述之電力監控平台系統,其中該0PLC主控制 器可連接60組〇plc子控制器。 12·如申請專利範圍第8項所述之電力監控平台系統其中該主溫度控制模 組可連接50組設備。 13.如申請專利範圍第8項所述之電力監控平台系統其中該⑽子控制 器具有手動與自動的切換功能。201021357 X. Patent application scope: l - A power monitoring platform system, which provides a method for controlling the average use demand of power, and calculates the unloading demand power by area prediction. The steps are as follows: (a) Schedule setting start-stop device, each device has independent control module and can be set to control in manual or automatic mode, and can set the start-stop sequence for each device; (8), meter data acquisition (dynamic average sampling), The control of voltage, current, power and frequency is also required to provide power analysis. © (C) 'demand forecasting and unloading, the equipment can be unloaded and reloaded according to the priority method, and can be modified at any time. The priority is set to achieve the load distribution and adjustment of the equipment; and the average power usage requirement is calculated by the area prediction method to calculate the unloading power, and the agreed power value is obtained by the filling method. The calculation formula is: pavg_a xTa+Pavg.jg x ^ Ptot χ 15 wherein the Ptot is a contract capacity, the pavg_a is an over-average amount, the average amount is suppressed, the Τα is an over-time, and the τ is not a suppression time;超 6 The excess is about the average amount X is about the time + the suppression part is the suppression of the average amount of coffee time s contract capacity χ 15 minutes, so the area prediction method can control the average demand within the contracted capacity range. 2. The power monitoring platform system of claim 1, wherein the Pavg_a is substituted by (10) and the Pav&_collow is substituted by Pmin in order for the system to calculate the optimal allowable time and suppression time. 3. For the power monitoring platform system described in item 2 of the patent application, where Ρ·χ indicates that the system is “high power”, that is, the system equipment is fully open, and the demand is the largest at this time. 16 201021357 4. The power monitoring platform system as described in claim 2, wherein pmin represents the minimum power of the system, that is, the system controllable equipment has been unloaded, and the demand is minimum. 5. For the power monitoring platform system described in item 1 or 2 of the patent application, the formula for the best allowable time and suppression time is: (PmaxxT a + PminxT β — Ptotxl 5 ) Τα+Τ)8 =15 —(Τ+= (Pt〇t—Pmin) + (Pmax-Pmin)) Ο (T—= (Pt〇t-Pmax) + (Pmin—with). 6. If the power monitoring platform system described in item 5 of the patent application scope is used, the allowable over-time T+ is sampled to exceed the average power of Pavg_j+, 7. As described in item 1 or item 5 of the patent application scope. The power monitoring platform system will allow the excess time T+ and the suppression time τ- to be substituted into the pavg_axTa formula to obtain Ρ3ν[Τ+χΤ++Ρ&νδ_^χτ-gptotxl5 — Pavg一泠^ (Ptotxl5—Pavg_T+) +T - The average power of suppression can be calculated. © 8·----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- The average demand forecasting and unloading action of the output power of the device can control the power output sequence and schedule change of various devices in the redundant monitoring computer; the complex temperature control module is connected to the complex 0PLC sub-controller Next, and divided into a plurality of main temperature control modules and a plurality of sub-temperature control modules; 17 201021357 a collection meter is connected with the 主PLC main controller, and monitors the current recorded by all 〇plc sub-controllers Data; complex communication module 'each module is connected with 0PLC main controller and complex 〇plc sub-controller' for communication data conversion between 0PLC main, sub-controller and PC monitoring computer; It is a serialized and connected local area network, which mainly collects computers in all local area networks, so that each branch can be connected to the network main computer, which has a relatively stable transmission quality. Fast transmission speed and to reduce the interference situation; a PC computer monitor, a computer system may be a general computer or industrial use, the distal end may be modified or monitoring device shuts Controls the sequence and the parameters and other settings. 9. The power monitoring platform system of claim 8, wherein the 〇plc controller is a programmable controller. 1. A power monitoring platform system as claimed in claim 8 wherein the 〇plc controller and the hub supervisor are transmitted by the CANbus communication module. U. The power monitoring platform system of claim 8 wherein the 0PLC master controller is connectable to 60 sets of 〇plc sub-controllers. 12. The power monitoring platform system of claim 8 wherein the primary temperature control module is connectable to 50 sets of devices. 13. The power monitoring platform system of claim 8, wherein the (10) sub-controller has a manual and automatic switching function.
TW97145267A 2008-11-21 2008-11-21 Power monitoring platform system TW201021357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97145267A TW201021357A (en) 2008-11-21 2008-11-21 Power monitoring platform system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97145267A TW201021357A (en) 2008-11-21 2008-11-21 Power monitoring platform system

Publications (2)

Publication Number Publication Date
TW201021357A true TW201021357A (en) 2010-06-01
TWI411194B TWI411194B (en) 2013-10-01

Family

ID=44832602

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97145267A TW201021357A (en) 2008-11-21 2008-11-21 Power monitoring platform system

Country Status (1)

Country Link
TW (1) TW201021357A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI505049B (en) * 2011-01-31 2015-10-21
TWI596347B (en) * 2013-02-13 2017-08-21 聖賽斯光譜有限責任公司 Method and apparatus for operating an electricity meter
CN111492552A (en) * 2018-11-21 2020-08-04 亿可能源科技(上海)有限公司 Energy storage management and control method, system, computer equipment and storage medium
TWI724731B (en) * 2020-01-02 2021-04-11 台灣電力股份有限公司 Automatic unloading power protection system and automatic unloading power protection method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI572108B (en) * 2014-11-14 2017-02-21 財團法人資訊工業策進會 Shedding amount assignment method and device
CN108090241B (en) 2016-11-23 2021-08-17 财团法人工业技术研究院 Trend variable identification method and system of continuous process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6868310B2 (en) * 2001-04-06 2005-03-15 Eni Technology, Inc. Predictive failure scheme for industrial thin films processing power delivery system
TW546886B (en) * 2001-11-15 2003-08-11 Ind Tech Res Inst Central monitoring power quality control system
TWI307760B (en) * 2006-12-26 2009-03-21 Ind Tech Res Inst Energy-saving system integrating environment measurement with electric power monitoring
TWM356944U (en) * 2008-11-21 2009-05-11 Lealea Technology Co Ltd Power monitoring platform device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI505049B (en) * 2011-01-31 2015-10-21
TWI596347B (en) * 2013-02-13 2017-08-21 聖賽斯光譜有限責任公司 Method and apparatus for operating an electricity meter
CN111492552A (en) * 2018-11-21 2020-08-04 亿可能源科技(上海)有限公司 Energy storage management and control method, system, computer equipment and storage medium
CN111492552B (en) * 2018-11-21 2023-09-12 亿可能源科技(上海)有限公司 Energy storage management and control method, system, computer equipment and storage medium
TWI724731B (en) * 2020-01-02 2021-04-11 台灣電力股份有限公司 Automatic unloading power protection system and automatic unloading power protection method

Also Published As

Publication number Publication date
TWI411194B (en) 2013-10-01

Similar Documents

Publication Publication Date Title
US10892618B1 (en) Power source load control
KR100963161B1 (en) System and method for effectively managing energy of building
US11183843B1 (en) Power source load control
WO2011129054A1 (en) Electric-power management system, electric-power management method, and section controller
US20100017045A1 (en) Electrical demand response using energy storage in vehicles and buildings
JP5272545B2 (en) Store power supply equipment
CA2927732C (en) Active engine cool down time delay for automatic transfer switch controllers
JP6135376B2 (en) Power supply control device, power supply control method, and power failure management device
US9620990B2 (en) Electricity supply management device
TW201021357A (en) Power monitoring platform system
EP2143061A1 (en) System and method for adaptive islanding for stored/distributed energy devices
JP5846301B2 (en) Power control device
JP2013247751A (en) Power controller, power supply control method and power supply control program
JP2012228036A (en) Power control system
US10496060B2 (en) Power management system and method for power management
KR101342687B1 (en) Apparatus for controlling power consumption in smart meter and method thereof
JP5731416B2 (en) Power control system, power control apparatus, and power control method
CN108180602A (en) A kind of intelligent frequency-conversion switch board and its control method
CN114400690A (en) Energy storage control management system for energy storage container and energy storage container
JP2002354680A (en) Power supply system for apartment house
EP3007303B1 (en) Power control device, power control method, and power control system
TWM356944U (en) Power monitoring platform device
JP6894538B2 (en) Methods and assemblies for load management of electrical equipment
JP2017050903A (en) Energy management system, energy management apparatus, and energy management method
JP2012151977A (en) Load leveling system