TW200916949A - Stamper and fabrications thereof - Google Patents

Stamper and fabrications thereof Download PDF

Info

Publication number
TW200916949A
TW200916949A TW96137990A TW96137990A TW200916949A TW 200916949 A TW200916949 A TW 200916949A TW 96137990 A TW96137990 A TW 96137990A TW 96137990 A TW96137990 A TW 96137990A TW 200916949 A TW200916949 A TW 200916949A
Authority
TW
Taiwan
Prior art keywords
mold
mold core
structural layer
layer
manufacturing
Prior art date
Application number
TW96137990A
Other languages
Chinese (zh)
Inventor
Tsong-Jen Yang
Fuh-Yu Chang
Hung-Yi Lin
Wen-Lang Lai
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW96137990A priority Critical patent/TW200916949A/en
Publication of TW200916949A publication Critical patent/TW200916949A/en

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

A method for forming a stamper is disclosed. A substrate comprising imprinting patterns is provided. Next, a first structural layer is formed on the substrate by electroless plating. A second structural layer is formed on the first structural layer by electroplating.

Description

200916949 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種模仁及其製作方法,且特別是有 關於一種奈米轉印用之模仁及其製作方法。 [先前技術] 奈米技術之發展已能夠在不同材料上,以奈米甚或以 原子尺度之準確度製成各種奈米結構,各式各樣的奈米製 作技術也因此相繼地廣受探討與開發。 目前製作奈米級(l〇〇nm以下)之圖案,可採用諸如黃光 微影技術、電子束直寫技術(E-beam direct write)、限角度 散射投影式電子束微影(SCALPEL)、X光微影技術以及聚 焦離子束(FIB,Focused ion beam)微影技術等奈米級製程 技術,將線寬縮小至100nm以下。在半導體製程中,黃光 微影技術從深紫外光(DUV,Deep Ultra-Violet Lithography) 光學微影的氟化氪(KrF) 248nm步進機,進步至紫外光 (VUV,Vacuum Ultra-Violet)的氟化氬(ArF)193nm 及敗 (F2)157nm微影技術。極短紫外光(EUV,Extreme Ultra-Violet)微影屬於光學微影技術,電子束直寫技術、限 角度散射投影式電子束微影術、X光微影技術,以及離子 束微影技術等則屬非光學微影技術。 然而,使用前述習知微影技術需要造價昂貴之曝光設 備,製作成本較高,且微影速率較慢,更有不易製作大面 積奈米圖案的缺點,因而限制其產業應用之發展。此外, 0968-A22075TWF(N2); P53950132TW;way ne 200916949 雖然極短紫外光微影技術與限角度散射投影式電子束微影 術較具量產能力,但其設備成本相當昂貴(約5什萬美金以 上)’因此’此種習知技術亦受限於成本,而無法廣泛應用 於產業中。 因此,習知技術另開發出一種奈米轉印技術,第 至第ID圖揭示一習知採用電子束微影技術(EBL)製作奈米 模具之k私。如弟1A圖所示,首先提供一梦基材1〇〇,並 以蒸鍍、濺鍍或電鑄技術於矽基材1〇〇上形成一薄膜11〇。 接著,如第iB圖所示,於薄膜〗〗〇上形成一光阻層12〇, 之後,如第1C圖所示,用電子束微影技術圖形化光阻層 120 ’以定義出圖案130,後續,如第1D圖所示,以反應 離子蝕刻(RIE)來蝕刻薄膜11〇,而形成奈米模仁15〇。 但疋,上述製作奈米楔具之製程具有以下缺點:採用 蒸鍍或濺鍍技術製作模具之膜仁的結構層所需成本相對較 高’且鑛膜速率較慢’若採用電鑄技術,則有成膜不均勻 之問題。 【發明内容】 有鑑於此’為改進前遗習知之光學技術製作奈米圖案 成本高、速率慢之缺點,及以蒸锻、濺嫉或電鎿技術成 膜速率段或成膜不均勻之缺點,快速製作出均勻且符合尺 寸規格之奈米結構模仁,可供大面積奈米轉印圖案。另外, 本發明形成模仁之第-結構層的無電鍍方法不需外加電 源’鑛層的均-性良好,使母模具有複雜的幾何形狀, 0968-A22075TWF(N2);P53950l32TW;wayne 200916949 产;均勾的第一結構層。無電鑛方法鑛層的孔腺 度可比電鑛法的錢層還要小。此外,當模仁包括 竞及塑⑽料體時,其㈣適#前處理,料施行 ^。無電鑛法形成之鐵層具有 械 質或磁性’而這些特性使得其在應用上更有彈:。娜 本發明提供一種槿扣夕制、止 、, 之製造方法。|先,提供一母模, 二括轉印圖案。接著,以—無電鍍方法形成-第 冓曰;母輪上。後續,以一電鍍方 層於第一結構層上。 4 #〜構200916949 IX. Description of the Invention: [Technical Field] The present invention relates to a mold core and a method for producing the same, and particularly to a mold core for nano transfer and a method for producing the same. [Prior Art] The development of nanotechnology has been able to make various nanostructures on different materials with nanometer or even atomic accuracy. Various nanofabrication techniques have been widely explored. Development. Currently, nano-scale (less than l〇〇nm) patterns can be produced, such as yellow lithography, E-beam direct write, limited-angle scattering projection electron beam lithography (SCALPEL), and X-ray. Nano-scale process technology such as lithography and focused ion beam (FIB) technology reduces the line width to less than 100 nm. In the semiconductor process, yellow lithography technology from DUV (Deep Ultra-Violet Lithography) optical lithography of krypton fluoride (KrF) 248nm stepper, advanced to ultraviolet (VUV, Vacuum Ultra-Violet) fluoride Argon (ArF) 193nm and defeat (F2) 157nm lithography. Extreme Ultra-Violet (EUV) belongs to optical lithography, electron beam direct writing, limited-angle scattering projection electron beam lithography, X-ray lithography, and ion beam lithography. It is a non-optical lithography technology. However, the use of the aforementioned conventional lithography technology requires an expensive exposure apparatus, which is relatively expensive to manufacture, has a low lithography rate, and is disadvantageous in that it is difficult to fabricate a large-area nano pattern, thereby limiting the development of its industrial application. In addition, 0968-A22075TWF(N2); P53950132TW; way ne 200916949 Although extremely short ultraviolet lithography and limited-angle scattering projection electron beam lithography are more productive, the equipment cost is quite expensive (about 5 million US dollars and above) 'Therefore, this kind of conventional technology is also limited by cost, and cannot be widely used in the industry. Therefore, the prior art has developed a nano transfer technique, and the first to the first figures disclose a conventional method of fabricating a nano mold using electron beam lithography (EBL). As shown in Fig. 1A, a dream substrate is first provided, and a film 11 is formed on the tantalum substrate 1 by vapor deposition, sputtering or electroforming. Next, as shown in FIG. 2B, a photoresist layer 12 is formed on the film, and then, as shown in FIG. 1C, the photoresist layer 120' is patterned by electron beam lithography to define the pattern 130. Subsequently, as shown in FIG. 1D, the film 11 is etched by reactive ion etching (RIE) to form a nano mold core 15 〇. However, the above process for fabricating a nano-wedge has the following disadvantages: the cost of the structural layer of the film core by the evaporation or sputtering technique is relatively high 'and the film rate is slow', if electroforming technology is used, There is a problem that the film formation is uneven. SUMMARY OF THE INVENTION In view of the disadvantages of the high cost and slow rate of making nanopatterns for improving the optical technology of the prior art, and the disadvantages of film formation rate or film formation by steaming, sputtering or electro-twisting techniques Quickly produce a uniform and conforming nanometer structure mold for large-area nano transfer patterns. In addition, the electroless plating method for forming the first-structure layer of the mold core does not require an external power supply, and the uniformity of the mineral layer is good, so that the mother mold has a complicated geometric shape, 0968-A22075TWF (N2); P53950l32TW; wayne 200916949; The first structural layer is hooked. The electroless mineral method has a pore gland which is smaller than the money layer of the electrowinning method. In addition, when the mold core includes the plastic (10) material body, the (four) is suitable for pre-treatment, and the material is applied. The iron layer formed by the electroless ore method is mechanical or magnetic' and these characteristics make it more elastic in application: Na The present invention provides a method of manufacturing a shackle, a shackle, and a shackle. | First, provide a master mold, two transfer patterns. Next, it is formed by electroless plating - the first crucible; on the mother wheel. Subsequently, a layer of electroplating is applied to the first structural layer. 4 #〜构

本發明提供一種模仁,包括一第一結構層及一第二社 :層’其中第—結構層之-側具有轉印圖案,第一结構層° 要為鎳所組成’且第—結制中含有鎳翻溶體,第I ㈣層係位於第—結構層不包含轉印圖案之-側上,其中 第二結構層之厚度較第一結構層厚。 /、 【實施方式】 以下將以實施例之詳細說明做為本發明的 例係伴隨著圖式說明之。在圖式或 ς 乾 C 在圖實施例之形狀或厚度 八心大’以間化或是方便標示。圖式中各元件 为别描述說明之,值得注意的是,圖中未繪 ^— 件二可:具有各種熟習此技藝之人士所知的形nr 特定之實施例僅為揭示本發明使用之特 x夕’ 限定本發明。 工,/'並用以 〇968-A22075TWF(N2);P5395〇132TW;wayne 200916949 法。第2D圖揭示本發明〜實施例模仁之製作方 法。百先,請參日召第7 Δ固 衣1下万 並圖形化母模搬之—面*;'例如録底之母模2〇2, 明之-實施例中,可:電=轉印圖案2。4, 像微影等技術圖形化、奈米轉印或雷射全 之模仁正型或負型,或是 圖:了依欲烙成 Ϊ= 例如包括奈米結構、光學被動元件、 有機光電元件、磁性元件、單電子 預錄媒體、以及生醫日日日以早電子通道子點元件、 ㈣請參照第_,以—無電鍍方法形成-第-結 構層206於母模2G2上,在本發明—實施财,第—結構層 206為鎳、銅或鎳銅合金,第—結構層施之厚度大體上為 5〜ΙΟμηι。 以下揭示以無電鍍法形成包含鎳之第-結構層的實施 範例。 【實施範例1】 首先,提供-母模202,並活化母模2〇2表面,使母模 202表面具有鈀(Pd)活性核。 接著,提供一無電鍍鎳溶液,溶液之鎳離子濃度為 0.05M〜0.10M。於無電鍍鎳溶液添加次磷酸鈉作為還原 劑、醋酸鈉作為緩衝劑、乳酸作為錯合劑、硫代硫酸鹽作 為女疋劑、酒石酸作為加速劑、6〜l〇g/L的糖精(Saccharin, C7H4NNa03S · 2H20,TOKYO KASEI)作為應力消除劑、 10〜60 ppm的十二烷基硫酸鈉(Sodium dodecyl sulfate,SDS) 〇968-A22075TWF(N2);P53950132TW;wayne 200916949 作為界面活性劑、15〜25g/L的琥珀酸鈉(NazQH4。4)作為 pH緩衝劑與錯合劑。溶液之pH為4_4〜5.0,溫度為 650C〜95〇C。 以下揭示以無電鍍法形成包含銅之第一結構層的實施 範例。 【實施範例2】 首先,提供一母模202,並活化母模2〇2表面,使母模 202表面具有鈀(Pd)活性核。 接著,提供一無電鍍銅溶液,無電鍍銅溶液中銅離子 濃度為0.02M〜0.〇5M,添加30〜35 g/L之乙二胺四乙酸作為 錯合劑、18〜30 g/L之氫氧化鈉、〇.〇2〜〇1 g/L之 PEG(MW.2000)作為潤濕劑、〇1〜〇 6心之聯吡啶 (2,2-biPyridyl)與 0.01〜0.05g/L 之亞鐵氛化钟(κ㈣eg) 作為安定劑’ 作為還原劑。溶液之阳為 12〜13.5,溫度為50〜70°C。 :液中之還原劑會氧化釋出電荷給母模202表面吸附 之金屬離子’使金屬遇原沉積在活化過之母模搬表面,而 形成例如鎳或銅之第一結構層2〇6。 請注意,在以無電鑛法形成包含錄之第—結構層的實 施範例中4於無電鑛製程之還原劑次軸納氧化時會釋 放出氫負離子,除了還原金屬離子為金屬,還會將次碟酸 根退原㈣,因此第-結構層寫中會含有麵子,亦即, 第一結構層206中會含有鎳磷固溶體。 後續,請參照第2C圖,以一 電鍍方法形成一第二結構 0968-A22075TWF(N2);P53950132TW;wayne 200916949 層208於第一結構層2〇6上,在本發明一實施例中,第二 結構層208為純鎳或銅所組成,且第二結構層2〇8具有足 夠之厚度(例如大於第一結構層之厚度)。舉例來說,第二 結構層208之厚度大體上為5〇〜16〇μιη,如此第二結構層 208可提供較佳延展性,以提高以無電鍍法形成之第一結 構層206受壓時的彈性恢復力。 以下揭示以電鐘法形成包含鎳之第二結構層的實施範 例。 【實施範例3】 首先,提供一電鍍液,其硫酸鎳濃度為1.2〜1.5 Μ與氯 化鎳濃度為0.15〜0.2Μ。在進一步於電鑛液中添加0.5〜1 mL/L的(30%)雙氧水作為針孔防止劑、6〜1〇 g/L的糖精 (Saccharin,C7H4NNa03S . 2H2〇, TOKYO KASEI)作為應力 消除劑、20 g/L-30g/L 的 D-葡糖酸鈉(Sodium D-gluconate) 作為第一光澤劑、2g/L〜6g/L的丙烯基硫酸鈉(Sodium allyi sulfate)作為第二光澤劑、1〇〜60ppm的十二烧基硫酸納 (Sodium dodecyl sulfate ’ SDS)作為界面活性劑、〇.5M 的稀 硫酸作為pH酸鹼調整劑、30g/L〜4〇g/L的硼酸(H3B〇3)作 為缓衝劑。於被鍍物和電鍍金屬源間導入0 8A/dm2 〜2.5A/dm2之電流,並以一超音波震盪裝置進行震盪,以消 除電鍍形成之第二結構層中之針孔及殘留應力。電鍍液之 溫度為 40oC〜60。(^ ’ pH 為 3.5〜4.5。 以下揭示以電鍍法形成包含鋼之第二結構層的實施範 例。 0968-A22075TWF(N2).P53950132TW;wayne 200916949 【實施範例4】 首先’提供一含硫酸銅之電鍍溶液,其濃度為 0.7JV[〜1M °進—步係於電鍍液中添加苯二磺酸5 g/L,硫脲0·002〜0.006 g/L,硫酸50〜60 mL/L,溫度為 20〜35 C ’被鍍物和電鍍金屬源間導入3〜4 A/dm2之電流。 接著’對第一結構層206和第二結構層208進行一熱 處理製程’以提高第一結構層206和第二結構層208之硬 度,並消除第—結構層2〇6和第二結構層2〇8中之殘留應 力’在本發明一較佳實施例中’熱處理製程之溫度介於 130oC〜400〇c 〇 後續,請參照第2D圖,進行一脫膜步驟,將第一結構 層206和第二結構層208從母模202上剝除,以製得一模 仁 200。 第3A圖〜第3D圖揭示本發明另一實施例模仁之製作 方法。首先,請參照第3A圖,提供一例如矽基底之母模 302,並圖形化母模3〇2之一面,形成一轉印圖案3〇4,在 本發明之一實施例中,可採用電子束微影、奈米轉印或雷 射全像你i:影荨技術圖形化母模302。 接著,請參照第3B圖,以一無電鍍方法形成一第一結 構層306於母模3〇2上。在此實施例中,第一結構層3〇6 為鎳、銅或鎳銅合金組成,第一結構層3〇6之厚度大體上 為5〜ΙΟμιη,並以無電鍍方法形成第一結構層3〇6於該母模 302上之過程中,鑛液中可添加微粒子308,在析鍍過程經 由夾附或包覆方式進入第一結構層306,以增加第一結構 0968-A22075TWFiN2);P53950132TW;wayne 200916949 層306之強度,其中,微粒子308較佳為碳化石夕、氧化銘 或奈米碳管。 後續,請參照第3C圖,以一電鍍方法形成一第二結構 層310於第一結構層306上,在本發明此實施例中,第二 結構層310為純鎳或銅,且第二結構層310具有足夠之厚 度(大於第一結構層之厚度)。舉例來說,第二結構層310 之厚度大體上為50〜160μηι,如此,第二結構層310可提供 較佳之延展性,提高以無電鍍法形成之第一結構層306受 壓時之彈性恢復力。 請注意,在上述實施例中,在形成第一結構層和第二 結構層之後,係對第一結構層和第二結構層進行一熱處理 製程,以提高第一結構層和第二結構層之硬度。在本實施 例中,由於第一結構層306中已添加微粒子308,增加硬 度,因此,可省略後續之熱處理製程步驟。惟本發明不限 於此技術特徵,本實施例仍可對掺雜微粒子308之第一結 構層306和第二結構層310進行熱處理。後續,請參照第 3D圖,進行一脫膜步驟,將第一結構層306和第二結構層 310從母模302上剝除,以製得一模仁300。 請參照第4Α圖,提供一例如滾筒之模具402,並如第 4Β圖所示,將製作好之模仁200/300貼合於模具402上, 製作出一大面積微奈米結構壓印模具。如此,如第4C圖 所示,可利用此大面積微奈米結構壓印模具402進行例如 滚壓之壓印步驟,將此壓印模具402上之奈米圖案,轉印 於一例如光學薄膜或是高分子之薄膜404,以製作光學元 0968-A22075TWF(N2);P53950132TW;wayne 12 200916949 件或抗反射光學膜片等產品。請注意,雖然以上實施例揭 示以滾壓之壓印模具402進行轉印,本發明另可採用平板 等之壓印模具,結合以上製作之模仁2〇〇/3〇〇進行壓印。 本發明之模仁和模具可用於製作例如奈米點、奈米孔、奈 米島、奈米線、奈米通道、奈米腔室、奈米壁虎腳底吸盤 狀毛髮等之奈米結構;例如光栅、共振器、次波長光學元 件、偏光片、濾波片、菲〉圼耳區板片(Fresnel zone plate)、 光子晶體等之光學被動元件;例如有機電晶體、有機半導 體、有機發光二極體、有機雷射等之有機電子和光電元件; 例如電晶體、場效電晶體、假性高電子遷移率場效電晶體 (Pseudomorphic High Electron Mobility Transistors, PHEMTs)、光檢測器等之電子元件與磁性元件;例如微結 構、磁預錄碟片、磁閥等之磁性元件和微結構;例如分子 開關和分子元件奈米接觸點、單電子通道、和波導元件、 量子井和量子點元件等之分子元件、單電子通道元件、量 子點元件;例如光預錄碟片和磁預錄碟片之預錄媒體;以 及例如鈷奈米點、奈米流體通道、具奈米孔之分子膜晶片、 DNA電泳晶片等之生醫晶片。 根據上述,本發明之模仁、模具及其製作方法,可改 進習知微影技術之成本高、速率慢,以及不易製作大面積 圖案等缺點,以較低成本及較高速率進行轉印。此外,本 發明利用無電鍍和電鍍方法製作模仁成膜速率較快,且可 製作出均勻並符合尺寸規格之奈米結構模仁和模具。 雖然本發明已以較佳實施例揭露如上,然其並非用以 0968-A2P075TWF(N2);P53950132TW;wayne 13 200916949 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾。因此,本發明之保 護範圍,當視後附之申請專利範圍所界定者為準。 0968-A22075TWF(N2) ;P53950132TW;wayneThe invention provides a mold core comprising a first structural layer and a second social layer: wherein the side of the first structural layer has a transfer pattern, and the first structural layer is composed of nickel and the first layer is formed. The nickel resolving body is contained, and the first (four) layer is located on the side of the first structural layer not including the transfer pattern, wherein the thickness of the second structural layer is thicker than that of the first structural layer. [Embodiment] Hereinafter, the detailed description of the embodiments will be described with reference to the drawings. In the figure or ς dry C in the shape or thickness of the embodiment of the figure, the heart is large or easy to mark. The various elements in the drawings are described in the drawings. It is noted that the figures are not shown in the drawings: a variety of nr-specific embodiments known to those skilled in the art are merely illustrative of the use of the invention. The present invention is limited to the present invention. Work, / 'and used 〇 968-A22075TWF (N2); P5395 〇 132TW; wayne 200916949 law. Fig. 2D shows a method of fabricating the mold of the present invention to the embodiment. Hundreds of first, please refer to the 7th Δ solid clothes 1 10,000 and the graphical master mold moved to the surface *; 'For example, the bottom of the mother model 2 〇 2, Ming - in the example, can: electricity = transfer pattern 2.4, such as lithography and other technical graphics, nano transfer or laser all of the positive or negative type of the mold, or map: according to the desire to be Ϊ = for example, including nanostructures, optical passive components, Organic optoelectronic components, magnetic components, single-electron pre-recorded media, and early medical electronic device sub-point components, (4) Please refer to the _, to form - the first structural layer 206 on the master 2G2 In the present invention, the first structural layer 206 is a nickel, copper or nickel-copper alloy, and the first structural layer is applied to a thickness of substantially 5 to ΙΟμηι. An example of the formation of a first structural layer comprising nickel by electroless plating is disclosed below. [Embodiment 1] First, a mother die 202 is provided, and the surface of the mother die 2〇2 is activated to have a palladium (Pd) active core on the surface of the master die 202. Next, an electroless nickel plating solution is provided, and the nickel ion concentration of the solution is 0.05 M to 0.10 M. Adding sodium hypophosphite as a reducing agent, sodium acetate as a buffering agent, lactic acid as a buffering agent, thiosulfate as a female mites, tartaric acid as an accelerator, and 6~l〇g/L of saccharin in an electroless nickel solution (Saccharin, C7H4NNa03S · 2H20, TOKYO KASEI) as a stress relieving agent, 10~60 ppm sodium dodecyl sulfate (SDS) 〇968-A22075TWF(N2); P53950132TW; wayne 200916949 as a surfactant, 15~25g /L sodium succinate (NazQH4. 4) as a pH buffer and a miscible agent. The pH of the solution is 4_4 to 5.0, and the temperature is 650C to 95〇C. An example of the formation of a first structural layer comprising copper by electroless plating is disclosed below. [Embodiment 2] First, a master mold 202 is provided, and the surface of the master mold 2〇2 is activated to have a palladium (Pd) active core on the surface of the master mold 202. Next, an electroless copper plating solution is provided. The copper ion concentration in the electroless copper plating solution is 0.02M~0.〇5M, and 30~35 g/L ethylenediaminetetraacetic acid is added as a wrong agent, 18~30 g/L. Sodium hydroxide, 〇.〇2~〇1 g/L of PEG (MW.2000) as a wetting agent, 〇1~〇6 heart of bipyridyl (2,2-biPyridyl) and 0.01~0.05g/L The ferrous fluid clock (κ(四)eg) acts as a stabilizer. The yang of the solution is 12 to 13.5 and the temperature is 50 to 70 °C. The reducing agent in the liquid oxidizes and releases the charge to the metal ions adsorbed on the surface of the master mold 202. The metal is deposited on the surface of the activated master mold to form a first structural layer 2?6 of, for example, nickel or copper. Please note that in the embodiment of the electroless ore-forming method comprising the recorded first-structure layer, the sub-atomization of the reducing agent in the electroless ore-free process will release the hydrogen anion, except that the metal ion is reduced to metal. The acid radicals are retorted (4), so the first structural layer will contain a surface, that is, the first structural layer 206 will contain a nickel-phosphorus solid solution. Subsequently, referring to FIG. 2C, a second structure 0968-A22075TWF(N2); P53950132TW; wayne 200916949 layer 208 is formed on the first structural layer 2〇6 by an electroplating method. In an embodiment of the present invention, the second The structural layer 208 is composed of pure nickel or copper, and the second structural layer 2〇8 has a sufficient thickness (e.g., greater than the thickness of the first structural layer). For example, the thickness of the second structural layer 208 is substantially 5 〇 16 16 μm, such that the second structural layer 208 can provide better ductility to improve the pressure of the first structural layer 206 formed by electroless plating. The elastic resilience. An embodiment of forming a second structural layer containing nickel by an electric clock method is disclosed below. [Embodiment 3] First, a plating solution having a nickel sulfate concentration of 1.2 to 1.5 Torr and a nickel chloride concentration of 0.15 to 0.2 Å is provided. Further adding 0.5 to 1 mL/L of (30%) hydrogen peroxide to the electro-mineral solution as a pinhole preventive agent, 6~1〇g/L of saccharin (Saccharin, C7H4NNa03S. 2H2〇, TOKYO KASEI) as a stress relieving agent 20 g/L-30 g/L of sodium D-gluconate as the first brightener, 2 g/L~6 g/L of sodium sulphate (Sodium allyi sulfate) as the second brightener 1,1~60ppm sodium dodecyl sulfate 'SDS as a surfactant, 〇.5M dilute sulfuric acid as a pH acid-base conditioner, 30g/L~4〇g/L boric acid (H3B 〇 3) as a buffer. A current of 0 8 A/dm 2 to 2.5 A/dm 2 is introduced between the object to be plated and the plated metal source, and is oscillated by an ultrasonic oscillating device to eliminate pinholes and residual stress in the second structural layer formed by electroplating. The temperature of the plating solution is 40oC~60. (^ 'pH is 3.5 to 4.5. An example of forming a second structural layer containing steel by electroplating is disclosed below. 0968-A22075TWF(N2).P53950132TW; wayne 200916949 [Embodiment 4] First, a copper sulfate-containing layer is provided. Electroplating solution, the concentration is 0.7JV [~1M ° step-by-step in the plating solution to add benzenedisulfonic acid 5 g / L, thiourea 0. 002 ~ 0.006 g / L, sulfuric acid 50 ~ 60 mL / L, temperature A current of 3 to 4 A/dm2 is introduced between the substrate and the plated metal source for 20 to 35 C'. Next, a heat treatment process is performed on the first structural layer 206 and the second structural layer 208 to increase the first structural layer 206. And the hardness of the second structural layer 208, and eliminating the residual stress in the first structural layer 2〇6 and the second structural layer 2〇8. In a preferred embodiment of the present invention, the temperature of the heat treatment process is between 130oC and 400. 〇c 〇 Subsequently, referring to FIG. 2D, a stripping step is performed to strip the first structural layer 206 and the second structural layer 208 from the master mold 202 to obtain a mold core 200. FIG. 3A to FIG. 3D is a view showing a method of fabricating a mold core according to another embodiment of the present invention. First, please refer to FIG. 3A to provide an example. The base mold 302 of the substrate and the one side of the mother mold 3〇2 are patterned to form a transfer pattern 3〇4. In one embodiment of the invention, electron beam lithography, nano transfer or laser full can be used. Like your i: image technology master 302. Next, please refer to FIG. 3B to form a first structural layer 306 on the master 3〇2 by an electroless plating method. In this embodiment, the first structure The layer 3〇6 is composed of nickel, copper or nickel-copper alloy, and the first structural layer 3〇6 has a thickness of substantially 5~ΙΟμιη, and the first structural layer 3〇6 is formed on the master mold 302 by electroless plating. During the process, the micro-particles 308 may be added to the mineral liquid, and enter the first structural layer 306 via the coating or coating process to increase the strength of the first structure 0968-A22075TWFiN2); P53950132TW; wayne 200916949 layer 306, wherein The microparticles 308 are preferably carbonized stone, oxidized or carbon nanotubes. Subsequently, referring to FIG. 3C, a second structural layer 310 is formed on the first structural layer 306 by an electroplating method. In this embodiment of the invention, the second structural layer 310 is pure nickel or copper, and the second structure Layer 310 has a sufficient thickness (greater than the thickness of the first structural layer). For example, the thickness of the second structural layer 310 is substantially 50 to 160 μm. Thus, the second structural layer 310 can provide better ductility and improve the elastic recovery of the first structural layer 306 formed by electroless plating when pressed. force. Please note that in the above embodiment, after the first structural layer and the second structural layer are formed, a heat treatment process is performed on the first structural layer and the second structural layer to improve the first structural layer and the second structural layer. hardness. In the present embodiment, since the fine particles 308 are added to the first structural layer 306, the hardness is increased, and therefore, the subsequent heat treatment process step can be omitted. However, the present invention is not limited to this technical feature, and the first structural layer 306 and the second structural layer 310 of the doped fine particles 308 can be heat-treated in this embodiment. Subsequently, referring to Fig. 3D, a stripping step is performed to strip the first structural layer 306 and the second structural layer 310 from the master mold 302 to obtain a mold core 300. Referring to FIG. 4, a mold 402 such as a roller is provided, and as shown in FIG. 4, the fabricated mold core 200/300 is attached to the mold 402 to produce a large-area micro-nano structure imprint mold. . Thus, as shown in FIG. 4C, the large-area micro-nano structure imprinting mold 402 can be used to perform an imprinting step such as rolling, and the nano-pattern on the imprinting mold 402 is transferred to, for example, an optical film. Or a polymer film 404 to produce optical elements 0968-A22075TWF (N2); P53950132TW; wayne 12 200916949 pieces or anti-reflective optical film and other products. Note that, although the above embodiment discloses that the transfer is performed by the rolling imprinting mold 402, the present invention can be further imprinted by using the imprinting mold of a flat plate or the like in combination with the above-made mold core 2〇〇/3〇〇. The mold core and mold of the present invention can be used for fabricating nano structures such as nano-dots, nanopores, nano-islets, nanowires, nanochannels, nano-chambers, nano-gecker sucker-like hairs, etc.; Optical passive components such as resonators, sub-wavelength optical elements, polarizers, filters, Fresnel zone plates, photonic crystals, etc.; for example, organic transistors, organic semiconductors, organic light-emitting diodes, organic Organic electronic and optoelectronic components such as lasers; electronic components and magnetic components such as transistors, field effect transistors, Pseudomorphic High Electron Mobility Transistors (PHEMTs), photodetectors, and the like; For example, magnetic components and microstructures of microstructures, magnetic pre-recorded discs, magnetic valves, etc.; molecular components such as molecular switches and molecular element nano-contacts, single-electron channels, and waveguide elements, quantum wells, and quantum dot elements, Single electron channel elements, quantum dot elements; pre-recorded media such as optical pre-recorded discs and magnetic pre-recorded discs; and, for example, cobalt nano-dots, nanofluids Biomedical wafers such as channels, molecular membrane wafers with nanopores, DNA electrophoresis wafers, and the like. According to the above, the mold core, the mold and the manufacturing method thereof of the present invention can improve the disadvantages of high cost, slow rate, and difficulty in producing a large-area pattern, and transfer at a relatively low cost and a high rate. In addition, the present invention utilizes an electroless plating and electroplating method to produce a mold having a faster film formation rate, and can produce a nanostructured mold core and a mold which are uniform and conform to the size specifications. Although the present invention has been disclosed in the preferred embodiments as described above, it is not intended to be used in the scope of the present invention, and is not limited to the spirit and scope of the present invention. When you can make some changes and retouch. Therefore, the scope of protection of the present invention is defined by the scope of the appended claims. 0968-A22075TWF(N2) ;P53950132TW;wayne

U 200916949 【圖式簡單說明】 第1A至第1D圖揭示一習知採用電子束微影技術(EBL) 製作奈米模仁之流程。 第2A圖〜第2D圖揭示本發明一實施例模仁之製作方 法。 第3A圖〜第3D圖揭示本發明另一實施例模仁之製作 方法。 第4A圖〜第4C圖揭示本發明一實施例之大面積奈米 壓印模具。 【主要元件符號說明】 100〜碎基材; 110〜薄膜; 120〜光阻層; 130〜圖案; 150〜模仁; 200〜模仁; 202〜母模; 204〜圖案; 206〜第一結構層; 2 0 8〜弟二結構層, 3 00〜模仁; 302~母模; 304~圖案; 0968-A22075TWF(N2);P53950132TW;wayne 15 200916949 306〜第一結構層; 308〜微粒子; 310〜第二結構層; 402〜模具; 404〜薄膜。 0968-A22075TWF(N2);P53950132TW;wayneU 200916949 [Simple Description of the Drawings] Figures 1A to 1D disclose a conventional process for fabricating a nano mold core by electron beam lithography (EBL). Fig. 2A to Fig. 2D show a method of fabricating a mold core according to an embodiment of the present invention. 3A to 3D are views showing a method of fabricating a mold core according to another embodiment of the present invention. 4A to 4C show a large-area nanoimprinting mold according to an embodiment of the present invention. [Main component symbol description] 100 ~ broken substrate; 110 ~ film; 120 ~ photoresist layer; 130 ~ pattern; 150 ~ mold kernel; 200 ~ mold kernel; 202 ~ female mold; 204 ~ pattern; 206 ~ first structure Layer; 2 0 8~ Di 2 structural layer, 3 00 ~ mold core; 302 ~ female mold; 304 ~ pattern; 0968-A22075TWF (N2); P53950132TW; wayne 15 200916949 306~ first structural layer; 308~ microparticles; ~ second structural layer; 402 ~ mold; 404 ~ film. 0968-A22075TWF(N2); P53950132TW; wayne

Claims (1)

200916949 申請專利範圍: ^—種模仁之製造方法,包括. 挺供—母模,其中嗲 以-I電贫方、土 "母^包括轉印圖案; 以一電鍍方法形成定、、、Q f玲於該母模上;及 A〜战一弟二結槿# 2.如申請專利範圍第 。弟—結構層上。 中該«之轉印圖案係使用電子===造方法’其 全像微影製作。 心’丁、米轉印或雷射 中第1項所述之模仁之製造方法 Q構層之厚度大體上為5〜10μιη。 第1項所述之模仁之製造方* °構層之厚度大體上為50〜160陶。 中在== 專利範圍第1項所述之模仁之製造方法,复 °Λ ”、、電鍍方法形成該第一結構層於該母模上之>、 中,包括添加料私工 母核上之過程 加钺粒子,以增加該第一結構層之強度。 6.如申請專利範圍第5項所述之模仁 中該些微粒子為碳化石夕、氧化銘或奈求石炭管 上I’如申請專利範圍第1項所述之模仁之製造方法 中忒第結構層為鎳、銅或鎳銅合金所組成。 如申請專利範圍第1項所述之模仁之製造方法 中該第一結構層為鎳、銅或鎳銅合金所組成。 9·如申請專利範圍第〗項所述之模仁之製造方法, 包括對該第一結構層和該第二結構層進行熱處理之製程 1〇.如申請專利範圍第9項所述之模仁之製造方法 十 其 其 其 其 其 尚 〇968-A22075TWF(N2):P5395〇132TW:wayne 17 200916949 其中該熱處理之溫度為l30〇c〜400oC。 Π.如申請專利範圍第1頊所述之模仁之製造方法, 其中在該電鍍方法中,尚包括添加一針孔防止劑和一應力 消除劑’且以一超音波震盪裝置進行震盪。 12. 如申請專利範圍第1項所述之模仁之製造方法, 尚包括將該第一結構層和該第二結構層從該母模上剝除, 以製得該模仁。 13. 如申請專利範圍第12項所述之模仁之製造方法, 尚包括將該模仁貼覆於一模具。 14. 如申請專利範圍第13項所述之模仁之製造方法, 其中該模具為一滾筒或一平板。 / 15. 如申請專利範圍第丨項所述之模仁之製造方法, 其中該無電錢方法係於硫酸鎳或硫酸銅之溶液中進行/。 16. 如申請專利範圍帛丨項所述之模仁之 其中該電鑛方法係於電鑛錄或電鑛銅之溶液中進/ 17· —種模仁,包括: 一第一結構層,其中該第一結 案’第-結構屢主要為熟"、0之側具有轉印圖 -第軸組成,且其#含有_固溶體。 弟一結構層,位於該第一社 之-側上,第一 #層不包含該轉印圖案 Μ 4 籌層之厚度較該第一結構 队如申請專利範圍第17項 :構層厚 結構層尹尚包含氫離子或氫原子。模仁,其令該第— 19.如申請專利範圚第]7項 結構層為錦、銅或_合金所組成权壯’其中該第二 輸娜鲁随.Ρ53_美物 18 200916949 20.如申請專利範圍第17項所述之模仁,其中該第一 結構層之厚度大體上為5〜ΙΟμπι。 21·如申請專利範圍第17項所述之模仁,其中該第二 結構層之厚度大體上為50〜160μιη。 22. 如申請專利範圍第17項所述之模仁,其中該第一 結構層中進一步包含複數個微粒子。 23. 如申請專利範圍第22項所述之模仁,其中該些微 粒子為碳化石夕、氧化紹或奈米碳管。 24. 如申請專利範圍第17項所述之模仁,尚包括一模 具,從該第二結構層之一侧貼合該模仁。 25. 如申請專利範圍第24項所述之模仁,其中該模具 為一滾筒或平板。 0968~A22075TWF(N2);P53950l32TW;wayne 19200916949 Patent application scope: ^—Manufacturing method of a kind of mold, including: quite supply—mother mold, in which 嗲 is -I electricity poor, earth " mother ^ includes transfer pattern; forming a set, Q, Q by an electroplating method f Ling on the mother model; and A ~ war one brother two knots # 2. As claimed in the scope of patents. Brother - on the structural level. In the "transfer pattern is made using electronic === method of manufacture", it is produced by lithography. The manufacturing method of the mold core described in the first item of the first embodiment, the thickness of the Q layer is substantially 5 to 10 μm. The thickness of the manufacturing layer of the mold core described in the first item is generally 50 to 160 ceramics. In the method of manufacturing the mold core according to the first aspect of the invention, the method of forming the first structural layer on the master mold, and the method comprising: adding the filler to the private core The process of adding particles to increase the strength of the first structural layer. 6. In the mold core according to claim 5, the microparticles are carbonized stone eve, oxidized or nephewed on the carbonaceous tube I' In the manufacturing method of the mold core according to the first aspect of the invention, the first structural layer is composed of the nickel, copper or nickel-copper alloy in the method of manufacturing the mold core according to claim 1. A nickel, copper or nickel-copper alloy. 9. The method for manufacturing a mold core according to the scope of the patent application, comprising the process of heat-treating the first structural layer and the second structural layer. The manufacturing method of the mold core described in the ninth item is the same as the above-mentioned method 968-A22075TWF(N2): P5395〇132TW: wayne 17 200916949 wherein the heat treatment temperature is l30〇c~400oC. The system of the model described in the first paragraph In the plating method, a pinhole preventing agent and a stress relieving agent are added and oscillated by an ultrasonic oscillating device. 12. The method for manufacturing a mold core according to claim 1 The method further comprises: stripping the first structural layer and the second structural layer from the master mold to obtain the mold core. 13. The method for manufacturing the mold core according to claim 12 of the patent application, The mold is applied to a mold. The method of manufacturing the mold core according to claim 13, wherein the mold is a drum or a flat plate. / 15. The mold according to the scope of the patent application. The method for manufacturing the kernel, wherein the method of no electricity is carried out in a solution of nickel sulfate or copper sulfate. 16. The mold of the invention described in the scope of the patent application, wherein the method of electrowinning is in an electric or copper mine. In the solution, the mold comprises: a first structural layer, wherein the first closed case of the first structure is mainly cooked ", the side of 0 has a transfer pattern-axis, and #含_固溶体. Brother a structural layer, bit On the side of the first society, the first # layer does not contain the transfer pattern Μ 4 The thickness of the layer is higher than that of the first structural team as claimed in the 17th item: the thick layer of the layer structure Yin Shang contains hydrogen ions Or a hydrogen atom. The mold kernel, which makes the first - 19. as claimed in the patent paradigm] 7 structural layers for the brocade, copper or _ alloys constitute a strong "the second lose Naru with. Ρ 53_ beauty The mold core according to claim 17, wherein the thickness of the first structural layer is substantially 5 ΙΟμπι. 21. The mold core according to claim 17 of the patent application, wherein the The thickness of the two structural layers is substantially 50 to 160 μm. 22. The mold core of claim 17, wherein the first structural layer further comprises a plurality of microparticles. 23. The mold core according to claim 22, wherein the microparticles are carbonized carbide, oxidized or carbon nanotubes. 24. The mold core of claim 17, further comprising a mold from which the mold core is attached from one side of the second structural layer. 25. The mold core of claim 24, wherein the mold is a roller or a flat plate. 0968~A22075TWF(N2); P53950l32TW; wayne 19
TW96137990A 2007-10-11 2007-10-11 Stamper and fabrications thereof TW200916949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96137990A TW200916949A (en) 2007-10-11 2007-10-11 Stamper and fabrications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96137990A TW200916949A (en) 2007-10-11 2007-10-11 Stamper and fabrications thereof

Publications (1)

Publication Number Publication Date
TW200916949A true TW200916949A (en) 2009-04-16

Family

ID=44726229

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96137990A TW200916949A (en) 2007-10-11 2007-10-11 Stamper and fabrications thereof

Country Status (1)

Country Link
TW (1) TW200916949A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415975B (en) * 2010-09-28 2013-11-21
US9067393B2 (en) 2012-10-29 2015-06-30 Industrial Technology Research Institute Method of transferring carbon conductive film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415975B (en) * 2010-09-28 2013-11-21
US9067393B2 (en) 2012-10-29 2015-06-30 Industrial Technology Research Institute Method of transferring carbon conductive film

Similar Documents

Publication Publication Date Title
Komuro et al. Imprint characteristics by photo-induced solidification of liquid polymer
McClelland et al. Nanoscale patterning of magnetic islands by imprint lithography using a flexible mold
Heidari et al. Nanoimprint lithography at the 6 in. wafer scale
Chai et al. Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires
US7270533B2 (en) System for creating a turbulent flow of fluid between a mold and a substrate
JP2003534651A (en) Method for producing template and template produced by the method
US7947608B2 (en) Positive tone bi-layer method
US20030034329A1 (en) Lithographic method for molding pattern with nanoscale depth
JP2012142065A (en) System and method for imprint-guided block copolymer patterning
Ji et al. Templated fabrication of nanowire and nanoring arrays based on interference lithography and electrochemical deposition
EP1656242A4 (en) Capillary imprinting technique
JP6496320B2 (en) Uniform imprint pattern transfer method for sub-20 nm design
Huang et al. A review of the scalable nano-manufacturing technology for flexible devices
KR100693992B1 (en) Nickel stamp structure for providing easy formation of self-assembled monolayer as anti-stiction layer, and manufacturing method thereof
US20100266965A1 (en) Etch-Enhanced Technique for Lift-Off Patterning
JP3892457B2 (en) Nanoimprint lithography method and substrate
TW200916949A (en) Stamper and fabrications thereof
JP4967630B2 (en) Imprint mold and imprint mold manufacturing method
Yasukawa et al. Site-selective metal patterning/metal-assisted chemical etching on GaAs substrate through colloidal crystal templating
Cobo et al. Thin films of Prussian blue: Sequential assembly, patterning and electron transport properties at the nanometric scale
JP5055880B2 (en) Imprint mold manufacturing method
Djenizian et al. Electron beam lithographic techniques and electrochemical reactions for the micro-and nanostructuring of surfaces under extreme conditions
TWI292187B (en)
JP6346132B2 (en) Pattern formation method
JP2008001965A (en) Method for producing porous body and method for producing porous resin body