TW200915654A - Improved biofuel cell - Google Patents

Improved biofuel cell Download PDF

Info

Publication number
TW200915654A
TW200915654A TW096135329A TW96135329A TW200915654A TW 200915654 A TW200915654 A TW 200915654A TW 096135329 A TW096135329 A TW 096135329A TW 96135329 A TW96135329 A TW 96135329A TW 200915654 A TW200915654 A TW 200915654A
Authority
TW
Taiwan
Prior art keywords
cell system
biofuel cell
group
cathode
iron
Prior art date
Application number
TW096135329A
Other languages
Chinese (zh)
Inventor
Dimitre Gueorguiev Karamanev
Vassili Porfirievich Glibin
Original Assignee
Univ Western Ontario
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Western Ontario filed Critical Univ Western Ontario
Publication of TW200915654A publication Critical patent/TW200915654A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

The present invention discloses a new type of biofuel cell, based on the microbial regeneration of the oxidant, ferric ions. The biofuel cell is based on the cathodic reduction of ferric to ferrous ions, coupled with the microbial regeneration of ferric ions by the oxidation of ferrous ions, with fuel (such as hydrogen) oxidation on the anode. The microbial regeneration of ferric ions is achieved by metal oxidizing chemolithotrophic microorganisms from the Leptospirillum genus (excluding Leptospirillum ferrooxidans by itself), members of the Ferroplasma genus, members of the Acidithiobacillus genus(excluding Acidithiobacillus ferroxidans by itself). Electrical generation is coupled with the consumption of carbon dioxide from atmosphere and its transformation into microbial cells, which can be used as a single-cell protein.

Description

200915654 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種燃料電池,本發明更特別係關於一種 基於氧化劑鐵離子之微生物再生之生物燃料電池,該電池 係利用化營性微生物將亞鐵離子有氧氧化成為鐵離子之 過程來於發電期間由大氣中去除二氧化碳。 【先前技術】 -氫於經濟發展上主要係大規模地用於燃料電池技術。雖 I然對於燃料電池用於日常生活的應用已經有顯著進展,但 部分由於其產生電力的成本高因而尚未能普及,參考R〇Se, R, . Fuel Cells and Hydrogen: The Path Forward, Report Prepared for the Senate of the USA, http://www.fuelcellpath.org。 於最普及的質子交換膜(PEM)氫-氧燃料電池陰極上之 氧运原反應之緩慢動力學為燃料電池本身的成本高(需要 ,鉑作為催化劑)及電燃料效率低(約5〇%)之成本高二者的 L 主要理由,其揭示於 Bockris,J. 〇.-M. and L Abdu,J.200915654 IX. OBJECTS OF THE INVENTION: TECHNICAL FIELD The present invention relates to a fuel cell, and more particularly to a biofuel cell based on oxidant iron ion-based microbial regeneration, which utilizes a chemical microbial The process of aerobic oxidation of iron ions to iron ions to remove carbon dioxide from the atmosphere during power generation. [Prior Art] - Hydrogen is mainly used for fuel cell technology on a large scale in economic development. Although there has been significant progress in the application of fuel cells for daily life, it is not yet widely available due in part to the high cost of generating electricity. See R〇Se, R, . Fuel Cells and Hydrogen: The Path Forward, Report Prepared for the Senate of the USA, http://www.fuelcellpath.org. The slow kinetics of the oxygen transport reaction on the most popular proton exchange membrane (PEM) hydrogen-oxygen fuel cell cathodes is high cost of the fuel cell itself (required, platinum as a catalyst) and low fuel efficiency (about 5%) The main reason for the high cost of both is revealed in Bockris, J. 〇.-M. and L Abdu, J.

Electroanal. Chem·, 448, 189 (1997)。 使用其中氧係經由其它氧化劑諸如鐵離子所置換之氧 化還原燃料電池,可能造成陰極反應速率(或就電化學術 s吾而έ之交換電流密度)的增高達數次羃幅度,如揭示於 Bergens, S. H. , G. B. Gorman, Q. T. R. Palm〇re and G. M. Whitesides, Science, 265, 1418 (1994); Larsson, R. and B. Folkesson, J. Appl. Electrochem. , 20, 907 312XP/發明說明書(補件)97-01/96135329 200915654 (1990); and Kummer, J τ and D r n · J* K and 〇ei, J. Appl. hlectrochem., 15, gig (1985)。 此外,氧化劑質量移轉至電極表面之速率(就電化學術 語而言係相當於限制電流密度)也較高,原因在於比較氧 之水中溶解度(依據分壓及溫度而定為0.006克/升至 0.04克/升),於氧化還原燃料電池中之氧化劑之溶解度 OJ士 Fe為50克/升)較高之故。全部此等氧化還原燃料 电池的特性基於熱力學爭議,理論上允許使用非貴金 極達成化學能轉換成電能效率達8〇%至9〇%。但無氧化還 原燃料電池中之主要問題為氧化劑 < 還原$式之再度氧 化效率(乳化劑再生),參考Urss〇n,R. andB. ⑽, J. Appl. Electrochem·,2〇, 9〇7 (199〇);及 ^醜^, j.’ T. and D. andD.-G. Oei, J. Appl. Electrochem. , 15 619 (1985)。 ’ 例如’ r-射線照射曾經用於H2_Fe3+/Fe2+氧化還原電池 用於F2+之再氧化成F3+,揭示於Yearger,j. F,r. j.Electroanal. Chem., 448, 189 (1997). The use of a redox fuel cell in which oxygen is replaced by another oxidant such as iron ions may cause the cathode reaction rate (or the exchange current density of the electrochemical process) to increase by several times, as disclosed in Bergens, SH, GB Gorman, QTR Palm〇re and GM Whitesides, Science, 265, 1418 (1994); Larsson, R. and B. Folkesson, J. Appl. Electrochem., 20, 907 312XP/invention specification (supplement) 97 -01/96135329 200915654 (1990); and Kummer, J τ and D rn · J* K and 〇ei, J. Appl. hlectrochem., 15, gig (1985). In addition, the rate at which the oxidant mass is transferred to the electrode surface (which is equivalent to the limiting current density in electrochemical terms) is also higher because the solubility in oxygen is compared (depending on the partial pressure and temperature, it is 0.006 g/l to 0.04 g / liter), the solubility of the oxidizing agent in the redox fuel cell is higher than 50 g / liter of OJ. The characteristics of all such redox fuel cells are based on thermodynamic controversy, which theoretically allows the conversion of chemical energy into electrical energy efficiency of up to 8〇% to 9〇% using non-precious gold. However, the main problem in non-redox fuel cells is the oxidizing agent <reduction of the reoxidation efficiency of the formula (emulsifier regeneration), see Urss〇n, R. and B. (10), J. Appl. Electrochem·, 2〇, 9〇 7 (199〇); and ^ ugly ^, j.' T. and D. and D.-G. Oei, J. Appl. Electrochem., 15 619 (1985). For example, 'r-ray irradiation was used for H2_Fe3+/Fe2+ redox batteries for the reoxidation of F2+ to F3+, as revealed by Yearger, j. F, r. j.

Bennett and D. R. Allenson, Proc. Ann. Power Sources c〇nf·,16’ 39 (1962)。雖然燃料電池本身之效率極高, 但已報告的氧化劑再生效率皆遠低於丨5%。於其它情況 下,氧化劑之再生係使用氧於昂貴之催化劑上進行[參考 Bergens, S. H., G. B. Gorman, G. T. R. Palmore and G. M. Whitesides’ Science, 265,1418 (1994)],其具 有免除使用非翻陰極之優點,但仍然緩慢。 因此,為了發展出一種有高總效率之實際上可行之氧化 312XP/發明說明書(補件)97·〇1/96135329 7 200915654 逛原燃料電池’需要發展出一種氧化劑再生之有效方法, 如揭示於 Larsson,R· and B. Folkesson,J. Appl.Bennett and D. R. Allenson, Proc. Ann. Power Sources c〇nf·, 16’ 39 (1962). Although the efficiency of the fuel cell itself is extremely high, the reported oxidant regeneration efficiency is well below 丨5%. In other cases, the regeneration of the oxidant is carried out using oxygen on an expensive catalyst [Ref. Bergens, SH, GB Gorman, GTR Palmore and GM Whitesides' Science, 265, 1418 (1994)], which has the advantage of eliminating the use of non-turning cathodes. Advantages, but still slow. Therefore, in order to develop a practically feasible oxidation 312XP/invention specification (supplement) 97·〇1/96135329 7 200915654, it is necessary to develop an effective method for oxidant regeneration, as disclosed in Larsson, R. and B. Folkesson, J. Appl.

Electrochem. , 20, 907 (1990)。 藉化營性微生物諸如鐵氧化酸硫桿菌(A. ferrooxidans)將亞鐵離子有氧氧化成為鐵離子之過程發 現已經超過半個世紀’參考A.R. c〇lmer,M E. Hinkle,Electrochem., 20, 907 (1990). The process of aerobic oxidation of ferrous ions to iron ions by a campogenic microorganism such as A. ferrooxidans has been found for more than half a century. Reference A.R. c〇lmer, M E. Hinkle,

Science,1 06 (1947) 253-256。此等微生物廣用於冶金 學用於貴金屬(An)、重金屬〇J)、及卑金屬(Cu、Ni、Zn、Science, 1 06 (1947) 253-256. These microorganisms are widely used in metallurgy for precious metals (An), heavy metals (J), and base metals (Cu, Ni, Zn,

Co)之滲濾,以及廣用於環境保護。微生物鐵氧化係基於 下列淨反應: ⑴ 4Fe2++4H++〇2=4Fe3++2H2〇 業已顯不比較使用氧於pH 1至pH 2之純粹化學反應所 得速率,微生物氧化亞鐵離子之速率更快5〇〇,〇〇〇倍,夂 考 D.T. Lacey,F. Laws〇n,Bi〇techn〇i〇gy _Percolation of Co) and its widespread use in environmental protection. Microbial iron oxidation is based on the following net reactions: (1) 4Fe2++4H++〇2=4Fe3++2H2〇 has not compared the rate of pure chemical reaction using oxygen at pH 1 to pH 2, and the rate of microbial oxidation of ferrous ions is faster. 5〇〇,〇〇〇倍,夂考 DT Lacey,F. Laws〇n,Bi〇techn〇i〇gy _

Bioengineering, 12 (1970) 29-50 。 〇當於亞鐵離子之鐵氧化上生長時,鐵氧化酸硫桿菌使用 微生物業界已知之最狹窄的熱力學限制之一,參考W】Bioengineering, 12 (1970) 29-50. When growing on the iron oxide of ferrous ions, Thiobacillus ferrooxidans uses one of the narrowest thermodynamic limitations known to the microbial industry, with reference to W]

Ingledew,Biochimica et Rinnh.rc· » · cl〇Physica Acta, 683 (1982) 89-117。藉此種微生物之鐵氧化之雷 孔K電子轉運鏈含有兩個丰 '反應: (2) 4Fe2+=4Fe3++4e" 該反應係於細胞膜外部進行及 4e +O2+4H =2H2〇 該反應係於細胞膜内部進行 (3) 參考 M. Nemati, S.T.L. 312XP/發明說明書(補件)97-01/96135329 8 200915654Ingledew, Biochimica et Rinnh.rc· » cl〇Physica Acta, 683 (1982) 89-117. The Thunder K electron transport chain of this kind of microbial iron oxidation contains two abundance reactions: (2) 4Fe2+=4Fe3++4e" The reaction is carried out outside the cell membrane and 4e + O2+4H = 2H2 〇 the reaction system Performed inside the cell membrane (3) Reference M. Nemati, STL 312XP / Invention Manual (supplement) 97-01/96135329 8 200915654

Harrison, g.S. Hansford, C. Webb, Biochemical Engineering J〇urnal,i (1998) m-19〇。電子係透過 三種電子载劑之連鎖亦即鏽花青(rusticyanin)、胞色素 c及胞色素a透過細胞壁遞送。 鐵氧化細菌鐵氧化酸硫桿菌為營養自給的微生物,亦即 使用通常係得自大氣的二氧化碳(c〇2)作為唯一碳源,而 無機反應諸如亞鐵離子氧化(卜3)供應能量。由鐵氧化酸 硫桿菌進行鐵之實驗室實驗工廠規模氧化及工業規模氧 化已經於不同類型之生物反應器作研究。於含有生長於亞 鐵離子之鐵氧化酸硫桿菌之生長反應器中之尋常培養條 件下’氧化還原電位可達到1 000毫伏特數值,參考m. K.C.A.M. Luyben,J.J. Heijnen,Hyfr〇metaUurgy,48’ (1998) 1-26。因反應(3)之電位相對於標準氫電極 為1120毫伏特,高達約90%反應能用於製造Fe3+,而其 餘能量(約10%)可供微生物用於生質的形成及維持。、 ,鐵氧化酸硫桿菌進行亞鐵離子之生物氧化已經於電化 學電池用於若干不同目的。於全部此等情況下,於陰極表 面所進行之電化學反應為: κHarrison, g.S. Hansford, C. Webb, Biochemical Engineering J〇urnal, i (1998) m-19〇. The electrons are delivered through the cell wall through a chain of three electron carriers, namely rusticyanin, cytochrome c and cytochrome a. The iron oxidizing bacteria Thiobacillus ferrooxidans is a self-sufficient microorganism, that is, carbon dioxide (c〇2) which is usually obtained from the atmosphere as a sole carbon source, and an inorganic reaction such as ferrous ion oxidation (bu 3) supplies energy. The laboratory scale plant oxidation and industrial scale oxidation of iron by ferric acid oxidizing bacteria has been studied in different types of bioreactors. The redox potential can reach a value of 1 000 millivolts under ordinary culture conditions in a growth reactor containing Thiobacillus ferrooxidans grown in ferrous ions, see m. KCAM Luyben, JJ Heijnen, Hyfr〇metaUurgy, 48' (1998) 1-26. Since the potential of the reaction (3) is 1120 mV with respect to the standard hydrogen electrode, up to about 90% of the reaction can be used to produce Fe3+, and the remaining energy (about 10%) can be used by the microorganism for the formation and maintenance of the biomass. The biooxidation of ferrous ions by Thiobacillus ferrooxidans has been used in electrochemical cells for a number of different purposes. In all of these cases, the electrochemical reaction carried out on the cathode surface is: κ

Fe3++e-=Fe2+ (4) 已經說明數種不同反電極(陽極)反應: A)根據下示反應之氧生成: (5a) 要施加外部電位來還原 鐵離子鐵,而於另一個電極上製造氧氣。 2H2〇=4e'+〇2+4H+ 於該種情況下,需 於一個電極上的 此種系統已經用 312XP/發明說明書(補件)97-01/96135329 9 200915654 於微生物酶基質(亞鐵離子鐵)之連續再生,結果導致製造 極高電池產率,參考 N. Matsumoto,S. Nakasono,N. Ohmura, H. Saiki, Biotechnology and Bioengineering, 64 (1999) 71 6-721 ;及 S.B. Yunker,J.M. Radovich, Biotechnology and Bioengineering, 28 (1986) 1867-1875 。 B) 鐵離子之氧化: _ Fe2+=Fe3++e— (5b) C 此型電生物反應器已經用於藉測量電流值來測定微生物 亞鐵離子鐵之氧化速率,參考H.P. Bennetto,D.K. Ewart, A. M. Nobar, I. Sanderson, Charge Field Eff. Biosyst.—2, [Proc. Int. Symp. ], (1989) 339-349; 及 L Kobayashi, K. Ibi, T. Sawada, Bioelectrochemistry and Bioenergetics, 39 (1996) 83-88 。 C) 有機化合物諸如曱醇之氧化: /.... CH3〇H+H2〇=C〇2+6H++6e' (5c) 本系統用於水中污染物(曱醇)之電化學分解,參考A. Lopez-Lopez, E. Exposito, J. Anton, F. Rodriguez-Valera, A. Aldaz, Biotechnology and Bioengineering, 63 (1999) 79-86 。 共同審查中之美國專利申請案第10/562, 198號(WO 2005/001981公告案)首次揭示基於鐵離子之陰極還原成 為亞鐵離子,加上藉亞鐵離子之氧化來微生物再生鐵離子 312XP/發明說明書(補件)97-01/96135329 10 200915654 之電力產生用之燃料電池。太 ^ ± 本W〇公開文獻中所揭示之系 其中所揭示之微生物並未提供曰杜易中毒之含翻陽極;2) Fp + 2/P 4操作條件;3)僅限於 e —乳匕遇原偶;及4)揭示有限之膜數目。 則=鐵氧化酸硫㈣進行亞鐵離子鐵氧化之動力學 顯不面達90%之微生物Fe3++e-=Fe2+ (4) Several different counter-electrode (anode) reactions have been described: A) Oxygen formation according to the reaction shown below: (5a) External potential is applied to reduce iron ion iron while the other electrode is applied Oxygen is produced on it. 2H2〇=4e'+〇2+4H+ In this case, such a system to be used on one electrode has been used in the microbial enzyme matrix (ferrous ion) using 312XP/invention specification (supplement) 97-01/96135329 9 200915654 Continuous regeneration of iron) results in extremely high cell yields, see N. Matsumoto, S. Nakasono, N. Ohmura, H. Saiki, Biotechnology and Bioengineering, 64 (1999) 71 6-721; and SB Yunker, JM Radovich, Biotechnology and Bioengineering, 28 (1986) 1867-1875. B) Oxidation of iron ions: _ Fe2+=Fe3++e—(5b) C This type of electro-bioreactor has been used to measure the oxidation rate of microbial ferrous iron by measuring the current value, refer to HP Bennetto, DK Ewart, AM Nobar, I. Sanderson, Charge Field Eff. Biosyst.—2, [Proc. Int. Symp.], (1989) 339-349; and L Kobayashi, K. Ibi, T. Sawada, Bioelectrochemistry and Bioenergetics, 39 ( 1996) 83-88. C) Oxidation of organic compounds such as decyl alcohol: /.... CH3〇H+H2〇=C〇2+6H++6e' (5c) This system is used for the electrochemical decomposition of pollutants (sterols) in water, References A. Lopez-Lopez, E. Exposito, J. Anton, F. Rodriguez-Valera, A. Aldaz, Biotechnology and Bioengineering, 63 (1999) 79-86. U.S. Patent Application Serial No. 10/562,198 (WO 2005/001981), which is incorporated by reference in its entirety, discloses the reduction of ferrous ions based on the reduction of iron ions, and the regeneration of iron ions by the oxidation of ferrous ions. / Invention Manual (Repair) 97-01/96135329 10 200915654 A fuel cell for power generation. The system disclosed in the publication is not disclosed in the disclosure of the microorganisms disclosed in the literature; 2) Fp + 2 / P 4 operating conditions; 3) limited to e - milk 匕The original couple; and 4) reveal a limited number of membranes. Then = iron oxysulfate (4) kinetics of ferrous ion iron oxidation

μ攸生物乳還原之唧伯斯(Gibbs)能量可用 即可用於發電,而其餘部分係由微生物耗 胞生質的形成。也發現鐵氧化酸硫桿菌之生長 H干條件下由鐵的氧化解偶,參考M. Nemati,S.T.L arnson, Q. S. Hansford, C. Webb, Biochemical :rring Jo110"1,1 ( 1998) 171,,換言之此等 破生物可於零生長條件下氧化亞鐵離子。 r f Γ Γ Γ主要係經由人為二氧化碳排放所造成的地球 二人類所面臨的重大問題之-。目前最有展 m夕一乳化碳釋放入大氣之方式似乎係由化石燃料 f牌轉換成氫經濟,參考LQ.M. kkris,InternatlonalThe Gibbs energy of the μ攸 bio-milk reduction can be used for power generation, while the rest is formed by microbial consumption of cytosol. It has also been found that the growth of Thiobacillus ferrooxidans is oxidatively decomposed by iron under dry conditions, see M. Nemati, STL arnson, QS Hansford, C. Webb, Biochemical: rring Jo110 " 1, 1 (1998) 171, in other words These organisms can oxidize ferrous ions under zero growth conditions. r f Γ Γ Γ is mainly caused by anthropogenic carbon dioxide emissions caused by the major problems faced by the Earth. At present, the most popular way to release emulsified carbon into the atmosphere seems to be the conversion of fossil fuels into hydrogen economy, refer to LQ.M. kkris, Internatlonal

Journal of Hydrogen Energy, 2? (2002) 731-740 〇 ^ M已知之氧/氫燃料電池當使用氫作為燃料時不會產 ^二氧化碳。因此使用基於化營性微生物之生物燃料電池 為極佳,該種生物燃料電池具有極高效率,且於操作時可 耗用來自於大氣之二氧化碳。 【發明内容】 树明提供-種使用氧化劑再生方法且耗用二氧化碳 之氧化還原燃料電池。 312XP/發明說明書(補件外⑴舰35329 11 200915654 本發明提供一種4 檀生物燃料電池系統,包含: & ) 一燃料電池包括 i) 一陰極室,合古 μ 水性電解質陰極電極及一含有氧化還原偶之 之第-点昌1亡h丄 第一成係較该氧化還原偶 弟一成貝具有較咼之氧化態; ii) 一陽極室,各士 有—%極電極及一被泵送至該陽才 室内之含有氫成分之极刺 疋王成靖極 離;以及 ·、、、枓,該陽極室係與該陰極室電性分 b) 一生物反應器,包括一包圍化營性金屬籬早翁几他 碑# μ rT 屬離子氧化微生物係選自於由鉤端 螺方疋 li (Leptospiri 1 iu )麗 σ " . iUm)屬成貝(鐵氧化鉤端螺旋菌 (Leptospiri 1 lum ferrn^ m (Ferroplasma)屬成員、酸 ’、體 杯囷(Acidlthlobacillus) '氧化酸硫桿 ® (Acidithiobacillus 除外)及其混合物所組成之組群;用於將含 有氧(〇2)及二氧化碳之流體$ah 用於將3 观體泵廷至生物反應器之幫浦,該 生物反應器係與陰極室流連 ° ^ σ 、 L連通而使含有氧化還原偶之第 二成員的水溶液係由該降托 田靴極至循環至該生物反應H,及並Journal of Hydrogen Energy, 2? (2002) 731-740 〇 ^ M Known oxygen/hydrogen fuel cells do not produce carbon dioxide when hydrogen is used as a fuel. Therefore, biofuel cells based on chemical micro-organisms are extremely excellent, and such biofuel cells are extremely efficient and can consume carbon dioxide from the atmosphere during operation. SUMMARY OF THE INVENTION Shuming provides a redox fuel cell that uses an oxidant regeneration method and consumes carbon dioxide. 312XP/Invention Manual (Repair (1) Ship 35329 11 200915654 The present invention provides a 4 Tan biofuel cell system comprising: &) A fuel cell comprising i) a cathode chamber, a Hegu μ aqueous electrolyte cathode electrode and an oxidation containing The first one of the first one is a oxidized state compared to the one of the redox couples; ii) an anode chamber, each of which has a -% electrode and a pumped The spurs of the stagnation of the stagnation of the scorpion, Wang Chengjing, and the cathode chamber are electrically divided into b) a bioreactor, including a surrounding camping hedge早翁几他碑# μ rT genus oxidized microorganisms are selected from the genus Leptospiri 1 um li (Leptospiri 1 iu ) Li σ " . iUm) genus (Leptospiri 1 lum ferrn ^ m (Ferroplasma) member, acid ', Acidlthlobacillus' oxidized acid sulfur rod ® (except Acidithiobacillus) and its mixture; used to contain oxygen (〇2) and carbon dioxide fluid $ Ah used to pump 3 eyes to the body a pump of the reactor, wherein the bioreactor is in communication with the cathode chamber, wherein the aqueous solution containing the second member of the redox couple is circulated to the biological reaction H, and and

中於該陰極電極之反應為於 A Μ 0 軚呵軋化態之氧化還原偶之 第一成員還原成於較低f斗能4 Ρ 疋η两之 .^ ^ 罕乂低乳化態之氧化還原偶之第二成 貝,以及其令於陽極電極之反應為燃料進行電化學氧化來 製造電子(e-)及質子0Γ),其中 予氧化來 "T貝子(H )係由陽極室穿越 進入水性電解質中,以及苴由认& 牙m 及其中於較低氧化態之氧化還原偶 之第二成員係於該容器内 年 疋原偶 円之乳存在下’於有氧氧化反應 312XP/發明說明書(補件)97-01/96135329 12 200915654 I ’猎錢營性金屬離子氧化微生物而被氧化回該於 化還原偶之第-成員,以及其中電力係經由: 負载與錢極電極及陰極電極間產生電連接而獲得。 二 ΐ:1 月之—具體例中’生物燃料電池係基於鐵離子之 ::::鐵離子,加上藉亞鐵離子之氧化,微生物再 "以陽極上有燃料(諸如但非限於 離子之微生物再生可藉化營性微生物 Ζ ,如㈣螺旋菌屬(鐵氧化釣端螺旋菌本身除外)專;= 桿菌屬(鐵氧化酸硫桿菌本身除外)及其混合物 括鐵氧化鉤端螺旋菌及鐵氧化酸硫桿菌。 =由參考後文細節說明及關將更瞭解本發明之功能 及優點。 【實施方式】 此處說明之系統大致上係針對生物燃料電池之具體 例雖然本發明之具體例係揭示於此處,但所揭示之且體 I;例僅供舉例說明之用,須瞭解本發明係有關多種盆^形 ’附圖並未照比例繪製,料結構可能被誇張或 、,目小來顯讀定結構之細節’而相關元件被去除以防遮掩 树明之新穎態樣。因此’此處揭示之特定結構及功能細 即並非解譯為限制性,反而只作為申請專利範圍之基礎, 以及作為允許熟諳技藝人士以多種方式採用本發明之代 表性基礎。用於指示及非限制性目的,舉例說明之具體例 全部皆係針對生物燃料電池之具體例。 如此處使用,「約」-詞當結合範圍之粒子尺寸或 312ΧΡ/發明說明書(補件)97-01/96135329 13 200915654 結合其它物理性質或特性使用時,表示涵蓋可能存在於尺 寸範圍的上限至下限之些微變化,因此並未排除滿足大部 为平均尺寸,但統計上尺寸可能存在於此區範圍以外之具 體例。並未意圖排除諸如得自本發明之具體例。舉例言 之,本發明之具體例係使用具有孔隙大小小於約〇 2微米 之質子傳導膜,但並未排除孔隙大小略大於此範圍之 傳導膜。 ' 大致上顯示於10之生物燃料電 爹照圖 口。/ ,一〜山%仰_王踯汉應 益系統包括-燃料電池區段12,其包括由一膜18所隔開 之一陰極室14及一陽極室16。 陽極2〇可為錢翻碳,諸如鑛銘碳亶€。除了鐘鈾碳之外 ::用之其它化合物包括鉑組之其它金屬及其混合物。陽 也二括非鉑陽極催化劑諸如碳化鎢及其它含過渡金屬 之物質及其混合物。除了 # “ 了反化鎢之外,磷化鐵及磷化鈷也 用作為催化劑(僅舉出若干實例 ==造陽極為極佳,原因在於無需二= 等雜;:中广電極不會因諸如-氧化碳及含硫化合物 於固具體例中’過渡金屬化合物包含過渡金屬 叔末成形為多孔陽極電極έ 取段缶屬 之陽極20之表面可藉施用。面對陰極且暴露於電解質 極表面來形成為疏水;生。讓二::諸:施用鐵氟龍至陽 質的入侵陽極室内。 紇成疏水性可防止電解 質子可透性膜可為陽離 又奐膜(例如Na f i on質子交 312XP/發明說明書(補件)97-〇1/96i35329 14 200915654 換膜)、陰離子交換膜或其組合。膜可為對質子有 但對金屬離子較不具有傳導性 【生 遥擇性膜之一個實例為日本旭硝 透 .A 不旭硕子公司(Asahi Glass)所 =之Se—。雖然膜18較佳為質子交換膜晴, 但其它類狀料料施體上分離陰極室14中之 陽Ή中之氣體(例如氯燃料)。膜也可為複合型膜 Nafion-Selemion 膜。 例如膜18並非必然為質子交換膜,膜18大致上可為質 :傳導膜典型例包括但非限於恰實體上隔開陽極電極盥 陰極電極之飽和以陰極室内所含電解質(陰極電解質^ Hit性非導f材料。非限制性實例包括具有孔徑小於 〇· 2微米之石肖基纖維素臈’·透析膜;逆滲透膜。此外,可 免除膜,陽極與陰極可由液體電解質所分開。 另外於燃料電池之膜可為離子交換膜,該膜也可為渗 透選擇性膜,只對某些離子例如質子有傳導性而對較重的 離子諸如麟衫具㈣導性。也可❹含有前述任一型 離子交換膜之複合材料。 陰極電極係由化學惰性導電材料諸如碳及不鑛鋼所製 成。_解陰極也可含有催化劑,催化劑可為數種催化劑 者匕括丨、里金、鈾、鶴碳化錯、把、及其它熟諳 技藝人士已知之催化劑。陰極電極可包含由碳或不鏽鋼材 料所製成之纖維層’或於另-個具體例中,陰極可為實心 板。 催化劑可為純質 或催化劑可為與不鏽鋼、鈦、活性及 312XP/發明說明書(補件)97·〇】/96〗35329 15 200915654 無活性碳粉及活性碳纖及無活性碳纖之混合物中之任一 者。 生物反應器26係與燃料電池區段12呈流連通。可使用 之適當生物反應益26係揭示於d. G. Karamanev, C. Chavarie, R. Samson, Biotechnology and Bioengineering, 57 (1998) 471-476,該文獻揭示氣流升高系統與含纖維 制動化微生物細胞撐體之組合設計。生物反應器之總體積 為2 · 2升。於若干具體例中,反流化床生物膜反應器也可 使用,例如揭示於 D.G. Karamanev,L.N. Nikolov,The reaction in the cathode electrode is the reduction of the first member of the redox couple in the A Μ 0 軚 rolling state to the lower f bucket energy 4 Ρ 疋 η η. ^ ^ 乂 乂 low emulsified state redox Even the second scallop, and the reaction of the anode electrode to the fuel for electrochemical oxidation to produce electrons (e-) and protons Γ), wherein the pre-oxidation "T shell (H) system is traversed by the anode chamber In the aqueous electrolyte, and the second member of the oxime and the redox couple in the lower oxidation state is in the presence of the milk of the original sputum in the container, 'aerobic oxidation reaction 312XP/inventive Specification (supplement) 97-01/96135329 12 200915654 I 'Hunting metal ions oxidize microorganisms and are oxidized back to the first member of the reduction couple, and wherein the power system is via: load and money electrode and cathode electrode Obtained by making an electrical connection. Erqi: January - In the specific case, 'biofuel cells are based on iron ions:::: iron ions, plus oxidation by ferrous ions, microbes again" with fuel on the anode (such as but not limited to ions The microbial regeneration can be carried out by chemical microbial agents, such as (4) spirochetes (except for the iron-oxidized fish-tailed spirochetes themselves); = bacillus (except for the genus Thiobacillus ferrooxidans itself) and mixtures thereof And the ferrooxidic acid thiobacillus. The functions and advantages of the present invention will be better understood by reference to the following detailed description. [Embodiment] The system described herein is generally directed to a specific example of a biofuel cell, although specific to the present invention. The embodiments are disclosed herein, but are disclosed herein for purposes of illustration only, and the invention is not intended to be The small details are used to read the details of the structure' and the relevant components are removed to prevent obscuring the novel. Therefore, the specific structure and function disclosed here are not interpreted as restrictive, but instead are only applied for patents. The basis of the scope, as well as the representative basis of the present invention in a variety of ways, are intended to be used by those skilled in the art. For illustrative and non-limiting purposes, specific examples are all specific examples of biofuel cells. "约约"-- when the particle size of the binding range or 312ΧΡ/invention specification (supplement) 97-01/96135329 13 200915654, when used in combination with other physical properties or characteristics, means that there are some slight variations from the upper limit to the lower limit that may exist in the size range. Therefore, the specific example in which the average size is satisfied, but the statistical size may exist outside the range of the region is not excluded. It is not intended to exclude specific examples such as those obtained from the present invention. For example, the specific examples of the present invention are A proton conducting membrane having a pore size of less than about 微米2 μm is used, but a conductive membrane having a pore size slightly larger than this range is not excluded. 'Apparently shown in Fig. 10 of the biofuel electrode. / , 1~山%仰The Wang Haohan system includes a fuel cell section 12 including a cathode chamber 14 and an anode chamber 16 separated by a membrane 18. The anode 2〇 can be carbonized, such as mine carbon. In addition to the uranium carbon: Other compounds used include other metals in the platinum group and mixtures thereof. The anode also includes non-platinum anode catalysts such as tungsten carbide and Other transition metal-containing materials and mixtures thereof. In addition to #" reversed tungsten, iron phosphide and cobalt phosphide are also used as catalysts (only a few examples == making anodes is excellent, because there is no need for two = Heterogeneous;: Zhongguang Electrode will not be formed by the surface of the anode 20 which is formed by the transition metal compound including the transition metal compound, such as carbon monoxide and sulfur-containing compound. Facing the cathode and exposing to the surface of the electrolyte pole to form a hydrophobic; raw. Let two:: all: application of Teflon to the intrusion in the anode chamber. Hydrophobicity prevents the electrolyte permeable membrane from being cationized and decimated (eg, Na fi on proton exchange 312XP / invention specification (supplement) 97-〇1/96i35329 14 200915654 membrane change), anion exchange membrane or Its combination. The membrane may be for protons but less conductive to metal ions. [An example of a bioselective membrane is Japan Asahi Glass. AAhi Glass = Se-. While the membrane 18 is preferably a proton exchange membrane, other types of material are applied to separate the gas (e.g., chlorine fuel) in the impotence in the cathode chamber 14. The membrane may also be a composite membrane Nafion-Selemion membrane. For example, the membrane 18 is not necessarily a proton exchange membrane, and the membrane 18 is substantially qualitative: a typical example of a conductive membrane includes, but is not limited to, a solid electrolyte separated by a cathode electrode and a cathode contained in the cathode chamber (cathode electrolyte) Non-conductive material f. Non-limiting examples include a stone-based cellulose 臈' dialysis membrane having a pore diameter of less than 2 μm; a reverse osmosis membrane. Further, the membrane may be dispensed with, and the anode and cathode may be separated by a liquid electrolyte. The membrane may be an ion exchange membrane, and the membrane may also be a permselective membrane, which is conductive only to certain ions such as protons and to (eg) a heavier ion such as a cymbal. It may also contain any of the foregoing types. A composite material of an ion exchange membrane. The cathode electrode is made of a chemically inert conductive material such as carbon and non-mineral steel. The cathode can also contain a catalyst, and the catalyst can be a plurality of catalysts including bismuth, ruthenium, uranium, and crane carbonization. Catalysts known to those skilled in the art, the cathode electrode may comprise a fibrous layer made of carbon or stainless steel material or in another specific example The cathode can be a solid plate. The catalyst can be pure or catalyst can be combined with stainless steel, titanium, active and 312XP/invention specification (supplement) 97·〇]/96〗 35329 15 200915654 Inactive toner and activated carbon fiber and inactive Any of the carbon fiber mixtures. The bioreactor 26 is in flow communication with the fuel cell section 12. The appropriate biological reaction can be used in the 26 series disclosed in d. G. Karamanev, C. Chavarie, R. Samson, Biotechnology And Bioengineering, 57 (1998) 471-476, which discloses a combination design of a gas-flowing system with a fiber-containing braked microbial cell support. The total volume of the bioreactor is 2 · 2 liters. In several specific examples, Fluidized bed biofilm reactors can also be used, for example, as disclosed in DG Karamanev, LN Nikolov,

Environmental Progress’ 15 (1996) 194-196。Environmental Progress' 15 (1996) 194-196.

生物反應26係用於將亞鐵離子高度有效轉換成鐵離 子,亦即用於氧化劑再生。就定義上而言,生物反應器為 一種微生物於其中生長且進行生物化學反應(諸如於本例 中為亞鐵離子氧化)之容器。於證實本生物燃料電池效率 之研九中生物反應器%係以得自銅礦之含有鉤端螺旋 菌屬及鐵氧化酸硫桿菌之混合培養(1〇% v/v)接種。培養 基為含有G.4 Μ亞鐵離子呈硫酸鹽及SUverman咖 Lundgren之營養素鹽組成物(具有pJJ ]8)之水溶液。冷 速200升/小時之空氣喷淋入生物反應器26作為氧及二氧L 二T來源。於鐵氧化酸硫桿菌細胞自生制動於含纖維撑 二表面上之後’以每小時每升生物反應器12克之速 祭亞鐵離子之氧化。—旦於生物反應器培養基中之9 鐵離子經過氧化時,後者係使用螺動幫浦以 之流速循環通過燃料電池1〇之陰極室…陽極室」: 312XP/發0纖明書(補件)97_Q1軸35329 16 200915654 使用螺動幫浦(Cole-Parmer)於〇·3毫升/秒之速率被供 應以氫氣。 與微生物接觸之全部液體(毛細或大量、於生物反應器 或於陰極室、含鐵或不含鐵)須於含有一種或多種溶解養 分鹽類來辅助微生物的生長。較佳養分鹽包括硫酸錢、鱗 酸鉀、硫酸鎮、氣化鉀、確㈣、氯化約。典型此等鹽類 之組成係由Silverman及Lundgren說明(j.Bioreactor 26 is used to highly efficiently convert ferrous ions into iron ions, that is, for oxidant regeneration. By definition, a bioreactor is a container in which a microorganism grows and undergoes a biochemical reaction, such as ferrous ion oxidation in this example. The % bioreactor in the study of the efficiency of the biofuel cell was inoculated with a mixed culture (1% v/v) containing Leptospirillum and Thiobacillus ferrooxidans from copper ore. The medium is an aqueous solution containing a nutrient salt composition of G.4 ruthenium ion as a sulfate and a surfactant of Surman coffee Lundgren (having pJJ ] 8). Air at a rate of 200 liters per hour was sprayed into the bioreactor 26 as a source of oxygen and dioxin. After the autologous brake of the ferrooxidic acid thiobacillus cells on the surface of the fiber-containing support, the oxidation of ferrous ions was sacrificed at a rate of 12 grams per liter of bioreactor per hour. Once the 9 iron ions in the bioreactor medium are oxidized, the latter is circulated through the fuel cell 1 〇 cathode chamber using the screw pump at the flow rate...anode chamber": 312XP/发0纤明书(补件) 97_Q1 Axis 35329 16 200915654 A hydrogen pump was supplied at a rate of 3 ml/sec using a Cole-Parmer. All liquids in contact with the microorganisms (fine or large, in the bioreactor or in the cathode compartment, with or without iron) must contain one or more dissolved nutrient salts to aid in the growth of the microorganisms. Preferred nutrient salts include sulfuric acid, potassium citrate, sulphuric acid, potassium sulphate, indeed (d), and chlorinated. Typical composition of these salts is illustrated by Silverman and Lundgren (j.

Bacteriology,ν.77,ρ·642 (1959))。於一個具體且體 例中,生物反應器中之液體含有任一種無機離子… 合,諸如 Ca'NH/、Κ+、Mg2+、SO,、Ν〇" ρ〇43-、及 。 化營性金屬氧化微生物包括釣端螺旋菌屬成員(鐵氧化 釣端螺制本身除外)、鐵原體屬成員、酸硫桿菌屬成員 (鐵乳化酸硫桿菌本身除外)及其混合物,混合物中可包括 鐵氧化鉤端螺旋菌及鐵氧化酸硫桿菌。 鐵原體屬成員包括但非限於嗜酸鐵原體仙⑽a acidiPMlum)及酸武器鐵原體(ι^Γ〇ρΐ&_ acihrmanus)。鉤端螺旋菌屬成員包括但非限於嗜鐵鉤端 螺,菌(Leptospirillumferriphilum)、熱鐵氧化鉤端螺 旋菌(Lept〇spirillum thermoferrooxidans)及嗜鐵重象 ^ (Leptospiri 1 lum . f errodi azotrophum) 〇 當所選用之氧化還原偶為Fe3+/Fen時,於陽極之氫之 化反應: & 2H2=4H++4e" (6) 加上於陰極之鐵離子之還原: 312XP/發明說明書(補件)97-01/96135329 200915654 4Fe3i+4e~=4Fe2i (7) 由反應(6)所形成的質子(η。橫跨質子傳導性固體電解質 18至陰極至14内。於陰極所形成之亞鐵離子(^^2+)連同 貝子被泵送至生物反應器,於該處根據反應式(〗)藉微生 物氧化成為鐵離子(F,),然後返回燃料電池之陰極室14 用於下一發電週期。於生物燃料電池]〇所進行之她 (化學反應加生物化學反應)可、經由將反應式 總獲得: 2H2+〇2 = 2H2〇 ⑻ 、因此於生物燃料電池1〇之總反應係與於氳_氧燃料電 池之總反應相同。微生物加鐵離子單純係用作為生物催化 劑,促成陰極反應速率大增。用於發電之能量與用於微生 物生長之能量間之比容易經由改變培養條件加以控制,所 改變之培養條件諸如為生物反應器流出物中之鐵離子對 亞鐵離子之濃度比。甚至經由將微生物生長與亞鐵離子氧 化解耦可讓此比值變成無限大。於該種情況下,不會耗用 二氧化碳’也不會製造生物物質。 因此,於理想條件下(電池内並無能量損耗之條件下), 至多反應式(8)之唧伯斯自由能之9〇%可用於發電,剩餘 m將由微生物用於固定二氧化碳,結果導致生物物質的 形成以及電池的維持。如前文說明,目前基於氫及氧工作 且於二電極使用鉑作為催化劑之燃料電池具有約5〇%電流 效率二其餘係呈熱釋放’熱量經常難以利用。使用相心 料及氧化劑,新穎生物燃料電池將可發電且製造微生物物 312Xp/發明說明書(補件)97-01/%135329 18 200915654 質。 因石厌電極上的陰極反應式(7)遠比較鉑電極上的氧還原 更快,且因氧還原速率為目前使用之燃料電池之限制因 素,故此處所揭示之燃料電池將大為改良燃料電池工作之 經濟效益及環保效應,原因在於^提高電流效率;2)免 練陰極之㈣使用;3)由大氣去除二氧化碳;及4)製 造尚度有用之產物以及單細胞蛋白質。 業已顯示鐵氧化酸硫桿菌含有44%蛋白質,26%脂質, 15%碳水化合物及至少兩種維生素B,參考& Nature,281’ 555 (1979)。未知此型生物物質有任何負 面生理影響,參考 Tributsch,H,Natui^,28ι, (1979)。 進行特徵化生物燃料電池1G之研究,全部所列舉的電 位白係相對於標準氫電極(SHE)之電位。電位係使用連接 至Or ion pH-mV儀之翻電極測定。 含有化營性微生物之制動混合培養之生物反應器用來 以批次方式氧化亞鐵離子。於達到亞鐵離子氧化之約_ 轉化後;^才目由生物反應器26泉送至燃料電池之陰極室 14陰極书位與電流密度間之關係顯示於目2。總鐵濃度 為:_指’ PH & 1.8。可知雖然陰極電位略有下降,但於 35笔安/平方厘米之電流密度時’陰極電位為1毫伏 特=電位之下降係類似於參考文獻中對W自上進行電化 子氧通原所報告之電位降’於某些情況下略小於後者電位 312ΧΡ/發明說明書(補件)97-01/96135329 19 200915654 升化m迷的影響。流速係於〇至u毫 姆。無電負載之Γ果Γ干負於載圖亦3即〇騎及5歐 只有小量增加,由610蒼你^不於圖3 °可知電池電位 少於⑽。全部電位的升古fcf升高至661毫伏特,或升高 行的升间皆係由於陰極,並未觀察得杯 何乳化劑流速對陽極電未觀察侍任 於零負載時,流速應對電池電::二響:圖3)。理論上’ 取j此係由於父又電流。也研究於 時,氧化劑流速對燃料電、 負载 該影響不比J = 2的 果(圖4)顯示 負载時的影響顯著。當流速由〇 5毫升 、似开同馬30%。此笑&士 s时一 毫升/秒時,氧化劑有若;質果量 流速時’低於2 ^Ddt Α 右十質罝移轉限制。於高於此值之 μ速時,未觀察得質量移轉極限。 究於數小時操作期間,燃料電池之安定性。發現(圖 5)電麗-電流特性於3.5小時期間並無顯著變化。於另一 f實驗中,生物燃料電池連續超過6個月而無任何活性損 耗0 、車又佳除了發電之外’目j所示之燃料電池之獨特之處在 :將—氧化奴轉變成為電池生質。因此燃料電池於操作期 間耗用來自於大氣的二氧化碳,製造微生物生質,可用作 為單細胞蛋白質(SCP)。於目前scp技術中,當使用甲醇 作為酶基質之情況下可能發現有毒化學品,參考Ravindra, A· P.,Biotech. Adv,18,459 (2000)。於發明人之技 312XP/發明說明書(補件)97*01觸35329 20 200915654 f中1^除试生物污染(偶爾有毒),原因在於並I任何已 知之病原微生物可於pH 1至 =了已 完全無機培養基上生長。於呼多目ιΓ3ρ ^度硫酸鐵之 从―、九α·、0Β 夕目刖SCP之製法中,微生 木成問題,如 Ravindra,A. P.,Bi〇tech Ad 459 (2000)之討論。 .Adv’ 18’ J 1之生物燃料電池系統1〇要求氯流、氧流及二氧化 石厌。由於電生物化學反應結果,生物燃料電 ^熱、水(呈水蒸氣)及微生物細胞生質。氣被注;辦: 内’氧及二氧化碳被耗用,於生物反應器内 衣j和生質。於工業用亞鐵離子氧化生物反應器中,氧 及一氧化碳係由大氣所供應。 生物燃料電池具有下列特性,係基於#量平衡、立體化 予及動力學計算:於發電⑽千瓦電能期間:耗用4千克 :小時氫及4千克/小時二氧化碳;製造9千克/小時生質 SCP) ’且以10立方米生物反應器為佳。本案所提示之生 物燃料電池優於目前已知類型之燃料電池之 高效率⑽侧目對謂);無需使用貴金屬陰極:、以及) ^物燃料電池之獨特特徵為於其操作期間耗用二氧化 反乂此尚度有用的產物,亦即單細胞蛋白質(SCP)。 由總化學反應2H2+〇2=2H2〇所釋放之能量用來形成三種 產物:發電、t細胞蛋白質(scp)生質之製造及產熱。可 以下述方式操作燃料電池,發電於scp製造間之比設定於 〇至p無限大間之任何數值,亦即於「只製造生質而未發電」 至未裏造生質而只發電」間之任何位置。§cp製造上所 M2XP/發明說明書(補件)97-01/96135329 21 200915654 需的電子可能來自於反應2H2+〇2=2H2〇,或直接來自於電流 (微生物耗用來自於陰極的電子)。經由變更陰極電位或絰 由改變培養條件,諸如Fe2VFe3+濃度比,可控制scp/電力 比值。 須瞭解本發明非僅限於只使用氣態氫燃料之氣態氫/氧 燃料電池,反而也可使用可進行電化學氧化之其它含氫燃 料,例如甲醇、乙醇、甲烷,僅舉出數個實例。舉例言之 於甲醇燃料之情況下,陽極反應為: CH3〇H+H2〇=C〇2+6H++6e- 氫離子再度通過隔膜及燃料電池之其餘部分以及生物 燃料電池系統係與使用氣態氫燃料之生物燃料電池相同。 使用甲烧作為燃料之陽極反應為: CH4+〇2=C〇2+4H++4e- 於使用乙醇作為燃料之情況下,陽極反應為: C2H5〇H+3H2〇=2C〇2+12H++12e- 如此,於生物燃料電池之其它具體例中,燃料可為含有 氫成分之化合物(於使用氫氣作為燃料之情況下作為唯一 成分,或於化合物之情況下作為數種成分中之一者),燃 料之電化學氧化製造質子和電子係如同氳氣氧化,但也包 括其它產物,燃料係於呈氣體或液體形式之流體中泵送入 陽極室内。 雖然已經使用氧化還原偶Fe2+/Fe3+及鐵氧化微生物來 舉例祝明本發明,但熟諳技藝人士顯然易知可使用其它氧 化還原偶’除了此處所揭示之金屬氧化微生物以外之金屬 312XP/發明說明書(補件)97_qi/96135329 22 200915654 氧化微生物用於將於較低氧化態的 化回於較高氧化態之氧化還原偶中之第:成 效。其它氧化還原偶之非 成貝更為有 M〇’M◦、為可藉相同微生物:氧化之:=二V:'· 此處揭示也可將鐵氧化。 3例,於 如此處使用’「包含及「 為開放端而非排它性。特別,=」相須瞭解為包含且 ㈣專利範圍時,「包c本說明書中包括用於 包括特定特徵、步驟及二=其變化表示 它特徵、步驟或元件的存在。解澤為排除其 刖文么日月之較佳具體例之說 發明之原理,但非限制本發⑽所二 例。本發明之範圍意圖由涵蓋於如下申 體 當範圍内之全部具體例所界定。 ^〖圍及其相 【圖式簡單說明】 後文說明根據本發明所組 說明之用,且係參考附圖,其令生物燃科电池,僅供舉例 表^顯示根據本發明所組成之生物燃料電池之圖解代 圖2為使用圖1之辦料雷冰 流密度所緣之圖; 所達成之陰極電位相對於電 圖3為圖1之燃料電池险 極室之流速所綠之圖电位相對於氧化劑流入陰 圖4為圖1之燃料電池之燃料電池電位相對於氧化劑流 3l2Xmmmmm97-01/96135329 23 200915654 入陰極室之流速所繪之圖;及 圖5為圖1之燃料電池之陰極電位相對於長期操作時間 所繪之圖。 【主要元件符號說明】 10 生物燃料電池-生物反應器系統 12 燃料電池區段 14 陰極室 16 陽極室 18 膜 20 陽極 22 陰極 26 生物反應器Bacteriology, ν.77, ρ·642 (1959)). In one particular embodiment, the liquid in the bioreactor contains any of a variety of inorganic ions, such as Ca'NH/, Κ+, Mg2+, SO, Ν〇" ρ〇43-, and . Chemical metal oxidizing microorganisms include members of the genus Spirulina (except for the iron oxidized fishing end screw itself), members of the genus Trichophyta, members of the genus Thiobacillus (except for the thiobacillus ferricum itself), and mixtures thereof. It may include iron-oxidized Leptospirillum and Thiobacillus ferrooxidans. Members of the genus of the genus Trichothelium include, but are not limited to, the acidophilus ferronidium (10) a acidiPMlum) and the acid weapon ferrogen (ι^Γ〇ρΐ&_ acihrmanus). Members of the genus Leptospira include, but are not limited to, Leptospirillum ferriphilum, Lept〇spirillum thermoferrooxidans, and Leptospiri 1 lum . f errodi azotrophum When the selected redox couple is Fe3+/Fen, the hydrogenation reaction at the anode: &2H2=4H++4e" (6) Reduction of iron ions added to the cathode: 312XP/Invention Manual (Repair ) 97-01/96135329 200915654 4Fe3i+4e~=4Fe2i (7) Protons formed by reaction (6) (η. across the proton conducting solid electrolyte 18 to the cathode to 14). Ferrous ions formed at the cathode (^^2+) is pumped to the bioreactor along with the shellfish, where it is oxidized by the microorganism to iron ions (F,) according to the reaction formula (〗), and then returned to the cathode chamber 14 of the fuel cell for the next power generation cycle. In biofuel cells, she (chemical reaction plus biochemical reaction) can be obtained by the reaction formula: 2H2+〇2 = 2H2〇(8), so the total reaction system of biofuel cell 1与_Oxygen fuel cell total reaction phase Microbial and iron ions are simply used as biocatalysts to promote a large increase in the rate of cathodic reaction. The ratio between the energy used for power generation and the energy used for microbial growth is easily controlled by changing the culture conditions, such as biological The ratio of iron ions to ferrous ions in the reactor effluent. This ratio can be made infinite even by decoupling microbial growth from ferrous ion oxidation. In this case, carbon dioxide is not consumed. Biomass will be produced. Therefore, under ideal conditions (without energy loss in the battery), at most 9% of the Bobs free energy of the reaction equation (8) can be used for power generation, and the remaining m will be used for immobilization by microorganisms. Carbon dioxide results in the formation of biomass and the maintenance of the battery. As explained above, fuel cells that operate on hydrogen and oxygen and use platinum as a catalyst at the two electrodes have a current efficiency of about 5% and the rest are heat-releasing. Difficult to use. Using phase materials and oxidants, novel biofuel cells will generate electricity and produce microbes. 312Xp/Invention Manual (supplement) 97-01/%135329 18 200915654 Quality. The cathode reaction formula (7) on the stone electrode is much faster than the oxygen reduction on the platinum electrode, and the oxygen reduction rate is currently used. Fuel cell limitations, so the fuel cell disclosed here will greatly improve the economic and environmental effects of fuel cell operation, because of the improvement of current efficiency; 2) use of the cathode (4); 3) removal of carbon dioxide from the atmosphere; 4) Manufacture of useful products as well as single cell proteins. Thiobacillus ferrooxidans has been shown to contain 44% protein, 26% lipid, 15% carbohydrate and at least two vitamin B, reference & Nature, 281'555 (1979). It is unknown that this type of biological material has any negative physiological effects, see Tributsch, H, Natui^, 28ι, (1979). A study of the characterization of the biofuel cell 1G was carried out, and all of the listed potentials were white relative to the potential of a standard hydrogen electrode (SHE). The potential was measured using a flip electrode connected to an Or ion pH-mV instrument. A bioreactor containing a brake mixing culture of a camping microorganism is used to oxidize ferrous ions in a batch manner. After the ferrous ion oxidation is about _ converted; the target is sent from the bioreactor 26 to the cathode chamber of the fuel cell. 14 The relationship between the cathode site and the current density is shown in FIG. The total iron concentration is: _ refers to 'PH & 1.8. It can be seen that although the cathode potential is slightly decreased, the cathode potential is 1 millivolt ate at a current density of 35 amps/cm 2 = the decrease in potential is similar to that reported in the reference for the electronization of the oxidized oxygen source. The potential drop 'in some cases is slightly less than the latter potential 312 ΧΡ / invention specification (supplement) 97-01/96135329 19 200915654 The effect of the ascending m fans. The flow rate is from 〇 to u millim. The result of no electric load is dry and negative. The load is also 3, that is, the ride and 5 ohms. Only a small increase, from 610 ang you ^ not to Figure 3 °, the battery potential is less than (10). The elevation fcf of all potentials rises to 661 millivolts, or the rise of the rise is due to the cathode. The emulsifier flow rate is not observed. The anode flow is not observed when the load is zero. ::Two rings: Figure 3). In theory, this is due to the fact that the father is current. Also studied, the effect of oxidant flow rate on fuel power and load is not significantly greater than that of J = 2 (Fig. 4). When the flow rate is from 5 ml, it seems to be 30%. This laugh & s s when a milliliter / sec, the oxidant has; if the amount of fruit flow rate ' below 2 ^ Ddt Α right ten 罝 transfer limit. At a μ speed above this value, no mass shift limit was observed. The stability of the fuel cell during hours of operation. It was found (Fig. 5) that the electric current-current characteristics did not change significantly during the 3.5 hour period. In another experiment, the biofuel cell lasted for more than 6 months without any loss of activity. 0, the car is better than the power generation. The fuel cell shown in the figure is unique: converting the oxidized slave into a battery. Biomass. Therefore, the fuel cell consumes carbon dioxide derived from the atmosphere during operation to produce microbial biomass, which can be used as a single cell protein (SCP). In the current scp technique, toxic chemicals may be found when methanol is used as the enzyme substrate, see Ravindra, A. P., Biotech. Adv, 18, 459 (2000). Inventor's technique 312XP / invention manual (supplement) 97*01 touch 35329 20 200915654 f 1 1 test bio-contamination (occasionally toxic), because I know that any known pathogenic microorganism can be at pH 1 to = Growing on completely inorganic medium. In the method of making SCP from ~, αα, Β 夕 夕 刖 , 从 从 微 微 微 微 微 微 微 微 微 Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra The .Adv' 18' J 1 biofuel cell system requires chlorine, oxygen, and sulphur dioxide. As a result of electrobiochemical reactions, biofuels are heated, water (as water vapor), and microbial cell biomass. The gas is injected; the internal: oxygen and carbon dioxide are consumed in the bioreactor inner garment j and the biomass. In industrial ferrous ion oxidation bioreactors, oxygen and carbon monoxide are supplied from the atmosphere. Biofuel cells have the following characteristics based on #量平衡, stereochemistry and kinetic calculations: during power generation (10) kilowatts of electricity: 4 kilograms: hourly hydrogen and 4 kilograms per hour of carbon dioxide; 9 kilograms per hour of biomass SCP ) 'And a 10 cubic meter bioreactor is preferred. The biofuel cell proposed in this case is superior to the high efficiency (10) side of the currently known type of fuel cell; no need to use a precious metal cathode: and) The unique feature of the fuel cell is that it consumes the anti-oxidation during its operation. This is a useful product, also known as single cell protein (SCP). The energy released by the total chemical reaction 2H2+〇2=2H2〇 is used to form three products: power generation, production of t cell protein (scp) biomass, and heat production. The fuel cell can be operated in the following manner. The ratio of the power generation in the scp manufacturing room is set to any value between 〇 and p infinity, that is, “only raw materials are produced without power generation” and only raw materials are produced and only electricity is generated. any position. §cp Manufacturing M2XP/Invention Manual (Supplement) 97-01/96135329 21 200915654 The required electrons may come from the reaction 2H2+〇2=2H2〇, or directly from the current (microorganisms consume electrons from the cathode). The scp/power ratio can be controlled by changing the cathode potential or 绖 by changing the culture conditions, such as the Fe2VFe3+ concentration ratio. It should be understood that the present invention is not limited to gaseous hydrogen/oxygen fuel cells using only gaseous hydrogen fuel, but other hydrogen-containing fuels that can be electrochemically oxidized, such as methanol, ethanol, methane, may be used, to name a few. For example, in the case of methanol fuel, the anode reaction is: CH3〇H+H2〇=C〇2+6H++6e- Hydrogen ions pass through the separator and the rest of the fuel cell, as well as the biofuel cell system and the gaseous state. Hydrogen fuel biofuel cells are the same. The anode reaction using Methane as a fuel is: CH4+〇2=C〇2+4H++4e- In the case of using ethanol as a fuel, the anode reaction is: C2H5〇H+3H2〇=2C〇2+12H++ 12e- Thus, in another specific example of the biofuel cell, the fuel may be a compound containing a hydrogen component (as a sole component in the case of using hydrogen as a fuel, or as one of several components in the case of a compound) Electrochemical oxidation of fuels produces protons and electrons like helium oxidation, but also includes other products that are pumped into the anode chamber in a fluid in the form of a gas or liquid. Although the present invention has been exemplified by the use of redox oleochonium Fe2+/Fe3+ and iron oxidizing microorganisms, it will be apparent to those skilled in the art that other redox couples can be used in addition to the metal oxidizing microorganisms disclosed herein, 312XP/Invention Manual ( Supplement) 97_qi/96135329 22 200915654 Oxidizing microorganisms are used in the oxidation of a lower oxidation state back to a higher oxidation state. Other redox couples are more than M〇'M◦, which can be borrowed from the same microorganism: oxidized: = two V: '· It is disclosed herein that iron can also be oxidized. 3 cases, as used herein, 'include and 'is open rather than exclusive. In particular, =" must be understood to include and (4) the scope of the patent, "package c is included in this manual for the inclusion of specific features, steps And the second = the change indicates the existence of its features, steps or components. The explanation is to exclude the principle of the invention, but it is not limited to the two examples of the present invention (10). The intention is to be defined by all the specific examples covered in the scope of the following claims. ^〖 and its phase [Simplified description of the drawings] The following description of the use of the group according to the present invention, and with reference to the drawings, the biological Fig. 2 shows a schematic diagram of a biofuel cell composed according to the present invention. Fig. 2 is a diagram showing the flow density of the thunder ice using the material of Fig. 1. The cathode potential obtained is relative to the electrogram 3 The flow rate of the fuel cell of the fuel cell chamber of Figure 1 is relative to the oxidant inflow. The fuel cell potential of the fuel cell of Figure 1 is relative to the flow rate of the oxidant stream 3l2Xmmmmm97-01/96135329 23 200915654 into the cathode chamber. Figure 5 is a graph of the cathode potential of the fuel cell of Figure 1 versus long-term operating time. [Key element symbol description] 10 Biofuel cell - bioreactor system 12 Fuel cell section 14 Cathode chamber 16 Anode Chamber 18 Membrane 20 Anode 22 Cathode 26 Bioreactor

312XP/發明說明書(補件)97-01/96135329 24312XP / invention manual (supplement) 97-01/96135329 24

Claims (1)

200915654 十、申請專利範圍: 1· 一種生物燃料電池系統,包含: a)—燃料電池,其包括 。一陰極室,其含有-陰極電極及-含有氧化還原偶之 水性電解質,且該氧化還原偶之第—成員係較該氧化還^ 偶之第二成員具有較高之氧化態; ’、 —Π)-陽極室,其含有—陽極電極及—被泵送至該陽極 室内之含有氳成分之燃料,該陽極室係與該陰極 離;以及 刀 b) —生物反應器,其包括一包圍化營性 (chemolithotrophic)金屬離子氧化微生物之容器,該化 營性金屬離子氧化微生物係選自於由鉤端螺^菌 (Leptospirillum)屬成員(鐵氧化鉤端螺旋菌 (Leptospirillum ferrooxidans)除外)、鐵原體 (Ferroplasma)屬成員、酸硫桿菌(Acidi1:hi〇bacillus) 屬成員(鐵氧化酸硫桿菌(Acidithi〇baciUus ferroxidans)除外)及其混合物所組成之組群;一用於將 含有氧(〇2)及一氧化碳之流體泵送至生物反應器之幫 浦,δ亥生物反應器係與陰極室流連通,而使含有氧化還原 偶之第二成員的水溶液係由該陰極室循環至該生物反應 器’及其中於該陰極電極之反應為於較高氧化態之氧化還 原偶之第一成員還原成於較低氧化態之氧化還原偶之第 二成員,以及其中於陽極電極之反應為燃料進行電化學氧 化來製造電子(e—)及質子(Η+),其中質子(Η+)係由陽極室 312ΧΡ/發明說明書(補件)97-01/96135329 25 200915654 牙越進入水性電解質中,以及其中於較低氧化態之氧化還 原偶之第二成員係於該容器内之氧存在下,於有氧氧化反 應中,藉該化營性金屬離子氧化微生物而被氧化回該於較 南乳化態之氧化還原偶之第-成員,以及其中電力係經由 -負載與該陽極電極及陰極電極間產生電連接而獲得。 2. 如申請專利範圍第(項之生物燃料電池系統,其中該 鐵原體屬之成員係選自於由嗜酸鐵原體(Ferropl asma aCldlPhllUm)及酸武器'鐵原'體(Ferroplasma acidarmanus)所組成之組群。 3. 如申凊專利㈣第i項之生物燃料電池系統,其中該 釣端螺旋菌屬之成員係選自於由嗜鐵釣端螺旋菌 (Leptospiri 1 lum fernphi lum)、熱鐵氧化鉤端螺旋菌 (Lepfspiri丨lum therm〇ferr晴他⑻及嗜鐵重氮釣端 螺旋菌(Leptospiri i lum ferr〇diaz〇tr〇ph⑽)所組成之 組群。 如申請專利範圍第卜2或3項之燃料電池生物反應 器’其中該氧化還原偶為Fe”Fe3+,及該等金屬氧化微生 物為鐵氧化微生物,及其中於陰極電極之 4Fe3++4e-=4Fe2+表示之反應式中鐵離子(FV+)之還原;二及 其中於4Fe、4m4F,傷〇戶斤表示之有氧氧化反應 中,亞鐵離子(Fe2+)係藉鐵氧化微生物氧化成鐵離子 (Fe3+)。 5.如申請專利範圍第卜2或3項之燃料電池生物反應 器,其中該氧化還原偶為Cu+/Cu2+& M〇5VM〇6+中之一者。 312XP/發明說明書(補件)97·〇1/96135329 26 200915654 、6.如申4專利範圍第卜2、3、4或5項之生物燃料電 池系、洗》中垓陽極係選自於由鍍鉑碳及過渡金屬化合物 所組成之組群。 7. 如申响專利範圍第6項之生物燃料電池系統,其中該 過渡金屬化合物係選自於由碳㈣⑽、氣鐵及磷化銘 所組成之組群。 8. 如申明專利範圍第i至7項中任一項之生物燃料電池 系、’先/、中ν»亥陽極至及該陰極室係由包含於該陰極室所含 電解質之一化學惰性、多孔、非導電材料所分隔。 9·如申請專利範圍第丨至7項巾任—項之生物燃料電池 系統’其巾該陽極室及該陰極㈣子可透性膜分隔。 10. 如申明專利範圍第9項之生物燃料電池系統,其中 該質子可透性臈係選自於由陽離子交換膜、陰離子交換 膜、複合陰離子/陽離子交換膜、對f子具有導通性而對 金屬離子較*具有導it性之料選擇性韻組成之組群。 11. 如申清專利範圍第8項之生物燃料電池系統,其中 該質子可透性膜係由具有孔洞延伸貫穿其中之直徑小於 約100微米之貫貝惰性材料所製成,該等孔洞係以於該陰 極室内所含電解質填充。 12. 如申請專利範圍第8項之生物燃料電池系統,其中 該質子可透性膜係由具有孔洞之實質上惰性織造纖維材 料或非織造纖維材料所製成,該等孔洞係以於該陰極室内 所含電解質填充,其中該電解質為質子導體。 13. 如申請專利範圍第1至丨2項中任一項之生物燃料電 312XP/發明說明書(補件)97_01/96135329 27 200915654 池=·其Λ該陽極電極具有多孔電極結構。 其中該陽:電圍一V:電::之生物燃料電池系統, τ*對該陰極電心表電:::水:及其中該多孔電 乂 :/金請/二範圍第7項之生物燃料電池系統,其中 屬粉末成形為-多孔陽極電成::。電㈣^ 、、也Γ:申/二利範圍第1至15項中任-項 生:反應器及該陰極室含有促進化營性微 生物生長之溶解養分。 二7解如表申請/利範圍第16項之生物燃料電池系統,其中 该洛解養分係選自於由 -、ρη 3- r ΝΗ4 Κ、、Ca2+、S〇42_、 3 4 、C及其組合所組成之組群。 池系:,申::广範圍第1至17項中任-項之生物燃料電 醢…°玄3有氫成分之燃料係選自於由氳氣、曱 醇、乙醇、氨、及肼所組成之組群。 、乂?申:奮專利範圍第1至17項中任-項之生物燃料電 兮…、、中斜有氫成分之燃料為氫氣㈤,以及其中 ^電化學氧化反應為於2H2=4H++4e—所表示之反應中於陽 圣電極之氫的氧化,因而總生物燃料電池反應係以 2H2+〇2=2H2〇 表示。 、20·如申請專利範圍第^㈣中任一項之生物燃料電 池系統,其中該陰極電極包括—多孔材料層選自於由碳及 不鏽鋼所組成之組群。 312XP/發明說明書(補件)97_G 1/96135329 200915654 2 1 ·如申請專利範圍第1至1 g項中 — 池系統,其中該陰極電極包括一實 奸之物燃料電 及不鏽鋼所組成之組;”板之材料選自於由碳 二如申Λ專利範圍第1至Μ項中任-項之生物燃料電 池糸統,其中该陰極電極包括催化劑。 23·如申請專利範圍第22項之生物燃料電池系統,其中 該催化劑為金、鉑、鈀、碳化鎢及鉛中之一者。 统24Λ申=利範圍第21或22項之生物燃料電池系 、洗、、中该催化劑為純質’或為與不鏽 及非活性碳粉、活性碳纖及非活性碳纖之混合物中 者。 、也季:申:二利範圍第1至24項中任-項之生物燃料電 哲 至生物反應器之含氧(〇2)流體包括用 於製&生質之二氧化碳(c〇2)。 26.如申請專利範圍第25項之生物燃 Z控制手段,用於施加電壓於陰極電極及控制電二 :::變微生物培養參數而控制電力產生相對於生質製 ^如申請專利範圍第25或26項之生物燃料電料 種全手段’用於控制於氧化還原偶中之兩 電力製造對生質產生之比。 控制 二如申請專利範圍第27項之生物燃料電池系統,其中 4反應劑控制手段,用於控制溶解養分濃度,以藉由 312ΧΡ/_^_ (補件)97-01/96135329 29 200915654 改變微生物培養參數而控制電力製造對生質產生之比。 29·如申請專利範圍第1至28項中任一項之生物燃料電 池系統,其中該化營性金屬氧化微生物之混合物包括鐵氧 化鉤端螺旋菌及鐵氧化酸硫桿菌中之一或二者。 30.如申請專利範圍第6項之生物燃料電池系統,其中 該過渡金屬化合物係選自於由碳化鎢(wc)、磷化鐵及磷化 始所組成之組群;其中該化#性金屬離子氧化微生物為鐵 氧化鉤端螺旋菌;及其中該陽極室及該陰極室係由包含於 該陰極室所含電解質之一化學惰性、多孔、非導電材料所 分隔。 > 31.如申明專利範圍第6項之生物燃料電池系統,其中 該其中該過渡金屬化合物係選自於由碳化鶴(wc)、麟化鐵 及%化銘所組成之組群;其中該化營性金屬離子氧化微生 物為鐵氧化鉤端螺旋菌;及其中該陽極 質子可透性膜分隔。 係碏 i ί 如申明專利範圍第31項之生物燃料電池系統,其中 =質::透性膜係選自於由陽離子交換膜、陰離子交掮 金屬離子較不呈右奧#質子具有導通性而對 π Λ 之渗透選擇性膜所組成之組群。 • 專利範圍第31項之生物燃料電㈣統,其十 该質子可透性膜係由具有孔 約100微米之實皙心miM、於 ^ ^ _ 月;斗所製成,該等孔洞係以於該陰 極室内所含電解質填充。 A。 34.如申請專利範圍筮 312XP/發明說明書(補件)97·_6ΐ3助 固弟31項之生物燃料電池系統,其中 30 200915654 該質子可透性膜係由具有孔洞之實質上惰性織造纖維材 料或非織造纖維材料所製成,該等孔洞係以於該陰極室内 所含電解質填充,其中該電解質為質子導體。 312XP/發明說明書(補件)97-01/96135329 31200915654 X. Patent application scope: 1. A biofuel cell system comprising: a) a fuel cell, including. a cathode chamber comprising a cathode electrode and an aqueous electrolyte containing a redox couple, and the first member of the redox couple has a higher oxidation state than the second member of the oxidation; ', —Π An anode chamber comprising - an anode electrode and - a fuel containing a helium component pumped into the anode chamber, the anode chamber being separated from the cathode; and a knife b) - a bioreactor comprising a surrounding camp A chemolithotrophic metal ion oxidizing microbial organism selected from the group consisting of members of the genus Leptospirillum (except Leptospirillum ferrooxidans), iron ore a member of the genus Ferroplasma, a member of the genus Acidibacterium (Acidi1:hi〇bacillus) (except Acidithi〇baciUus ferroxidans) and mixtures thereof; one for containing oxygen (〇 2) The carbon monoxide fluid is pumped to the pump of the bioreactor, and the delta bioreactor is in fluid communication with the cathode chamber, and the water is dissolved in the second member containing the redox couple. Recycling from the cathode chamber to the bioreactor' and the second member of the redox couple whose reaction at the cathode electrode is reduced to a lower oxidation state by a first member of a redox couple in a higher oxidation state, And wherein the reaction at the anode electrode is electrochemically oxidized to produce electrons (e-) and protons (Η+), wherein the protons (Η+) are from the anode chamber 312ΧΡ/invention specification (supplement) 97-01/96135329 25 200915654 The more the tooth enters the aqueous electrolyte, and the second member of the redox couple in the lower oxidation state is in the presence of oxygen in the vessel, in the aerobic oxidation reaction, by the chemical metal ion oxidizing microorganism And being oxidized back to the first member of the redox couple in the southerly emulsified state, and wherein the power system is electrically connected to the anode electrode and the cathode electrode via a load. 2. The biofuel cell system of claim 2, wherein the member of the iron genus is selected from the group consisting of Ferropl asma aCldlPhllUm and an acid weapon 'Ferroplasma acidarmanus' 3. The biofuel cell system of claim 4, wherein the member of the genus Spirulina is selected from the group consisting of Leptospiri 1 lum fernphi lum, A group consisting of Lepfspiri丨lum therm〇ferr (8) and Leptospiri i lum ferr〇diaz〇tr〇ph(10). a fuel cell bioreactor of 2 or 3, wherein the redox couple is Fe"Fe3+, and the metal oxidizing microorganism is an iron oxidizing microorganism, and the reaction formula represented by 4Fe3++4e-=4Fe2+ in the cathode electrode Reduction of iron ions (FV+); and in the aerobic oxidation reaction indicated by 4Fe, 4m4F, and sputum, ferrous ions (Fe2+) are oxidized to iron ions (Fe3+) by iron oxidizing microorganisms. Patent application scope A fuel cell bioreactor of 2 or 3, wherein the redox couple is one of Cu+/Cu2+& M〇5VM〇6+. 312XP/Invention Manual (supplement) 97·〇1/96135329 26 200915654 6. The biofuel cell system of the invention of claim 4, paragraph 2, 3, 4 or 5, the anode of the crucible is selected from the group consisting of platinized carbon and transition metal compounds. The biofuel cell system of claim 6 wherein the transition metal compound is selected from the group consisting of carbon (4) (10), gas iron and phosphating. 8. If the scope of claims is in items i to 7 Any one of the biofuel cell systems, the 'first/, medium ν» hai anode and the cathode chamber are separated by a chemically inert, porous, non-conductive material contained in the cathode chamber. The biofuel cell system of the scope of the invention is in the scope of the invention, and the biofuel cell system of the invention is separated from the anode chamber and the cathode (four) permeable membrane. 10. The biofuel cell system according to claim 9 of the patent scope, wherein The proton-permeable lanthanide is selected from the group consisting of a cation exchange membrane and an anion Membrane, composite anion/cation exchange membrane, group which has conductivity to f and conductivity selectivity to metal ions. 11. Biofuel cell system as claimed in claim 8 Wherein the proton permeable membrane is made of a Sterile inert material having a diameter extending less than about 100 microns through which the pores are filled, the pores being filled with electrolyte contained within the cathode chamber. 12. The biofuel cell system of claim 8, wherein the proton permeable membrane is made of a substantially inert woven fibrous material or a non-woven fibrous material having pores for the cathode The electrolyte contained in the chamber is filled, wherein the electrolyte is a proton conductor. 13. The biofuel 312XP/invention specification (supplement) 97_01/96135329 27 200915654, as claimed in any one of claims 1 to 2, wherein the anode electrode has a porous electrode structure. Wherein the yang: electric circumference a V: electricity:: biofuel cell system, τ* the cathode electric core table::: water: and the porous electric raft: / gold please / two range item 7 A fuel cell system in which a powder is formed into a porous anode::. Electricity (4)^, Γ Γ: Shen / Erli range of items 1 to 15 - Life: The reactor and the cathode chamber contain dissolved nutrients that promote the growth of vegetative micro-organisms. 2-7. The biofuel cell system according to Table 16 of the application, wherein the locus nutrient is selected from the group consisting of -, ρη 3- r ΝΗ4 Κ, Ca2+, S〇42_, 3 4 , C and The group consisting of the combinations. Pool system:, Shen:: A wide range of items 1 to 17 of the biofuels of the ... - Xuan 3 fuel with hydrogen components selected from helium, sterol, ethanol, ammonia, and cesium The group consisting of. Hey? Shen: Fen patent range of items 1 to 17 of the biofuel electric 兮..., the medium slanting hydrogen component fuel is hydrogen (5), and the electrochemical oxidation reaction is 2H2=4H++4e Representation of the oxidation of hydrogen in the Yangsheng electrode, and thus the total biofuel cell reaction is represented by 2H2+〇2=2H2〇. The biofuel cell system according to any one of the preceding claims, wherein the cathode electrode comprises a porous material layer selected from the group consisting of carbon and stainless steel. 312XP/Invention Manual (Repair) 97_G 1/96135329 200915654 2 1 · In the scope of the patent scopes 1 to 1 g - the pool system, wherein the cathode electrode comprises a group of sinister fuel and stainless steel; The material of the board is selected from the group consisting of the biofuel cell system of the carbon source, for example, in the scope of the invention, wherein the cathode electrode comprises a catalyst. a battery system, wherein the catalyst is one of gold, platinum, palladium, tungsten carbide, and lead. The biofuel cell system of the 21st or 22nd item is clean, and the catalyst is pure' or It is a mixture with stainless and inactive carbon powder, activated carbon fiber and inactive carbon fiber. Also, season: Shen: Erli range, items 1 to 24, biofuels, electrotechnical to bioreactor (〇2) The fluid includes carbon dioxide (c〇2) for making & biomass 26. The biofuel Z control means of claim 25 for applying voltage to the cathode electrode and controlling electricity 2: : Changing microbial culture parameters while controlling electricity Compared with the biomass system, such as the bio-fuel electrical material method of claim 25 or 26, the method for controlling the ratio of the two electric power production to the biomass in the redox couple. Item 27 of the biofuel cell system, wherein 4 reagent control means are used to control the dissolved nutrient concentration to control the power generation by changing the microbial culture parameters by 312 ΧΡ / _ ^ _ (repair) 97-01/96135329 29 200915654 The biofuel cell system according to any one of claims 1 to 28, wherein the mixture of the chemical metal oxidizing microorganisms comprises L. iron oxide and iron oxysulfate A biofuel cell system according to claim 6, wherein the transition metal compound is selected from the group consisting of tungsten carbide (wc), iron phosphide, and phosphating. a group; wherein the oxidized microorganism of the metal ion is a Helicobacter pylori; and wherein the anode chamber and the cathode chamber are chemically inert by one of the electrolytes contained in the cathode chamber 31. The biofuel cell system of claim 6, wherein the transition metal compound is selected from the group consisting of carbonized crane (wc), lithilated iron, and a group consisting of: the chemical metal ion oxidizing microorganism is a oxidized Leptospirillum; and the anode proton permeable membrane is separated. 碏i ί, such as the biofuel cell system of claim 31 Wherein: the permeable membrane is selected from the group consisting of a cation exchange membrane, an anion-crossing metal ion, and a osmotic selective membrane having a conductivity of π 质. • The biofuels (4) system of the scope of the patent, the tenth proton permeable membrane system is made of solid centroids with a hole of about 100 microns, at ^ ^ _ month; The electrolyte contained in the cathode chamber is filled. A. 34. The patent application scope 筮 312XP / invention manual (supplement) 97·_6ΐ3 help solid brother 31 biofuel cell system, wherein 30 200915654 the proton permeable membrane is made of a substantially inert woven fiber material with pores or The non-woven fibrous material is formed by filling an electrolyte contained in the cathode chamber, wherein the electrolyte is a proton conductor. 312XP/Invention Manual (supplement) 97-01/96135329 31
TW096135329A 2006-05-26 2007-09-21 Improved biofuel cell TW200915654A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80811706A 2006-05-26 2006-05-26

Publications (1)

Publication Number Publication Date
TW200915654A true TW200915654A (en) 2009-04-01

Family

ID=44725794

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096135329A TW200915654A (en) 2006-05-26 2007-09-21 Improved biofuel cell

Country Status (1)

Country Link
TW (1) TW200915654A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI426636B (en) * 2011-06-24 2014-02-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI426636B (en) * 2011-06-24 2014-02-11

Similar Documents

Publication Publication Date Title
JP4887142B2 (en) Biofuel cell
US8455144B2 (en) Bio-fuel cell system
Kodali et al. Enhancement of microbial fuel cell performance by introducing a nano-composite cathode catalyst
CN101390242B (en) Fuel cell bioreactor
Qiu et al. An overview in the development of cathode materials for the improvement in power generation of microbial fuel cells
Scott et al. Biological and microbial fuel cells
Roy et al. Microbial fuel cells
Zhang et al. Electricity generation from ammonia in landfill leachate by an alkaline membrane fuel cell based on precious-metal-free electrodes
Hu et al. In-situ growth of N@ MoO2 microflowers on carbon cloth for high-performance anodes in microbial fuel cells
WO2007137401A1 (en) Improved biofuel cell
Das et al. Recent development in cathodic catalyst towards performance of bioelectrochemical systems
Kong et al. Use of an intermediate solid-state electrode to enable efficient hydrogen production from dilute organic matter
Lu et al. H2 Evolution Catalysts for Microbial Electrolysis Cells
Elangovan et al. Outline of microbial fuel cells technology and their significant developments, challenges, and prospects of oxygen reduction electrocatalysts
Xiang et al. Microbial electrolysis cells for hydrogen production
TW200915654A (en) Improved biofuel cell
Kuppurangam et al. An overview of current trends in emergence of nanomaterials for sustainable microbial fuel cells
Sobieszuk et al. Harvesting energy and hydrogen from microbes
Mehak et al. Development of Suitable Cathode Catalyst for Biofuel Cells
Bajracharya et al. Nature inspired catalysts: a review on electroactive microorganism-based catalysts for electrochemical applications
Priyadarshini et al. Role of Catalysts in Bioelectrochemical Systems
Huang et al. External Electron Transfer: Pathway, Mechanism, and Microorganisms Involved
Lesnik et al. Microbial fuel cells: the microbes and materials
Li et al. Advances in Microbial Fuel Cells
Venkatesan et al. An Overview of Energy-efficient and Sustainable Oxygen Reduction Reaction Cathode in Microbial Fuel Cells