TW200827394A - Polymeric materials incorporating carbon nanostructures and methods for making same - Google Patents

Polymeric materials incorporating carbon nanostructures and methods for making same Download PDF

Info

Publication number
TW200827394A
TW200827394A TW96128318A TW96128318A TW200827394A TW 200827394 A TW200827394 A TW 200827394A TW 96128318 A TW96128318 A TW 96128318A TW 96128318 A TW96128318 A TW 96128318A TW 200827394 A TW200827394 A TW 200827394A
Authority
TW
Taiwan
Prior art keywords
carbon
composite material
resin
composite
poly
Prior art date
Application number
TW96128318A
Other languages
Chinese (zh)
Inventor
Bing Zhou
Raymond B Balee
Cheng Zhang
Martin Fransson
Original Assignee
Headwaters Tech Innovation Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/614,006 external-priority patent/US7935276B2/en
Application filed by Headwaters Tech Innovation Llc filed Critical Headwaters Tech Innovation Llc
Publication of TW200827394A publication Critical patent/TW200827394A/en

Links

Abstract

The present invention relates to novel composites that incorporate carbon nanospheres into a polymeric material. The polymeric material can be any polymer or polymerizable material compatible with graphitic materials. The carbon nanospheres are hollow, graphitic nanoparticles. The carbon nanospheres can be manufactured from a carbon precursor using templating catalytic nanoparticles. The unique size, shape, and electrical properties of the carbon nanospheres impart beneficial properties to the composites incorporating these nanomaterials.

Description

200827394 九、發明說明: 【發明所屬之技術領域】 本發明係”包含碳奈米材料之聚合材料,特別是關於 一種包含碳奈米球(nanospheres )之聚合材料。 . 【先前技術】 ‘ 碳材料已應麟各種領域,以作為高魏及魏材料。石墨 係為眾所周知的碳㈣,其具找如料性及紐等重要特性。 在過去十年,研究員已研究出如何製作奈米層級之石墨結構。然 而’絕大部分的石墨奈米結構的研究成果係為奈米管。近年來, 更發展出諸如碳奈米蔥(nano_onions)、奈米角(nanQhQms)、i 米珠(_beads)、奈米纖維(職oflbers)等其他碳奈米結構的 製造方法。 其中-些材料已能透過將奈米結構混人至聚合材料中以製作 成複合物材料(composltes)。大部分的成果傾向將單壁式 (Smgle_Walled )及多壁式(multi-walled )奈米管鹿入至聚合物中。 _利用碳奈米管作為聚合物中的填細可增加複合物材料的強度 : (strength)且形成具傳導性之複合物材料。. Γ '然而’已證實將奈米管混人至聚合材料中係相當具挑戰性 ‘ 地。由於碟奈米管的纖維形狀再加上小尺寸,因而難以均勾地分 - 散在聚合物中。進而’於傳導性的應用上,就大部分的應用而言, I達到電抗的顯親少之碳奈米管_量,會導致過高的成核 生。 【發明内容】 5 200827394 本發明係__麟酿合物 :一合材料中而製成。梅㈣==::: 新穎特性之碳奈米結構。在一實施例中,巧 /4 奈米結構係為碳料球。#㈣ 妓材料中的碳 〜不树衫㈣—般財石墨 上定義為圓且中空之奈米粒子。 i大體 於此,碟奈米球可為各種尺寸。在—實施例中,碳奈米球的 外役係為約2奈米(nm)到約·腹;較佳係為約$啦到約, ·· 啦;且更佳係為約10 到約15〇胍。唆奈米球的内徑則取決於 其外徑及壁厚。通常,碳奈米球的内徑係介於約Μ·和約邮 之間;較佳係介於約2 和約2〇〇歸之間;且更佳係介於約$邮 和約100 nm之間。 碳奈米材料可任意地預處理成較可分散於聚合材料中之奈米 材料或移除其表面上之官能基(例如··酸基)。在一實施例中,可 利用中和鹼來移除羧酸和其他氧化官能基。在另一實施例中,可 於以氧化劑純化奈米材料之後,透過加熱材料來增進其分散性 (dispersability)。 製作複合物材料之聚合材料可為任意聚合物或與石墨材料相 容之可聚合材料。範例聚合物包括聚胺(P〇lyamine)、聚丙烯酸脂 (poly acrylate )、聚丁^一細(polybutadiene )、聚丁稀(polybutylene )、 4人乙細(polyethylene)、聚氯化乙稀(polyethylenechlorinate)、乙 __乙稀醇(ethylene vinyl alcohol)、氟聚合物(fluoropolymer)、 離聚物(ionomer )、聚曱基戊烯(polymethylpentene )、聚丙烯 (polypropylene )、聚苯乙烯(polystyrene )、聚氯乙烯 6 200827394 (polyvinyldiloride)、聚偏二氯乙稀(口〇1^!113池161^(:]11〇1^(16)、聚 縮物(polycondensate):、聚酿胺&〇13哪1丨(!6)、聚醯胺-画1亞胺 (polyamide-imide)、聚芳鱗酮(polyaryletherketone)、聚碳酸酯 (polycarbonate)、聚酮(polyketone)、聚酯(polyester)、聚謎酮 (polyetheretherketone)、聚醚醯亞胺(?0以技1^1*1111丨(16)、聚醚砜 (polyethersulfone )、聚醯亞胺(p〇lyimide )、聚氧化二曱苯 (polyphenylene oxide)、聚硫化苯(polyphenylene sulfide)、聚鄰 苯二甲醯胺(polyphthalamide)、酞醯亞胺(poiythalimide)、聚砜 (polysulfone)、聚芳礙(p〇lyaryisuifone)、烯丙基樹脂(allyl resin )、二聚氰胺樹脂(meiamine resin )、紛搭樹月旨 (phenol-formaldehyde resin )、液晶聚合物(liquid eiystal polymer )、聚烯烴(poly〇lefm )、矽酮(smc〇ne )、聚氨酯 (polyurethane)、環氧樹脂(epoxies)、纖維聚合物(cdlul〇sic polymer)、其結合、其衍生物、或前述任意之共聚物。可聚合材料 可為聚合物或諸如單體、寡聚體或其他可聚合樹脂。 將碳奈米球與聚合材料混合,以形成碳奈米球含量約〇 ι重量 % (Wt%)到70重量%之複合物材料;較佳係、形成碳奈米球含量 約0.5重量%到5G重量%之複合物轉;且她_碳奈米球 含量約L0重量%到3〇重量%之複合物材料。碳奈米球可單獨加 入或係與其他石墨材料結合,以給予複合物材料料特性。為了 :予導電性,加人超過約3重量%之綠米球於複合 内 鄕鱗;歸佳係力认 夕於約15重夏%之碳奈米球。 7 200827394 與可使用任何已知的方法來製作本發明的複合物材料。 二二’聚合材料的微粒或粉末與預期量之碳奈米球可乾混合 於缝捏合機内混合同時加熱,或進料給擠壓機 後再切割成微粒。抑或係,可將碳奈米球混合到 •或^體^。’縣料可適合狀雜之已知方法與單體200827394 IX. Description of the Invention: [Technical Field] The present invention is a polymeric material comprising a carbon nanomaterial, in particular, a polymeric material comprising nanospheres. [Prior Art] 'Carbon Material It has been used in various fields as high-Wei and Wei materials. Graphite is a well-known carbon (four), which has important characteristics such as finding materials and New Zealand. In the past ten years, researchers have studied how to make graphite in the nano layer. Structure. However, the research results of most of the graphite nanostructures are nanotubes. In recent years, such as nano_onions, nano-horns (nanQhQms), i-beads (_beads), Other carbon nanostructures, such as nanofibers, which have been able to be fabricated into composite materials by mixing nanostructures into polymeric materials. Most of the results tend to Single-walled (Smgle_Walled) and multi-walled nanotube deer are incorporated into the polymer. _Using carbon nanotubes as a filler in the polymer can increase the strength of the composite material. : (strength) and form a conductive composite material. Γ 'However' has proven to be very challenging to mix nanotubes into polymeric materials. Due to the fiber shape of the disc nanotubes plus Small size, so it is difficult to evenly separate - scattered in the polymer. In turn, in the application of conductivity, for most applications, the amount of carbon nanotubes that reach the reactance of the reactance is small. High nucleation. [Summary] 5 200827394 The present invention is made of __ lin brewing compound: a composite material. Mei (four) ==::: a novel carbon nanostructure. In an embodiment , Qiao / 4 nano structure is a carbon ball. # (4) Carbon in the material ~ not a tree shirt (four) - the general definition of graphite is a round and hollow nanoparticle. i Generally, the dish can be In various embodiments, in the embodiment, the carbon nanotubes have a cataplasm of from about 2 nanometers (nm) to about abdomen; preferably about $about to about 10,000 Å; and more preferably about 10 to about 15 〇胍. The inner diameter of the nanosphere is determined by its outer diameter and wall thickness. Usually, the inner diameter of the carbon nanosphere is between about Μ·和约Preferably, between about 2 and about 2, and more preferably between about $post and about 100 nm. The carbon nanomaterial can be optionally pretreated to be more dispersible in the polymerization. The nanomaterial in the material or the functional groups on the surface thereof (eg, acid groups). In one embodiment, the neutralizing base can be utilized to remove the carboxylic acid and other oxidizing functional groups. In another embodiment In the process of purifying the nanomaterial with an oxidizing agent, the dispersibility can be improved by heating the material. The polymeric material for making the composite material can be any polymer or a polymerizable material compatible with the graphite material. Exemplary polymers include polyamines, polyacrylates, polybutadienes, polybutylenes, 4 polyethylenes, and polychlorinated chlorides. Polyvinylchlorinate, ethylene vinyl alcohol, fluoropolymer, ionomer, polymethylpentene, polypropylene, polystyrene , Polyvinyl chloride 6 200827394 (polyvinyldiloride), polyvinylidene chloride (mouth 〇 1 ^! 113 pool 161 ^ (:) 11 〇 1 ^ (16), polycondensate (polycondensate):, polyamines & 〇13 Which 1丨 (!6), Polyamide-painted polyimide-imide, polyaryletherketone, polycarbonate, polyketone, polyester , polyetheretherketone (polyetheretherketone), polyether oximine (?0 to technology 1 ^ 1 * 1111 丨 (16), polyether sulfone (polyethersulfone), poly phthalimide (p〇lyimide), polyoxyn benzene (polyphenylene oxide), polyphenylene sulfide, polyphthalamide (poly Phthalamide), poiythalimide, polysulfone, p〇lyaryisuifone, allyl resin, meiamine resin (phenol-formaldehyde resin), liquid crystal polymer (liquid eiystal polymer), polyolefin (poly〇lefm), fluorenone (smc〇ne), polyurethane (polyurethane), epoxy resin (epoxies), fiber polymer (cdlul〇 Sic polymer), a combination thereof, a derivative thereof, or a copolymer of any of the foregoing. The polymerizable material may be a polymer or such as a monomer, an oligomer or other polymerizable resin. The carbon nanosphere is mixed with a polymeric material to Forming a composite material having a carbon nanosphere content of about 8% by weight (Wt%) to 70% by weight; preferably, a composite having a carbon nanosphere content of from about 0.5% by weight to about 5% by weight; and A composite material having a carbon nanosphere content of from about L0% by weight to about 3% by weight. The carbon nanospheres can be added alone or in combination with other graphite materials to impart characteristics to the composite material. In order to: pre-conductivity, more than about 3% by weight of green rice balls are added to the composite inner scale; the best-selling force is about 15% of the summer carbon carbon nano balls. 7 200827394 The composite material of the present invention can be made using any known method. The particles or powder of the 22' polymeric material may be dry mixed with the desired amount of carbon nanospheres while being mixed in a slot kneader while heating, or fed to the extruder and then cut into particles. Or, the carbon nanosphere can be mixed to the ? or ^ body ^. ' County materials can be suitable for known methods and monomers

相較於其他奈米材料,特別是具有類纖維狀之奈米管,因為 不米球_似球狀’因此較容易分散於聚合或可聚合材料内。並 =奈米球較料分佈成微粒填充料而非纖維狀材料。相較微粒 〜兄’纖維狀材料—般較難分散,且需要較高的剪力(心啊 2以達戦分分散。相對地,奈米球可彻較低的剪力而與 ^和可聚合材料混合。利用較低的剪力混合奈米球可降低石墨 材料和其分散入之聚合材料的降解可能性。 為了改善奈米球於聚合材料中的分散性,可使用任何已知的 方法和/或適合與石墨碳材料一起使用之材料。再者,對於預期形 狀的成型方法,可採用任何已知方法,例如:擠壓成型、吹擠(㈣ 成型、射出成型或沖壓(press)成型。 本發明之複合物材料可具有目混人至其中之碳奈米球的獨特 形狀、化學性質和其他特徵而產生之有利特性。特別是,已發現 相較於相當量之碳奈米管或碳黑(carbonblack),石炭奈米球可明顯 降低許多聚合物的電性阻抗。舉例來說,於聚合材料中含有約 重量%的碳黑或7重量%的碳奈米管將達到一預期低電性阻抗, 8 200827394 然而只需要含有約 性阻抗。 重夏%的碳奈米球即可達到相同之預期低電 有關本發明的特徵與實作 明如下。 ' 茲配合圖式作最佳實施例詳細說 【實施方式】 I、用以製作複合物材料之成分Compared to other nanomaterials, especially those having a fibrillar-like shape, because they are not spherical, they are more easily dispersed in a polymeric or polymerizable material. And = nanosphere is distributed as a particulate filler rather than a fibrous material. Compared with the particle ~ brother 'fibrous material - it is more difficult to disperse, and requires a higher shear force (heart 2 to disperse the 戦 。. Relatively, the nanosphere can be a lower shear force and ^ and can Mixing of polymeric materials. Mixing nanospheres with lower shear forces reduces the degradation potential of the graphite material and the polymeric material it is dispersed in. To improve the dispersion of the nanospheres in the polymeric material, any known method can be used. And/or a material suitable for use with a graphite carbon material. Further, any known method can be employed for the molding method of the desired shape, for example, extrusion molding, extrusion ((4) molding, injection molding, or press molding). The composite material of the present invention may have advantageous properties resulting from the unique shape, chemical nature and other characteristics of the carbon nanospheres therein. In particular, it has been found that compared to a comparable amount of carbon nanotubes or Carbon black, carbon fiber nanosphere can significantly reduce the electrical impedance of many polymers. For example, containing about 50% by weight of carbon black or 7% by weight of carbon nanotubes in the polymeric material will reach an expected low Sexual impedance, 8 200827394 However, it is only necessary to contain the approximate impedance. The weight of the carbon nanosphere can reach the same expected low power. The features and implementations of the present invention are as follows. DETAILED DESCRIPTION [Embodiment] I. Composition for making composite materials

合物==^1=7嫩簡崎_的混 電性阻抗等新球,村舒複合物㈣諸如降低 ⑽地’獲合聚合材料亦可包括其他附加物, 土 ▲微粒或具有規則或不規則外型之球體。 A、聚合材料 可,、石土材料相谷或可製成與石墨材料相容之聚合材料均 可使用在減本發明之新穎複合物材料。《合_可為聚合物 或為可♦合材料。聚合材料可為合成、自然或改性後之自缺聚人 物或難。之聚合材料包括熱雌聚合物、触性聚合物和^ 或可聚合材料。 適用之聚合材料,其有用於根據本發明之複合物材料,包括 下列聚合物(和/或形成下列聚合物中之—個或多個之可聚合材 料)··聚胺(pdyamnie)、聚丙烯酸脂㈦^以扯广聚丁二蝉 (polybutadiene)、聚丁烯(polybuty〗ene)、聚乙烯(ρ_卿丨㈣)、 聚氯化乙烯(polyethylenechlorinate)、乙烯-乙烯醇(ethy】enevinyI alcohol)、氟聚合物(fluoropo〗ymer)、離聚物(i〇n〇mer)、聚甲基 9 200827394 戊稀(polymetliylpentene )、聚丙烯(polypropylene )、聚苯乙烯 (polystyrene )、聚氯乙烯(polyvinylchloride )、聚偏二氯乙烯 (polyvinylidene phloride )、聚縮物(polycondensate )、聚醯胺 (polyamide )、聚醯胺-酿亞胺(polyamide-imide )、聚芳 _ 酮 (polyaryletherketone )、聚碳酸酯(polycarbonate )、聚酮 (polyketone)、聚酯(polyester)、聚醚酮(polyetheretherketone)、Compound ==^1=7 Nenqisaki _ The new ball of mixed electric impedance, etc. (4) such as lowering (10) the 'polymerized polymeric material may also include other addenda, soil ▲ particles or have regular or not A sphere of regular appearance. A. Polymeric materials. The phase material of the stone material or the polymeric material which can be made compatible with the graphite material can be used to reduce the novel composite material of the present invention. "合合_ can be a polymer or a ♦ bondable material. The polymeric material can be synthetic, natural or modified self-depleting or difficult. The polymeric materials include hot estrogenic polymers, tactile polymers, and/or polymerizable materials. Suitable polymeric materials for use in composite materials according to the present invention, including the following polymers (and/or polymerizable materials forming one or more of the following polymers) · Polyamines (pdyamnie), polyacrylic acid Lipid (7) ^ to polybutadiene (polybutadiene), polybuty (polybuty ene), polyethylene (ρ_qing 丨 (4)), polyethylene chloride, ethylene-vinyl alcohol (ethy) enevinyI alcohol ), fluoropolymer (fluoromer), ionomer (i〇n〇mer), polymethyl 9 200827394 pentene (polymetliylpentene), polypropylene (polypropylene), polystyrene (polystyrene), polyvinyl chloride ( Polyvinylchloride ), polyvinylidene phloride, polycondensate, polyamide, polyamide-imide, polyaryletherketone, polycarbonate Polycarbonate, polyketone, polyester, polyetheretherketone,

聚醚醒亞胺(polyetherimide)、聚醚颯(polyethersulfone)、聚酿亞 胺(polyimide)、聚氧化二甲苯(polyphenylene oxide)、聚硫化苯 (polyphenylene sulfide)、聚鄰苯二曱醯胺(polyphtlialamide)、酞 醯亞胺(polythalimide )、聚砜(p〇lysuifone )、聚芳颯 (polyarylsulfone )、烯丙基樹脂(allyl resin )、三聚氰胺樹脂 (melamine resin)、酚醛樹脂(phenol-formaldehyde resin)、液晶 聚合物(liquid crystal polymer )、聚烯烴(p〇ly〇lefin )、碎酮 (silicone)、聚氨酯(polyurethane)、環氧樹脂(ep0Xies)、纖維 聚合物(cellulosic polymer)、其結合、其衍生物、或前述任意之 共聚物。 聚合材料可為熱塑性聚合物,此熱塑性聚合物加熱後可與碳 奈米球混合。抑或是,使用熱固性聚合物。通常,熱固性聚合物 係被挺供作為一個或多個可聚合單體(monomer )或寡聚體 (oligomer),然後再與碳奈米球混合,並聚合成複合物材料。 此領域熟習此項技術者可熟悉可用以形成前述聚合物之單體 和/或寡聚體。舉例來說,聚氨酯係為異氫酸基(isocyanategiOup) 與氫氧基反應的衍生物;聚脲(p〇lyurea)係為異氫酸鹽與胺基 10 200827394 (amme)反應的衍生物;石夕酉同可由水解石夕燒(纽咖)和/或石夕氧 烷(siloxane)而衍生得,等。根據本發明之聚合材料亦包括共聚 物,其包括上述一個或多個聚合物的嵌段(bl〇ck)。額外的聚合物 或可聚合材料如美國專利第6689835號所揭露。 適用的熱塑性可聚合材料的實例包括丙烯腈_ 丁二烯_苯乙稀 共聚物(acrylonitrile-butadiene-styrene ; ABS)、丙缔腈_乙稀/丙稀Polyetherimide, polyethersulfone, polyimide, polyphenylene oxide, polyphenylene sulfide, polyphtlialamide ), polythalimide, polysulfone (polyfluorsulfone), polyarylsulfone, allyl resin, melamine resin, phenol-formaldehyde resin, Liquid crystal polymer, polyolefin (p〇ly〇lefin), ketol, polyurethane, epoxy (ep0Xies), cellulosic polymer, its combination, its derivatization Or any of the foregoing copolymers. The polymeric material can be a thermoplastic polymer which, upon heating, can be mixed with carbon nanospheres. Or, use a thermosetting polymer. Typically, the thermoset polymer is supplied as one or more polymeromers or oligomers, then mixed with carbon nanotubes and polymerized into a composite material. Those skilled in the art will be familiar with monomers and/or oligomers that can be used to form the aforementioned polymers. For example, the polyurethane is a derivative of isocyanategiOup reacted with a hydroxyl group; the polyurea (p〇lyurea) is a derivative of an isocyanate reacted with an amine group 10 200827394 (amme); The same can be derived from hydrolyzed zebra (New Zealand) and/or siloxane, and the like. The polymeric material according to the present invention also includes a copolymer comprising a block (bl〇ck) of one or more of the above polymers. Additional polymeric or polymerizable materials are disclosed in U.S. Patent No. 6,681,835. Examples of suitable thermoplastic polymerizable materials include acrylonitrile-butadiene-styrene (ABS), propiononitrile-ethylene/propylene

-苯乙烯共聚物(acryl0nitrile-etliylene/pr0pylene_styrcne ; AES/_APS )、甲基丙烯酸甲酯-丁二烯-苯乙稀共聚物 (methylmethacrylate-butadiene-styrene ; MBS)、丙稀腈_丁二烯_ 曱基丙烯酸曱酯-苯乙烯共聚物(acrybnitrile_butadiene_ methylmethacrylate-styrene)、丙烯腈_丙烯酸正丁酯_苯乙烯共聚物 (acrylonitrile-n-butylacrylate-styrene)、橡膠改性聚苯乙烯(瓜汕沈 modified polystyrene )(耐衝擊性聚苯乙烯)、聚乙稀 (polyethylene )、聚丙烯(polypropylene )、聚苯乙烯(p〇iyStyrene )、 聚曱基丙烯酸甲酯(polymethyl-methacrylate )、聚氯乙烯、醋酸纖 維樹脂(cellulose-acetate resin )、聚醯胺、聚酯、聚丙烯腈 (polyacrylonitrile)、聚碳酸酯、聚苯醚(?〇17?11邱丫16此(^(;^; PPO )、聚酮、聚颯(polysulphone ; PSU )、聚笨疏醚 (polyphenylenesulfide ; PPS)、氟樹脂(fluorideresin)、石夕酮、聚 酸亞胺、聚苯咪嗤(polybenzimidazole、PBI)、聚酿胺彈性體 (polyamide elastomer ; PAE)、其結合及其衍生物等。 適用的熱固性樹脂的實例包括紛樹脂(phenol resin )、尿素樹 脂(urea resin )、三聚氰胺-曱酸樹脂(melamine-formaldehyde 11 200827394 )尿素·曱醛乳膠(urea-formaldehyde latex)、二曱苯樹脂 ^ 1咖resin )、對笨二甲酸二烯丙g旨樹脂(論伽〇 resin )、 滅日(epQxy職)、錢脑(—he fesin )、硤销脂(也碰 )夕树知(sllicon resin)、聚氨酯、其結合及其衍生物等。 • B、碳奈米材料 、 、λ米材料係包括於複合物材料内,以提供複合物材料預期 立上 父在某種矛王度上,複合物材料的新穎特性係因為組成全 響_ 邰^卩分妷奈米材料之碳奈来結構。於碳奈米材料内之碳奈米結 構具^衫有利特性,例如:獨特的形狀、尺寸、和/或電性阻抗。 在貝知例中,碳奈米結構係為碳奈米球。 、,人示米材料可包括碳奈米球以外之材料。舉例來說,碳奈来 ^可匕括石墨(即’石墨薄片)、非結晶碳、和/或鐵奈米微粒。 碳奈米球的百分比含量可影響複合物材料的特性。在一實施例 中,於碳奈米材料中碳奈米球的重量百分比係為約2%至1〇〇%之 間抑或疋,碳奈米球的百分比係為至少約10重量% (wt〇/〇),且 — 幸交佳為至少15%。 ;、,、或者是,或除了碳奈米結構的中量百分比外,新穎碳奈米材 :=特徵可為表面官能基的缺乏。實施例中,後奈米材料的 吕此化(fimCtlonallzatlon )係由水洗的酸度而決定。在—實施例中, 2清洗溶液對碳奈米材料的重量比為丨:i,碳奈米材料具有酸 官能化,其係給予酸鹼值(PH)於約5.0到約8·0之間的清洗溶液, 佳酸鹼值係於約6.5到約7 25之間。具有ρΗ在前述範圍内的 人不米材料有助賴聚合齡混合,此聚合翻旨麵敏於酸性纖 12 200827394 ’隹材料例如·來苯乙烯丁二烯橡膠(Polystyrene butadiene 祕er)。然而’根據本發明之碳奈来材料亦包括前述阳範圍之外 的反不米材料,亚且若驢要,此些碳奈米簡可與靈敏於酸性 纖維材料之聚合樹脂_起使用。 1·碳奈米球 隹一貫施 1 妷示米球包括規則或不規則形狀之中空奈米 例中。石反奈米球—般係為類似球體的形狀。 ••板大述,ί根據本發明之-實闕巾,絲紐構係由模 和碳前驅物所製成。於製成過程中,碳奈米結構形成 ㉛u雜。在—實施例中,奈米結構的尺寸與形狀大 =依_板奈米錄的尺稍職而妓。目為碳奈米結構 :厂於模板奈米微粒周圍,因此碳奈米結構的孔洞或内 嫩模板奈米微粒的外徑。此碳編構内徑可位軸太: (rnn)和約9〇職之間。 、 不未 弟1A圖」及「弟1B圖|传顧+士丨田灿λ 作的範例奈米球的掃峨子顯微鏡⑽ Γ述例i。「第2圖」及「第3圖」係為以 圖」中之奈米材料的透射電子顯微鏡加Μ) Θ-styrene copolymer (acryl0nitrile-etliylene/pr0pylene_styrcne; AES/_APS), methylmethacrylate-butadiene-styrene (MBS), acrylonitrile-butadiene_ Acrybnitrile_butadiene_methylmethacrylate-styrene, acrylonitrile-n-butylacrylate-styrene, rubber modified polystyrene Polystyrene (polystyrene), polyethylene, polypropylene, polystyrene (polymethyl-methacrylate), polyvinyl chloride, acetic acid Fiber-acetate resin, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphenylene ether (?? 17? 11 Qiu 16 this (^ (; ^; PPO), poly Ketone, polysulphone (PSU), polyphenylenesulfide (PSS), fluorene resin (fluorideresin), linaloic acid, polyamidiamine, polybenzimidazole (PBI), poly brewing Polyamide elastomer (PAE), its combination and its derivatives, etc. Examples of suitable thermosetting resins include phenol resin, urea resin, melamine-formaldehyde 11 200827394 Urea-formaldehyde latex (urea-formaldehyde latex), diterpene benzene resin ^ 1 coffee resin), for stearic acid diene g resin (on Gaya resin), annihilation (epQxy job), money brain (- He fesin ), 硖 脂 ( (also touched) sllicon resin (sllicon resin), polyurethane, its combination and its derivatives, etc. • B, carbon nanomaterials, λ meter materials are included in the composite material, The provision of composite materials is expected to be on the spearhead. The novel properties of the composite materials are due to the composition of the full-sounding _ 邰 卩 卩 卩 妷 妷 妷 妷 妷 妷 妷 妷 妷 妷 妷. The carbon nanostructures in the carbon nanotube material have advantageous properties such as unique shape, size, and/or electrical impedance. In the case of the case, the carbon nanostructure is a carbon nanosphere. The rice material may include materials other than carbon nanospheres. For example, carbon can include graphite (i.e., 'graphite flakes), amorphous carbon, and/or iron nanoparticle. The percentage content of carbon nanospheres can affect the properties of the composite material. In one embodiment, the weight percentage of carbon nanospheres in the carbon nanomaterial is between about 2% and about 1%, or the percentage of carbon nanospheres is at least about 10% by weight (wt〇 /〇), and - fortunately, at least 15%. ;,, or, or in addition to the median percentage of the carbon nanostructure, the novel carbon nanomaterial: = characteristic can be a lack of surface functional groups. In the examples, the fiimCtlonallzatlon of the post-nanomaterial is determined by the acidity of the water wash. In an embodiment, the weight ratio of the cleaning solution to the carbon nanomaterial is 丨:i, and the carbon nanomaterial has an acid functionalization, which is given a pH of between about 5.0 and about 8.0. The cleaning solution has a good pH value of between about 6.5 and about 7 25 . The human non-rice material having a particle size within the foregoing range contributes to the polymerization age mixing, which is sensitive to the acid fiber 12 200827394 '隹 material such as styrene butadiene er er. However, the carbonaceous material according to the present invention also includes the anti-rice material outside the aforementioned positive range, and if so, these carbon nano-succincts can be used together with the polymeric resin sensitive to the acidic fibrous material. 1·Carbon Nanospheres 隹 Consistently applied 1 妷 The rice balls include regular or irregular shapes of hollow nanoparticles. The stone anti-nano ball is generally shaped like a sphere. • The board is described in detail, ί according to the present invention, the silk scarf is made of a mold and a carbon precursor. During the manufacturing process, the carbon nanostructure forms 31u. In the embodiment, the size and shape of the nanostructure are large. The carbon nanostructure is: the outer diameter of the carbon nanostructure or the inner diameter of the inner template microparticles. This carbon braided inner diameter can be a bit axis: (rnn) and about 9 〇 between. "I don't have a younger brother, 1A" and "Different 1B" | 传顾+士丨田灿λ's example of a broom microscope for nanospheres (10) Illustrated example i. "Fig. 2" and "Fig. 3" For the transmission electron microscopy of the nanomaterials in the figure) Θ

影像的觀轉釋的TEM 4 °以SEM —般類似球體的形狀。 在一貝施例中奈米球可具有 碳奈球^^™, 則」係㈣椒齡觸 13 200827394 部份破開以顯露出多個石炭奈来球。於「第2 顯示出随係由多個類似之碳奈米球所構成。在「第更 綱=顯^:f米結構_空且大^_^, -有鐵模心出現 .發生在催倾板奈__周:树㈣了 %奈米結構的形 ·· 在㈣影像中許多碳奈米球,其外徑係介於約⑺ 60咖⑽’且中空内#係為㈣邮至約 :::奈米材料包括具有較大或較小直徑一 球具有小於約1〇0™的外徑,以維持結構完整性。^ 奈米球壁的厚度係由壁内徑量測到壁外徑。於 述之碳前驅物的聚合作用和/或碳化作用的程度之製作過^如: 米球的厚度可為多變的。通常 。王不 约—。然而,若二二=,和The TEM 4° of the image is interpreted in a SEM-like shape resembling a sphere. In the case of a shell, the nanosphere can have a carbon nanotubes ^^TM, and then the system is broken (parts) to reveal a plurality of charcoal. "The second shows that the system consists of a number of similar carbon nanospheres. In the "more outline = display ^: f m structure _ empty and large ^ _ ^, - there is a iron mold heart.倒板奈__周: Tree (4) The shape of the % nanostructure ·· In the (4) image, many carbon nanospheres have an outer diameter of about (7) 60 coffee (10)' and hollow inner # is (4) mail to about ::: Nanomaterials include a larger or smaller diameter ball having an outer diameter of less than about 1 〇 0 TM to maintain structural integrity. ^ The thickness of the nanosphere wall is measured outside the wall by the inner diameter of the wall The diameter of the carbon precursor described above is determined by the degree of polymerization and/or carbonization. The thickness of the rice ball can be varied. Usually, the king does not. - However, if two or two =, and

較厚的壁的優點在於可具有較佳的結構完整;:的:作 優點在於可具有較佳的表面積和多孔性。衣作㈣的壁的 到約100個石墨層的壁,較佳係具有約5個 壁々更麵具扣5個_2ΰ個石墨層的 :此=墨特徵被認為可賦予破奈米結構有利特性, 多簡管的好處(例如的 夕並用於許多可使用碳奈米管之應用 恭吊具有可預見之較好的結果和/或降低成本。 14 200827394 儘官SEM影像和TEM影像顯示出大體類似球體之社 構’根據本發明之奈米材料更包含具有除作似球體之形狀的二 米結構。另外,奈米結構可為原為類似球體狀奈米球的^段。、二 常,碳奈米結構的形狀至少部分係由模板奈米微粒所決定。=此、 . 非球狀模板奈米球可導致具有非球體狀尺寸之碳奈米結此’ • 除了電子遷移佳外,根據本發日月之碳奈米結構具有高多孔性 ,大表面積。· (AdsGiptiQn)和解吸(da。·⑻等溫^指出 _ 碳奈米結構形成介孔性(mes〇p〇r〇us)材料。碳奈米結構的二丁 比表面積(specific surface area)可位於約8〇 _和約 v/g 之間:較佳係大於約mmVg,且一般係約·*,其明顯高^ 奈米管特有之10G m2/g。甚至於根據本料之方法職生之:夺 米結構混合非結構石墨上,石墨混合物(即,碳奈米材料) 具有大於碳奈米管之表面積。 又 2·碳奈米材料的製造方法 .根據本發明之碳奈米結構可下騎有或部分步驟來製 作形成包括碳前驅物和多個模板奈米微粒之前驅混合物,㈤ ^ 2碳麵物聚合於舰觀奈米躲聚麵顯,㈤碳化前驅 f合物以形成中間碳材’此中間碳材包括多個奈米結構(例如: 反/丁、米球)、非結晶碳和催化金屬,㈤透過移除至少一部份的非 結晶碳和隨意地移除部份佩金屬來純化中間碳材,以及⑺透 =、、處理、4化後之中間材料和/或以鹼處理純化後之中間材料來隨 #夕除保逼於純化後之中間碳材表面之至少一部份的任意官能 15 200827394 (i)前驅混合物的形成 於此係透過選擇碳前驅物並分散多個催化模板奈米微粒於碳 说驅物中來形成前驅混合物。The advantage of a thicker wall is that it can have a better structural integrity;: It has the advantage of having a better surface area and porosity. The wall of the fabric (4) to the wall of about 100 graphite layers, preferably having about 5 walls and more masks and 5 _2 石墨 graphite layers: this = ink characteristics are believed to give a favorable structure Characteristics, the benefits of multiple tubes (for example, the use of carbon nanotubes for many applications can be expected to have better results and / or reduce costs. 14 200827394 SEM images and TEM images show the general A sphere-like structure The nanomaterial according to the present invention further comprises a two-meter structure having a shape similar to a sphere. In addition, the nanostructure may be a segment similar to a spherical nanosphere. The shape of the carbon nanostructure is determined, at least in part, by the template nanoparticle. = This, . The non-spherical template nanosphere can result in a carbon nanoparticle with an aspherical size. The carbon nanostructure of this issue has high porosity, large surface area. (AdsGiptiQn) and desorption (da.·(8) isotherm ^ indicates _ carbon nanostructure formation mesoporous (mes〇p〇r〇us) Material. The specific surface area of the carbon nanostructure (specific surface a Rea) may be between about 8 〇 and about v/g: preferably more than about mmVg, and generally about *, which is significantly higher than the 10G m2/g unique to the nanotube. Even according to the material Method for the occupational student: on the mixed structure of the unstructured graphite, the graphite mixture (ie, the carbon nanomaterial) has a surface area larger than that of the carbon nanotube. The method for producing the carbon nanomaterial. The carbon nano according to the invention The rice structure can be laid down or partially stepped to form a mixture comprising a carbon precursor and a plurality of template nanoparticle precursors, (5) ^ 2 carbon surface polymerized on the ship-viewing nano- hiding surface, (5) carbonized precursor composition To form an intermediate carbon material 'this intermediate carbon material includes a plurality of nanostructures (for example: reverse / butyl, rice balls), amorphous carbon and catalytic metal, (5) by removing at least a portion of the amorphous carbon and randomly moving In addition to the partial metal to purify the intermediate carbon material, and (7) the intermediate material after the treatment, the treatment, the intermediate material, and/or the intermediate material after the purification by the alkali treatment, the intermediate carbon material is forced to be purified after the purification. Any functional moiety of at least a portion of the surface 15 200827394 (i) Formation of a precursor mixture The precursor mixture is formed by selecting a carbon precursor and dispersing a plurality of catalytic template nanoparticles in the carbon insulator.

可使用任意類型的碳材料作為本發明之碳前驅物,且其可散 佈模板微粒並經由熱處理而圍繞模板微粒而碳化。適用之可聚合 石反箣驅物的貫例包括間苯二紛甲酸膠(reS〇rCin〇l_f〇mialdehyde gel)、間苯二酚、酚(phenol)樹脂、三聚氰胺-曱醛膠、聚糠醇 Cpoly(FurfUryl Alcohol))、聚丙稀腈、蔗糖(sucrose)、石油渥青 (petroleum pitch)等。其他可聚合之苯(]3enzene)、對笨二酉同 (qurnone)及類似成分亦可用以作為碳前驅物,並且其係為此領 域熟習此項技術者所熟知。在範例實施例中,碳前驅物係為熱液 性可聚合有機成分。此類型之適用的有機成分包括檸檬酸(dtric acid)、丙烯酸(acrylic acid)、苯甲酸(benzoic acid)、丙烯酸醋 (acrylic ester)、丁二稀、苯乙烯、肉桂酸(cinnamic &说)等。 分散於碳前驅物之催化模板奈米微粒,其經由各種不同方式 來提供。模板奈米微粒可於碳前驅物中形成,即,原位, 或於獨立的反應混合物中形成,然後再與碳前驅物混合。在某此 實例中,錄職可部分發生麵立的反射,_#模板微粒 與碳前驅物混合和/或在碳前驅物中加熱(例如:開始前驅聚合物 作用步驟)時才形成。亦可彻控舰粒形成的外觀之分散劑 (dispersing agent)形成模板奈米微粒,或係由金屬鹽製成模板奈 米微粒。. ^ Ύ 在-實施射,模板奈米微粒係由金屬鹽而形成於碳前驅物 16 200827394 中。在此實施例中,係藉由選擇可與碳前驅物混合之一個或多個 催化金屬鹽來形成模板前驅物。金屬鹽與碳前驅物混合,然後致 使原位形成奈米微粒。 在另一貫施例中,係利用分散劑控制微粒形成來(原位或移 • 位(eXeSltu))形成模板微粒。在此實施例中,係選擇一種或多種 • 催化原子和一種或多種分散劑。選擇分散劑以改善具有預期穩定 性、尺寸和/或一致性的奈米催化微粒的形成。於發明範圍内之分 散舱括多種小有機分子、聚合物和絲物。分散劑可與催化原 子相互反應和鍵結,並且此催化原子係透過包括離子鍵結、共價 鍵結、凡得瓦(Van der Waals)交互作用/鍵結、孤電子對鍵結(1〇此 pair electron bonding)或氫氧鍵結等各種機制溶解或分散於適當的 溶劑或載子内。 〜田 催化原子(例如:在基態金屬或金屬鹽的形成上)和分散劑 (如在細义或其鹽類的形成上)一起反應或結合,以形成催 /夂-物 I係藉由先溶解催化原子和分散劑於適當溶劑,然 後使催化料與分散#j分子賴,㈣成雜複合物。各種成分 :、順輸b合來結合或混合。另外,成分的子集可在添加 :,、他成分之_混合,或_結合所有成分。 在發明的一實施例中,可透過混合約1小時至約14天致使模 •板奈__成分絲成絲餘。通#,混合 到 200°C。在一奋斤加占 ^ 、 例中,溫度不超過loot。亦可使用試劑導致微 2成。舉例麵,在某些例子中,可藉城氣胃泡it過催化複 a物的溶液來導致微粒或中間微粒的形成。 17 200827394 、山根據本發明賴板奈米微粒具有催化碳前驅物的聚合作用和/ 或反化作用的⑥力。在碳前驅物中之催化模板奈米微粒的濃度係 I據使用·之W驅物的類型而改變。在範例實麵中,碳前驅物 :推化原子的莫耳比係為約αι:ι到約1⑻:ι,較佳係約ι:ι到約 • 30:1。適用的催化材料的實例包括鐵、録、鎳等。 • (ϋ)聚合前驅混合物 &研使前驅混合物反應充足的時間,以致多辦間碳奈米 ·· 賴眺模板奈米微㈣戦。由於奈級粒被催化而活 板板示#微粒可優先促進和/或起始近模板微粒的表面之碳前 驅物的聚合作用。 2成中間奈米結構所需之時間係取決於溫度、催化材料的類 土矛/辰度,合液的pH、和使用之碳前驅物的類型。於聚化期間, 中間厌不米結構可為個別之有機結構或奈米結構的結合 (association),且此奈米結構的結合可於聚合作用和/或非結晶碳 的移除期間分離。 _ 加入以調整阳的(ammonia)亦可透過增加聚合作用的速率 : 和增加產生於前驅物分子之間的交聯(cross i址mg)量影響聚合 作用。 3 m , 躲驗可聚合碳前驅物,絲合_-般係發生在高溫。 . 在較佳實施例中,碳前驅物被加熱至約〇。〇到約2〇〇t的溫度,並 且更佳地係介於約25t:和120°C之間。 以間苯二的聚合作聽說,適#條件(例如··其具 有鐵微粒且溶液pH U4)係為溶液溫度介於約叱和机之間, 18 200827394 小時到約72小時的反應時間。此領域熟習此項技術者可 輕易決,相同或不同參數下反應其他碳前驅物所需之條件。 施辦’不允紗合作轉續完成。在整個溶液聚合 紐程序可祕形❹個财生各獅奈米結構之中間 = 不是單群的碳化材料。⑽,本發明包括實施例, 驅物形成多辦間奈米結構,且此些中間奈米結構彼此Any type of carbon material can be used as the carbon precursor of the present invention, and it can disperse the template particles and carbonize around the template particles via heat treatment. Examples of suitable polymerizable stone ruthenium repellents include resulphuric acid gel (reS〇rCin〇l_f〇mialdehyde gel), resorcinol, phenol resin, melamine-furfural gum, polydecyl alcohol Cpoly (FurfUryl Alcohol)), polyacrylonitrile, sucrose, petroleum pitch, and the like. Other polymerizable benzenes (3enzene), qurnone and the like can also be used as carbon precursors, and are well known to those skilled in the art for this purpose. In an exemplary embodiment, the carbon precursor is a hydrothermally polymerizable organic component. Suitable organic ingredients of this type include dtric acid, acrylic acid, benzoic acid, acrylic ester, butyl succinate, styrene, cinnamic acid (cinnamic & said) Wait. Catalytic template nanoparticle dispersed in a carbon precursor is provided in a variety of different ways. The template nanoparticles can be formed in a carbon precursor, i.e., in situ, or formed in a separate reaction mixture, and then mixed with a carbon precursor. In some such instances, the recording may partially occur in a reflective, _# template particle being mixed with the carbon precursor and/or heated in the carbon precursor (e.g., starting the precursor polymer step). It is also possible to form a template nanoparticle by a dispersing agent that controls the appearance of the formation of the pellet, or to form template nanoparticle from the metal salt. ^ Ύ In the implementation of the shot, the template nanoparticle is formed from a metal salt in the carbon precursor 16 200827394. In this embodiment, the template precursor is formed by selecting one or more catalytic metal salts that can be mixed with the carbon precursor. The metal salt is mixed with the carbon precursor and then causes the nanoparticles to form in situ. In another embodiment, the template particles are formed using a dispersant to control particle formation (in situ or shift (eXeSltu)). In this embodiment, one or more of the • catalytic atoms and one or more dispersing agents are selected. Dispersants are selected to improve the formation of nanocatalytic particles having the desired stability, size and/or consistency. Dispersions within the scope of the invention include a variety of small organic molecules, polymers and filaments. The dispersant can interact and bond with the catalytic atom, and the catalytic atomic system can include ionic bonding, covalent bonding, Van der Waals interaction/bonding, and lone pair bonding (1〇 Various mechanisms such as the pair electron bonding or hydrogen-oxygen bonding are dissolved or dispersed in a suitable solvent or carrier. ~ Catalytic atoms (for example: in the formation of ground metal or metal salts) and dispersants (such as in the formation of fine sense or its salts) together or combined to form a reminder / 夂 - I Dissolving the catalytic atom and the dispersing agent in a suitable solvent, and then causing the catalytic material to disperse and (d) a hetero-complex. Various ingredients: combine with or combine with b. Alternatively, a subset of the ingredients may be added with :, a mixture of his ingredients, or a combination of all ingredients. In an embodiment of the invention, the mixing of the mold sheet is caused by mixing for about 1 hour to about 14 days. Pass #, mix to 200 ° C. In a struggle to accumulate ^, in the case, the temperature does not exceed the loot. Reagents can also be used to cause micro 20%. By way of example, in some instances, a solution of a catalytic complex can be used to cause the formation of particulates or intermediate particles. 17 200827394, Mountain According to the invention, the lamella nanoparticles have 6 forces which catalyze the polymerization and/or reversal of the carbon precursor. The concentration of the catalytic template nanoparticle in the carbon precursor varies depending on the type of W precursor used. In the exemplary embodiment, the carbon precursor: the molar ratio of the atomized atoms is from about αι: ι to about 1 (8): ι, preferably from about ι: ι to about 30:1. Examples of suitable catalytic materials include iron, nickel, nickel, and the like. • (ϋ) Polymerization of the precursor mixture & research to make the precursor mixture react enough time, so that more than half of the carbon nanometer · Lai 眺 template nano micro (four) 戦. Since the nematic granules are catalyzed, the flip-chip shows that the microparticles preferentially promote and/or initiate the polymerization of the carbon precursor of the surface of the near-template microparticles. The time required for the 2% intermediate nanostructure depends on the temperature, the soil spear/time of the catalytic material, the pH of the liquid mixture, and the type of carbon precursor used. During the polymerization, the intermediate anaesthetic structure may be an association of individual organic structures or nanostructures, and the bonding of the nanostructures may be separated during the removal of the polymerization and/or amorphous carbon. _ Adding to adjust the ammonia can also increase the rate of polymerization by: and increasing the amount of cross-linking (mg) between the precursor molecules affects the polymerization. 3 m, avoiding polymerizable carbon precursors, silky _-like occurs at high temperatures. In a preferred embodiment, the carbon precursor is heated to about 〇. The temperature is about 2 Torr, and more preferably between about 25 Torr and 120 °C. With the polymerization of isophthalic acid, it is said that the conditions (for example, it has iron particles and the solution pH U4) are such that the solution temperature is between about 叱 and the machine, and the reaction time is from 18 200827394 hours to about 72 hours. Those skilled in the art will readily be able to determine the conditions required to react with other carbon precursors under the same or different parameters. The implementation of the 'No Yarn Cooperation' was completed. The entire solution polymerization process can be secreted in the middle of a wealthy lion nanostructure = not a single group of carbonized materials. (10), the present invention includes an embodiment, the insulator forms a multi-intermediate nanostructure, and the intermediate nanostructures are mutually

〜或在非、纟5日日石厌的移除期間。 _tr板奈米微粒的分散形成中間碳奈米結構導致多個具有獨 ^小/尺寸的中間絲米結構的形成。最後,奈米結構的特性 特妒L部份由㈣碳奈米結構而決定。因為中間碳奈米結構的獨 ^和高多H最後奈米結射具有有益韻,尤其像是高表面 (出)碳化前驅混合物 多個熱碳化前驅混合物,以形成中間碳材,此中間碳包括 約:。結構、非結晶石炭和催化金屬。藉由將混合物加熱至 中j C至J、,、勺2500 C之間的溫度而碳化前驅混合物。於加熱過程 ,=如氧和氮原子會被揮發掉,或者從中間奈米結構(或環结 石墨基奈米結構具有 石墨層可提供獨特且 剛性。 唉化步驟-般係產生石墨基奈米結構。 f列成SP‘較碳料之結構平_碳原子。 利的特性,例如:導餘和結構強度及/或 19 200827394 (iv)純化中間碳材 除至J-部分的非石墨之非結晶碳來純化中簡碳材。 、、,化步驟~加於中間碳材中之碳奈米結構的重量百分比。 / 了藉由氧化|來移除非結晶碳。用以移出非結晶碳之氧 - 選擇的進行於非石墨之非結晶碳中發現之鍵結的氧化作 . ^易對石墨*奈求結構的pi鍵結產生反應。透過於-個 〇個 <、滅純化轉巾施域化臟混合物可移射結晶碳。 一 肋移除非結晶碳的_包含有氧倾和氧化献其混合物。是 用以移除非結晶碳的混合物之實例包括硫酸、高猛酸卸 ί^[η04)、過祉氫(秘)、5體積莫耳濃度(⑷或更多的 硝酉夂(丽〇3)和王水(叫仙⑺細)。 $可大致场除所有或—部份的催化金屬。無論移除 雜㈣或歸低金糾純度絲決於職制的碳化奈米材 料。在本翻的—些實施财,金屬,例如:鐵,的存在有助於 提供某種程度的電性和/或磁性。抑歧,移除催化金屬以防止催 射反作祕其最終朗_想的。移雜倾板微粒亦 可如升多孔性和/或降低其密度。 身又地’係使用酸或鹼,例如:確酸(_c _)、氣化 (Mrogen fluonde) ? 板奈未微粒。移除模板奈米微粒或非結晶碟的方法係取決 合物材料巾模板奈賴__或舰原子。—般可透過於 石肖酸中回流加熱複合条来έ士媸% (例如··鐵微粒或原;動6小時,來移除催化原子或微粒 20 200827394 只要移除程序完全不破壞碳奈米結 序來移除模板奈米微粒。在—些例子中,於==任=_ 移除中間奈米結構中之—些含竣材料甚至係有利的。^刀 ⑽广過程中,氧化劑和酸具有引導水合氫基(hydromum g卿s)和語基(Gxygenated胸ps),例如·.(但非 物(carboxylate)、iS(carb l) j 夂匕 叛丞 Uarb〇nyl)不口/或醚基(ethergroup),至 5石厌材料的傾向。相信官能基能在碳夺~ or during the removal of the non-, 纟 5th day stone. The dispersion of the _tr plate nanoparticles to form an intermediate carbon nanostructure results in the formation of a plurality of intermediate filament structures having a unique size/size. Finally, the characteristics of the nanostructure are particularly determined by the (four) carbon nanostructure. Because the intermediate carbon nanostructure and the high poly H final nano-emission have a beneficial rhyme, especially like a high surface (out) carbonization precursor mixture of multiple thermal carbonization precursor mixtures to form an intermediate carbon material, the intermediate carbon includes approximately:. Structure, amorphous carboniferous and catalytic metals. The precursor mixture is carbonized by heating the mixture to a temperature between cc, J, and 2500 C. During the heating process, = oxygen and nitrogen atoms will be volatilized, or from the middle nanostructure (or the ring-junction graphite-based structure with a graphite layer can provide unique and rigid. The deuteration step - the general generation of graphite-based nano Structure f is listed as SP's carbonaceous structure flat_carbon atom. Advantages, such as: conductivity and structural strength and / or 19 200827394 (iv) purification of intermediate carbon material in addition to the non-graphite of the J-part Crystallized carbon to purify the carbonaceous carbon material, and, in the step of adding ~ the weight percentage of the carbon nanostructure added to the intermediate carbon material. / Removal of amorphous carbon by oxidation| Oxygen-selective oxidation of bonds found in non-graphite non-crystalline carbon. ^Easy to react with the pi bond of the graphite* negligence structure. The domaind dirty mixture can shift the crystallized carbon. The rib removes the amorphous carbon from the mixture containing oxygen and the mixture of oxygen. Examples of the mixture used to remove the amorphous carbon include sulfuric acid, high acid removal. [η04), hydrogen peroxide (secret), 5 volume molar concentration ((4) or more Niobium (Lishen 3) and Wang Shui (called Sin (7) fine). $ can be divided into all or part of the catalytic metal. No matter the removal of impurities (four) or the reduction of the purity of the gold, the carbonized naphthalene Rice material. In the implementation of this - some implementation, metal, such as: the presence of iron, helps to provide a certain degree of electrical and / or magnetic. Suppress, remove the catalytic metal to prevent the spurt In the end, it is possible to increase the density and/or reduce the density of the particles. The body is also made of acid or alkali, such as acid (_c _), gasification (Mrogen fluonde). The board is not fine particles. The method of removing the template nano-particles or the non-crystalline dish is to take the composite material towel template Nai Lai __ or ship atom. - It can be heated by reflowing the composite strip in the diaphoric acid to the gentleman 媸% ( For example · · Iron particles or original; move 6 hours to remove catalytic atoms or particles 20 200827394 As long as the removal procedure does not destroy the carbon nano-sequence to remove the template nano-particles. In some examples, at == Ren =_ removes the middle nanostructure - some of the niobium containing materials are even beneficial. ^ knife (10) wide process, The agent and acid have a hydrated hydrogen group (hydromum g s) and a grammatical group (Gxygenated thorax ps), for example, (but not carboxylate, iS (carb l) j 夂匕 rebellious Uarb〇nyl) Oral/ether group (ethergroup), the tendency to 5 stone anaesthetic materials. It is believed that the functional group can be used in carbon

之石墨和域剩下非石墨之結晶韻=^構、;&有碳奈米結構 (v)至中間碳材的表面遺移除官能基 〜:隨意利用熱處理和/或中和驗來移除在中間碳材的表面上的 般係移除表面官能基和/或中和表面官能基,於此, =面和/或怖表面官能基能改善在聚合材料中的碳奈米材料 的为放和/或改善複合物材料的特性。 在中間碳材表面上的官能基可_熱纽步驟來移除。於選 ^度下有利進行誠理步驟,且此選擇溫度係依據需移除的特 疋吕此基而選擇。-般來說,較高溫度的熱處理,可移除較多總 類的官能基。於純化後賴處理步驟可於高於約⑽。⑽溫度下執 订’較佳係高於約·。c,並且更佳的係高於約意c。 隨意地’於純錢賴歧可為足輯行指晶碳的碳化作 用的溫度下。出人意外地,於純化作用後加熱中間碳材至後化溫 度’可有彻顯著部分的任意剩餘的非結晶碳轉換成石墨。可發 現,藉由於純化倾顯著百分比的非結晶碳,然触化触 後之材料,較容易將剩餘的碳轉換成石墨。 21 200827394 米結構的次結構(例如 米結構混合的自由石墨 加碳奈米材料的石墨純^ 作用步驟中的石墨可増加物結構、碳奈The graphite and the domain are left with non-graphite crystal rhyme = ^ structure; & carbon nanostructure (v) to the surface of the intermediate carbon material to remove the functional group ~: free to use heat treatment and / or neutralization test to move In addition to the removal of surface functional groups and/or neutralizing surface functional groups on the surface of the intermediate carbon material, the = face and/or surface functional groups can improve the carbon nanomaterial in the polymeric material. Put and/or improve the properties of the composite material. The functional groups on the surface of the intermediate carbon material can be removed by a hot step. It is advantageous to carry out the honesty step under the selection degree, and the selection temperature is selected according to the special ruthenium which needs to be removed. In general, higher temperature heat treatments remove more of the total class of functional groups. The treatment step after purification can be above about (10). (10) The order at the temperature is better than about. c, and a better system is higher than the approximate c. Optionally, the pure money can be used to heat the carbonization of the carbon. Surprisingly, the intermediate carbon material is heated to a post-purification temperature after purification to have a significant portion of any remaining amorphous carbon converted to graphite. It has been found that by purifying a significant percentage of amorphous carbon, it is easier to convert the remaining carbon to graphite by touching the material behind the contact. 21 200827394 Substructure of m-structures (eg graphite-mixed free graphite with graphite-filled carbon nanomaterials)

' W目同、、梳s度’彻本發明的兩步驟碳化作財法可較有效率 .地產生南純度碳奈米材料。在另—實施例中或除了額外的熱處理 步驟,-些官能基,例如··(但非限制)水合氫基,可利用中和於 ·· 自_間碳材移除。在此實施例中,中間碳材與含有-或多種中^ 鹼的溶液混合。適用的驗包括氫氧化物、氨喝酸鐘⑴观跑)、 醋酸鈉(Na韻ate)、酷_ (κ儒她)、碳酸氯納(軸叫、 破氫鉀(跳〇3)、碳酸鋼(Na2C〇3)、石炭酸卸、和類 似物,和其結合,其中此氫氧化物可包括氫氧納和氫氧化卸。: 與水合氫基的反應可形成可藉由水洗移除的副產品。 " 在-錢例巾,官能基能透職泡巾間碳材於清洗溶液中來 _ 移除。加入額外的鹼至清洗溶液中直到預期的pH值,即較中性的 pH。在-貫施例中,清洗溶液被中和成約5 〇到約g o之範圍内的 ί PH值,或約6·〇到約7.5之範圍内的1)11值。 ; 自中間碳材移除官能基的步驟能用以移除碳奈米結構、非結 晶碳(石墨或非石墨)或純化後之中間碳材的任何其他成分的官 - 能基。在一實施例中,可移除碳奈米結構或形成部分碳奈米結構 之其他石墨材料的官能基。若希望移除某些不純物質,例如:鐵, 除移除奈米材料的官能基外,高溫熱處理步驟亦可有助益。 奈米球可利用其他適合的技術來製造。適用於本發明的奈米 22 200827394 材料之製造方法係揭露在申請人共同申請之申請案號第 11/539,120號(2006年10月5日申請,名稱:由模板奈米微粒製 造之碳奈米環(Carbon Nanorings Manufactured From Templating •籲'W mesh, comb s degree' can be more efficient in the two-step carbonization of the present invention. The south purity carbon nanomaterial is produced. In another embodiment or in addition to the additional heat treatment step, some functional groups, such as, but not limited to, hydrohydrin groups, may be removed by neutralization. In this embodiment, the intermediate carbon material is mixed with a solution containing - or a plurality of bases. Applicable tests include hydroxide, ammonia, acid clock (1) running, sodium acetate (Na Yunate), cool _ (κ 儒 she), carbonated sodium chloride (axis, potassium hydride (flea 3), carbonic acid Steel (Na2C〇3), charcoal acid unloading, and the like, and combinations thereof, wherein the hydroxide may include hydrongon and hydrogen hydroxide.: The reaction with the hydronium group forms a by-product that can be removed by washing with water. " In the case of the money, the functional base can be used to remove the carbon material from the blister to the cleaning solution. Add additional alkali to the cleaning solution until the desired pH, ie the neutral pH. In the embodiment, the cleaning solution is neutralized to a pH of from about 5 Torr to about go, or a value of from about 6.1 to about 7.5. The step of removing functional groups from the intermediate carbon material can be used to remove the carbon-based structure, non-crystalline carbon (graphite or non-graphite) or any other constituent of the purified intermediate carbon material. In one embodiment, the carbon nanotube structure or functional groups of other graphite materials forming part of the carbon nanostructure may be removed. If it is desired to remove certain impurities, such as iron, in addition to removing the functional groups of the nanomaterial, a high temperature heat treatment step can also be helpful. Nanospheres can be made using other suitable techniques. Nano 22 for use in the present invention 200827394 The method of manufacturing the material is disclosed in the applicant's co-pending application No. 11/539,120 (filed on October 5, 2006, entitled: Carbon made from template nanoparticle) Carbon Nanorings Manufactured From Templating

Nanoparticles))和第ll/539,042 號(2⑻6年10月5日申請,名稱: 由催化核板奈米微粒製造之峡奈米結構(Carbon Nanostruetures Manufactured From Catalytic Templating Nanoparticles))之美國申 請案,以及韓(Han)等學者的文章(請參照Han,et al. “Simple Solid-Phase Synthesis of Hollow Graphitic Nanoparticles and their Application to Direct Methanol Fuel Cell Electrodes/5 Adv. Mater 15(22),November 17, 2003)中,並且其所有係藉由其全部中的參 照併入於此。 C、添加物 添加物’例如:填充料或分散劑,可加入至聚合材料,以給 予複合物材料預期特性和/或以分散聚合材料中的碳奈米球。任意 之填充材料可與本發明一起使用。適合的填充料包括碳黑、矽砂 (silica )、矽藻土( diat〇mace〇us earth )、碎石英(咖北以 9皿也)、 滑石(talc)、泥土( ciay)、雲母(mica )、石夕酸舞(caldum )、 矽酸鎂(magnesium silicate )、玻璃粉末、碳酸鈣(caldum carbonate)、硫酸鋇(barium suifate)、碳酸鋅(zinc 娜咖纪)、 氧化鈦(titanium oxide )、氧化銘(alumina )、玻璃纖維(glass flber)、 其匕奴纖維和有機纖維。其他適合的添加物包括:軟化劑、塑化 劑、製模助劑、潤滑劑、抗熟化劑和紫外光吸收劑。 Π、混合碳奈米球之複合物材料的製造方法 23 200827394 奸合物材料係藉由將聚合材料與碳奈米球混合 如填充料或分散劑之添加物而形成。♦奈米球可以 量的約αι%到7Q%之範圍的量與聚合材料混Nanoparticles)) and US Application No. ll/539,042 (2,8), October 5, 2005, Carbon Nanostruetures Manufactured From Catalytic Templating Nanoparticles, and Korea (Han) and other scholars' articles (please refer to Han, et al. "Simple Solid-Phase Synthesis of Hollow Graphitic Nanoparticles and their Application to Direct Methanol Fuel Cell Electrodes/5 Adv. Mater 15 (22), November 17, 2003) And all of them are incorporated herein by reference in its entirety. C. Additives, such as fillers or dispersants, may be added to the polymeric material to impart the desired properties and/or dispersion of the composite material. Carbon nanospheres in polymeric materials. Any filler material can be used with the present invention. Suitable fillers include carbon black, silica, diat〇mace〇us earth, and broken quartz (咖北(9), talc, ciay, mica, caldum, magnesium silicate, glass powder Caldum carbonate, barium suifate, zinc carbonate (zinc naca), titanium oxide, alumina, glass flber, its slave fiber and organic Other suitable additives include: softeners, plasticizers, molding aids, lubricants, anti-aging agents and UV absorbers. Methods for the manufacture of composite materials of tantalum and mixed carbon nanospheres 23 200827394 The composite material is formed by mixing a polymeric material with carbon nanospheres such as a filler or a dispersant. ♦ The amount of nanospheres can be mixed with the polymeric material in an amount ranging from about α% to 7Q%.

口丁乂j土係、力〇·5重量%到50重量%之筋圍B %到取範晴。^众順[錢佳係㈣ 碳奈米球可以大致上純的形式加人至聚合材射。抑或是, ·· =米球可加人至聚合材射作為碳奈米材料的成分。在一實施 列中,石厌奈米球包括至少約2重量%的石炭奈 約10%,且更佳係至少約挪。 又“至乂 衫材概合時n魏可时米球的 it _。_於触纖維的碳奈米縣說,碳夺 形狀。在本發明的—些實施例中,類似微 ^狀財*合物材料,性,且此钟_似於微粒填充 物而不疋含纖維複合物材料。 將碳奈米球以提供預期特性的量加 說:予導電性和/或減少表一二= ,於表面阻抗上產生預期減少所需之碳 ^球置大致上外達到_效果所需之碳奈米管或碳 =於微粒的較均勾網絡’其相較於碳奈米管能提供改進過的浸 ,面耻可相信’碳奈米材料提供此改善。低表面阻抗對於光滑 顯著。在—I施辦,根縣糾之聚合複合物材料具 有約lxlG_lxiG (叫)之範圍的表面阻抗,其中且有約 〇摘到約7w綱♦奈米球,較佳含量伽祕到約$秦 24 200827394 除了 ^ ¾性外,碳奈米球可混入聚合材料中,以作為阻燃劑。 如同於本發明之複合物材料的製造方法,亦可使用任何已知 方法。在發明的一實施例中,可藉由熔化聚合材料然後混合聚合 物和反示米材料來製作複合物材料。抑或是,於碳奈米球存在下, . 製作(即,聚合)聚合材料。 . 牛例來"兒,聚合材料的顆粒或粉末和預期量之碳奈米球可混 合或濕混合,然後於軋輥捏合機内混合並加熱。抑或是,混合的 書_ 1δ物材料可進料給擠壓機以將複合物材料擠壓成繩索,然後再 切割成顆粒。 ρ或疋石反奈米球可與樹脂的溶液或分散混合於液態媒介 中亦可此藉由濕塑膠母粒(Wet Master Batch)法混合複合物材 料。當使用熱固性樹脂時,利用適合特定可聚合材料的任何已知 方法將碳奈米球與單體或寡聚體混合。 為改善奈米球於聚合材料令的分散性,可使用是適用於石墨 響藝 厌的任何已知方法和材料。再者,針對預期形狀的成型方法,可 使用任何已知方法,例如:擠壓成型、吹擠成型、射出成型或沖 : 壓成型。 : 為了獲得具有導電性和/和黑色的泡沫樹脂,能透過加入發泡 劑將根據本發明之複合物材料製作成泡沫產品。雖然上述各種聚 合材料可任意使用來製作此類泡沫產品,熱塑性樹脂,例如:聚 乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚丁二烯、聚氨酯、乙烯_ 乙烯酯共聚物(ethylene-vinylacetate cop〇lymer)等,以及熱塑性 ΛΚ己材料更佳。對於發泡劑,可使用各種樹脂發泡劑、有機溶劑、 25 200827394 和諸如丁燒等類之氣體。 可使用任何已知方法作為本發騎涵蓋之導電泡沫體的繁迭 方法。舉例來說,當使用熱塑性樹脂時,樹脂熔化後,藉由擠^ 機與預期量之碳奈米球混合。然後,將氣體,例如:丁统,注入 ^ 至聚合材料。抑或是,使用化學發泡劑取代氣體。 •、本發鴨涵蓋之混合物亦作為塗料,略予魏基材表面的 導電性和/或黑色。適合的基材包括各種樹脂、彈性體、橡膠、木 一 材、無機材料等。另外,此些材料可進—步的製模或成形。 本發明所涵蓋之混合物的塗料膜的預期厚度大於〇ι微米 (micron ) 〇 ΠΙ、範例 下列乾例根據本發明之實施例提供含碳奈米結構之碳奈米材 料的製作配方。 範例1 範例1描述具有碳奈米球之碳奈米材料的製備。 ⑻鐵溶液(0·1Μ)的製備 利用84克(g)鐵粉末、289 g檸檬酸和15升(L)水製備 〇·1 Μ鐵’谷;夜。含鐵混合物置於密閉瓶内,於授拌器上混合擱置$ 天,且每天1次或2次的短暫休止,以於重新混合前.以空氣清除 瓶子内的霧氣。 (b)别驅混合物的製備 取 916·6 g 間笨二酴(resorcinol)和 1350 g 甲酸(formaidehyde) (37%於水中)置入圓底燒瓶中。攪拌溶液直至間苯二酚完全溶 26 200827394 解。7術a)得到的15L鐵溶液緩慢加人,一起攪拌。然後滴加 ° ()的氫氣化録(Ammonium hydroxide) (28-30%於 水中)。’亚強而有力的授拌。產生的懸浮液的值為臟。於 80 90C (水合)下泥聚反應1〇小時。利用過濾和烤箱乾燥整夜, . 以收集得固態碳前驅混合物。 (C)碳化作用 將聚合前麟合物置於職内,覆蓋蓋子,並移至火爐。於 φ· Α量氮流下進行奴作用料,並依據下列溫度流程進行:室溫 —以20C/mln (分鐘)的速率加熱至116〇t:__^ _〇c下維持$ 小時—室溫。此舰作用步驟產生具有石炭奈米結構、非結晶 鐵的中間碳材。 (d)移除非結晶碳和鐵的純化作用 碳化探產物(即,中間碳材)的純化作用以下列方式進行: 在5M硝酸(HNO3)下回流碳化產物約12小時〜以去離=水 (de-iomzed (DI)-H2〇)沖洗—以莫爾比為} : 〇 〇1 : 〇 〇〇3之言猛 _ 酸鉀、硫酸邮04)和水的混合物處理(維持於約㈣約二 ; 時)—以去離子水沖洗―以4M之鹽酸(HC1)處理(維持於約9(rc ; 約12小時)—以去離子水沖洗—收集產物並於烤箱中以約1〇(rc , 乾燥2天。 (e)減少表面官能基的熱處理 於純化作用步驟之後,碳產物經歷熱處理以最少化夺面—& 基並增加石墨含量。用於此處理之溫度流程如下述:以每八梦。 的速率從室溫開始加熱一>100°C—於100°C下維拄7 ί 士 付ζ小時〜以每分 27 200827394 鐘洗的速率加熱至250。^於250〇c下維持2小時—以每分鐘 15Ό的速率加熱至lOOOts於酬。C下維持2小時_回到室溫。 熱處理過程產生主要包含有絲米球之碳奈米材料。 然後以掃目苗式電子顯微鏡(麗)和透射電子顯微鏡(TEM) •分__ 1製作的碳奈崎料。碳奈米結構的SEM影像顯示於 .「第1A圖」和「第1B圖」,其顯露出多個碳奈米球,且此些碳 奈米球群聚而形成具有_萄狀之關(elustei·)。於「第2圖」 ·#和第3圖」中之聰影像顯露出類葡萄狀之團篆(cluster)係 由多個小对空石墨奈米結構或碳奈米球所組成。 :θ ^dlffraCtl〇n)測試範例1的碳奈米結構的 石墨含量。「弟4圖」係、顯示範例}㈣奈米結構的X光繞射圖。 於約26。⑽寬絲細目扣絲米結構驗财序(細戰^ 〇池〇。此相對於—般石墨片的繞射圖,於石墨片的繞射圖傾向具 有非常窄料。由於非結晶碳傾向具有於避的繞射 此 於約耽的寬解亦表示此材料係為石墨。 拉二(Raman)光譜學係於熱處理步驟⑻用以測定於 度下的石反奈米材料的石墨含量。樣本A係取自於卿 ’樣本B絲自於6贼的熱處理溫 不ί材:且樣本C係為無熱處理之樣本(即,樣本c係為步驟^ Γ图化叙t間碳材)°拉曼(Raman)光語學的結果顯示在二 ”於弟5圖」中具有兩顯著的波锋,熱處理後之 ^ B於1354 cirfi 1古私丄L x承A和 、, /、有較大波♦。此些波料出非結晶碳係為石 亚且因而未燒燦(即,較少質量損失)。相對地’對於樣本= 十L於 28 200827394 1354 cm" 的抖如出顯著的質量損失,其係騎石墨 石反的表示。因此,除了移除官 ^曰 意之剩餘碳的石墨含量。出人立㈣有效的增加任 、、w声,與γ ^ 出人思科地,此改變可發生於相對低的 /皿度舉例來說,於50叱和140(rc之間。 _ ·· 卜的熱處理步驟,根據本發明所製作之綠米材料的 ===具有錄____材料。除 鐵。U熱處理細不出大致上減少其他雜質,例如: ΜΜΙ 中述r與範例1相同方法所製作的碳奈米材料,其 * 了乂驟㈤之熱處理步驟係以利用中和驗處理取代外。 將以範例1的步驟⑼獲得之— 去雜;k、e人 邛刀的純化後之碳材料與大量 =…接續滴加5M氫氧化鋼(_)以調節至 f7·° ° , 乾燥ΓΓ峰子(Na+)。嶋終餘,綱射以約赋 之碳=目的,收㈣"的步驟⑻中獲得之部分純化後 '、、…卫且不經過於祀例1的步驟(e)中所描述的熱處理步 Λ ’也不經過範例2之中和驗處理。 取得範例2和3的碳奈米結構的職影像,以決定於中和步 :否有發生任何結構改變。「第7圖」係為細Μ即,中和作 後)的碳材料的腦影像,且「第6圖」係為範例3 (即,中 29 200827394 和作用前)的碳材料的TEM影像。相較於「第6圖」,「第 顯示出對碳奈米結構無有害影響。 " 〜材料混人聚合物,並且將其與包含除了酸 以基存在以外完全她的奈米材料之聚合物相比較 例2的無酸碳奈米材料的有利特性。為了測試此方案,範例 的碳奈米材料分別與聚合物混合。「第8圖」顯示含 之碳奈米材料的聚合物。聚合物示 和'1^土 ·· 表面。相對地,包括範例2的中和後==和不規則於其 出光滑的表面。 ㈣树料邮合物顯示 雖然本發_祕讀佳#闕縣 定本發明,任何熟習相像技蓺者 〜、亚非用以限 内,當可作此呼之發明之精神和範圍 j作:权更動與潤飾,因此本發 本說明書所附之申請專利範圍所界定者為準。^圍鱗 【圖式簡單說明】 析=_^圖係為根據本發明實施例所形成之碳奈米材料的1 析知田式电子顯微鏡(SEM)影像,盆中以 阿知 (cluster); 一 〃中包括硬數個奈米球團蔟Mouth 乂 乂 j soil system, force 〇 5% to 50% by weight of the rib circumference B% to take Fan Qing. ^ Zhongshun [Qian Jia Department (4) Carbon Nanospheres can be added to the polymer material in a substantially pure form. Or, ·· = The ball can be added to the polymer material as a component of the carbon nanomaterial. In one embodiment, the stone nanospheres comprise at least about 2% by weight of carbonic acid, about 10%, and more preferably at least about. Also, "When the smocks are combined, the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Material, sex, and this clock - like a particulate filler without a fiber-containing composite material. Add carbon nanospheres in an amount that provides the desired properties: pre-conductivity and / or reduction Table 1 = The carbon nanotubes required to produce the desired reduction in surface impedance are generally required to achieve the effect of the carbon nanotubes or carbon = the more uniform network of particles in the surface impedance, which provides an improvement over the carbon nanotubes. The dip, the shame can be believed that 'carbon nanomaterials provide this improvement. The low surface resistance is significant for smoothness. In the implementation of I, the root-corrected polymeric composite material has a surface impedance in the range of about lxlG_lxiG (called), where And about 〇 〇 约 约 约 ♦ ♦ ♦ ♦ ♦ , , , , , , , ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 The method for producing the composite material of the invention may also use any known method. In the embodiment, the composite material can be made by melting the polymeric material and then mixing the polymer and the reverse rice material, or in the presence of carbon nanospheres, making (ie, polymerizing) the polymeric material. "Children, the particles or powder of the polymeric material and the expected amount of carbon nanospheres can be mixed or wet mixed, and then mixed and heated in a roll kneader. Or, the mixed book _ 1δ material can be fed to the extruder The composite material is extruded into a rope and then cut into pellets. The ρ or vermiculite inverse nanosphere can be mixed with the resin solution or dispersion in a liquid medium or by wet plastic masterbatch (Wet Master Batch). Method of mixing a composite material. When a thermosetting resin is used, the carbon nanosphere is mixed with a monomer or an oligomer by any known method suitable for a specific polymerizable material. To improve the dispersibility of the nanosphere in the polymeric material, Any known method and material suitable for graphite anaphylaxis can be used. Further, for the molding method of the intended shape, any known method can be used, for example, extrusion molding, extrusion molding, and injection molding. Or punching: press molding. In order to obtain a foamed resin having conductivity and/or black, the composite material according to the present invention can be made into a foamed product by adding a foaming agent. Although the above various polymeric materials can be used arbitrarily to make this. Foam-like products, thermoplastic resins such as polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutadiene, polyurethane, ethylene-vinylacetate cop〇lymer, etc. For the foaming agent, various resin foaming agents, organic solvents, 25 200827394, and gases such as butadiene may be used. Any known method may be used as a method of stacking the conductive foam covered by the present invention. For example, when a thermoplastic resin is used, the resin is melted and mixed with a desired amount of carbon nanosphere by a squeezer. Then, a gas, such as butyl, is injected into the polymeric material. Or, instead of using a chemical blowing agent, the gas is replaced. • The mixture covered by the hair duck is also used as a coating to slightly impart conductivity and/or blackness to the surface of the Wei substrate. Suitable substrates include various resins, elastomers, rubbers, wood materials, inorganic materials, and the like. In addition, such materials can be further molded or formed. The expected thickness of the coating film of the mixture encompassed by the present invention is greater than that of micron 〇, and the following dry examples provide a carbon nanomaterial-containing carbon nanomaterial according to an embodiment of the present invention. Example 1 Example 1 describes the preparation of a carbon nanomaterial having carbon nanospheres. (8) Preparation of iron solution (0·1Μ) Preparation of 〇·1 Μ铁' valley was carried out using 84 g (g) of iron powder, 289 g of citric acid and 15 liters of (L) water; The iron-containing mixture is placed in a closed bottle, placed on the blender for a period of $day, and once or twice a day for a brief rest to remove the mist from the bottle with air. (b) Preparation of a mixture of DF. 916·6 g of resorcinol and 1350 g of foraidehyde (37% in water) were placed in a round bottom flask. Stir the solution until the resorcinol is completely dissolved. 7A) The 15L iron solution obtained was slowly added and stirred together. Then add ° () Ammonium hydroxide (28-30% in water). ‘Asian strong and powerful mixing. The value of the resulting suspension is dirty. The sludge was polymerized under 80 90C (hydration) for 1 hour. Use a filter and oven to dry overnight, to collect the solid carbon precursor mixture. (C) Carbonization Place the pre-polymerized lining in the workplace, cover the lid, and move to the stove. Slave action was carried out under φ· Α nitrogen flow and was carried out according to the following temperature procedure: room temperature—heated to 116 〇t at a rate of 20 C/mln (minutes): __^ _〇c maintained for $hour-room temperature. This ship action step produces an intermediate carbon material having a carbon nanotube nanostructure and amorphous iron. (d) Purification of the removal of amorphous carbon and iron The purification of the carbonized probe product (i.e., the intermediate carbon material) is carried out in the following manner: refluxing the carbonized product under 5 M nitric acid (HNO3) for about 12 hours~to remove = water (de-iomzed (DI)-H2〇) Rinse - with a molar ratio of : 〇〇1 : 〇〇〇3 猛 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2) - rinse with deionized water - treated with 4M hydrochloric acid (HC1) (maintained at about 9 (rc; about 12 hours) - rinsed with deionized water - collect the product and approx. 1 in the oven (rc , drying for 2 days.(e) Heat treatment for reducing surface functional groups After the purification step, the carbon product is subjected to heat treatment to minimize the face-and-base and increase the graphite content. The temperature flow for this treatment is as follows: Eight dreams. The rate is heated from room temperature to a temperature of 100 ° C - at 100 ° C for 7 ί ζ ζ 〜 〜 〜 〜 〜 〜 〜 〜 〜 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 Maintain for 2 hours - heat to lOOOO at a rate of 15 mph per minute. Maintain for 2 hours at C - return to room temperature. The process produces a carbon nanomaterial mainly composed of silk rice balls. Then, the carbon nanomaterials produced by the scanning electron microscope (L) and the transmission electron microscope (TEM) are divided into __1. The SEM of the carbon nanostructure The images are shown in "1A" and "1B", which reveal a plurality of carbon nanospheres, and these carbon nanospheres are clustered to form an elastei. Fig. 2 "·# and Fig. 3" shows that the grape-like cluster is composed of a plurality of small-pair graphite nanostructures or carbon nanospheres. : θ ^dlffraCtl〇 n) Test the graphite content of the carbon nanostructure of Example 1. "Dia 4" system, display example} (d) X-ray diffraction pattern of nanostructure. About 26 (10) wide silk threaded silk structure inspection order (fine warfare ^ 〇池〇. This diffraction pattern with respect to the graphite sheet tends to have a very narrow material in the diffraction pattern of the graphite sheet. Since the amorphous carbon tends to have a wide solution to avoid the diffraction It is also indicated that the material is graphite. Raman spectroscopy is used in the heat treatment step (8) to determine the stone nanomaterial under the degree of Graphite content. Sample A is taken from Qing's sample B wire from the heat treatment of 6 thieves: and sample C is a sample without heat treatment (ie, sample c is the step ^ Γ 图 图The results of Raman's optical linguistics show that there are two significant wave fronts in the two "Yu Di 5", after heat treatment ^ B in 1354 cirfi 1 ancient private 丄 L x bearing A and, / There is a large wave ♦. These waves out of the amorphous carbon system are stone and thus not burnt (ie, less mass loss). Relatively for the sample = ten L at 28 200827394 1354 cm" Significant loss of quality, which is represented by the anti-graphite stone. Therefore, in addition to removing the graphite content of the remaining carbon of the official. The emergence of (4) effective increase of the number, w sound, and γ ^ out of the ground, this change can occur in a relatively low / dish for example, between 50 叱 and 140 (rc. _ · · Bu The heat treatment step, the green rice material produced according to the present invention has === with the record material. In addition to iron, the U heat treatment does not substantially reduce other impurities, for example: ΜΜΙ The same method as in the example 1 The carbon nanomaterial produced, which has the heat treatment step of step (5), is replaced by a neutralization treatment. It will be obtained by the step (9) of the first example - decontamination; the purified carbon of the k, e human boring tool Material and a large number of =... successively add 5M hydrogen hydroxide steel (_) to adjust to f7 · ° °, dry the peak (Na +). 嶋 嶋 , , 纲 , , , , , , , , , , 纲 纲 = = = = = = = = = = = = = = = After the partial purification obtained, the heat treatment step described in the step (e) of the example 1 was not subjected to the neutralization of the sample 2. The carbonaceous samples of the examples 2 and 3 were obtained. The image of the structure of the meter is determined by the neutralization step: No structural changes have occurred. "Figure 7" is a detailed description. Brain imaging and after work) carbon material, and "Figure 6" for the Department of Example 3 (ie, TEM imaging and the role of the former in 29,200,827,394) of carbon material. Compared with "Picture 6", "the first shows no harmful effect on the carbon nanostructure. " ~ The material is mixed with the polymer, and it is polymerized with the nano material containing the acid base. The advantageous properties of the acid-free carbon nanomaterial of Comparative Example 2. In order to test this scheme, the exemplary carbon nanomaterials were separately mixed with the polymer. "Figure 8" shows the polymer containing the carbon nanomaterial. The polymer shows and '1^ soil · surface. In contrast, the neutralization of Example 2 is followed by == and irregular surfaces that are smooth. (4) The tree material composition display Although the present invention _ secret reading good #阙县定本发明, any familiar with the like technology ~, Asia and Africa used to limit, when the spirit and scope of the invention can be made: Changes and refinements are subject to the definition of the scope of the patent application attached to this specification. ^Square scales [Simplified illustration of the drawings] The analysis is a SEM image of a carbon nanomaterial formed according to an embodiment of the present invention, in which a cluster is known as a cluster; 〃 includes a hard number of nanospheres蔟

第1B圖係為高解析SEM 較近影像,以及顯示—_,呈亘如扣料球的單獨團蔟的 複數個碳奈米結構,·.、〜、有開口以顯露出形成此團藥之 第2圖係為「第u圖」之碳奈 鏡(花⑷雜,其_複數财奈米射電子顯微 形成於團箱之之衫米結構之多壁且中空性質在_起且顯露出 30 200827394 3圖係為高解析TEM影像,其顯示其中心具有催化模板奈 米微粒之碳奈米結透的近攝(closeup); f 4圖頒不「第1A圖」之後奈米材料的χ射線繞射強度; ^圖係為根據本發明所製成之碳奈米材料的拉曼⑽腿) '圖’其顯示於不同熱處理下碳奈米材料的差異性; TEMf^ S 據本4崎製成之純化後之巾間碳材的高解析 TH於此純倾之巾轉Figure 1B is a close-up image of a high-resolution SEM, and shows a _, a plurality of carbon nanostructures of individual lumps such as a buckled ball, ..., ~, with an opening to reveal the formation of the drug The second picture is the carbon image of the "uth picture" (flower (4), which is formed by the multi-walled and hollow nature of the kiln structure formed by the electron microscopy in the box. 30 200827394 3 The picture shows a high-resolution TEM image showing the close-up of the carbon nano-passing of the catalytic template nano-particles at the center; f 4 shows the 奈 of the nano-material after the "1A" Ray diffraction intensity; ^ Figure is a Raman (10) leg of a carbon nanomaterial prepared according to the present invention. 'Figure' shows the difference in carbon nanomaterials under different heat treatments; TEMf^ S according to this 4 The high resolution of the carbon material after the purification of the finished towel

第7圖係為「第6 广除“基, 高解析TEM影像; &不未材料利用驗移除官能基後的 弟8圖係為具有「第$闰 影像;以及 圖」之純化後之中間石炭材的聚合物的 第9圖係為具有「第7圖 太 【主要元件符號朗】 ^轉料㈣合物的影像。 31Figure 7 is the "6th widening" base, high-resolution TEM image; & not the use of the material to remove the functional group after the brother 8 is the "the first $ image; and the map" after purification Fig. 9 of the polymer of the intermediate carbonaceous material is an image having the "Fig. 7 too [main component symbol lang] ^ reversal (tetra) compound.

Claims (1)

200827394 十、申請專利範圍: 1. 一種複合物材料,包括: ♦合材料’包括一聚合物或可聚合材料;以及 曰複放個石反奈米球,分散於該聚合材料中,該石炭奈米球的 含量係為該複合物材料之至少_.1重量百分比(%)。 2·如申w專利賴第〗項所述之複合物材料,其中該碳奈米球 包括· t空多壁微粒,該中空多壁微粒具有小於約!微米 (μπι)之外徑。 3. 如申=利細第1項所述之複合物材料,其中該碳奈米球 的含畺係為該複合物材料之至少約〇·5重量%。 4. 如申請專纖圍第丨顧述之複合物簡,其中該碳奈米球 的含量係為該複合物材料之至少約丨重量%。 5·如申請專利範圍第1項所述之複合物材料,更包括:除了該 石炭奈来球以外之複數個碳奈求材料,其中於該複合物材料 中’該碳奈米球的含量係為該碳奈米材料總量的至少約2重 量%。 6·如申請專利額第5項所述之複合物_,射於該複合物 材料中’該碳奈米球的含量係為該後奈米材料總量的至少約 3重量%。 7.如申請補細第5項所述之複合物购,財於該複合物 材料中,該碳奈米球的含量係為該碳奈米材料總量的至少約 32 200827394 15重量%。 ·· 8.如申請專利範81第1項所述之複合物材料,其中該聚合材料 包括—聚合物,該聚合物係選自聚胺、聚丙烯酸脂、聚丁二 / κ丁締、♦乙稀、聚氯化乙稀、乙晞_乙烯醇、氟聚合物、 $物1甲基觸、聚丙烯、聚苯乙烯、聚氯乙埽、聚偏 山氯乙烯、聚縮物、聚醯胺、聚醯胺-醯亞胺、聚芳醚酮、聚 =酉曰、聚酉同、聚帽同、聚賴亞胺、聚㈣、聚釀亞胺、 來乳化—甲苯、聚硫化笨、聚鄰苯二甲酿胺、醜亞胺、聚 2、聚細、烯㊅基樹脂、三聚氰胺樹脂、祕樹脂、液晶 L合物、輯烴、聚s旨,、物旨、環氧樹脂、纖維聚 a物及其結合所組成的群組。 9·=請專利_M項所述之複合物材料,其中該聚合材料 紐聚合_ ’該_性聚合材料係選自丙婦猜· ^苯乙埽共聚物、丙烯腈·乙烯/叫苯乙聚物、甲 二Γ酸甲时二稀-苯乙埽共聚物、丙埽腈-丁二稀-甲基丙 次甲酉曰-本乙稀共聚物、丙稀秦兩稀酸正丁醋-苯 物、橡膠改性聚苯乙烯、聚 ^^^ 埽 丙烯、聚本乙烯'聚甲 =r、聚氣乙稀、醋酸纖維樹脂、聚、 输㈣_、如f硫 树脂、矽酮脂、聚醯亞胺、 軋 合所組成卿。蝴、聚_侧及其結 33 200827394 10. 如申請專利範圍第1項所述之複合物材料,其中該聚合材料 包括-熱固性聚合材料,該熱固性聚合材料係選自紛樹脂 (phenol resm)、尿素樹脂(urearesm)、三聚氰胺_甲醛樹脂 (melamine-formaldehyde resin )、尿素 _ 甲醛乳膠 (urea-formddehyde latex)、二甲苯樹脂(冰咖奶⑷、對 苯二甲酸二烯丙酯樹脂(diallylphthalate Γ_)、環氧樹脂 (epoxy resin)、笨氨樹脂(aniline resin)、硖喃樹脂(如加 resin)、矽樹脂、聚氨酯及其結合所組成的群組。 11. -種複合物㈣,包括-聚合物或—可聚合材料以及與該聚 合物或該可聚合材料混合之—碳奈米材料,其中該複合物材 料係根據一製造方法而製作,該製造方法包括: 形成一前趨混合物,該前趨混合物包括一碳前驅物和複 數個模板奈米微粒,且該模板奈米微粒包括一催化金屬; 碳化該前趨混合物以形成—中間碳材,該中間碳材包括 複數個碳奈米結構、一非結晶碳及隨意地剩餘催化金屬; 藉由私除至少一部份的該非結晶碳和隨意地移除一部份 的該剩餘催化金屬純化該中間碳材以得到該碳奈米材料;以 及 混合該奈米材料和液態或可塑狀態之一熱塑性聚合物或 一可聚合材料,並使該熱塑性聚合物或該可聚合材料固化, 以得到該複合物材料。 34 200827394 12·如申請專利範圍第11項所述之複合物材料,其中該碳奈米材 料的該製造方法更包括·· 移除純化後之該中間碳材的該表面的官能基,包括: 加熱純化後之該中間碳材至大於約l〇〇°C ;以及/ 或 以一鹼處理純化後之該中間碳材。200827394 X. Patent application scope: 1. A composite material comprising: ♦ a composite material comprising a polymer or a polymerizable material; and a ruthenium-recycling stone anti-nanosphere dispersed in the polymeric material, the sphagnum The content of the rice balls is at least _.1 weight percent (%) of the composite material. 2. The composite material of claim 1, wherein the carbon nanosphere comprises a multi-walled particle, the hollow multi-walled particle having less than about! The outer diameter of the micrometer (μπι). 3. The composite material according to claim 1, wherein the carbon nanosphere-containing lanthanum is at least about 5% by weight of the composite material. 4. If applying for a composite of the special fiber, the content of the carbon nanosphere is at least about 5% by weight of the composite material. 5. The composite material according to claim 1, further comprising: a plurality of carbon material other than the carbonaceous ball, wherein the content of the carbon nanosphere in the composite material It is at least about 2% by weight of the total amount of the carbon nanomaterial. 6. The composite _ as claimed in claim 5, which is incident on the composite material. The content of the carbon nanosphere is at least about 3% by weight based on the total amount of the post-nano material. 7. The composite of claim 5, wherein the content of the carbon nanosphere is at least about 32 200827394 15% by weight of the total amount of the carbon nanomaterial. 8. The composite material of claim 81, wherein the polymeric material comprises a polymer selected from the group consisting of polyamines, polyacrylates, polybutadiene/kappa, ♦ Ethylene, polychlorinated ethylene, ethyl hydrazine _ vinyl alcohol, fluoropolymer, material 1 methyl contact, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polycondensate, polyfluorene Amine, polyamidamine-imine, polyaryletherketone, poly-ruthenium, polyfluorene, poly-capped, poly-imide, poly(tetra), poly-imine, emulsified-toluene, polysulfide Poly-o-phthalamide, ugly imine, poly 2, poly-, hexa-based resin, melamine resin, secret resin, liquid crystal L compound, hydrocarbon, polystyrene, material, epoxy resin, fiber A group consisting of polya and its combination. 9·=Please refer to the composite material described in the patent _M, wherein the polymeric material is polymerized _ 'the _ polymeric material is selected from the group consisting of propylene glycol styrene copolymer, acrylonitrile, ethylene, styrene Polymer, methyl bismuth diacetate-phenethyl hydrazine copolymer, acrylonitrile-butadiene-methyl propyl methacrylate-present ethylene copolymer, propylene dicarboxylic acid n-butyl vinegar - Benzene, rubber modified polystyrene, poly(^^^ propylene), polyethene 'polymethyl=r, polyethylene, cellulose acetate resin, poly, and (4) _, such as f sulfur resin, oxime ketone, poly The bismuth imine and the rolling mill are composed of Qing. The composite material of claim 1, wherein the polymeric material comprises a thermosetting polymeric material selected from the group consisting of phenol resm, Urea resin (urearesm), melamine-formaldehyde resin, urea_formed dehyde latex, xylene resin (ice coffee (4), diallyl terephthalate resin (diallylphthalate Γ _) , an epoxy resin, an aniline resin, a resin (such as a resin), an anthracene resin, a polyurethane, and a combination thereof. 11. - a compound (four), including - polymerization a material or a polymerizable material and a carbon nanomaterial mixed with the polymer or the polymerizable material, wherein the composite material is produced according to a manufacturing method, the manufacturing method comprising: forming a precursor mixture, the former The mixture comprises a carbon precursor and a plurality of template nano particles, and the template nano particles comprise a catalytic metal; carbonizing the precursor mixture to form - a carbon material comprising a plurality of carbon nanostructures, a non-crystalline carbon, and optionally a residual catalytic metal; the private catalyst is removed by at least a portion of the non-crystalline carbon and the residual catalyst is optionally removed Purifying the intermediate carbon material to obtain the carbon nanomaterial; and mixing the nano material and one of a thermoplastic polymer or a polymerizable material in a liquid or plastic state, and curing the thermoplastic polymer or the polymerizable material to The composite material of claim 11, wherein the method of manufacturing the carbon nanomaterial further comprises: removing the surface of the intermediate carbon material after purification The functional group comprises: heating the purified intermediate carbon material to greater than about 10 ° C; and / or treating the intermediate carbon material after purification with a base. 13·如申睛專利範圍第11項所述之複合物材料,其中該碳奈米材 料的該衣1^方去包括:加熱純化後之該中間碳材至大於約 200°C 〇 14·如申請專利_第11賴述之複合物材料,其中該碳奈米材 料的該衣以方忠包括··加熱純化後之該中間碳材至大於約 500〇C。 15.13. The composite material according to claim 11, wherein the coating of the carbon nanomaterial comprises: heating and purifying the intermediate carbon material to greater than about 200 ° C. The composite material of claim 11 wherein the coating of the carbon nanomaterial comprises heating the purified intermediate carbon material to greater than about 500 〇C. 15. 如申請專利範_ η項所述之複合物材料,其中該碳奈米材 ==製造枝包括··加熱純倾之該巾間碳材至大於約 16·如申請專利範圍第u 料的該製造方法包括·· 之該中間碳材。 項所述之複合物材料,其巾該碳奈米材 以氫氧化韵和/或氫氧化鉀處理純化後 料1=:11項所述之物嶋,其中該複合物材 -笨乙苯乙烯共聚物、蝴·乙晞/丙婦 本乙㈣物、甲基丙物錯-丁二稀 35 200827394 、、了 :婦甲基丙烯酸曱醋-苯乙婦共聚物、丙烯腈一丙稀酸 2酷·笨乙烯共聚物、橡膠改性聚笨乙烯、聚乙烯、聚丙婦、 ,* χΚ甲基㊅稀酸曱g旨、聚氯乙烯、醋酸纖維樹脂、 , 认胺、旨、聚丙烯腈、聚碳酸g旨、聚苯醚、聚酮、聚颯、 XK苯硫ϋ、氟樹脂、石夕酮、聚醯亞胺、聚苯味唾、聚酸胺彈 性體及其結合所組成的群組的一聚合物。 18· —種複合物材料的製造方法,包括: ,· 、一 提供液怨或可塑狀態之一熱塑性聚合物或一可聚合材 料; 混合介於約1重量%和約50重量%之間的一石墨材料至 該熱塑性聚合物或該可聚合材料中,該石墨材料包括大於3 重量%的碳奈米球;以及 固化該熱塑性聚合物或該可聚合材料以得到該複合物材 料。The composite material according to the patent application, wherein the carbon nanomaterial == manufacturing branch comprises: heating the pure intertwined carbon material to greater than about 16 · as claimed in the patent application The manufacturing method includes the intermediate carbon material. The composite material according to the item, wherein the carbon nanomaterial is treated with hydrogen peroxide and/or potassium hydroxide, and the material is 1, wherein the composite material is stupid ethylene styrene. Copolymer, ··乙晞/乙妇本乙(四), 丙丙错-丁二稀 35 200827394 、,: methacrylic acid vinegar vinegar- styrene copolymer, acrylonitrile-acrylic acid 2 Cool, stupid ethylene copolymer, rubber modified polystyrene, polyethylene, polypropylene, * χΚ methyl hexahydrate 曱 g, polyvinyl chloride, acetate resin, amine, purpose, polyacrylonitrile, Polycarbonate, polyphenylene ether, polyketone, polyfluorene, XK thioanisole, fluororesin, linalool, polyimine, polystyrene, polyamine elastomer and combinations thereof a polymer. 18. A method of making a composite material, comprising: a thermoplastic polymer or a polymerizable material providing one of a liquid complaint or a plastic state; a mixture of between about 1% by weight and about 50% by weight. a graphite material to the thermoplastic polymer or the polymerizable material, the graphite material comprising more than 3% by weight of carbon nanospheres; and curing the thermoplastic polymer or the polymerizable material to obtain the composite material. 19 ·如申請專利範圍第18項所述之複合物材料的製造方法,其中 ,該複合物材料係由一熱塑性聚合物所構成,且該製造方法更 包括: 於混合該石墨材料時或之前,加熱該熱塑性聚合物至高 於該熱塑性聚合物的一熔點或玻璃化轉變溫度之一溫度,以 使該熱塑性聚合物成液態或可塑狀態;以及 冷卻該熱塑性聚合物以得到該複合物材料。 36 200827394 〇·如申W專利範圍弟19項所述之複合物材料的 製造方法,其中 該熱塑性聚合物係選自丙烯腈_丁二烯_苯乙烯共聚物、丙婦 赌-乙烯/丙烯-苯乙烯共聚物、甲基丙烯酸甲酯·丁二烯_苯乙 烯共聚物、丙烯腈-丁二烯_甲基丙烯酸甲酯-苯乙烯共聚物、 丙烯腈-丙烯酸正丁酯_苯乙烯共聚物、橡膠改性聚苯乙烯、 ΛΚ乙烯、聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚氯乙稀、 酷I纖維樹脂、聚醯胺、聚醋、聚丙稀腈、聚碳酸酯、聚笨 .醚、聚酮、聚石風、聚苯硫SI、氟樹脂、石夕酮、聚醯亞胺、聚 苯味唾、聚醯胺彈性體及其結合所組成的群組。 、21·如申5月專利範圍第18項所述之複合物材料的製造方法,其中 該心口物材料係由—可聚合材料所構成,該可聚合材料原為 液態或可塑狀態,而後聚合形成一聚合材料。 22·如申=專利範圍第21項所述之複合物材料的製造方法,其中 該可水合材料包括—單體或絲體,該單體或絲體適用以 形成該材料,該聚合材料係選自聚胺、聚丙烯酸脂、聚 丁烯4々丁蝉、聚乙稀、聚氯化乙稀、乙稀-乙稀醇、氣聚 2物、離聚物、聚甲基戊稀、聚丙烯、聚苯乙烯、聚氯乙稀、 K偏氯乙稀、聚縮物、聚醯胺、聚醯胺遞亞胺、聚芳咖同、 :歧、聚_、聚麵、聚魏亞胺、聚賴、聚酸亞胺、 聚氧化二甲笨、聚硫化苯、聚鄰苯二情胺、Μ亞胺、聚 碾、聚芳鐵、烯丙基樹脂、三聚氰胺樹脂、甲趁樹脂 200827394 (formaldeliyderesin)、液晶聚合物、聚烯烴、聚酯、矽g同、 t氨S曰、環氧樹脂、纖維聚合物及其結合所組成的群組。 23·如申請專利範圍第18項所述之複合物材料的製造方法,更包 括: 製作該碳奈米球,包括: 透過於複數個模板奈米微粒存在下聚合一碳前驅 物來形成一個或多個中間碳奈米球;The method of manufacturing a composite material according to claim 18, wherein the composite material is composed of a thermoplastic polymer, and the manufacturing method further comprises: when or before mixing the graphite material, Heating the thermoplastic polymer to a temperature above one of the melting point or glass transition temperature of the thermoplastic polymer to bring the thermoplastic polymer into a liquid or plastic state; and cooling the thermoplastic polymer to obtain the composite material. The method for producing a composite material according to the invention of claim 19, wherein the thermoplastic polymer is selected from the group consisting of acrylonitrile-butadiene-styrene copolymer, propylene gambling-ethylene/propylene- Styrene copolymer, methyl methacrylate-butadiene-styrene copolymer, acrylonitrile-butadiene-methyl methacrylate-styrene copolymer, acrylonitrile-n-butyl acrylate-styrene copolymer , rubber modified polystyrene, styrene, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, cool I fiber resin, polyamide, polyester, polypropylene, polycarbonate, A group consisting of polystyrene, polyketone, polychlorinated wind, polyphenylsulfuric acid SI, fluororesin, linaloside, polyimine, polystyrene, polyamine elastomer, and combinations thereof. The method for producing a composite material according to the invention of claim 18, wherein the core material is composed of a polymerizable material which is originally in a liquid or plastic state, and then polymerized to form a polymeric material. The method for producing a composite material according to claim 21, wherein the hydratable material comprises a monomer or a filament, and the monomer or filament is suitable for forming the material, and the polymeric material is selected From polyamines, polyacrylates, polybutenes, butylenes, polyethylenes, polyethylenes, ethylene-ethylenes, gas-polymers, ionomers, polymethylpentene, polypropylene , polystyrene, polyvinyl chloride, K vinylidene chloride, polycondensate, polyamine, polyamidamine, polyaryl, same, disproportionate, poly-, poly-, poly-i-imine, Polylysate, polyimide, polyoxymethylene, polysulfide, poly(phthalamide), quinone imine, polyroll, polyarylene, allyl resin, melamine resin, formazan resin 200827394 (formaldeliyderesin ), a group consisting of liquid crystal polymer, polyolefin, polyester, 矽g, t ammonia S 曰, epoxy resin, fiber polymer, and combinations thereof. The method of manufacturing a composite material according to claim 18, further comprising: fabricating the carbon nanosphere, comprising: polymerizing a carbon precursor in the presence of a plurality of template nanoparticles to form one or Multiple intermediate carbon nanospheres; 碳化該中間碳奈米球以形成複數個複合奈米結 構;以及 隨意地自該複合奈米結構移除該模板奈米微粒以 仔到該碳奈来球。 24·如申請專利範圍第汜項所述之複合物材料的製造方法,其中 該板板奈米微粒包括鐵、鎳和銘其中至少一種。 25,如申請專利範圍第23項所述之複合物材料的製造方法,其中 该碳化步驟係於約500°C和約2500°C之間的一溫度下進行。 26·如申請專利範圍第23項所述之複合物材料的製造方法,其中 自該複合奈米結構移除該模板奈米微粒之步驟係透過以酸、 鹼或兩者進行蝕刻而達成。 38The intermediate carbon nanospheres are carbonized to form a plurality of composite nanostructures; and the template nanoparticles are optionally removed from the composite nanostructure to abrade the carbon nanotubes. The method of producing a composite material according to the above aspect of the invention, wherein the slab nanoparticle comprises at least one of iron, nickel and ingot. The method of producing a composite material according to claim 23, wherein the carbonizing step is carried out at a temperature between about 500 ° C and about 2500 ° C. The method of producing a composite material according to claim 23, wherein the step of removing the template nanoparticle from the composite nanostructure is carried out by etching with an acid, a base or both. 38
TW96128318A 2006-12-20 2007-08-01 Polymeric materials incorporating carbon nanostructures and methods for making same TW200827394A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/614,006 US7935276B2 (en) 2006-02-09 2006-12-20 Polymeric materials incorporating carbon nanostructures

Publications (1)

Publication Number Publication Date
TW200827394A true TW200827394A (en) 2008-07-01

Family

ID=44817227

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96128318A TW200827394A (en) 2006-12-20 2007-08-01 Polymeric materials incorporating carbon nanostructures and methods for making same

Country Status (1)

Country Link
TW (1) TW200827394A (en)

Similar Documents

Publication Publication Date Title
Šupová et al. Effect of nanofillers dispersion in polymer matrices: a review
Guo et al. Improved interfacial properties for largely enhanced thermal conductivity of poly (vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes
Meng et al. Polymer composites of boron nitride nanotubes and nanosheets
Guo et al. High thermal conductive poly (vinylidene fluoride)-based composites with well-dispersed carbon nanotubes/graphene three-dimensional network structure via reduced interfacial thermal resistance
US9162896B2 (en) Method for making polymer composites containing graphene sheets
Liu et al. Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes
US7935276B2 (en) Polymeric materials incorporating carbon nanostructures
JP2009538363A (en) Polymer materials incorporating carbon nanostructures and their fabrication methods
TW200838910A (en) TiO2-coated CNT, TiO2-coated CNT reinforcing polymer composite and methods of preparation thereof
Shao et al. The cutting of multi-walled carbon nanotubes and their strong interfacial interaction with polyamide 6 in the solid state
TW200835647A (en) Method for manufacturing carbon nanostructures having minimal surface functional groups
WO2007035442A2 (en) Conductive silicone and methods for preparing same
Mohd Firdaus et al. From 2D graphene nanosheets to 3D graphene‐based macrostructures
JP6803874B2 (en) Carbon-modified Boron Nitride, Its Manufacturing Method and Highly Thermally Conductive Resin Composition
CN101384426A (en) Polymeric materials incorporating carbon nanostructures and methods for making same
Shams et al. Solvothermal synthesis of carbon nanostructure and its influence on thermal stability of poly styrene
Jineesh et al. Thermal properties of polymer–carbon nanocomposites
Pedrosa et al. Chemical surface modification and characterization of carbon nanostructures without shape damage
Jin et al. Investigations on the thermal conduction behaviors of reduced graphene oxide/aramid nanofibers composites
WO2018230638A1 (en) Carbon-modified boron nitride, method for producing same, and highly heat-conductive resin composition
Zhang et al. Polyamide 66 fibers synergistically reinforced with functionalized graphene and multi-walled carbon nanotubes
TW200827394A (en) Polymeric materials incorporating carbon nanostructures and methods for making same
Sahoo et al. Effect of carbon nanotubes and processing methods on the properties of carbon nanotube/polypropylene composites
Wang et al. The effect of multi-walled carbon nanotubes on the molecular orientation of poly (vinyl alcohol) in drawn composite films
Borah et al. Milled graphitic nanoparticle toughened epoxy composites via increased resistance to in-plane crack propagation