TW200817279A - Carbon nanostructures manufactured from catalytic templating nanoparticles - Google Patents

Carbon nanostructures manufactured from catalytic templating nanoparticles Download PDF

Info

Publication number
TW200817279A
TW200817279A TW96111322A TW96111322A TW200817279A TW 200817279 A TW200817279 A TW 200817279A TW 96111322 A TW96111322 A TW 96111322A TW 96111322 A TW96111322 A TW 96111322A TW 200817279 A TW200817279 A TW 200817279A
Authority
TW
Taiwan
Prior art keywords
carbon
acid
catalyst
nanostructure
template
Prior art date
Application number
TW96111322A
Other languages
Chinese (zh)
Inventor
Cheng Zhang
Martin Fransson
Changkun Liu
Bing Zhou
Original Assignee
Headwaters Tech Innovation Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/539,042 external-priority patent/US7718155B2/en
Application filed by Headwaters Tech Innovation Llc filed Critical Headwaters Tech Innovation Llc
Publication of TW200817279A publication Critical patent/TW200817279A/en

Links

Abstract

Methods for manufacturing carbon nanostructures include: (1) forming a plurality of catalytic templating particles using a plurality of dispersing agent molecules; (2) forming an intermediate carbon nanostructure by polymerizing a carbon precursor in the presence of the plurality of templating nanoparticles; (3) carbonizing the intermediate carbon nanostructure to form a composite nanostructure; and (4) removing the templating nanoparticles from the composite nanostructure to yield the carbon nanostructures. The carbon nanostructures are well-suited for use as a catalyst support. The carbon nanostructures exhibit high surface area, high porosity, and high graphitization. Carbon nanostructures according to the invention can be used as a substitute for more expensive and likely more fragile carbon nanotubes.

Description

200817279 九、發明說明: 【發明所屬之技術領域】 本發明係有關-種<奈米材料,特別是_種利用碳前驅物及 觸媒模板微粒所製備之碳奈米結構。 【先前技術】 碳材料已被應用至各種高效率及功能性材料領域。眾所周 知,有機化合物的熱裂解是用以製備碳材料最有賴方法之一。 例如碳材料可透過在6(xrc以场裂朗苯u騎膠而生 成。 大部份藉由在_至1简;之間熱㈣錢化合物所獲得的 碳材料’具有非晶形或不規_結構。由於石墨所展現的獨特性 貝致使有利於獲得冋度結晶或石墨材料。例如,石墨材料具有 導電性並且可形成獨特的奈料料,如奈米碳管。然而,利用既 存的方擔赠過熱裂解方式製備此類具有完整晶形的石墨結 構,特別是在溫度低於2〇〇〇。(3時。 許多研究已經可以在較低溫度條件下,利用觸媒進行碳化製 ㈣獲得石墨結構。此戦-般麵鐵、鎳或,用以混合碟 前驅物。利用觸媒石墨化作用可在介於至剛t條件下樂』備 出石墨材料。大部份觸媒石墨化_之方法著重於製造奈米石墨 官。然而’結晶性材料的產率仍舊非常的低(例如絲碳管的產率 /6)如此低试的產率使得利用奈米材料以製造有用物品更 6 200817279 形困難。 【發明内容】 種利用碳前驅物及觸媒以製 形成於複數個模板奈 雲於上述之問題,本發明提供―…200817279 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a <nano-material, particularly a carbon nanostructure prepared using a carbon precursor and a catalyst template microparticle. [Prior Art] Carbon materials have been applied to various fields of high efficiency and functional materials. It is well known that thermal cracking of organic compounds is one of the most important methods for preparing carbon materials. For example, the carbon material can be generated by riding a rubber at 6 (xrc in the field). Most of the carbon material obtained by the heat (four) money compound between _ to 1 is amorphous or irregular. Structure. Due to the unique properties exhibited by graphite, it is advantageous to obtain crystallization or graphite materials. For example, graphite materials are electrically conductive and can form unique nanomaterials, such as carbon nanotubes. However, the existing The graphite structure with complete crystal form is prepared by superheat cracking, especially at temperatures below 2 〇〇〇. (3 hrs. Many studies have been able to use carbonization of catalysts at lower temperatures to obtain graphite structure. This 戦-like surface iron, nickel or used to mix the disc precursors. Using the catalyst graphitization, the graphite material can be prepared under the condition of just under t. Most of the catalyst graphitization _ Emphasis is placed on the manufacture of nanographites. However, the yield of 'crystalline materials is still very low (for example, the yield of carbon nanotubes / 6). The low yield of the test makes it possible to use nanomaterials to make useful articles. Difficult Volume] species with carbon precursor and a catalyst to produce a template is formed on a plurality of the above-described problems Nai cloud, the present invention provides - ...

備碳奈米結構之薪— 1'/,J ’斤式方法。此碳奈米結構系 米微粒的周圍。在—每 ,、,一',六仰 劑與觸媒金以子此模板奈频粒糾时機分散 f 此戦奈輪粒有祕作為形成斜 未結構的成核部細及在 成厌不 為-種_。 物進仃兔化及/絲合反應期間作 ’可包含下列完整步驟 根據本發日牧_碳奈米結構之方法 或其中之一部份: 、—(抓成魏麵媒模板奈米微粒,其係藉由下列步_形成⑻ 將複數個禮物觸_、子與複數個有機分制分子進行反應以形 成複口觸媒料;以及⑻使域合_原子職綱模板奈米微 粒; (11)藉由存在有模板奈米微粒條件下,聚合碳前驅物以形成一 或多個碳奈米結構之中間物; (ill)碳化此碳奈米結構之中間物以形成複數個複合奈米結 構;以及 (iv)移除複合奈米結構中的模板奈米微粒以生成碳奈米結構。 本發明之方法中,此分散的模板奈米微粒係使用分散劑而形 成。此分散劑是一種有機分子,其包含一或多個可與觸媒原子相 7 200817279 鍵結之官能基。在一較佳實施例中,此一或多個官能基包含有羥 基(hydroxyl)、叛基(carboxyl)、叛基(carbonyl)、胺(amine)、酿胺 (amide)、腈(nitrile)、具有未共用電子對的氮(nitr〇gen with a free lone pair of electrons)、胺基酸(amino acid)、硫醇基(thiol)、石黃酸(sulfonic acid)、鹵化磺醯基(suifonyl haiide)以及鹵化醯基(acyi halide)或上述 任何官能基之組合等。此分散劑分子與觸媒原子鍵結以形成複合 物。此複合觸媒原子隨即反應或凝聚以形成固態的觸媒模板微 粒此有機刀政劑可控制觸媒模板微粒的形成、尺寸及/或分散狀 況。 本發明之發法中,此觸媒模板微粒係用以作為製造奈米結構 所需之模板。當模板微粒與碳前驅物混合時,此模板微粒可提供 -成核部位’其可啟域促進碳化及/絲合反應。由於模板夺米 微_由觸媒原子所製成,因此模板微粒可有效地作為成核雜 並同時作為碳化及/絲合反應_媒。本發明㈣徵排除了 赚娜娜卿與__可能性。^ 口體觸職板微粒的方式,避免使個縣加的觸媒原 =核部位。相較於侧知方法所製造的 而預 ==奈獅彻卿恤_例如喊 在-實施财,本發明之方法所產生的 狀外形。此觀外料令碳奈綠構 構具有-環 有例如向多孔性及高表面 8 200817279 積等特性。此等特徵有助於使 體材料。此高表面積可導㈣一 、,,°構成為燃料電池觸媒的擔 善燃料電池__====响孔性將改 具有的高導電性,使料米 ^的擴散。此外’其所 極。石炭奈米結構可用: 作為燃料電池的陰極或陽 貴且較易碎。 代不和炭管’由於奈米碳管通常較為昂 明如下。@叫頻τ作,_合目式作最佳實施例詳細說 【實施方式】 L簡介及定義 米結物输·爛爾奈 用以制備石山太止、β_,作為燃料電池觸媒用途)之應用。本發明 反應衣形Π結叙妓包含··υ透過觸軒射機分散劑之 铺驅物,雜板錄;2)透賴絲_粒以聚合 中間物州物霍嶋米結構之 微粒以留下石炭夺乎及4)移除複合奈米結構中的模板 一或多個碳堆最述方法所製備的碳奈米結構具有 形管狀結構之Μ影像下係形成定義一奈米碳環或截 指目以夕 朗的材料在SEM影像下其具有中空不 。在—獅,此^ ;屯子頭讀下係形成葡萄狀結構的群集,但相同材 200817279 料下=電子顯微鏡下係為已知的中空多壁式奈米結構。 合時本^之目的,細_赌·當與前驅物結 Ό冒加碳前驅物碳化反應速 ^ 干心玎了十舉例而泛 用射。 鐵、㈣或鎳,但非用以限林發明之應 斤有的固體觸媒模板微粒係由—或多個觸媒材料所 聚備。 IL用以製備碳奈米結構之成份 下列舉例_之成份可用以實施上述之製備步驟 本發明之碳奈米結構。 j有 A·聚合性碳前驅物 任何種類的碳材料皆可彻於作為本發明之碳前驅物,只要 其可以分散模板·,聚合職巾_奈米結_域由熱處理 而進行碳化反應者。_的化合物包含單環及多環料族化合 物,例如具有聚合性官能基之苯及萘衍生物。此外,也包含在加 熱之後可形成單環及多環料族化合物之其他環狀化合物。參與 聚合反應的官能基包含有C〇〇H、c=〇、〇H、c=c、SOS、簡2、 N=O0及其類似官能基等。 此χκ合性碳前驅物可為單一型式的分子(例如可自身聚合之化 合物)或可為二或多翻異化合物之結合所形成的共聚物。例如, 在 Α知例中,此石炭前驅物可為間苯二紛-曱盤凝膠。在具有此兩 10 200817279 種化合物的實施例中,甲醛是作為間苯二酚分子間的交聯劑,以 聚合間苯二紛分子間的經基(hydroxyl)。 其他適用的聚合性前驅物材料之實例包含間苯二盼、驗樹 脂、三聚氰胺-曱盤凝膠、聚糠醇(poly^rfmyl 、聚丙稀腈 (poly(acryl〇nitrile))、蔗糖、石油瀝青及其類似物。其他聚合性的 苯類、醌(quinones)及相似化合物也可被用以作為碳前驅物並且係 為本領域之技術人員所熟知。 在一實施例中,此碳前驅物係為一種熱液聚合的有機化合 物。適用於此類型的有機化合物包含檸檬酸(citric add)、丙烯酸 (citric acid) > S^(citric acid) > (acrylic ester) ^ (butadiene)、笨乙烯(styrene)、桂皮酸及其類似物。 Β·觸媒模板奈米微粒 如上所述,觸媒模板奈米微粒的形成通常包含使複數個模板 觸媒原子與複數個分散劑分子在—溶劑巾反應,進而形成複合觸 媒原子。此複合_原子隨即反卿絲米微粒。 1·碳前驅物觸媒原子 刚驅物觸獅何為任何能削發或促進碳前驅物產升碳化 及/或b反應的材料。在—較佳實施射,此觸係為過渡金屬 觸媒,並#ψ: Al ± /、有鐵、鈷或鎳,但非限制於此。此類過渡金屬觸媒 有#1別的效现’可催化與上述碳前驅物相關之許多聚合及域碳 11 200817279 2·分散劑 除了觸媒原子外,本發明之觸媒複合物尚包含一或多個 劑。此分散劑係選擇用以促進奈糊媒微粒的形成,使立具有= 需的穩定性、尺寸及/或均勾性。本發明之分散·含各種有機小 分子、聚合物及絲轉。此分散舰触簡或分散在適當溶 劑或載體中的觸媒原子透過各種機制而相互制或鍵結,包括離 子鍵、共舰、凡得瓦交互侧/鍵、未朗電子對或氯鍵。 為了提供分散雜觸制子之間_結,因此分散劑包含— 或多種適當的官能基。較佳的分散劑具有帶電或是―或多個未共 用電子對的官能基,其可用以複合金屬觸媒原子或可形成其他形 式的鍵結例如氫鍵。此類官能基使得分散劑與觸媒原子間具有強 烈的鍵結交互作用。 此分散劑可為天然或人工合成的化合物。在觸媒原子為金屬 且分散劑為有機化合物之情況下,所形成的觸媒複合物可為有機 金屬複合物。 在一實施例中,分散劑包含一或多個選自於羥基(hydroxyl)、 叛基(cart)〇xyl)、幾基(carb〇nyl)、胺(amine)、酿胺(amide)、腈 (nitrile)、具有未共用電子對的氣(nitr〇gen with a free lone pair of electrons)、胺基酸(amino acid)、硫醇基(thiol)、石黃酸(sulfonic acid)、 鹵化石黃酿基(sulfonyl halide)以及鹵化酿基(acyl halide)的官能基。此 分散劑可具有單一官能基、雙官能基或多官能基。 12 200817279 適用的單一官能基分散劑之實例包含醇類;例如乙醇和丙 醇;以及羧酸,例如甲酸和醋酸。適用的雙官能基分散劑包含二 兀酸,例如草酸(oxalic acid)、蘋果酸(maiicacid)、丙二酸(mal〇nic acid)、順丁烯二酸(maleic acid)、丁二酸(succinic acid)及其類似物; 二几醇,例如乙二醇(ethylene glycol)、丙二醇(propyiene glyC〇1)、 1,3-丙二醇(i,3-propanedi〇l)及其類似物;羥酸,例如羥基乙酸 (glycolic acid)、乳酸(lactic acid)及其類似物。適用的多官能基分散 劑包含糖,例如葡萄糖(glucose);羧酸,例如檸檬酸(citricacid); 以及EDTA、果膠(pectin)、纖維素(cellulose)及其類似物。其它適 用的分散劑包含乙醇胺(ethanolamine)、巯乙醇(mercaptoethanol)、 2-巯基乙醋(2-mercaptoacetate)、胺基酸例如甘胺酸(giyCine)以及磺 酸(sulfonic acids)例如石黃基苯甲醇(sulfobenzyl alcohol)、石黃基苯甲酸 (sulfobenzoic acid)、磺基苯甲硫醇(sulfobenzyl thiol)及磺基苯甲胺 (sulfobenzyl amine)。此分散劑更可包含無機成份(例如含矽成份)。 適用於本發明之聚合物及寡聚物包含聚丙稀酸鹽 (polyacrylate)、聚乙烯苯甲酸鹽(polyvinylbenzoate)、聚乙烯硫酸鹽 (polyvinyl sulfate)、包含石黃酸化笨乙烯之聚乙烯磺酸鹽(polyvinyl sulfonate including sulfonated styrene)、聚雙盼碳酸鹽(polybisphenol carbonate)、polybenzimidizole、聚。比口定(polypyridine)、石黃酸化聚對 苯二甲酸乙二鹽(sulfonated polyethylene terephthalate),但非用以限 制本發明之應用範圍。其它適用的聚合物包含聚乙浠醇(polyvinyl 13 200817279 ale—1)、聚乙二醇㈣―如以鄉聚丙二醇_卿_ glycol)及其類似物。。 示了刀散肩特性之外,其尚有利於控制觸媒懸浮液中分散 劑與觸媒原子的莫耳比率(moIar她〇)。—種較有用的量測係為分 制官能基與觸媒原子之_料轉。例如,就兩價金屬離子 而5 ’賴提供兩莫耳當量的單價雜基哺合理 一 般而言’分散射能基與觸媒料的莫耳轉最好是約介於 〇·〇1 · 1至1GG : 1之間,較佳係介於⑽··丨至5Q ··工之間 佳是介於0·1 : 1至20 ·· 1之間。 本發明之分散劑可用以形成極小且均勻的奈米微粒。通常, 形成於分散劑中之奈米微粒最好是具有約小於i奈米的尺寸。較 佳情況下’此奈米微粒具有約小於1GG奈米的尺寸,較佳係約小 於50示米,且最佳情況是約小於20奈米。 在碳前驅物賴魏顧,分散射抑_職粒產生凝聚 及失活(deact喊on)。此抑制失活的能力可增加奈来微粒的操作溫 度及/或增加奈米齡絲鶴之㈣纽下的纽壽命。 包含的分散舰可保存觸·性達觸相數毫秒甚 秒,此延猶簡於高溫下时_粒的係料有助益的,: 可給予更多的動力以進行碳化反應。 、/、 3·溶劑及其他添加物 製備觸媒模板奈米微粒所需之液態介八 ^ 、匕έ各種不同的溶 14 200817279 背J,例如水及有機浴劑荨。藉由提供用以使觸媒原子與分散劑進 行交互作用的液態介質,可使溶劑參與微粒的形成。在某些倩況 下,;谷劑可與非作為溶劑用途的第一分散劑相結合以作為第二分 散劑。在一實施例中,此溶劑可使奈米微粒產生懸浮。適用的溶 片丨J包έ有水(water)、甲醇(methanol)、乙醇(ethanol)、正丙醇 (η-propanol)、異丙醇(isopropyi alc〇h〇1)、乙腈(acet〇nMe)^ (acetone)、四氫呋喃(tetrahydrofiiran)、乙二醇(ethylenegiyCO〇、二 甲基甲醯胺(dimethylf_amide)、二甲基亞石風(dimeth細 二氯甲烷(methylenechloride)及其類似物,以及上述溶劑之混合。 觸媒組成中也可包含添加物,用以促進奈米觸媒微粒的形 成。例如,可添加少量(例如重量百分比濃度低於5%)的無機酸及 鹼性化合物。_的無繼例如魏、雜、魏、碰及其類 ⑽。另外,驗性化合物的實例則包含氫氧化納、氯氧化卸、氫 氧化鈣、氫氧化鋁及相似化合物等。 其-人’也可添加固體材料以促進奈米微粒的形成。例如可在 觸媒生成賴於溶液t加人離付雜脂。離子交換樹脂可用以 取代上狀酸或驗。固體材料可利用簡單的技術例如離心及過 濾以自最終的鐵觸媒溶液或懸浮液中被輕易地分離出來。 瓜製傷碳奈米結構 制備本米結構可透過下列完整步驟或其中之-部份而 、肴.(〇將讀個前驅物觸媒原子與複數個分散劑分子反映,以 15 200817279 形成複數個分散_職板奈米微粒;⑻混合此複數個觸媒模板 料微粒(例如鐵微粒)與碳前驅物(例如檸樣酸),以導致或引發碳 前驅物產生聚合而形成複數個中間物奈米結構;⑽碳化此等= ;以及(iv)自複數個複合奈 米結構中移除此等模板奈米微粒,以生成碳奈米結構。,、 Α·觸媒模板奈米微粒之提供 用以製備奈米微粒之製程可概述如下。首先,選擇一或多種 前驅_媒原子及-或多種分散劑。其次,此前驅物觸媒原糊 如基態金屬或離子化销贿之形式)與分制(例如羧酸或其鹽 類形式)進行反應或結合以形成觸媒複合物。此觸媒複合物一般係 先將觸媒原子與分制溶解於適當溶射再令觸媒原子鍵結分散 劑分子而形成。各種成份可以任何次序或組合而結合或混合。此 外’可在添加其他成份之翻先混合鱗成份的子集合,或所有 成份可同時進行結合。 >另-方面’本發明之觸媒複合物可被視為是觸媒原子與分散 d的複合體,但不包含周圍的溶劑。更確切地,本發明之應用範 圍係在巾喊觸複合物,並移除溶劑以產生所需之觸媒複 合物。此所需之觸媒複合物可藉由加人適#的溶劑而進行重組。 在只把例中,此等成份係混合持續約1小時至ι4天的時 間。此還合反應-般是在介於〇1:至2〇〇1;的溫度範圍内實施。較 佳的溫度範圍並不超過100。〇。 16 200817279 月〕I區物觸媒料_般鋪由_例如氣賴、硝酸鐵、硫 酉义鐵等化式所提供。鱗化合物通常可溶於水溶射。利用金屬 鹽類以形成觸媒奈米微粒可藉由陰離子的釋放而導致額外的副產 物形成L如果需要的話,可使用金屬粉末(例如鐵)以避免陰離子的 =成 Μ 3 ’彻鐵金屬製備觸騎產生的賴副產物係為 ,氣,其係於混合過程中逐步形成。如果制-種會逐步形成氫 氣或八他氣體的材料以製備觸職粒,則此混合物在製備過程中 I又而、、二過週期性(或連續性)的茂氣及/或曝露於空氣中。 在’、她例中’一旦完成混合步驟或使用氫氣作進一步地還 原之後,奈米餘細活性的方式存在。在—雛實施例中,此 y卡觸媒U喊喊具有敎活性金屬奈米麟錄之懸浮。奈 米觸媒雜的穩定性避免微粒產生凝聚並可維持於懸浮狀態。即 使某二或王相奈麵媒微粒被置放於雜外—段時間,此奈来 觸媒U粒也可藉由混合而輕易地再次懸浮。 可添加鹼(例如濃縮氨水)至溶液中以調整pH值介於8至13 ]且車乂佺係介於1〇至u之間。較高的pH值有助於促使前驅 物觸媒原子呈縣度分_雜。 、,觸媒模板奈米微粒能夠催化碳前驅物的聚合及/或碳化反應。 〜述用㈣備觸频板微粒的過程有助於使具有催化活性的觸媒 ^刀佈於彳放粒上。相對地,本發明人已發現某些可供工業上應 用的。式劑(例如至少_種可供工業應用的檸樣酸鐵)無法具有令人 17 200817279 滿意的催化活性。 B·碳前驅物之聚合 觸媒模板微粒與碳前驅物(例如檸樣酸)在適當條件下混合以 使碳前驅物於觸職板微粒進行聚合反應。由於觸媒模板微 粒具有催化潍池彳純具杨歧/或起始碳前驅物 在觸媒模板微_近產生聚合的優输。婦地,本發明人已發 現某些工業上的應用试劑(例如至少一 ^ τ ^ μ /¾ m aa ^ ^ ^禋工菓上應用的檸檬酸鐵) 無法具有令人滿意的活性。 -般而s ’觸媒模板奈米微粒在碳前驅物巾的濃度係依照可 使碳奈米結構的形成數目最大化而進行選擇,然而仍可產生具有 均勻型態的奈米結構。觸韻板微粒的數量將隨所制的碳前驅 物種類而Μ化。在-實關巾,碳前驅物與_原子的莫耳比係 約;丨於0.1 · 1至1〇〇 · 1之間,較佳係介於1 : 1至如:1之間。 前驅物組成的提供,使得具有足夠的交聯時間以在模板奈米 微粒周圍形成複數個中間物碳奈米結構。所需㈣形成中間物奈 米結構的時間端視溫度、觸媒材料的種類與濃度、溶液的ρΗ值以 及所使用之碳前驅物種類而定。在聚合期間,此中間物碳奈米結 構可為單獨的有機結構或是於碳化反應及/或非晶形碳移除期間所 斷裂分離的相關奈米結構。 氨水的添加可調整pH值以藉由增加聚合反應速率及增加前 驅物分子間父聯的產生,進而達成有效聚合。 18 200817279 於熱液性可聚合的碳前驅物而言,聚合一般是發生在溫度 κ知例中,此碳前驅物係被加熱為約〇°c至2⑻。c 之間,且較佳係約介於25°c至1耽之間。 、、;門笨一紛-甲搭凝膠(例如具有鐵微粒及pH值介於1-14 的/合液)的4合條件,例如溫度介於此至贼間的溶液以及交聯 時=介於1小時以下至72小時之間。本領域之技術人員可輕易地 判疋在相同或相異參數下所需肋交聯碳前驅物之條件。 &、在一貫施例中,此聚合反應係不可以連續完成。在整個溶液 &被4^之轉止交聯程序可有助於形成複數個巾間物奈米結 構此等中間物奈米結構將會形成單獨的奈米結構而非單-團塊 材料然而,本發明之實施例尚包含使碳前驅物形成複數 個彼此結合或部分結合之巾_碳奈米結構。在本實施例中,單 獨的奈米結構係在碳化及/或移除非晶形碳的期間所形成。 自分散的模板奈米微粒卿成的巾間物奈米結構會導致形成 複數個具有㈣形狀及尺柏中間物碳奈米結構。最後,奈米結 _性質至少部份會根據此巾_碳奈米結構_狀及尺寸而 疋。由於此中間物碳奈米結構獨特的形狀及尺寸,使得最終的奈 米結構可具有相當有用的性質,例如高表面積及高多孔性等。 C·中間奈米結構之碳化 -旦產生中間物碟奈米結構之後,透過加熱以產生碳化反 應’進而生成經碳化的複合奈米結構。在一實施例令,此令間物 19 200817279 碳奈米結構係被加熱至介於500t與25〇(rc之間的溫度。在力The salary of the carbon-free structure - 1 '/, J ' kg method. This carbon nanostructure is surrounded by rice particles. In--,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, For - kind _. During the prawn and/or silky reaction, the method may include the following complete steps according to the method of the present invention, or one of the parts: —— The method comprises the following steps: forming (8) reacting a plurality of gift contacts with a plurality of organic component molecules to form a complex catalyst material; and (8) making a domain combination atomic template template nanoparticle; (11) Converging carbon precursors to form an intermediate of one or more carbon nanostructures by presenting template nanoparticle; (ill) carbonizing the intermediate of the carbon nanostructure to form a plurality of composite nanostructures And (iv) removing the template nanoparticles in the composite nanostructure to form a carbon nanostructure. In the method of the present invention, the dispersed template nanoparticle is formed using a dispersant. The dispersant is an organic a molecule comprising one or more functional groups bonded to a catalytic atomic phase 7200817279. In a preferred embodiment, the one or more functional groups comprise a hydroxyl group, a carboxyl group, Carbonyl, amine, amide Nitrile, nitrogen with a shared electron pair (nitr〇gen with a free lone pair of electrons), amino acid, thiol, sulfonic acid, halogenated sulfonate a suifonyl haiide and a acyi halide or a combination of any of the above functional groups, etc. The dispersant molecule is bonded to a catalytic atom to form a complex. The composite catalyst atom then reacts or agglomerates to form a solid state. Catalyst template particles The organic knife agent can control the formation, size and/or dispersion of the catalyst template particles. In the method of the present invention, the catalyst template particles are used as a template for fabricating a nanostructure. When the template particles are mixed with the carbon precursor, the template particles can provide a nucleation site which can promote carbonization and/or silk-tie reaction. Since the template is made of catalyst atoms, the template particles are formed. It can be effectively used as a nucleating impurity and at the same time as a carbonization and/or silky reaction. The invention (4) excludes the possibility of earning Nana Qing and __ possibility. ^ The way of mouth contact plate particles, avoiding the county Catalyst original = nuclear part. The shape of the shape produced by the method of the present invention is obtained by the method of the prior art. For example, the appearance of the carbon-green structure has a ring-like porosity. And high surface 8 200817279 product and other characteristics. These features help to make the body material. This high surface area can lead to (four) one,,, ° constitute a fuel cell catalyst for the fuel cell __==== vocal It will change the high conductivity to make the diffusion of the material. In addition, it is extremely thin. The structure of the carbon nanotubes can be used: as the cathode of the fuel cell or expensive and brittle. Generations of carbon tubes are not as clear as the carbon nanotubes are as follows. @叫频τ作,_合目式为最佳实施实施实施方式 [Embodiment] L Introduction and definition of rice knots, Ronald is used to prepare Shishan Taizhi, β_, as fuel cell catalyst use) application. The reaction Π Π 妓 妓 妓 妓 妓 妓 妓 妓 妓 妓 妓 妓 触 触 触 触 触 触 触 触 触 触 触 触 触 触 轩 轩 轩 轩 轩 轩 轩 轩 轩 轩 轩 轩 轩 轩 轩 轩 轩 轩 轩 轩 轩Lower Carboniferous and 4) Removal of template in composite nanostructures One or more carbon stacks The carbon nanostructures prepared by the method described above have a tubular structure with a tubular structure to define a nanocarbon ring or It is pointed out that the material of Xilang is hollow under the SEM image. In the lion, this ^; scorpion head read the formation of a cluster of grape-like structure, but the same material 200817279 material = electron microscope is a known hollow multi-walled nanostructure. The purpose of the time ^, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Iron, (4) or nickel, but not used to limit the invention of the solid catalyst template particles are composed of - or a plurality of catalyst materials. IL is used to prepare the components of the carbon nanostructure. The following examples can be used to carry out the above preparation steps. The carbon nanostructure of the present invention. J. A. Polymeric carbon precursor Any type of carbon material can be used as the carbon precursor of the present invention as long as it can disperse the template, and the polymerization towel_nano junction_domain is subjected to carbonization by heat treatment. The compound of _ contains a monocyclic and polycyclic group compound such as a benzene and a naphthalene derivative having a polymerizable functional group. In addition, other cyclic compounds which form monocyclic and polycyclic compound compounds after heating are also included. The functional group participating in the polymerization reaction includes C〇〇H, c=〇, 〇H, c=c, SOS, Jane 2, N=O0 and the like, and the like. The χ conjugated carbon precursor may be a single type of molecule (e.g., a self-polymerizable compound) or a copolymer which may be a combination of two or more divergent compounds. For example, in an abbreviated example, the charcoal precursor may be a meta-phenylene-ruthenium gel. In the examples having the two compounds of 10,107,17,279, formaldehyde is used as a crosslinking agent between resorcinol molecules to polymerize the hydroxyl groups between the intermolecular molecules. Examples of other suitable polymeric precursor materials include meta-phenylene, resin, melamine-tank gel, poly(rfmyl), poly(acryl(n), sucrose, petroleum pitch, and Analogs. Other polymeric benzenes, quinones and similar compounds can also be used as carbon precursors and are well known to those skilled in the art. In one embodiment, the carbon precursor is A hydrothermally polymerized organic compound suitable for use in this type of organic compound comprising citric add, citric acid > S^(citric acid) > (acrylic ester) ^ (butadiene), stupid ethylene ( Styrene), cinnamic acid and the like. Β·catalyst template nanoparticles As described above, the formation of the catalyst template nanoparticle usually comprises reacting a plurality of template catalyst atoms with a plurality of dispersant molecules in a solvent towel And then form a composite catalyst atom. This composite _ atom is immediately reversed silk rice particles. 1. Carbon precursor catalyst atomic ruthenium lion is any can cut or promote carbon precursors to produce carbonization and / or b reaction Material In the preferred embodiment, the contact system is a transition metal catalyst, and #ψ: Al ± /, with iron, cobalt or nickel, but is not limited thereto. Such transition metal catalyst has #1 other It can catalyze many polymerizations and domain carbons associated with the above carbon precursors. 11 200817279 2·Dispersant In addition to the catalytic atom, the catalyst composite of the present invention further comprises one or more agents. In order to promote the formation of the neat paste particles, the stability has the required stability, size and/or uniformity. The dispersion of the present invention contains various organic small molecules, polymers and filaments. The catalyst atoms in a suitable solvent or carrier are mutually bonded or bonded through various mechanisms, including ionic bonds, co-ships, van der Waals interaction sides/bonds, uncle electron pairs or chlorine bonds. Between the junctions, and thus the dispersant contains - or a plurality of suitable functional groups. Preferred dispersants have charged or "or multiple functional groups that do not share electron pairs, which can be used to complex metal catalyst atoms or can form other Formal linkages such as hydrogen bonds. Such functional groups make The dispersant has a strong bonding interaction with the catalyst atom. The dispersant may be a natural or artificial compound. The catalyst complex formed in the case where the catalyst atom is a metal and the dispersant is an organic compound. It may be an organometallic composite. In one embodiment, the dispersant comprises one or more selected from the group consisting of hydroxyl, cart 〇xyl, carb〇nyl, amine, Amide, nitrile, nitr〇gen with a free lone pair of electrons, amino acid, thiol, tartaric acid Sulfonic acid), a sulfonyl halide, and a functional group of an acyl halide. This dispersant may have a single functional group, a difunctional group or a polyfunctional group. 12 200817279 Examples of suitable single functional dispersing agents include alcohols; for example, ethanol and propanol; and carboxylic acids such as formic acid and acetic acid. Suitable difunctional dispersants include diterpenic acids such as oxalic acid, maiic acid, mal 〇nic acid, maleic acid, succinic acid (succinic) Acid) and its analogues; dihydric alcohols such as ethylene glycol, propyiene gly C〇1, 1,3-propanediol (i, 3-propanedi〇l) and analogues thereof; hydroxy acid, For example, glycolic acid, lactic acid, and the like. Suitable polyfunctional dispersing agents include sugars such as glucose; carboxylic acids such as citric acid; and EDTA, pectin, cellulose, and the like. Other suitable dispersing agents include ethanolamine, mercaptoethanol, 2-mercaptoacetate, amino acids such as gyiCine, and sulfonic acids such as fluorenyl benzene. Sulfobenzyl alcohol, sulfobenzoic acid, sulfobenzyl thiol, and sulfobenzyl amine. The dispersing agent may further comprise an inorganic component (for example, a cerium-containing component). Polymers and oligomers suitable for use in the present invention comprise polyacrylate, polyvinylbenzoate, polyvinyl sulfate, and polyvinylsulfonic acid comprising stearic acid stupid ethylene. (polyvinyl sulfonate including sulfonated styrene), polybisphenol carbonate, polybenzimidizole, poly. Polypyridine, sulfonated polyethylene terephthalate, but not intended to limit the scope of application of the present invention. Other suitable polymers include polyethylene glycol (polyvinyl 13 200817279 ale-1), polyethylene glycol (tetra), such as propylene glycol, and the like. . In addition to the knife shoulder characteristics, it is also advantageous to control the molar ratio of the dispersant to the catalyst atom in the catalyst suspension (moIar). A more useful measurement system is the conversion of functional groups and catalytic atoms. For example, in the case of a divalent metal ion, 5' provides a two-mole equivalent of a monovalent hetero group. Generally speaking, the molar energy of the sub-scattering energy base and the catalyst material is preferably about 〇·〇1·1. Between 1GG: 1 and preferably between (10)··丨 and 5Q··· between the work is between 0·1: 1 and 20··1. The dispersant of the present invention can be used to form very small and uniform nanoparticles. Generally, the nanoparticle formed in the dispersant preferably has a size of less than about i nanometer. Preferably, the nanoparticle has a size of less than about 1 GG nanometer, preferably less than about 50 meters, and most preferably less than about 20 nanometers. In the carbon precursor Lai Wei Gu, the sub-scattering _ _ granules produce cohesion and inactivation (deact shouted on). This ability to inhibit inactivation can increase the operating temperature of the Neil microparticles and/or increase the neonatal life of the nanometer silk cranes. The included dispersing ship can save the touch-to-touch phase for a few milliseconds and seconds. This delay is helpful when the temperature is high. It can help give more power for carbonization. , /, 3 · Solvents and other additives The liquid medium required for the preparation of catalyst template nanoparticles ^, 匕έ various different solutions 14 200817279 Back J, such as water and organic bath 荨. The solvent can be involved in the formation of microparticles by providing a liquid medium for interaction of the catalyst atoms with the dispersant. In some cases, the granules can be combined with a first dispersant that is not used as a solvent to act as a second dispersant. In one embodiment, the solvent suspends the nanoparticles. Suitable tablets 丨 J include water, methanol, ethanol, η-propanol, isopropyi alc〇h〇1, acetonitrile (acetonitrile) ^(acetone), tetrahydrofiiran, ethylene glycol (ethylenegiyCO〇, dimethylf_amide), dimethyl succinite (dimeth fine methylene chloride and the like), and the above Mixing of solvents. The catalyst composition may also contain additives to promote the formation of nano-catalyst particles. For example, a small amount (for example, a concentration of less than 5% by weight) of inorganic acids and basic compounds may be added. There are no such things as Wei, miscellaneous, Wei, and their likes. (10) In addition, examples of the test compound include sodium hydroxide, chlorine oxidizing, calcium hydroxide, aluminum hydroxide, and the like. The solid material is added to promote the formation of nanoparticles. For example, the catalyst can be generated by adding a solution to the heterotrophic acid. The ion exchange resin can be used to replace the upper acid or the solid material can be processed by simple techniques such as centrifugation and Filtered to dissolve from the final iron catalyst Or the suspension is easily separated. The melon structure of the carbon nanostructure can be prepared through the following complete steps or some of them. (〇 will read a precursor catalyst atom and a plurality of dispersions The agent molecule reflects that a plurality of dispersed _plated nanoparticles are formed by 15 200817279; (8) the plurality of catalyst template particles (such as iron particles) and carbon precursors (such as lemon acid) are mixed to cause or induce carbon precursors. The polymer is polymerized to form a plurality of intermediate nanostructures; (10) carbonized; and (iv) the template nanoparticles are removed from the plurality of composite nanostructures to form a carbon nanostructure. Catalyst Template Nanoparticles The process for preparing nanoparticles can be summarized as follows. First, one or more precursor-media atoms and/or a plurality of dispersing agents are selected. Secondly, the precursor catalyst is as a ground state metal. Or in the form of ionized bribes, reacting or combining with a dispensing system (such as a carboxylic acid or a salt thereof) to form a catalytic composite. This catalyst complex is generally dissolved in a suitable catalyst atom and fraction. Solvent The atom is bonded to the dispersant molecule. The various components may be combined or mixed in any order or combination. In addition, a subset of the scaly components may be added at the same time as the other components, or all of the components may be combined at the same time. Aspect 'The catalyst complex of the present invention can be regarded as a complex of a catalytic atom and a dispersed d, but does not contain a surrounding solvent. More specifically, the application range of the present invention is in the towel shouting complex, and shifts The solvent is removed to produce the desired catalyst complex. The desired catalyst complex can be recombined by adding a suitable solvent. In the only example, these components are mixed for about 1 hour to ι4. The time of day. This recombination reaction is generally carried out at a temperature ranging from 〇1: to 2〇〇1; The preferred temperature range does not exceed 100. Hey. 16 200817279 Month] The material in the I zone is provided by a chemical formula such as gas, iron nitrate or sulphur iron. Scale compounds are generally soluble in water. The use of metal salts to form catalyst nanoparticles can lead to the formation of additional by-products by the release of anions. If desired, metal powders (eg, iron) can be used to avoid anion = Μ 3 'Che-iron metal preparation The by-product produced by the ride is a gas which is gradually formed during the mixing process. If the system will gradually form a hydrogen or octa gas material to prepare the contact particles, the mixture will be in the process of preparation, and then the periodic (or continuous) temper and / or exposed to the air. in. In the case of ', in her case', once the mixing step is completed or hydrogen is used for further reduction, the manner of nanometer residual activity exists. In the example embodiment, the y card catalyst U shouts a suspension of the active metal nanophone. The stability of the nanocatalyst prevents the particles from agglomerating and can be maintained in suspension. Even if a certain two or Wang Xiang Nai particles are placed in a heterogeneous period, the Na catalyst can be easily resuspended by mixing. A base (eg, concentrated aqueous ammonia) may be added to the solution to adjust the pH between 8 and 13 and the rutting system is between 1 and u. A higher pH helps to promote the precursor catalyst atoms to be classified as a county. The catalyst template nanoparticle can catalyze the polymerization and/or carbonization of the carbon precursor. ~ Description (4) The process of preparing the frequency plate particles helps to make the catalytically active catalyst knives on the enamel granules. In contrast, the inventors have discovered that certain industrial applications are available. Formulations (e.g., at least - iron citrate for industrial applications) do not have satisfactory catalytic activity of 17 200817279. Polymerization of B. Carbon Precursor The catalyst template particles are mixed with a carbon precursor (e.g., a lemon acid) under appropriate conditions to polymerize the carbon precursor on the contact plate particles. Since the catalyst template granules have a catalytic 潍 彳 彳 pure Yang Qi / or the starting carbon precursor in the catalyst template micro _ near to produce a superior transmission. In the present invention, the inventors have found that certain industrial application reagents (e.g., ferric citrate for at least one ^ τ ^ μ / 3⁄4 m aa ^ ^ ^ ) are not satisfactory for activity. In general, the concentration of the catalyst template nanoparticle in the carbon precursor towel is selected in accordance with the maximum number of formations of the carbon nanostructure, but a nanostructure having a uniform morphology can still be produced. The number of luminescent plate particles will vary with the type of carbon precursor produced. In the actual sealing towel, the carbon precursor is related to the molar ratio of _ atoms; between 0.1 0.1 and 1 〇〇 · 1, preferably between 1:1 and 1:1. The composition of the precursor is provided such that there is sufficient crosslinking time to form a plurality of intermediate carbon nanotube structures around the template nanoparticles. The time (4) required to form the intermediate structure of the nanostructure depends on the temperature, the type and concentration of the catalyst material, the pH of the solution, and the type of carbon precursor used. During the polymerization, the intermediate carbon nanotube structure can be a separate organic structure or an associated nanostructure separated by cleavage during carbonization and/or amorphous carbon removal. The addition of aqueous ammonia adjusts the pH to achieve efficient polymerization by increasing the rate of polymerization and increasing the production of the inter-parent ancestor of the precursor. 18 200817279 In the case of hydrothermally polymerizable carbon precursors, polymerization generally occurs in the temperature κ, and the carbon precursor is heated to about 〇 ° c to 2 (8). Between c, and preferably between about 25 ° C and 1 。. ,,; the door is awkward - a combination of gel (for example, iron particles and pH between 1-14 / liquid) 4 conditions, such as the temperature between the solution to the thief and cross-linking = Between 1 hour and 72 hours. One skilled in the art can readily discern the conditions of the desired rib crosslinked carbon precursor under the same or different parameters. & In a consistent application, this polymerization reaction cannot be completed continuously. The cross-linking procedure in the entire solution & 4 can help to form a plurality of inter-body nanostructures. These intermediate nanostructures will form a separate nanostructure rather than a mono-branched material. Embodiments of the present invention further comprise forming a carbon precursor into a plurality of towel-carbon nanotube structures that are bonded or partially bonded to each other. In this embodiment, a separate nanostructure is formed during carbonization and/or removal of amorphous carbon. The nanostructure of the self-dispersing template nanoparticles can result in the formation of a plurality of carbon nanotube structures having a (four) shape and a cypress intermediate. Finally, the nano-junction _ properties will be at least partially based on the _ carbon nanostructure _ shape and size. Due to the unique shape and size of the carbon nanotube structure of this intermediate, the final nanostructure can have quite useful properties such as high surface area and high porosity. Carbonization of the C. intermediate nanostructure - After the formation of the intermediate dish structure, the carbonization reaction is produced by heating to form a carbonized composite nanostructure. In an embodiment, the intervening material 19 200817279 carbon nanostructure is heated to a temperature between 500 t and 25 〇 (rc).

過程當中,例如氧及氮等原子會被揮發或以其它方式自令間H 米結構t移除,且碳原子會進行重排或結合為含以竣為主的結構1 在-較佳實施例中,此碳化步驟會產生以石墨為基礎的°° 結構。此以石墨為基礎的奈米結構具有以印2混成執域排列為^ 之碳原子。此石墨層可提供獨特且有益的性質,例如導電性、社 構強度及/或剛性。 ° D·移除模板奈米微粒及/或非晶形碳以生成碳奈米結構 在取終步驟中’模板奈米微粒及/或不必要的非晶形(即非石黑 碳將自複合奈米結構中移除。一般而言,此模板奈来微粒係利= 酸或驗而進行移除’例如硝酸、氫氟酸或氫氧化納。移除模板太 米微粒或非晶形碳之方法端視複合物中之模板奈米微粒及觸獅 :的種摘&。觸媒原子或微粒(例如鐵微粒或原子)—般可藉由使 稷合奈米結構在5 〇M的確酸溶液中回流3至6小時而移除。 任何移除程序皆可用以移除模板奈米微粒及/或非晶形碳,只 要此移除程序不會完全破壞碳奈米球及/或奈米環結構。在某些情 ^ ’在此移除程序中至少部份地自中間物奈米結構中移除某些 ^炭材料係較為有利的。無論在聚合步驟、碳化步驟或奈米微粒 二除步驟期間’本方法之環狀型態形成的時間點目前尚無定論。 W·碳奈米結構 又月之方法所生成之多壁式(multi_ wal㈣碳奈米結構具有 20 200817279 有用的性質亀騎的雜、財及 中,此碳奈米、结構可為 、在—較佳實施例 呈門66力、> 〜見、或不規則形之環狀結構,苴|古*令 二:大/。(即奈米環或多壁式中空、球體或似球體社構)二日月 =構係特別有利於某些應用卿 面積及/或㈣化程度之反應。本發明 ;= 以取代價格料的奈輕管。 結構可用 m立=1、^的尺寸大部份是由用以製造碳奈米結構之模板奈米 i耻1 砂碳編構形成於模板奈獅的周 /一厌不水結構的孔洞或内徑一般係符合模板奈米微粒的外 徑。石厌示米結構的内徑可介於0.5奈米至90奈米之間。在某也應 用上例如轉電池,此内録好是介於1奈米至5〇奈米之間。 「齡閱「第U圖」至「第1C圖」、「第2A圖」:「第二圖」 第3A圖」至「第3B圖」,其係顯示根據本發明之方法所製 ^之示例性碳奈米結構的穿隧式電子顯微鏡(TEM)影像,其詳細内 容將於下列實例丨中加以描述。請參閱「第4八圖」及「第4b圖」, 其係顯示根據本發賴製備之賴性奈米結構畴描式電子顯微 鏡(SEM)影像,其詳細内容也將於下列實例丨中加以描述。 如「第1A圖」至「第1C圖」、「第2A圖」至「第2B圖」及 「第3A圖」至「第3B圖」所示之TEM影像,係顯示破奈米結 構之典型的環狀型態。「第4A圖」及「第4B圖」所示之SEM影 像則是顯示碳奈米結構之典型的球體型態。於「第1A圖」至「第 21 200817279 1C圖」、「第2A圖」至「第2B圖」及「第3A圖」至「第3b圖 所示之碳奈米結構的TEM影像當中,碳奈米結構的外徑係約介^ 1〇奈来至60奈米而孔徑大小約介於10奈米至4〇奈来。然而,本 發明可包含具有較大或較小直徑的碳奈米結構。一般而言,礙齐 米結構具有少於100奈米的外徑,以維持結構的完整性。 奈米結構壁的厚度量測,係從結構壁的内握至結構辟的外 徑。透過在製造期間限制上述碳前驅物之聚合及/或碳化反應,可 、交化此奈米結構的厚度。通常,碳奈米結構壁的厚度係介於1齐 米至20奈米之間。然而,如果需要的話,也可製備較厚或較薄的 結構壁。製備較厚結構壁的優點係可獲得較佳的結構完整性;然 而,製備較薄結構壁的優點係可獲得較高的表面積及多孔性。 碳奈米結構壁也可由多重石墨層所形成。「第1A圖」、「第汨 圖」及「第1C®」清楚地顯示此多層結構。在—實施例中,此石炭 不米結構具有由2至1 〇〇層石墨層所形成的結構壁,較佳係約為$ 至50衫墨層,且最佳係約為5至2〇層石墨層。此石墨層的數 目可藉由改變上述之碳奈米結構壁的厚度而變化。料米处構 具有的石墨般祕可為料米結解來與多壁式奈;炭管 利特性(例如優越的導電性)。唆奈米結構可用以取代奈米 厌官及貫際上可使用奈米碳管之任何應用。 石反奈米結構更具有所需的長度 刊虹#曰、, 灭不木、、、口構的長度係為沿孔 以平面或水平方式 洞軸線1敬制長度。如果此絲米結構係 22 200817279 放置,則碳奈米結構的長度係為碳奈綠構的高度。在—較佳實 =中,碳奈米結構的長_由自球狀模板奈米微粒所形成的 限制。由球狀模板奈_所形成的碳奈米結構一 ,又 種長度,其大致與碳奈米結構的外徑相同。由於有關 _ ㈣合及/麵化反應本質上係均勻地妨,因此可獲 • u °至於在TEM影像中所顯示的奈米麵,其長度一般 =,奈米魏的特,陶⑽爾編與外徑以相 利=2 °具有長度低於鱗於其外徑的碳奈米結構係較為有 逸^為相較於例如奈米碳管而言,其具有較大的表面積及/或 進"地促進反應物及反應產物的擴散。 本發明&奈米結構的另—個特徵細微非管狀的結構壁形成。 :「第^圖」、「第1B圖」及「第1C圖」所示之施影像,以 :4A圖」及「第4B圖」所示之觀影像,石墨層形成一 :貝的固體結冓壁。本發明之碳奈米結構係與利用其他方法以 1騎端部相連而形成環狀之奈米碳管形成對比。具有管狀結 ^的唉奈米結構會產生非必要的應變㈣n),並可能影響結構 ’、他$米結舰質。例如,讀報告巾提丨環狀奈米唆 何,,,太才、|^妨喊直徑小於70奈米的碳奈米結獅成。無論如 :广/;石咏及”奈米碳管”一詞應包含透過連結奈米碳管的兩端 所形成之環狀結構。 、了良好的電子轉移之外,本發明之碳奈米結構具有高多孔 23 200817279 性及大表面積。根據_及細诗溫線之指示,碳奈米結構係形 成介孔洞(mesoporous)材料。碳奈米結構的酣特定表面積弘 ㈣至伽mV且較佳係約大於m m2/g,而_般係約: m/g,其細舰高於在奈米碳f上所齡狀⑽為。 根據本發明所製備之碳奈米結構具有高表面積及高多孔性, 其有利於使<奈储構成為—料米微粒_的擔體材料。改善 反應物及/或電子财觀材狀,可增縣淑電子轉移至 奈米微粒_的表面之效率。因此,她於支撐在舰擔體如碳 …上白m細δ ’本發明之擔體_具有較佳的操作效率。 所揭示之内容,本發明所製備之奈米碳結構的另-種用途係作為 添加至聚合物材料之特殊_填綱_如作為碳黑絲米碳管 的取代物)以本發明之碳奈米結構填充至聚合物材料中的初步測 又J丁而口此等經填充的聚合物材料較填充等量碳黑或奈米 碳管之聚合物轉具有較低的表面電阻性質。 V·實例 ' 如美國專利申請第11/351,_號,申請日為2006年2月9日, 以下只例提供用以製備本發明之碳奈米結構的配方。 實例1 、實例1係描述-種细_觸媒奈米微粒製備碳奈米結構之 方法。利用2.24克的鐵粉末、7·7〇克的檸檬酸及毫升的水以 衣肴 的鐵4。此含鐵溶液混合於振動平台上的縮口瓶 24 200817279 (dosedbottle)持續7天’並伴隨有短暫的中斷(例如丄至2分鐘)以 打開容器而使氫氣排^ ’同時使空氣進人瓶中的蒸氣空間。將⑽ 毫升的鐵錢緩慢地加从1如苯二_ 9錢㈣簡成的混 合物中。滴入3〇毫升的氫氧化錢並強烈解。結果產生阳為瓜% 的懸浮液。此隨即在8G至9叱(油浴)條件下交聯Μ小時以 形成中間物碳奈米結構。此中間物碳奈米結構藉由過濾而收^, 並接著以烤箱乾燥—整夜,其次在115〇t下魏氣3 時進^炭 化作用+。將產生的複合奈米結構在5M硝酸中回流6至8小時, 並接著以3〇0毫升的混合物(水/硫酸/過猛酸奸,莫耳比十謹: _3)在90 C下處理3小時。此過程共生成u克的 物(即奈米碳觀/或巾衫壁式賴結構)。 丹二又,將實例 ,,丨衣丨角反贫示結構進行分析,首先 ΓΓΓ「’縣再進行SEM分析。來自加之奈輕的刪 〜像係如「弟1A圖至「笙 及「第3Α圖」至「第3Bg所? 至「第2B圖」 、 」主弟3Β圖」所不。如ΤΕΜ影像所示,本發 ^方^可「Ϊ成具料顯雜(衫_)及尺寸均㈣碳奈紐 影像圖成「㈣圖」所示之相同石炭奈米結構的聰 τΕΜ 1結構#際上係為球狀(或似球狀)而非環狀。如 實例2 25 200817279 在只例2中之碳奈米結構係以相似於實例1的程序所製備, 除了中間物碳奈米結構係在85(TC下碳化4小時。此過程共生成 1·〇4克的碳奈米結構產物(即似球狀多壁式碳奈米結構及/或泰米 碳環)。 前述本發明之_實質上僅僅是代表㈣,因此,任何不脫 離本發明主旨要點之變化與修飾均應屬於本發明之專利保護範圍 之内’這些變化與修飾不應t被認為是脫離了本發明之精神和保 護範圍。 y' 【圖式簡單說明】 之高鋪彻㈣嫩輪米結構 影像=圖係顯示第1Α圖中各麵奈米結構之高解析度贿 第1C圖係顯示第认圖中之石炭奈米結構之 度ΤΕΜ影像; 為接近之南解析 第2Α圖係為根據本發明一實 構之高解析度ΤΕΜ影像; 】所衣備之魏個唆奈米結 第2Β圖係顯不第2Α圖中各種石炭♦ 一 析度ΤΕΜ影像; ’、、、、σ之較為接近之高解 第3Α圖係為根據本發明一實施 構之高解析度ΤΕΜ影像;、1㈣之_個竣奈米結 26 200817279 第3B圖係顯示第3A圖 析度TEM影像; 中各種石炭奈米 結構之較為接近之高解 第4A圖係為根據本發明一 灵%例所製備之複數 構之高崎度SEMM,顯秫為似雜;以及 個碳奈米結 第4B圖係顯示第4A圖中各種碳奈米結構之較為接近之高解 析度SEM影像。 【主要元件符號說明】 本案無元件符號 27During the process, atoms such as oxygen and nitrogen may be volatilized or otherwise removed from the inter-H-structure t, and the carbon atoms may be rearranged or combined into a structure containing ruthenium-based. In this carbonization step, a graphite-based °° structure is produced. The graphite-based nanostructure has carbon atoms arranged in the form of a mixture of two. This graphite layer can provide unique and beneficial properties such as electrical conductivity, social strength and/or rigidity. ° D·Removal of template nanoparticle and/or amorphous carbon to form carbon nanostructures in the final step of 'template nanoparticles and/or unnecessary amorphous (ie non-stone black carbon will be self-compositing nano Removal of the structure. In general, the template is made by removing the acid or the acid, such as nitric acid, hydrofluoric acid or sodium hydroxide. The method of removing the template from the rice particles or the amorphous carbon The template nanoparticle and the lion's species in the complex: the catalyst atoms or particles (such as iron particles or atoms) can be reflowed by reacting the nanostructure in a 5 〇M acid solution. Removed from 3 to 6 hours. Any removal procedure can be used to remove template nanoparticle and/or amorphous carbon as long as the removal procedure does not completely destroy the carbon nanosphere and/or nanoring structure. Certainly, it is advantageous to remove at least some of the carbon material from the intermediate nanostructure in this removal procedure, whether during the polymerization step, the carbonization step or the nanoparticle dimerization step. The time point at which the cyclic form of the method is formed is still inconclusive. W·carbon nanostructure The multi-wall type (multi_ wal (four) carbon nanostructure generated by the method of the month has 20 200817279 useful properties. The carbon nanostructure, the structure can be, in the preferred embodiment, the door 66 force ,> see, or irregularly shaped ring structure, 苴|古*令二:大/.(ie nano-ring or multi-wall hollow, sphere or sphere-like structure) two days month = structure special Conducive to the reaction of some areas of application and / or (four) degree. The present invention; = to replace the price of the Nana light pipe. The structure can be used m = 1, ^ size is mostly used to manufacture carbon nanotubes The template of the structure of the nano-I shame 1 sand carbon structure formed in the template of the lion's week / an anaerobic structure of the hole or inner diameter generally conforms to the outer diameter of the template nano-particles. Between 0.5 nm and 90 nm. In some applications, for example, the battery is switched, and the recording is between 1 nm and 5 nm. "Looking at the U-picture to the 1C" and "2A": "Second" 3A" to 3B", showing an exemplary carbon nanojunction produced by the method of the present invention Tunneling electron microscope (TEM) images, the details of which will be described in the following examples. Please refer to "4th 8th" and "4b", which show the basis of preparation according to the present invention. Nanostructured domain electron microscopy (SEM) images, the details of which are also described in the following examples: "1A" to "1C", "2A" to "2B" And the TEM images shown in Figures 3A to 3B show typical annular patterns of broken nanostructures. The SEM images shown in Figures 4A and 4B are A typical spheroidal shape of a carbon nanostructure is shown in "1A" to "21st 200817279 1C", "2A" to "2B" and "3A" to "3b" In the TEM image of the carbon nanostructure, the outer diameter of the carbon nanostructure is about 1 〇Nai to 60 nm and the pore size is about 10 nm to 4 〇. However, the present invention may comprise a carbon nanostructure having a larger or smaller diameter. In general, the barrier structure has an outer diameter of less than 100 nanometers to maintain structural integrity. The thickness of the nanostructured wall is measured from the inner grip of the structural wall to the outer diameter of the structure. The thickness of the nanostructure can be cross-linked by limiting the polymerization and/or carbonization of the carbon precursor during the manufacturing process. Typically, the thickness of the carbon nanotube structural wall is between 1 and 20 nanometers. However, thicker or thinner structural walls can also be prepared if desired. The advantage of preparing thicker structured walls is that better structural integrity is achieved; however, the advantage of preparing thinner structured walls is that higher surface area and porosity are achieved. The carbon nanostructure wall can also be formed from multiple layers of graphite. "Multilayer 1", "Grade 1" and "1C®" clearly show this multilayer structure. In an embodiment, the carbon charcoal structure has a structural wall formed of a layer of 2 to 1 fluorene graphite, preferably about $50 to 50, and preferably about 5 to 2 layers. Graphite layer. The number of the graphite layers can be varied by changing the thickness of the carbon nanostructure wall described above. The graphite-like structure of the rice structure can be combined with the multi-walled naphthalene; the charcoal tube has excellent properties (such as superior electrical conductivity). The nanostructure can be used to replace any application in which nanocarbon can be used in nanometers. The stone anti-nano structure has the required length. The length of the 虹, 灭, 灭, 、, 、, 、, 、, 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 If the silk structure is 22 200817279, the length of the carbon nanostructure is the height of the carbon green structure. In - preferably, the length of the carbon nanostructure is limited by the formation of spherical template nanoparticles. The carbon nanostructure formed by the globular template has a length which is substantially the same as the outer diameter of the carbon nanostructure. Since the _ (four) combination and / surface reaction are essentially uniform, it is possible to obtain the nano surface as shown in the TEM image, the length of which is generally =, nano Wei, special, Tao (10) The outer diameter of the outer diameter of the carbon nanostructure having a length lower than the outer diameter of the scale is relatively good compared to, for example, a carbon nanotube, which has a large surface area and/or Promote the diffusion of reactants and reaction products. Another feature of the present invention & nanostructure is the formation of a fine non-tubular structural wall. The image shown in "Fig. 1", "1B" and "1C" shows the image of the graphite layer as shown in Fig. 4A and Fig. 4B.冓 wall. The carbon nanostructure of the present invention is in contrast to the use of other methods to form a ring-shaped carbon nanotube by a ride end. The 唉 nanostructure with a tubular junction ^ produces non-essential strains (4) n) and may affect the structure ', his $ meter knot. For example, read the report towel to raise the ring-shaped nano-nose, and, too, and ^^ can scream the carbon nano-lion with a diameter of less than 70 nm. Either: Guang/; Shijie and the “nanocarbon tube” should include the ring structure formed by the ends of the carbon nanotubes. In addition to good electron transfer, the carbon nanostructure of the present invention has a high porosity and a large surface area. According to the instructions of the _ and the fine line, the carbon nanostructure forms a mesoporous material. The specific surface area of the carbon nanostructure is from (4) to gamma mV and preferably greater than m m2/g, while the _like system is about: m/g, and its fine ship is higher than the age on the carbon f (10). . The carbon nanostructure prepared according to the present invention has a high surface area and high porosity, which is advantageous for the formation of a carrier material of the nanoparticle. Improve the efficiency of the reactants and/or electronic materials, and increase the efficiency of the transfer of the surface of the nano-particles. Therefore, she supports the carrier on the ship such as carbon ... white m fine δ 'the carrier of the invention _ has better operating efficiency. What is disclosed, another use of the nanocarbon structure prepared by the present invention is as a special addition to the polymer material, such as a substitute for a carbon black rice carbon tube, to the carbon naphthalene of the present invention. The preliminary measurement of the filling of the rice structure into the polymer material allows the filled polymer material to have a lower surface resistance property than the polymer material filled with an equal amount of carbon black or carbon nanotubes. V. Example ' As described in U.S. Patent Application Serial No. 11/351, filed on Jan. 9, 2006, the following is provided to provide a formulation for the preparation of the carbon nanostructure of the present invention. Example 1, Example 1 describes a method for preparing a carbon nanostructure from a fine-catalyst nanoparticle. Use 2.24 grams of iron powder, 7.7 grams of citric acid, and liters of water to make iron. The iron-containing solution is mixed with the shrink bottle 24 200817279 (dosedbottle) on the vibrating platform for 7 days' with a short interruption (for example, 丄 to 2 minutes) to open the container to discharge the hydrogen gas while simultaneously bringing the air into the bottle The vapor space in. (10) ml of iron money is slowly added to a mixture of 1, such as benzodiazepine (4). Drop 3 ml of hydrogen peroxide and add a strong solution. As a result, a suspension of cations was produced. This was then crosslinked for an hour at 8 G to 9 Torr (oil bath) to form an intermediate carbon nanostructure. This intermediate carbon nanostructure was collected by filtration, and then dried in an oven - overnight, followed by carbonization at a temperature of 115 Torr. The resulting composite nanostructure was refluxed in 5 M nitric acid for 6 to 8 hours, and then treated with a mixture of 3 〇 0 ml (water/sulphuric acid/severe sorrow, Mobibi: _3) at 90 C 3 hour. This process produces a total of gram of material (ie, nano-carbon view / or towel wall structure). Dan Er, another example, the analysis of the anti-poor structure of the 丨衣丨角, first of all, ' ' 再 再 再 再 。 。 。 。 县 县 县 县 县 县 县 县 县 县 县 县 县 县 县 县 县 县 县 县 县 县 县 县 县 县 县 县 县 县"To" "3Bg? to "2B" and "3D". As shown in the image of the ΤΕΜ, the hair of the ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The #上上系 is spherical (or spherical) rather than circular. Example 2 25 200817279 The carbon nanostructure in Example 2 was prepared in a similar manner to Example 1, except that the intermediate carbon nanostructure was carbonized at 85 (TC for 4 hours. This process produced a total of 1 〇). 4 grams of carbon nanostructured product (ie, a spherical multi-walled carbon nanostructure and/or a Thai carbon ring). The foregoing invention is essentially a representative of (4), and therefore, does not deviate from the gist of the present invention. The changes and modifications are intended to be within the scope of the invention as claimed. 'The changes and modifications should not be considered as departing from the spirit and scope of the invention. y' [Simple description of the drawings] Wheel rice structure image=Graphic system shows the high-resolution bribe of each surface in the first figure. The 1C chart shows the image of the carboniferous nanostructure in the first figure; It is a high-resolution ΤΕΜ image according to the present invention; 】 The Wei 唆 唆 结 第 第 第 第 第 第 第 第 第 各种 ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ The relatively high solution is based on the present invention. A high-resolution ΤΕΜ image of an implementation; 1 (4) _ a 竣 nano-junction 26 200817279 Figure 3B shows a TEM image of the 3A gradation; a relatively high solution of various carbon-carbon nanostructures 4A The complex structure of the high-saturation SEMM prepared according to the present invention is a pseudo-homogeneous; and the carbon nano-junction 4B shows the relatively high resolution of various carbon nanostructures in FIG. 4A. SEM image. [Main component symbol description] This case has no component symbol 27

Claims (1)

200817279 十、申請專利範圍: 1. 一種製備碳奈米結構之方法,其包含·· 賴___板奈米難,錢藉由下財驟而形 成: 錢數個魏物猶軒與複數個麵分散劑分子 ' 進行反應以形成複數個複合觸媒原子;以及 ' 使該等複合觸媒原子形成複數個模板夺 藉由該等模板奈米微粒使該等碳前驅物觸媒原子產生聚 合,以形成一或多個中間物碳奈米結構; 碳化該等巾間物♦奈米結翻形成複數個複合奈米結 構;以及 移除該等複合奈米結射之該等模板奈米微粒以生成該 碳奈米結構。 2·如申請專利顧第1項所述之方法,其中轉顿驅物觸媒原 /子包含鐵、鎳或钻至少其中之一。 -3·如申請專利範圍第1項所述之方法,其中該等有機分散劑分子 . 能夠與該等碳前驅物觸媒原子相鍵結,並具有選自於羥基 (hydroxyl)、羧基(carboxyl)、羰基(carb〇nyi)、胺(amine)、酿胺 (amide)、腈(nitrile)、具有未共用電子對的氮(nitr〇gen wkh a free lone pair of electrons)、胺基酸(amino acid)、硫醇基(thiol)、石黃 酸(sulfonic acid)、鹵化磺醯基細比01171 halide)以及鹵化醯基 (acyl halide)及其組合之至少一官能基。 28 200817279 4·如申請專利範圍第1項所述之方法,其中該等有機分散劑分子 包含至少一選自於由草酸(oxalic acid)、蘋果酸(malic acid)、丙 二酸(malonic acid)、順丁稀二酸(maleic acid)、丁二酸(succinic acid)、羥基乙酸(glycolic acid)、乳酸(lactic acid)、葡萄糖 (glucose)、檸檬酸(citric acid)、果膠(pectin)、纖維素(cellul〇se)、 乙醇胺(ethanolamine)、疏乙醇(mercaptoethanol)、2-疏基乙酯(2-mercaptoacetate)、甘胺酸(glydne)、磺基苯曱醇(sulfobenzyl alcohol)、石黃基苯甲酸(sulfobenzoic acid)、石黃基苯曱硫醇 (sulfobenzyl thiol)及石黃基苯甲胺(suif〇benzyl amine)、聚丙浠酸 鹽(polyacrylate)、聚乙烯苯曱酸鹽(poiyyinyibenzoate)、聚乙稀 石’丨l 酉夂鹽(polyvinyl sulfate)、聚雙紛碳酸鹽(poiybisphenol carbonate)、polybenzimidizole、聚口比 口定(p〇lypyridine)、石黃酸化 水對本一曱酸乙二鹽(sulfonated polyethylene terephthalate)及其 組合所構成之群組。 5·如申請專利範圍第1項所述之方法,其中該碳前驅物觸媒原子 包含一熱液聚合的有機基材。 6. 如申请專利範圍第5項所述之方法,其中該熱液聚合的有機基 材包含榉棣酸、丙烯酸、苯甲酸、丙烯酸酯、丁二烯、苯乙烯 (styrene)、桂皮酸acid)至少其中之一。 7. 如申料魏圍第1賴述之方法,其巾該等碳前驅物觸媒原 子包含間笨二酚、酚樹脂、三聚氰胺_甲醛凝膠、聚糠醇 29 200817279 (poly(forforyl alcohol))及聚丙烯腈(p〇ly(acryl〇nitrile))其中之 一一 Ο 8·如申請專利範圍第1項所述之方法,其中該等模板奈米微粒係 在與該等碳前驅物觸媒原子混合之前形成。 9·如申凊專利範圍第1項所述之方法,其中該碳化反應係介於 500至2500°C溫度下執行。 10.如申請專利範圍第1频述之綠,其巾該_板奈米微粒之 -部份係藉由至少-酸驗之清洗而自該特合奈米結構上 移除。200817279 X. The scope of application for patents: 1. A method for preparing carbon nanostructures, which includes · Lai ___ Ban Nai difficult, money is formed by the next financial order: Money several Wei Yi Ju Xuan and plural The surface dispersant molecule' reacts to form a plurality of composite catalyst atoms; and 'forms the composite catalyst atoms to form a plurality of templates for the polymerization of the carbon precursor catalyst atoms by the template nanoparticles, Forming one or more intermediate carbon nanostructures; carbonizing the interbeds ♦ nano-kneading to form a plurality of composite nanostructures; and removing the template nanoparticles from the composite nano-projections The carbon nanostructure is produced. 2. The method of claim 1, wherein the trans-catalyst precursor comprises at least one of iron, nickel or diamond. The method of claim 1, wherein the organic dispersant molecules are capable of bonding to the carbon precursor catalyst atoms and have a hydroxyl group, a carboxyl group (carboxyl). ), carbonyl (carb〇nyi), amine, amide, nitrile, nitrogen with unshared electron pair (nitr〇gen wkh a free lone pair of electrons), amino acid (amino At least one functional group of acid), thiol, sulfonic acid, halogenated sulfonyl sulfonyl 01171 halide, and acyl halide, and combinations thereof. The method of claim 1, wherein the organic dispersant molecules comprise at least one selected from the group consisting of oxalic acid, malic acid, malonic acid , maleic acid, succinic acid, glycolic acid, lactic acid, glucose, citric acid, pectin, Cellulose, ethanolamine, mercaptoethanol, 2-mercaptoacetate, glycyne, sulfobenzyl alcohol, feldspar Sulfobenzoic acid, sulfobenzyl thiol and suif〇benzyl amine, polyacrylate, poiyyinyibenzoate Polyvinyl sulfate, poiybisphenol carbonate, polybenzimidizole, p〇lypyridine, and rheinated water to the bismuth citrate salt (sulfonated polyethylene terephthalate) and combinations thereof Constitute the group. 5. The method of claim 1, wherein the carbon precursor catalyst atom comprises a hydrothermally polymerized organic substrate. 6. The method of claim 5, wherein the hydrothermally polymerized organic substrate comprises tannic acid, acrylic acid, benzoic acid, acrylate, butadiene, styrene, cinnamic acid At least one of them. 7. In the case of the application of the Wei Wei 1st, the carbon precursors of the carbon precursors include m-diphenol, phenolic resin, melamine-formaldehyde gel, and polydecyl alcohol 29 200817279 (poly(forforyl alcohol)) And a method according to claim 1, wherein the template nanoparticle is in contact with the carbon precursor catalyst Formed before the atoms are mixed. 9. The method of claim 1, wherein the carbonization reaction is carried out at a temperature of from 500 to 2500 °C. 10. As claimed in the first section of the patent, the portion of the slab nanoparticle is removed from the specific nanostructure by at least acid cleaning. 構之物質組成。 其包S放置複數個金屬觸媒微粒於The composition of matter. The package S is placed with a plurality of metal catalyst particles 14· 一種如申請專利範圍第12項所述之方法 所製備之擔體觸媒。 12· —種製備擔體觸媒之方法, 15· —種製備高產量的碳奈米結構之方法,其包人· 提供複數個固態觸媒模板奈米微粒, 觸媒原子及一或多種有機分散劑分子; 混合該等固態觸媒模板奈米微粒與一 其包含一或多種金屬14. A carrier catalyst prepared by the method of claim 12 of the patent application. 12· a method for preparing a support catalyst, 15· a method for preparing a high-yield carbon nanostructure, which comprises a plurality of solid catalyst template nano particles, a catalyst atom and one or more organic a dispersant molecule; mixing the solid catalyst template nanoparticles with one or more metals thereof 碳前驅物並聚合該 30 200817279 厌化該等中間物石厌奈米結構以形成複數個複合奈米結 構;以及 私除該等複合奈米結構巾之該卵態觸_板奈米微粒 以生成該碳奈米結構。 16. 如申請專利範圍第15項所述之方法,其中該等金朗媒原子 包含鐵、鎳或鈷至少其中之一。 17. 如申料利範圍第15項所述之方法,其巾鱗有機分散劑分 子能夠與該等碳前驅物觸媒原子相鍵結,並具有選自於羥基 (hydroxyl)、羧基(carb〇xyi)、羰基(__)、胺(啦㈣ ^ (amide)、腈(nitrile)、具有未共用電子對的氮㈤比呢從別也a lone pair of electrons)、胺基酸(amin〇 acid)、硫醇基_〇1)、磺 酸(sulfonic acid)、鹵化石黃醒基(sujf〇nyi halide)以及鹵化醯基 (acyl halide)及其組合之至少一官能基。 18·如申請專利範圍第15項所述之方法,其中該等有機分散劑分 子包§至乂 运自於由卓酸(oxalic acid)、頻果酸(malic acid)、 丙二酸(malonic acid)、順丁烯二酸(maleic acid)、丁二酸(succinic acid)、羥基乙酸(glyC〇lic acid)、乳酸(lactic acid)、葡萄糖 (glucose)、檸檬酸(citric acid)、果膠(pectin)、纖維素(cellulose)、 乙醇胺(ethanolamine)、疏乙醇(mercaptoethanol)、2_魏基乙酯 (2-mercaptoacetate)、甘胺酸(§17(^加)、磺基苯甲醇(311比(^61^71 alcohol)、石黃基苯曱酸(sulfobenzoic acid)、石黃基苯曱硫醇 31 200817279 (sulfobenzyl thiol)及石黃基苯曱胺(sulfobenzyl amine)、聚丙烯酸 鹽(polyacrylate)、聚乙稀苯曱酸鹽(polyvinylbenzoate)、聚乙稀 硫酸鹽(polyvinyl sulfate)、聚雙盼碳酸鹽(polybisphenol carbonate)、polybenzimidizole、聚口比。定(polypyridine)、石黃酸化 聚對苯二甲酸乙二鹽(sulfonated polyethylene terephthalate)及其 組合所構成之群組。 19·如申請專利範圍第15項所述之方法,其中該碳前驅物觸媒原 子包含一熱液聚合的有機基材。 20·如申請專利範圍第19項所述之方法,其中該熱液聚合的有機 基材包含#橡酸、丙烯酸、苯曱酸、丙烯酸酯、丁二烯、苯乙 烯(st^rene)、桂皮酸(cinnamic acid)至少其中之一。 21.如申請專利範圍第15項所述之方法,其中該等碳前驅物觸媒 原子包含間苯二酚、酚樹脂、三聚氰胺-甲醛凝膠、聚糠醇 (p y(forfUryl alcohol))及聚丙稀腈(p〇iy(acr^i〇n她^))其中之 22.如申請專利範圍第15項所述之方法,其中該碳化反應係介於 500至2500°C溫度下執行。 種衣備擔體觸之方法,其包含放置複數個金屬觸媒微粒於 如申請專利範圍第a項所述之方法所製備之該碳奈米結構上。 24如申綱_ 23項所述之方法,其中該糊觸媒微粒 包含至少一貴重金屬。 32 200817279 25_= 摩成,辦數略蝴,其術顺序所製 提供複數個固態觸媒模板奈米微粒,其包含-或多種全屬 觸媒原子及-或多種有機分散劑分子; ⑽屬 —混合該__聽板奈米微粒與—碳前㈣並聚入該 碳丽驅物以形成複數個中間物碳奈米結構· 口〜 .碳化該等中間物碳奈米結構以形成複數個複合奈米結 構,以及 、移除該等複合奈綠構中之該等固態觸雜板奈米微粒 以生成該碳奈米結構。 33 200817279 七、指定代表圖: (一) 本案指定代表圖為:第(1A )圖。 (二) 本代表圖之元件符號簡單說明:本案無元件符號 八、本案若有化學式時,請揭示最能顯示發明特徵之化學式:無Carbon precursor and polymerizing the 30 200817279 anisotropically intercalating the intermediate stone structure to form a plurality of composite nanostructures; and privately removing the ovate touch-plate nanoparticle of the composite nanostructure towel to generate The carbon nanostructure. 16. The method of claim 15, wherein the golden matrix atoms comprise at least one of iron, nickel or cobalt. 17. The method of claim 15, wherein the towel scale organic dispersant molecule is capable of bonding to the carbon precursor catalyst atom and has a hydroxyl group selected from the group consisting of a hydroxyl group and a carboxyl group. Xyi), carbonyl (__), amine (lat.), nitrile, nitrogen (five) ratio with unshared electron pair, aone pair of electrons, amin〇acid At least one functional group of a thiol group, a sulfonic acid, a sujf〇nyi halide, and an acyl halide, and combinations thereof. 18. The method of claim 15, wherein the organic dispersant molecules are packaged from oxalic acid, malic acid, malonic acid ), maleic acid, succinic acid, glycolic acid, lactic acid, glucose, citric acid, pectin ( Pectin), cellulose, ethanolamine, mercaptoethanol, 2-mercaptoacetate, glycine (§17 (^), sulfobenzyl alcohol (311 ratio (^) 61^71 alcohol), sulfobenzoic acid, fluorescein thiol 31 200817279 (sulfobenzyl thiol) and sulfobenzyl amine, polyacrylate, poly Polyvinylbenzoate, polyvinyl sulfate, polybisphenol carbonate, polybenzimidizole, poly-portion ratio, polypyridine, rheinated polyethylene terephthalate Sulfated polyethylene terephthalate and its combination The method of claim 15, wherein the carbon precursor catalyst atom comprises a hydrothermally polymerized organic substrate. 20. The method of claim 19, Wherein the hydrothermally polymerized organic substrate comprises at least one of #橡胶酸, acrylic acid, benzoic acid, acrylate, butadiene, styrene, and cinnamic acid. The method of claim 15, wherein the carbon precursor catalyst atoms comprise resorcinol, a phenol resin, a melamine-formaldehyde gel, a py (forfUryl alcohol), and a polyacrylonitrile (p〇). The method of claim 15, wherein the carbonization reaction is carried out at a temperature of from 500 to 2500 ° C. The seed coat is in contact with the body. The method comprising the method of placing a plurality of metal catalyst particles on the carbon nanostructure prepared by the method of claim IA, wherein the method is as described in claim -23, wherein the paste catalyst The particles comprise at least one precious metal. 32 200817279 25_= Mocheng, a few butterflies, the sequence of which provides a plurality of solid catalyst template nanoparticles, which contain - or a plurality of all-catalyst atoms and / or a variety of organic dispersant molecules; (10) genus - Mixing the __ listening plate nanoparticle with the carbon front (4) and concentrating the carbon precursor to form a plurality of intermediate carbon nanostructures. The carbonization of the intermediate carbon nanostructures to form a plurality of composites The nanostructures, and the removal of the solid touch-plate nanoparticles in the composite nanostructures to form the carbon nanostructure. 33 200817279 VII. Designated representative map: (1) The representative representative of the case is: (1A). (2) The symbol of the symbol of this representative figure is simple: there is no component symbol in this case. 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: none
TW96111322A 2006-10-05 2007-03-30 Carbon nanostructures manufactured from catalytic templating nanoparticles TW200817279A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/539,042 US7718155B2 (en) 2005-10-06 2006-10-05 Carbon nanostructures manufactured from catalytic templating nanoparticles

Publications (1)

Publication Number Publication Date
TW200817279A true TW200817279A (en) 2008-04-16

Family

ID=44769315

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96111322A TW200817279A (en) 2006-10-05 2007-03-30 Carbon nanostructures manufactured from catalytic templating nanoparticles

Country Status (1)

Country Link
TW (1) TW200817279A (en)

Similar Documents

Publication Publication Date Title
Xu et al. 3D hierarchical carbon-rich micro-/nanomaterials for energy storage and catalysis
Wang et al. MOFs‐derived carbon‐based metal catalysts for energy‐related electrocatalysis
JP5080482B2 (en) Carbon nanostructures made from catalytic template nanoparticles
Duan et al. Ultrafine palladium nanoparticles supported on nitrogen-doped carbon microtubes as a high-performance organocatalyst
Xie et al. Review of research on template methods in preparation of nanomaterials
Pradhan et al. Inclusion of crystalline iron oxide nanoparticles in uniform carbon nanotubes prepared by a template carbonization method
Li et al. Nanoscale electroless metal deposition in aligned carbon nanotubes
Nieto-Márquez et al. Carbon nanospheres: synthesis, physicochemical properties and applications
Van Hooijdonk et al. Functionalization of vertically aligned carbon nanotubes
Sun et al. Preparation and catalysis of carbon‐supported iron catalysts for Fischer–Tropsch synthesis
Labulo et al. Advances in carbon nanotubes as efficacious supports for palladium-catalysed carbon–carbon cross-coupling reactions
US7887771B2 (en) Carbon nanorings manufactured from templating nanoparticles
Zhao et al. Large-scale synthesis of onion-like carbon nanoparticles by carbonization of phenolic resin
Tao et al. Facile synthesis of hollow carbon nanospheres and their potential as stable anode materials in potassium-ion batteries
Xie et al. Research on the preparation of graphdiyne and its derivatives
TW201240916A (en) Methods of preparing carbinized nanotube composite and metal-nanotube composite catalyst
WO2009042452A1 (en) Highly dispersible carbon nanospheres in a polar solvent and methods for making same
Chen et al. Review and development of anode electrocatalyst carriers for direct methanol fuel cell
Xu et al. In situ synthesis of multiwalled carbon nanotubes over LaNiO3 as support of cobalt nanoclusters catalyst for catalytic applications
Dong et al. Basic amid acid-assisted synthesis of resorcinol− formaldehyde polymer and carbon nanospheres
Tong et al. Microporous Sulfur-Doped Carbon Atoms as Supports for Sintering-Resistant Platinum Nanocluster Catalysts
Duraisamy et al. Architecture of large surface area N-doped mesoporous carbon sheets as sustainable electrocatalyst for oxygen reduction reaction in alkaline electrolyte
CN101282905A (en) Carbon nanostructures manufactured from catalytic templating nanoparticles
WO2009085365A1 (en) Highly dispersible carbon nanospheres in an organic solvent and methods for making same
Liu et al. Controllable synthesis of silver anchored N-doped yolk-shell carbon@ mSiO2 spheres and their application for the catalytic reduction of 4-nitrophenol