MX2007004684A - Improved ozonolysis of carbon nanotubes. - Google Patents

Improved ozonolysis of carbon nanotubes.

Info

Publication number
MX2007004684A
MX2007004684A MX2007004684A MX2007004684A MX2007004684A MX 2007004684 A MX2007004684 A MX 2007004684A MX 2007004684 A MX2007004684 A MX 2007004684A MX 2007004684 A MX2007004684 A MX 2007004684A MX 2007004684 A MX2007004684 A MX 2007004684A
Authority
MX
Mexico
Prior art keywords
carbon
carbon nanotubes
ozone
structures
nanotubes
Prior art date
Application number
MX2007004684A
Other languages
Spanish (es)
Inventor
Asif Chishti
Lein Ngaw
Ma Jun
Allen Fischer
Robert Braden
Original Assignee
Hyperion Catalysis Int
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyperion Catalysis Int filed Critical Hyperion Catalysis Int
Publication of MX2007004684A publication Critical patent/MX2007004684A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/04Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds
    • C07C27/06Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds by hydrogenation of oxides of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

Methods of treating single walled and multiwalled carbon nanotubes with ozone are provided. The carbon nanotubes are treated by contacting the carbon nanotubes with ozone at a temperature range between 0 C and 100 C to yield functionalized nanotubes which are greater in weight than the untreated carbon nonotubes. The carbon nonotubes treated according to methods of the invention can be used to prepare complex structures such as three dimensional networks or rigid porous structures which can be utilized to form electordes for fabrication of improved electrochemical capacitors. Useful catalyst supports are prepared by contacting carbon nanotube structures such as carbon nanotube aggregates, three dimensional network or rigid porous structures with ozone in the temperature range between 0 C and 100 C.
MX2007004684A 2004-10-22 2005-10-21 Improved ozonolysis of carbon nanotubes. MX2007004684A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US62113204P 2004-10-22 2004-10-22
US72080605P 2005-09-26 2005-09-26
PCT/US2005/038116 WO2006135439A2 (en) 2004-10-22 2005-10-21 Improved ozonolysis of carbon nanotubes

Publications (1)

Publication Number Publication Date
MX2007004684A true MX2007004684A (en) 2007-06-14

Family

ID=37532751

Family Applications (1)

Application Number Title Priority Date Filing Date
MX2007004684A MX2007004684A (en) 2004-10-22 2005-10-21 Improved ozonolysis of carbon nanotubes.

Country Status (8)

Country Link
US (1) US20080031802A1 (en)
EP (1) EP1817447A4 (en)
JP (1) JP2008517863A (en)
KR (1) KR20070084288A (en)
AU (1) AU2005332975B2 (en)
CA (1) CA2584433A1 (en)
MX (1) MX2007004684A (en)
WO (1) WO2006135439A2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098991B (en) * 2004-11-16 2012-10-10 海珀里昂催化国际有限公司 Methods for preparing catalysts supported on carbon nanotube carrying metal
US7923403B2 (en) * 2004-11-16 2011-04-12 Hyperion Catalysis International, Inc. Method for preparing catalysts supported on carbon nanotubes networks
CA2588111A1 (en) * 2004-11-16 2006-05-26 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes
EP1957406A4 (en) * 2005-11-16 2012-11-07 Hyperion Catalysis Int Mixed structures of single walled and multi walled carbon nanotubes
WO2008054836A2 (en) * 2006-02-22 2008-05-08 William Marsh Rice University Short, functionalized, soluble carbon nanotubes, methods of making same, and polymer composites made therefrom
RU2007118553A (en) * 2007-05-21 2008-11-27 Общество с ограниченной ответственностью "СКН" (RU) NANODIAMOND MATERIAL, METHOD AND DEVICE FOR CLEANING AND MODIFICATION OF NANODIAMOND
US8901024B2 (en) * 2007-08-02 2014-12-02 The Trustees Of Columbia University In The City Of New York Ozone-treated carbon electrodes
EP2062853A1 (en) * 2007-11-23 2009-05-27 Nanoledge Polymer carbon nanotube composites
WO2009119563A1 (en) * 2008-03-25 2009-10-01 東レ株式会社 Electrically conductive complex and process for production thereof
KR101034579B1 (en) * 2008-03-28 2011-05-12 한화케미칼 주식회사 Continuous methods and apparatus of functionalizing Carbon Nanotube
DE102008031579A1 (en) * 2008-07-03 2010-01-07 Bayer Materialscience Ag A highly efficient gas phase process for the modification and functionalization of carbon nanofibers with nitric acid vapor
KR20110051249A (en) * 2008-08-15 2011-05-17 메사추세츠 인스티튜트 오브 테크놀로지 Layer-by-layer assemblies of carbon-based nanostructures and their applications in energy storage and generation devices
EP2228414A1 (en) * 2009-03-13 2010-09-15 Bayer MaterialScience AG UV-curable, wear resistant and antistatic coating filled with carbon nanotubes
EP2228343A1 (en) 2009-03-13 2010-09-15 Bayer MaterialScience AG Water vapour assisted ozonolysis of carbon nanotubes
EP2651820A1 (en) * 2010-12-14 2013-10-23 Styron Europe GmbH Improved elastomer formulations
US9269504B2 (en) 2011-05-25 2016-02-23 Panasonic Intellectual Property Management Co., Ltd. Electrode, method for producing electrode, and energy device, electronic device, and transportation device including electrode
JP6241586B2 (en) 2011-09-30 2017-12-06 三菱マテリアル株式会社 Method for producing carbon nanofiber and method for producing dispersion and composition thereof
KR102139118B1 (en) * 2013-11-05 2020-07-29 더 리전트 오브 더 유니버시티 오브 캘리포니아 Graphene oxide and carbon nanotube ink and methods for producing the same
JP2015188808A (en) * 2014-03-27 2015-11-02 日本ゼオン株式会社 Oxidation-reduction catalyst, electrode material, electrode, solar battery, membrane battery assembly for fuel battery, and fuel battery
WO2015198980A1 (en) * 2014-06-26 2015-12-30 国立大学法人奈良先端科学技術大学院大学 Nanomaterial dopant composition composite, dopant composition, and method for manufacturing nanomaterial dopant composition composite
US10570016B2 (en) 2014-11-14 2020-02-25 Toda Kogyo Corp. Carbon nanotube and process for producing the carbon nanotube, and lithium ion secondary battery using the carbon nanotube
RU2648273C2 (en) * 2016-01-15 2018-03-23 Автономная некоммерческая организация высшего образования "Российский новый университет" (АНО ВО "РосНОУ") Gas-discharge modifier of carbon nanomaterials of drum type
KR101885249B1 (en) * 2016-07-19 2018-08-03 한국과학기술원 Method of preparing activated carbon
US11019734B1 (en) * 2019-10-30 2021-05-25 Tula Health, Inc. Methods and systems for fabricating miniaturized nanotube sensors
KR102393937B1 (en) * 2020-04-24 2022-05-04 장진영 Ozone removal device
CN113860289B (en) * 2021-10-21 2023-07-07 江苏天奈科技股份有限公司 Method for purifying carbon nano tube

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165909A (en) * 1984-12-06 1992-11-24 Hyperion Catalysis Int'l., Inc. Carbon fibrils and method for producing same
US4663230A (en) * 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
US5707916A (en) * 1984-12-06 1998-01-13 Hyperion Catalysis International, Inc. Carbon fibrils
US6375917B1 (en) * 1984-12-06 2002-04-23 Hyperion Catalysis International, Inc. Apparatus for the production of carbon fibrils by catalysis and methods thereof
US5171560A (en) * 1984-12-06 1992-12-15 Hyperion Catalysis International Carbon fibrils, method for producing same, and encapsulated catalyst
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments
SE8900130L (en) * 1989-01-16 1989-01-16 Klaus Mosbach THE CONCEPT THAT USING MANUFACTURED ARTIFICIAL ANTIBODIES BY MOLECULE IMPRESSION METHOD BY IMPRINTING ANY ANTIGEN AND BY MANUFACTUREING ARTIFIED ENTYZYMES BY IMPRINTING
AU653500B2 (en) * 1989-09-28 1994-10-06 Hyperion Catalysis International, Inc. Battery
ZA907803B (en) * 1989-09-28 1991-07-31 Hyperion Catalysis Int Electrochemical cells and preparing carbon fibrils
US5569635A (en) * 1994-05-22 1996-10-29 Hyperion Catalysts, Int'l., Inc. Catalyst supports, supported catalysts and methods of making and using the same
CA2364075A1 (en) * 1992-05-22 1993-12-09 Hyperion Catalysis International, Inc. Improved methods and catalysts for the manufacture of carbon fibrils
JP2546114B2 (en) * 1992-12-22 1996-10-23 日本電気株式会社 Foreign substance-encapsulated carbon nanotubes and method for producing the same
IL109497A (en) * 1993-05-05 1998-02-22 Hyperion Catalysis Int Three-dimensional macroscopic assemblages of randomly oriented carbon fibrils and composites containing same
US5424054A (en) * 1993-05-21 1995-06-13 International Business Machines Corporation Carbon fibers and method for their production
KR970702758A (en) * 1994-04-29 1997-06-10 마이클 제이. 켈리 COMBINATION ROLL AND DIE COATING METHOD AND APPARATUS WITH IMPROVED DIE LIP
US6203814B1 (en) * 1994-12-08 2001-03-20 Hyperion Catalysis International, Inc. Method of making functionalized nanotubes
US20040202603A1 (en) * 1994-12-08 2004-10-14 Hyperion Catalysis International, Inc. Functionalized nanotubes
JPH09323477A (en) * 1996-04-04 1997-12-16 Canon Inc Recording medium, method for recording by ink jet, printed matter and method for forming image
US6031711A (en) * 1996-05-15 2000-02-29 Hyperion Catalysis International, Inc. Graphitic nanofibers in electrochemical capacitors
JP4128628B2 (en) * 1996-05-15 2008-07-30 ハイピリオン カタリシス インターナショナル インコーポレイテッド Rigid porous carbon structure and method for producing the same
US6205016B1 (en) * 1997-06-04 2001-03-20 Hyperion Catalysis International, Inc. Fibril composite electrode for electrochemical capacitors
US6221330B1 (en) * 1997-08-04 2001-04-24 Hyperion Catalysis International Inc. Process for producing single wall nanotubes using unsupported metal catalysts
WO2000026138A1 (en) * 1998-11-03 2000-05-11 William Marsh Rice University Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure co
US6333016B1 (en) * 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
CA2379667C (en) * 1999-07-21 2008-12-09 Hyperion Catalysis International, Inc. Methods of oxidizing multiwalled carbon nanotubes
JP3765999B2 (en) * 2000-06-30 2006-04-12 株式会社東芝 Fuel cell
US6872681B2 (en) * 2001-05-18 2005-03-29 Hyperion Catalysis International, Inc. Modification of nanotubes oxidation with peroxygen compounds
JP3941535B2 (en) * 2002-02-08 2007-07-04 三菱電機株式会社 Method and apparatus for decomposing organic matter
JP3718775B2 (en) * 2002-04-09 2005-11-24 株式会社日本製鋼所 Carbon nanotube purification method
JP5008167B2 (en) * 2003-02-19 2012-08-22 国立大学法人 筑波大学 Catalyst loading method on fibrous carbon
US20040253374A1 (en) * 2003-04-23 2004-12-16 Kyeong Taek Jung Treatment of carbon nano-structure using fluidization
JP2005272184A (en) * 2004-03-23 2005-10-06 Honda Motor Co Ltd Method for manufacturing hydrophilic carbon nanotube

Also Published As

Publication number Publication date
KR20070084288A (en) 2007-08-24
AU2005332975B2 (en) 2010-12-09
EP1817447A2 (en) 2007-08-15
WO2006135439A3 (en) 2007-05-24
EP1817447A4 (en) 2012-01-25
AU2005332975A1 (en) 2006-12-21
CA2584433A1 (en) 2006-12-21
WO2006135439A2 (en) 2006-12-21
US20080031802A1 (en) 2008-02-07
JP2008517863A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
MX2007004684A (en) Improved ozonolysis of carbon nanotubes.
Rao et al. Carbon-based nanomaterials: Synthesis and prospective applications
Wen et al. Large-scale converting waste coffee grounds into functional carbon materials as high-efficient adsorbent for organic dyes
Upadhyayula et al. Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review
WO2007044614A3 (en) Carbon nanostructures manufactured from catalytic templating nanoparticles
Jiang Chemical preparation of graphene‐based nanomaterials and their applications in chemical and biological sensors
WO2005019104A3 (en) Controlled nanotube fabrication and uses
WO2005084172A3 (en) Carbon nanostructures and methods of making and using the same
ATE514804T1 (en) METHOD FOR OXIDATION OF MULTI-WALLED CARBON NANOTUBE
Rodríguez-Mata et al. Reduced graphene oxide aerogels with controlled continuous microchannels for environmental remediation
Wei et al. Electrosorption of lead ions by nitrogen-doped graphene aerogels via one-pot hydrothermal route
CN104275164B (en) A kind of use in waste water treatment graphene oxide is composite porous and preparation method thereof
Karamikamkar et al. In situ interface design in graphene-embedded polymeric silica aerogel with organic/inorganic hybridization
WO2010014650A3 (en) Preferential growth of single-walled carbon nanotubes with metallic conductivity
JP2008535763A5 (en)
Wu et al. Direct electrochemical attachment of carbon nanotubes to carbon fiber surfaces
Jindal et al. Sustainable approach for developing graphene-based materials from natural resources and biowastes for electronic applications
CN105254336B (en) A kind of method and product that orientation CNT is prepared in substrate surface
Zhang et al. Cellulose-templated graphene monoliths with anisotropic mechanical, thermal, and electrical properties
CN105752962A (en) Three-dimensional graphene macroscopic material and preparation method thereof
Baskakov et al. Novel superhydrophobic aerogel on the base of polytetrafluoroethylene
US20170240473A1 (en) Mesoporous materials from nanoparticle enhanced polysaccharides
Le et al. Covalent functionalization of multi-walled carbon nanotubes with imidazolium-based poly (ionic liquid) s by Diels–Alder “click” reaction
Tipplook et al. Graphitic carbon nitride nanoflakes decorated on multielement-doped carbon as photocatalysts for bacterial disinfection under visible and near-infrared light
WO2008100325A3 (en) Method of producing carbon nanotubes