KR20210121726A - Highly dispersed nano-carbon coating composition - Google Patents

Highly dispersed nano-carbon coating composition Download PDF

Info

Publication number
KR20210121726A
KR20210121726A KR1020200038927A KR20200038927A KR20210121726A KR 20210121726 A KR20210121726 A KR 20210121726A KR 1020200038927 A KR1020200038927 A KR 1020200038927A KR 20200038927 A KR20200038927 A KR 20200038927A KR 20210121726 A KR20210121726 A KR 20210121726A
Authority
KR
South Korea
Prior art keywords
nano
coating composition
carbon coating
carbon
carbon material
Prior art date
Application number
KR1020200038927A
Other languages
Korean (ko)
Inventor
박선찬
김윤석
Original Assignee
티에스엠카본 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티에스엠카본 주식회사 filed Critical 티에스엠카본 주식회사
Priority to KR1020200038927A priority Critical patent/KR20210121726A/en
Publication of KR20210121726A publication Critical patent/KR20210121726A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • C08K5/3417Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • C08K5/435Sulfonamides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention relates to a nano-carbon coating composition having excellent dispersibility of a nano-carbon material and a small amount of a dispersant. In addition, the nano-carbon coating composition comprises a phthalocyanine compound comprising: a nano-carbon material; a thermosetting binder; a dispersant; and sulfate, and a solvent. The nano-carbon material can be at least one selected from a group consisting of graphene nanoplatelet (GNP), reduced graphene oxide (rGO), CNT, and carbon black.

Description

고분산 나노 카본 코팅 조성물{Highly dispersed nano-carbon coating composition}Highly dispersed nano-carbon coating composition

본 발명은 나노 카본 물질이 고르게 분산된 코팅액에 관한 것으로서, 보다 자세하게는 그래핀, CNT, 카본 블랙과 같은 나노 카본 물질과 분산제, 열경화성 바인더, 첨가제 및 용제를 포함하는 나노 카본 코팅 조성물에 관한 것이다.The present invention relates to a coating solution in which a nano-carbon material is uniformly dispersed, and more particularly, to a nano-carbon coating composition comprising a nano-carbon material such as graphene, CNT, and carbon black, a dispersant, a thermosetting binder, an additive, and a solvent.

CNT, 그래핀과 같은 흑연질 탄소소재는 모두 2차원적으로 공액결합된 SP2 하이브리드 탄소로 이루어져 있다. 이러한 독특한 화학결합은 흑연질 탄소소재에 높은 전하이동도, 높은 전하저장용량, 기계적 유연성 등과 같이 우수한 특성을 부여하고, 이로부터 기존의 실리콘 기반의 나노소자의 근본적인 한계를 극복할 수 있는 가능성을 제공한다. 이상적인 2차원의 결정질 특성으로 인해, 흑연질 탄소소재는 무기물의 높은 기계적 성질, 강한 내화학/내열성과 유기물의 낮은 밀도, 기계적 유연성을 동시에 지니고 있다. 또한 전기전도도는 도핑, 나선성, 흑연판의 수, 측면치수 등에 따라 다양하게 조절 가능하다. 이러한 뛰어난 성질들로 인해 그래핀과 같은 나노카본 물질은 차세대 전자소자, 디스플레이, 센서, 에너지 변환/저장 등을 위한 주요 후보소재로 기대되고 있다. 하지만 나노카본 물질이 위 언급한 응용분야에 적용되기 위해서는 분자단위의 정렬뿐 아니라 육안으로 확인되는 정도의 거시단위로의 분산도 필수적으로 요구된다. 따라서, 이러한 나노카본 물질을 도포하여 코팅하기 위한 코팅 조성물에서 나노카본 물질은 매우 우수한 분산 상태를 유지해야 할 필요가 있다.Graphite carbon materials such as CNT and graphene are all composed of two-dimensionally conjugated SP 2 hybrid carbon. This unique chemical bond gives graphitic carbon materials excellent properties such as high charge mobility, high charge storage capacity, and mechanical flexibility, thereby providing the possibility to overcome the fundamental limitations of existing silicon-based nanodevices. do. Due to the ideal two-dimensional crystalline properties, graphite carbon material has high mechanical properties of inorganic materials, strong chemical/heat resistance, low density of organic materials, and mechanical flexibility at the same time. In addition, the electrical conductivity can be variously adjusted according to doping, spiral properties, the number of graphite plates, side dimensions, and the like. Due to these excellent properties, nano-carbon materials such as graphene are expected as major candidates for next-generation electronic devices, displays, sensors, and energy conversion/storage. However, in order for the nano-carbon material to be applied to the above-mentioned application fields, it is essential not only to align molecular units, but also to disperse them in macroscopic units to the extent that they can be seen with the naked eye. Therefore, in the coating composition for coating by applying such a nano-carbon material, it is necessary to maintain a very good dispersion state of the nano-carbon material.

종래에는 이러한 고분산 상태의 그래핀과 같은 나노카본 코팅액을 위해 분산제, 또는 분산형 폴리머를 사용하였는데, 비표면적이 높은 나노카본 물질을 고분산 상태로 유지하기 위해 매우 많은 양의 분산제가 필요하게 되었다. 결국, 이로 인해 코팅액의 경화 후 전기적 특성과 코팅층의 내화학 특성이 저하하게 되는 문제가 있었다.Conventionally, a dispersant or a dispersion-type polymer is used for a nano-carbon coating solution such as graphene in a highly dispersed state, but a very large amount of a dispersant is required to maintain the nano-carbon material having a high specific surface area in a highly dispersed state. . As a result, there is a problem in that electrical properties and chemical resistance of the coating layer are deteriorated after curing of the coating solution.

대한민국공개특허공보 제10-2010-0133075호Korean Patent Laid-Open Publication No. 10-2010-0133075 일본등록특허공보 제5169277호Japanese Patent Publication No. 5169277

본 발명을 통해 나노카본 물질의 분산성이 우수하면서 동시에 분산제의 양이 많지 않은 나노카본 코팅 조성물을 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a nano-carbon coating composition having excellent dispersibility of the nano-carbon material and at the same time not having a large amount of dispersant.

상기 목적을 달성하기 위해, 본 발명에서는 나노카본 소재와 열경화성 바인더, 분산제, 황산염을 포함하는 프탈로시아닌 화합물 및 용제를 포함하는 나노카본 코팅 조성물을 제공할 수 있다. In order to achieve the above object, in the present invention, it is possible to provide a nano-carbon coating composition comprising a nano-carbon material, a thermosetting binder, a dispersant, a phthalocyanine compound including sulfate, and a solvent.

상기 나노카본 소재는 GNP(graphene nano platelet), rGO(reduced graphene oxide), CNT, 카본 블랙으로부터 이루어지는 군에서 선택되는 1종 이상일 수 있다.The nano-carbon material may be at least one selected from the group consisting of graphene nano platelet (GNP), reduced graphene oxide (rGO), CNT, and carbon black.

또한, 황산염을 포함하는 상기 프탈로시아닌 화합물은 구리 프탈로시아닌테트라술폰산 테트라나트륨염(Copper phthalocyanine-tetrasulfonic acid tetrasodium salt), 니켈 프탈로시아닌테트라술폰산 테트라나트륨염(Nickel phthalocyanine-tetrasulfonic acid tetrasodium salt), 프탈로시아닌테트라술폰산 하이드레이트(Phthalocyanine tetrasulfonate hydrate)으로 이루어지는 군에서 선택되는 1종 이상일 수 있다.In addition, the phthalocyanine compound including sulfate is copper phthalocyanine-tetrasulfonic acid tetrasodium salt, nickel phthalocyanine-tetrasulfonic acid tetrasodium salt, and phthalocyanine tetrasulfonic acid tetrasodium salt. It may be at least one selected from the group consisting of tetrasulfonate hydrate).

또한, 상기 프탈로시아닌 화합물의 크기는 1~100nm일 수 있다.In addition, the size of the phthalocyanine compound may be 1 ~ 100nm.

또한, 나노카본 코팅 조성물은 상기 프탈로시아닌 화합물을 전체 조성물을 기준으로 0.001~5.0 중량% 포함할 수 있다.In addition, the nano-carbon coating composition may include 0.001 to 5.0% by weight of the phthalocyanine compound based on the total composition.

또한, 상기 용제는 MEK(Methyl Ethyl Ketone), n-부틸 아세테이트(n-Butyl Acetate), EA(Ethyl Acetate), IPA(Isopropyl Acetate), MIBK(Metyl Isobutyl Ketone), DMF(Dimethyl Formamide), PGMEA(Propylene Glycol Methyl Ether Acetate), 에탄올, 물로 이루어지는 군에서 선택되는 1종 이상일 수 있다.In addition, the solvent is MEK (Methyl Ethyl Ketone), n-butyl acetate (n-Butyl Acetate), EA (Ethyl Acetate), IPA (Isopropyl Acetate), MIBK (Metyl Isobutyl Ketone), DMF (Dimethyl Formamide), PGMEA ( Propylene Glycol Methyl Ether Acetate), ethanol, and water may be at least one selected from the group consisting of.

또한, 나노카본 코팅 조성물은 상기 나노카본 소재를 전체 조성물을 기준으로 0.01~40.0 중량% 포함할 수 있다.In addition, the nano-carbon coating composition may include 0.01 to 40.0 wt % of the nano-carbon material based on the total composition.

또한, 나노카본 코팅 조성물은 상기 분산제를 전체 조성물을 기준으로 0.001~10.0 중량% 포함할 수 있다.In addition, the nano-carbon coating composition may include 0.001 to 10.0% by weight of the dispersant based on the total composition.

또한, 상기 분산제는 안료친화성그룹을 가지는 고분자 블록 공중합체를 포함하고, 상기 안료친화성그룹은 양이온성, 음이온성, 비이온성, 염 형태(salt-like) 중 어느 하나일 수 있다.In addition, the dispersant includes a polymer block copolymer having a pigment affinity group, and the pigment affinity group may be any one of cationic, anionic, nonionic, salt-like.

또한, 본 발명에서는 상술한 다양한 나노카본 코팅 조성물을 포함하는 전도성 잉크를 제공할 수 있다.In addition, the present invention may provide a conductive ink comprising the various nano-carbon coating compositions described above.

본 발명을 통해 제공되는 나노 카본 코팅 조성물은 분산제의 양이 많지 않아도 나노 카본 물질의 고분산 상태를 유지할 수 있기 때문에, 코팅 조성물의 흐름성 및 T.I(Thixotropy Index) 특성의 개선이 가능하고 도포 후 경화된 막의 전기적 특성과 내화학 특성이 개선될 수 있다.Since the nano-carbon coating composition provided through the present invention can maintain a highly dispersed state of the nano-carbon material even if the amount of the dispersant is not large, the flowability and TI (Thixotropy Index) properties of the coating composition can be improved and cured after application The electrical properties and chemical resistance of the film can be improved.

도 1은 그래핀 분말의 표면에 황산염을 포함하는 프탈로시아닌 화합물이 흡착된 상태를 나타내는 그림이다.
도 2는 구리 프탈로시아닌테트라술폰산 테트라나트륨염의 구조식을 나타낸다.
1 is a diagram showing a state in which a phthalocyanine compound containing sulfate is adsorbed on the surface of graphene powder.
2 shows the structural formula of copper phthalocyanine tetrasulfonic acid tetrasodium salt.

이하 본 발명의 실시예에 대하여 첨부된 도면을 참고로 그 구성 및 작용을 설명하기로 한다. 하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 어떤 부분이 어떤 구성요소를 '포함'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Hereinafter, the configuration and operation of the embodiment of the present invention will be described with reference to the accompanying drawings. In the following description of the present invention, if it is determined that a detailed description of a related well-known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, when a part 'includes' a certain component, this means that other components may be further included rather than excluding other components unless otherwise stated.

본 발명에서는 나노카본 소재와 열경화성 바인더, 분산제, 황산염을 포함하는 프탈로시아닌 화합물 및 용제를 포함하는 나노카본 코팅 조성물을 제공한다. The present invention provides a nano-carbon coating composition comprising a nano-carbon material, a thermosetting binder, a dispersant, a phthalocyanine compound including sulfate, and a solvent.

나노카본 소재는 두께 또는 직경이 100nm 이하인 탄소소재를 의미한다. 이러한 나노카본 소재는 GNP(graphene nano platelet), rGO(reduced graphene oxide), CNT(Carbon Nanotubes), 카본 블랙(Carbon Black)등이 대표적이다. 나노카본 소재는 그 자체로 전기전도성이 우수하고 나노급의 크기로 인해 용액 중에 고르게 분산되어 도포되는 경우 투명한 막을 형성할 수 있어서, 이러한 나노카본을 이용한 코팅 조성물은 대전방지용 잉크, 방열용 코팅액, 전도막 형성 코팅액 등 다양한 분야 사용될 수 있다. 이러한 나노카본 소재로는 GNP, CNT, rGO, 카본블랙 등이 사용될 수 있는데, 가격과 원하는 특성에 따라 선택하여 사용할 수 있다. 이때 이들 나노카본 소재는 한 종류만 코팅 조성물에 포함될 수도 있고, 원하는 특성에 따라 한 종류만이 아니라 GNP와 CNT의 조합 등으로 여러 종류의 나노카본 소재가 혼합되어 사용되어 전도성 또는 투명성을 조절할 수 있게 된다. 사용되는 나노카본 중 CNT는 SWNT(Single Walled Carbon Nanotubes), MWNT(Multi Walled Carbon Nanotubes)가 모두 가능하다.The nano-carbon material refers to a carbon material having a thickness or diameter of 100 nm or less. Representative examples of such nano-carbon materials include graphene nano platelet (GNP), reduced graphene oxide (rGO), carbon nanotubes (CNT), and carbon black. The nano-carbon material itself has excellent electrical conductivity and can form a transparent film when it is evenly dispersed and applied in a solution due to its nano-scale size. It can be used in various fields such as a film-forming coating solution. As such a nano-carbon material, GNP, CNT, rGO, carbon black, etc. may be used, which may be selected according to price and desired characteristics. At this time, only one type of these nano-carbon materials may be included in the coating composition, and several types of nano-carbon materials are mixed and used, such as not only one type, but a combination of GNP and CNT depending on the desired properties, so that conductivity or transparency can be controlled. do. Among the nano-carbons used, CNTs can be either SWNT (Single Walled Carbon Nanotubes) or MWNT (Multi Walled Carbon Nanotubes).

한편, 나노카본 소재는 비표면적이 매우 크고 표면에 작용기가 없어 정전기적 힘이 부족하여 서로 강하게 끌어당기며 응집하게 때문에 용액 중에서 안정적인 분산 상태를 유지하기가 어렵다. 종래에는 이러한 나노카본 소재를 용제를 포함하는 코팅 조성물 내에서 분산시키기 위해 비표면적이 크고 정전기적 힘이 부족한 부분을 보완하기 위해 분산제의 양을 늘리는 것이 필요하였다. 이렇게 분산제의 양이 많아지게 되면 분산 상태는 유지될 수 있지만 코팅액의 경화 후 잔류하는 분산제로 인해 전기전도성이 저하되고 경화막의 내화학성이 떨어지게 되는 문제가 있게 된다. 본 발명에서는 프탈로시아닌 화합물을 소량 포함하는 조성물을 제공함으로써 분산제의 양을 줄여 이러한 문제를 해결할 수 있게 되었고, 더 나아가 줄어든 분산제에도 불구하고 분산성이 향상됨으로써 코팅액의 흐름성 및 T.I(Thixotropy Index)를 개선할 수 있게 되었다.On the other hand, it is difficult to maintain a stable dispersion state in solution because the nano-carbon material has a very large specific surface area and no functional groups on the surface, so they strongly attract each other and aggregate. Conventionally, it was necessary to increase the amount of the dispersant to compensate for the large specific surface area and insufficient electrostatic force in order to disperse the nano-carbon material in the coating composition containing the solvent. If the amount of the dispersant is increased in this way, the dispersed state can be maintained, but due to the dispersant remaining after curing of the coating solution, there is a problem in that the electrical conductivity is lowered and the chemical resistance of the cured film is deteriorated. In the present invention, this problem can be solved by reducing the amount of the dispersant by providing a composition containing a small amount of the phthalocyanine compound, and furthermore, the flowability and TI (Thixotropy Index) of the coating solution are improved by improving the dispersibility despite the reduced dispersant. was able to do

황산염을 포함하는 프탈로시아닌 화합물은 나노급의 분말로서 도 1에서 나타내는 바와 같이 반데르발스 힘에 의해 소수성의 나노카본 소재 표면에 쉽게 붙게 되는데, 분산이 필요한 나노카본 소재 보다 프탈로시아닌 화합물의 크기가 작을 수록 나노카본 소재의 표면에 흡착되기 쉽게 된다. 나노카본 소재는 일부 치수는 수~수십 나노미터에 불과해도 그 전체 크기는 수 미크론에 달할 수 있는데, 예를들어 그래핀은 두께가 수십 나노미터이지만 평판의 전체 크기는 수미크론에 달할 수 있다. 따라서, 이러한 나노카본 소재의 크기를 고려하면, 프탈로시아닌 화합물의 크기는 1~100nm인 것이 바람직하다. 너무 크면 반데르발스 힘이 작용하기 어렵게 되고 너무 작은 프탈로시아닌 화합물은 합성하기 어렵기 때문이다.The phthalocyanine compound containing sulfate is a nano-grade powder, and as shown in FIG. 1, it is easily attached to the surface of the hydrophobic nano-carbon material by van der Waals force. The smaller the size of the phthalocyanine compound than the nano-carbon material that requires dispersion It is easily adsorbed to the surface of the carbon material. Although some dimensions of nano-carbon materials are only several to tens of nanometers, the overall size can reach several microns. Therefore, considering the size of such a nano-carbon material, the size of the phthalocyanine compound is preferably 1 ~ 100nm. This is because, if it is too large, the van der Waals force becomes difficult to act, and a phthalocyanine compound that is too small is difficult to synthesize.

황산염을 포함하는 프탈로시아닌 화합물은 나노카본 소재의 표면을 개질함으로써 나노카본 소재가 수용액 중에서도 용이하게 분산될 수 있도록 할 수 있는데, 특히 친수기인 황산염을 포함하여 수용액 중에서의 분산성을 더 높일 수 있게 된다.The phthalocyanine compound containing sulfate can make the nano-carbon material to be easily dispersed in an aqueous solution by modifying the surface of the nano-carbon material, and in particular, including a sulfate, which is a hydrophilic group, can further increase the dispersibility in the aqueous solution.

황산염을 포함하는 프탈로시아닌 화합물로는 보다 구체적으로, 구리 프탈로시아닌테트라술폰산 테트라나트륨염(Copper phthalocyanine-tetrasulfonic acid tetrasodium salt), 니켈 프탈로시아닌테트라술폰산 테트라나트륨염(Nickel phthalocyanine-tetrasulfonic acid tetrasodium salt), 프탈로시아닌테트라술폰산 하이드레이트(Phthalocyanine tetrasulfonate hydrate) 중 어느 하나 또는 이들의 조합이 사용될 수 있다. 구리 프탈로시아닌테트라술폰산 테트라나트륨염의 구조식은 도 2에서 나타내었다.More specifically, examples of the phthalocyanine compound containing sulfate include copper phthalocyanine-tetrasulfonic acid tetrasodium salt, nickel phthalocyanine-tetrasulfonic acid tetrasodium salt, and phthalocyanine tetrasulfonic acid tetrasodium salt. (Phthalocyanine tetrasulfonate hydrate) any one or a combination thereof may be used. The structural formula of copper phthalocyanine tetrasulfonic acid tetrasodium salt is shown in FIG.

프탈로시아닌 화합물의 함량은 전체 조성물을 기준으로 0.001~5.0 중량%인 것이 바람직하고, 더욱 바람직하게는 0.01~4.0 중량%이다. 프탈로시아닌 화합물이 너무 많으면 나노카본 소재의 전도성을 저하시킬 수 있고 0.001 중량% 미만이면 표면개질을 통해 만족할 만한 분산 특성을 유지하기 어렵게 된다.The content of the phthalocyanine compound is preferably 0.001 to 5.0% by weight, more preferably 0.01 to 4.0% by weight, based on the total composition. If the phthalocyanine compound is too much, the conductivity of the nano-carbon material may be reduced, and if it is less than 0.001 wt %, it is difficult to maintain satisfactory dispersion properties through surface modification.

또한, 조성물에 사용되는 용제는 MEK(Methyl Ethyl Ketone), n-부틸 아세테이트(n-Butyl Acetate), EA(Ethyl Acetate), IPA(Isopropyl Acetate), MIBK(Metyl Isobutyl Ketone), DMF(Dimethyl Formamide), PGMEA(Propylene Glycol Methyl Ether Acetate), 에탄올, 물 중에 어느 하나 또는 이들의 혼합물일 수 있다. 특히 황산염을 포함하는 프탈로시아닌 화합물을 사용함에 따라 원래는 소수성인 나노카본 소재의 표면이 친수화됨으로써 용제로 물을 사용할 수 있어서 친환경 코팅 조성물을 만들 수 있는 장점이 있게 된다.In addition, the solvent used in the composition is MEK (Methyl Ethyl Ketone), n-butyl acetate (n-Butyl Acetate), EA (Ethyl Acetate), IPA (Isopropyl Acetate), MIBK (Metyl Isobutyl Ketone), DMF (Dimethyl Formamide) , PGMEA (Propylene Glycol Methyl Ether Acetate), ethanol, water may be any one or a mixture thereof. In particular, as the phthalocyanine compound containing sulfate is used, the surface of the nano-carbon material, which is originally hydrophobic, becomes hydrophilic, so that water can be used as a solvent, thereby making it possible to make an eco-friendly coating composition.

조성물에서 용제의 함량은 나노카본 소재, 열경화성 바인더, 분산제 및 황산염을 포함하는 프탈로시아닌 화합물을 제외한 나머지가 될 수 있다.The content of the solvent in the composition may be the remainder except for the phthalocyanine compound including the nano-carbon material, the thermosetting binder, the dispersant and the sulfate.

또한, 조성물에서 나노카본 소재는 전체 조성물을 기준으로 0.01~40.0 중량%를 포함할 수 있고, 더 바람직하게는 0.1~30.0 중량%를 포함할 수 있다. 나노카본 소재의 함량이 너무 높으면 나노카본 소재의 높은 비표면적으로 인해 점도가 높아지고, 혼합이 어렵게 되어 분산 공정이 어렵게 된다. 또한, 너무 낮으면 나노카본 소재 간의 접촉이 되지 않아 원하는 전도성, 방열성, 배리어 특성(기체 또는 액체를 차단하는 특성) 등을 얻을 수 없게 된다.In addition, the nano-carbon material in the composition may include 0.01 to 40.0 wt%, more preferably 0.1 to 30.0 wt%, based on the total composition. If the content of the nano-carbon material is too high, the viscosity increases due to the high specific surface area of the nano-carbon material, and mixing becomes difficult, making the dispersion process difficult. In addition, if it is too low, there is no contact between the nano-carbon materials, so that desired conductivity, heat dissipation, and barrier properties (properties that block gas or liquid) cannot be obtained.

조성물에 포함되는 열경화성 바인더로는 에폭시 수지, 폴리에스터 수지, 폴리 우레탄 수지 등을 적절한 용제에 녹여서 사용될 수 있다. 이때, 열경화성 바인더의 바람직한 함량은 0.1~40 중량%이다. 너무 낮으면 최종 코팅층에 있어 경도 등 물리적 특성이 유지되지 않고 너무 높으면 전도성과 공정성이 떨어져 사용하기 어렵게 된다. The thermosetting binder included in the composition may be used by dissolving an epoxy resin, a polyester resin, a polyurethane resin, etc. in an appropriate solvent. At this time, the preferred content of the thermosetting binder is 0.1 to 40 wt%. If it is too low, physical properties such as hardness are not maintained in the final coating layer, and if it is too high, conductivity and fairness are poor, making it difficult to use.

분산제는 전체 조성물을 기준으로 0.001~10.0 중량%를 포함할 수 있으며, 더욱 바람직하게는 0.01~8.0 중량%를 포함할 수 있다. 조성물의 분산성을 유지하기 위해 최소한의 분산제가 필요한데, 너무 적으면 나노카본 소재에 정전기적 반발력, 입체적 안정화를 부여하기 어렵기 때문이다. 한편, 너무 많으면 조성물에 의해 형성되는 코팅막의 전기전도성과 내화학성이 저하될 수 있다.The dispersant may include 0.001 to 10.0 wt% based on the total composition, and more preferably 0.01 to 8.0 wt%. A minimum amount of dispersant is required to maintain the dispersibility of the composition, because it is difficult to impart electrostatic repulsion and steric stabilization to the nano-carbon material. On the other hand, if too much, the electrical conductivity and chemical resistance of the coating film formed by the composition may be reduced.

또한 분산제는 안료친화성그룹을 가지는 고분자 블록 공중합체를 포함할 수 있는데, 여기서 안료친화성그룹은 양이온성, 음이온성, 비이온성, 염 형태(salt-like) 중 어느 하나일 수 있다. 이러한 분산제는 정전기적 반발력, 입체적 안정화를 통해 나노카본 소재의 안정적인 분산 상태 유지를 도울 수 있다.In addition, the dispersant may include a polymer block copolymer having a pigment affinity group, wherein the pigment affinity group may be any one of cationic, anionic, nonionic, salt-like. These dispersants can help maintain a stable dispersion state of the nano-carbon material through electrostatic repulsion and steric stabilization.

상술한 조성물의 구체적인 조성은 나노카본 소재 0.01~40 중량%, 열경화성 바인더 0.1~40 중량%, 분산제 0.001~10 중량%, 황산염을 포함하는 프탈로시아닌 화합물 0.001~5 중량%이고 나머지는 용제와 기타 불가피한 불순물로 이루어질 수 있게 된다.The specific composition of the above-described composition is 0.01 to 40% by weight of the nano-carbon material, 0.1 to 40% by weight of the thermosetting binder, 0.001 to 10% by weight of the dispersant, 0.001 to 5% by weight of the phthalocyanine compound containing sulfate, and the remainder is the solvent and other unavoidable impurities can be done with

상술한 나노카본 조성물은 코팅 표면에 전도성 형성을 위한 전도성 잉크로 사용될 수 있는데, 특히 나노카본 소재로서 그래핀을 사용하면 전도성, 방열성, 배리어 특성을 모두 확보할 수 있게 된다. CNT, 카본블랙을 사용할 경우에는 전도성을 얻을 수 있게 된다. The above-described nano-carbon composition can be used as a conductive ink for forming conductivity on the coating surface. In particular, when graphene is used as a nano-carbon material, it is possible to secure all of the conductivity, heat dissipation, and barrier properties. When CNT or carbon black is used, conductivity can be obtained.

(실시예)(Example)

[바인더 제조][Manufacture of binder]

플라스크에 MEK(삼전화학사 제품)를 800g 투입하고 80℃까지 상승 후 폴리에스터 레진(SK Chemical사 제품) 200g을 3회에 나눠 넣고 2시간 동안 교반 시켜 제조하였다.800 g of MEK (manufactured by Samchun Chemical) was put into the flask, and after raising to 80 °C, 200 g of polyester resin (manufactured by SK Chemical) was divided into three portions and stirred for 2 hours.

[조성물 제조][Production of composition]

용제로서 MEK(삼전화학사 제품)에, 제조된 바인더와 구리 프탈로시아닌테트라술폰산 테트라나트륨염(Sigma-Aldrich)을 첨가한 후 분산제로서 안료친화성그룹을 가지는 고분자 공중합체를 포함하는 비와이케이사의 BYK-163 또는 비이온성 계면활성제인 플루로닉(Pluronic)사의 F127를 추가하였다. 이후 나노카본 소재로서 그래핀 파우더(Six Element사) 또는 MWNT(nanocyl사)를 첨가하고 20분간 교반하였다. 교반 후 교반된 액을 지르코니아 비즈와 혼합 후 혼합기를 이용 80분간 분산하여 조성물을 제조하였다. 각 성분의 함량은 아래 표에서 나타내었다.After adding the prepared binder and copper phthalocyanine tetrasulfonic acid tetrasodium salt (Sigma-Aldrich) to MEK (manufactured by Samchun Chemical) as a solvent, BYK-163 of BYK Corporation containing a polymer copolymer having a pigment affinity group as a dispersant Or a nonionic surfactant, Pluronic's F127 was added. Then, graphene powder (Six Element) or MWNT (nanocyl) was added as a nano-carbon material and stirred for 20 minutes. After stirring, the stirred solution was mixed with zirconia beads and dispersed for 80 minutes using a mixer to prepare a composition. The content of each component is shown in the table below.

나노카본(wt%)Nano carbon (wt%) MEK(wt%)MEK (wt%) 바인더(wt%)Binder (wt%) 분산제(wt%)Dispersant (wt%) 구리 프탈로시아닌테트라술폰산 테트라나트륨염(wt%)Copper phthalocyanine tetrasulfonic acid tetrasodium salt (wt%) 실시예1Example 1 2.0 (그래핀)2.0 (graphene) 67.167.1 30.030.0 0.3(BYK-163)0.3 (BYK-163) 0.60.6 실시예2Example 2 2.0 (그래핀)2.0 (graphene) 66.866.8 30.030.0 0.6(BYK-163)0.6 (BYK-163) 0.60.6 실시예3Example 3 2.0 (그래핀)2.0 (graphene) 63.863.8 30.030.0 3.6(BYK-163)3.6 (BYK-163) 0.60.6 실시예4Example 4 2.0 (그래핀)2.0 (graphene) 65.465.4 30.030.0 0.6(BYK-163)0.6 (BYK-163) 2.02.0 실시예5Example 5 2.0 (MWNT)2.0 (MWNT) 66.866.8 30.030.0 0.6(BYK-163)0.6 (BYK-163) 0.60.6 비교예1Comparative Example 1 2.0 (그래핀)2.0 (graphene) 68.068.0 30.030.0 -- -- 비교예2Comparative Example 2 2.0 (그래핀)2.0 (graphene) 60.860.8 30.030.0 7.2(F127)7.2 (F127) -- 비교예3Comparative Example 3 2.0 (그래핀)2.0 (graphene) 60.860.8 30.030.0 7.2(BYK-163)7.2 (BYK-163) -- 비교예4Comparative Example 4 2.0 (그래핀)2.0 (graphene) 64.464.4 30.030.0 3.6(BYK-163)3.6 (BYK-163) -- 비교예5Comparative Example 5 2.0 (그래핀)2.0 (graphene) 66.266.2 30.030.0 1.8(BYK-163)1.8 (BYK-163) -- 비교예6Comparative Example 6 2.0 (그래핀)2.0 (graphene) 62.062.0 30.030.0 -- 6.06.0 비교예7Comparative Example 7 2.0 (그래핀)2.0 (graphene) 66.066.0 30.030.0 -- 2.02.0 비교예8Comparative Example 8 2.0 (그래핀)2.0 (graphene) 67.467.4 30.030.0 -- 0.60.6

(나노카본 코팅 조성물 특성 평가)(Evaluation of properties of nano-carbon coating composition)

제조된 조성물을 사용하여 자동도공기와 바-코터(bar-coater)로 PET필름에 인쇄 후 열풍 오븐에서 80℃, 1분간 건조한 후 면저항 측정기(SIMCO, ST-4)를 이용해 면저항을 측정하였다.The prepared composition was printed on PET film with an automatic coater and a bar-coater, dried in a hot air oven at 80° C. for 1 minute, and then the sheet resistance was measured using a sheet resistance measuring instrument (SIMCO, ST-4).

내화학 테스트는 이소프로필 알코올을 이용하여 5분간 담지 후 1kg 추를 올려놓고 20회 러빙(rubbing) 테스트 후 면저항 변화를 관찰하였다.For the chemical resistance test, after soaking for 5 minutes using isopropyl alcohol, a 1 kg weight was placed on it, and the change in sheet resistance was observed after 20 rubbing tests.

조성물이 장시간 보관 중에도 내부 고형물의 침강이 일어나지 않고 유지될 수 있는 특성인 분산안정성에 대해서는 조성물을 수평으로 눕힌 후, 원심력을 가해주어 침강을 유도한 후 투과도 변화로 분산력을 평가하는 분석장치인 분산안정성 분석기(Dispersion Analyzer, Lumisizer LS610)를 통해 평가하였다. 투과도가 높을 수록 나노카본 소재의 침강이 심하게 일어난 것이므로 분산안정성이 좋지 않은 것으로 판단할 수 있었다.For dispersion stability, which is a property that the composition can be maintained without sedimentation of internal solids even during long-term storage, the composition is laid down horizontally and centrifugal force is applied to induce sedimentation. It was evaluated through an analyzer (Dispersion Analyzer, Lumisizer LS610). The higher the permeability, the more severe sedimentation of the nano-carbon material occurred, so it could be determined that the dispersion stability was not good.

또한, 조성물의 흐름성과 분산성을 평가하기 위해서 점도계를 이용하여 50rpm에서의 점도를 측정하였고 T.I(Thixotropic Index)를 분석하였다.In addition, in order to evaluate the flowability and dispersibility of the composition, the viscosity at 50 rpm was measured using a viscometer, and T.I (Thixotropic Index) was analyzed.

면저항
(log,Ω/□)
sheet resistance
(log,Ω/□)
내화학성평가
(log,Ω/□)
Chemical resistance evaluation
(log,Ω/□)
분산안정성
투과도(%)
dispersion stability
Transmittance (%)
점도
(50rpm)
Viscosity
(50rpm)
T.IT.I.
실시예1Example 1 3.63.6 103.6 10 3.6 7070 5151 2.92.9 실시예2Example 2 3.63.6 103.7 10 3.7 7070 5151 2.92.9 실시예3Example 3 3.63.6 104.0 10 4.0 7070 4848 2.82.8 실시예4Example 4 4.04.0 104.0 10 4.0 7070 4949 2.82.8 실시예5Example 5 4.34.3 104.3 10 4.3 7272 4040 2.02.0 비교예1Comparative Example 1 고액 분리상태로 특성분석 불가Characterization impossible due to solid-liquid separation 비교예2Comparative Example 2 응집체 다량 존재하여 특성분석 불가Characterization impossible due to the presence of a large amount of aggregates 비교예3Comparative Example 3 5.35.3 1013.5 10 13.5 8787 125125 5.25.2 비교예4Comparative Example 4 6.56.5 109.5 10 9.5 9595 185185 7.17.1 비교예5Comparative Example 5 7.17.1 108.4 10 8.4 100100 320320 10.910.9 비교예6Comparative Example 6 3.63.6 103.8 10 3.8 7575 7878 3.93.9 비교예7Comparative Example 7 4.04.0 104.2 10 4.2 7777 8282 3.63.6 비교예8Comparative Example 8 5.25.2 105.5 10 5.5 7979 8383 3.63.6

분산제 및 프탈로시아닌 화합물을 첨가하지 않은 경우(비교예1)는 분산공정 후 고액분리가 일어나 특성평가가 불가능하였고, 분산제로서 비이온선 계면활성제인 플루로닉(Pluronic)사의 F127을 사용한 경우(비교예2)는 미분산된 응집체가 다수 존재하여 특성평가가 불가능하였다.In the case of not adding a dispersing agent and a phthalocyanine compound (Comparative Example 1), solid-liquid separation occurred after the dispersion process, making characteristic evaluation impossible, and when F127 of Pluronic, a nonionic surfactant, was used as a dispersant (Comparative Example) 2) was impossible to characterize because there were many undispersed aggregates.

비교예 3 내지 5는 분산제로서 안료친화성그룹을 가지는 고분자 공중합체를 포함하는 폴리우레탄계 분산제인 BYK-163을 사용하였는데, 첨가량이 많을 수록 분산성은 좋아졌지만 내화학성이 급격히 떨어지는 것을 볼 수 있었다.Comparative Examples 3 to 5 used BYK-163, a polyurethane-based dispersant including a polymer copolymer having a pigment affinity group as a dispersant.

비교예 6 내지 8에서는 분산제 없이 프탈로시아닌 화합물만을 사용한 경우인데, 면저항 및 내화학성은 우수하였으나 점도와 T.I가 높은 수준을 유지하며 투과도가 다소 높아 분산안정성이 떨어져 공정 적용성이 떨어지는 것으로 나타났다.In Comparative Examples 6 to 8, only the phthalocyanine compound was used without a dispersing agent. Although the sheet resistance and chemical resistance were excellent, the viscosity and T.I were maintained at high levels, and the permeability was somewhat high, resulting in poor dispersion stability and poor process applicability.

실시예 1 내지 4는 분산제와 프탈로시아닌 화합물을 같이 사용한 경우이다. 비교예들에 비해 우수한 면저항과 내화학성을 나타내고 있으며, 투과도가 낮아 분산안정성이 우수한 것으로 판단된다. 또한, 점도 및 T.I도 낮은 수준으로 유지되어 공정 적용성이 우수한 것으로 나타났다.Examples 1 to 4 are cases in which a dispersing agent and a phthalocyanine compound are used together. It shows excellent sheet resistance and chemical resistance compared to Comparative Examples, and is judged to have excellent dispersion stability due to low transmittance. In addition, the viscosity and T.I were also maintained at low levels, indicating excellent process applicability.

실시예 5는 나노카본 소재로 그래핀 대신 MWNT를 적용한 결과이다. 실시예 1 내지 4와 마찬가지로 우수한 면저항과 내화학성, 분산안정성을 나타내었고, 점도 및 T.I는 더 낮은 수준을 유지하였다. 이는 MWNT의 비표면적이 300m2/g으로 그래핀의 비표면적 400m2/g 보다 낮기 때문으로 생각되었다.Example 5 is a result of applying MWNT instead of graphene as a nano-carbon material. As in Examples 1 to 4, excellent sheet resistance, chemical resistance, and dispersion stability were exhibited, and the viscosity and TI were maintained at lower levels. This was thought to be because the specific surface area of the MWNT 300m 2 / g to yes lower than the pin surface area 400m 2 / g of.

Claims (10)

나노카본 소재와 열경화성 바인더, 분산제, 황산염을 포함하는 프탈로시아닌 화합물 및 용제를 포함하는, 나노카본 코팅 조성물.A nano-carbon coating composition comprising a nano-carbon material, a thermosetting binder, a dispersant, a phthalocyanine compound including sulfate, and a solvent. 제1 항에 있어서,
상기 나노카본 소재는 GNP(graphene nano platelet), rGO(reduced graphene oxide), CNT, 카본 블랙으로부터 이루어지는 군에서 선택되는 1종 이상인, 나노카본 코팅 조성물.
According to claim 1,
The nano-carbon material is at least one selected from the group consisting of graphene nano platelet (GNP), reduced graphene oxide (rGO), CNT, and carbon black, nano-carbon coating composition.
제2 항에 있어서,
황산염을 포함하는 상기 프탈로시아닌 화합물은 구리 프탈로시아닌테트라술폰산 테트라나트륨염(Copper phthalocyanine-tetrasulfonic acid tetrasodium salt), 니켈 프탈로시아닌테트라술폰산 테트라나트륨염(Nickel phthalocyanine-tetrasulfonic acid tetrasodium salt), 프탈로시아닌테트라술폰산 하이드레이트(Phthalocyanine tetrasulfonate hydrate)으로 이루어지는 군에서 선택되는 1종 이상인, 나노카본 코팅 조성물.
3. The method of claim 2,
The phthalocyanine compound containing the sulfate is copper phthalocyanine-tetrasulfonic acid tetrasodium salt, nickel phthalocyanine-tetrasulfonic acid tetrasodium salt, phthalocyanine tetrasulfonate tetrasodium salt ) at least one selected from the group consisting of, a nano-carbon coating composition.
제1 항에 있어서,
상기 프탈로시아닌 화합물의 크기는 1~100nm인, 나노카본 코팅 조성물.
According to claim 1,
The size of the phthalocyanine compound is 1 ~ 100nm, nano-carbon coating composition.
제1 항에 있어서,
상기 프탈로시아닌 화합물을 전체 조성물을 기준으로 0.001~5.0 중량% 포함하는, 나노카본 코팅 조성물.
According to claim 1,
A nano-carbon coating composition comprising 0.001 to 5.0% by weight of the phthalocyanine compound based on the total composition.
제1 항에 있어서,
상기 용제는 MEK(Methyl Ethyl Ketone), n-부틸 아세테이트(n-Butyl Acetate), EA(Ethyl Acetate), IPA(Isopropyl Acetate), MIBK(Metyl Isobutyl Ketone), DMF(Dimethyl Formamide), PGMEA(Propylene Glycol Methyl Ether Acetate), 에탄올, 물로 이루어지는 군에서 선택되는 1종 이상인, 나노카본 코팅 조성물.
According to claim 1,
The solvent is MEK (Methyl Ethyl Ketone), n-butyl acetate (n-Butyl Acetate), EA (Ethyl Acetate), IPA (Isopropyl Acetate), MIBK (Metyl Isobutyl Ketone), DMF (Dimethyl Formamide), PGMEA (Propylene Glycol) Methyl Ether Acetate), ethanol, at least one selected from the group consisting of water, nano-carbon coating composition.
제1 항에 있어서,
상기 나노카본 소재를 전체 조성물을 기준으로 0.01~40.0 중량% 포함하는, 나노카본 코팅 조성물.
According to claim 1,
A nano-carbon coating composition comprising 0.01 to 40.0 wt % of the nano-carbon material based on the total composition.
제1 항에 있어서,
상기 분산제는 안료친화성그룹을 가지는 고분자 블록 공중합체를 포함하고 상기 안료친화성그룹은 양이온성, 음이온성, 비이온성, 염 형태(salt-like) 중 어느 하나인, 나노카본 코팅 조성물.
According to claim 1,
The dispersing agent includes a polymer block copolymer having a pigment affinity group, and the pigment affinity group is any one of cationic, anionic, nonionic, salt-like, nano-carbon coating composition.
제1 항에 있어서,
상기 분산제를 전체 조성물을 기준으로 0.001~10.0 중량% 포함하는, 나노카본 코팅 조성물.
According to claim 1,
A nano-carbon coating composition comprising 0.001 to 10.0% by weight of the dispersant based on the total composition.
제1 항 내지 제8 항 중 어느 한항에 따르는 나노카본 코팅 조성물을 포함하는 전도성 잉크.
A conductive ink comprising the nano-carbon coating composition according to any one of claims 1 to 8.
KR1020200038927A 2020-03-31 2020-03-31 Highly dispersed nano-carbon coating composition KR20210121726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200038927A KR20210121726A (en) 2020-03-31 2020-03-31 Highly dispersed nano-carbon coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200038927A KR20210121726A (en) 2020-03-31 2020-03-31 Highly dispersed nano-carbon coating composition

Publications (1)

Publication Number Publication Date
KR20210121726A true KR20210121726A (en) 2021-10-08

Family

ID=78610252

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200038927A KR20210121726A (en) 2020-03-31 2020-03-31 Highly dispersed nano-carbon coating composition

Country Status (1)

Country Link
KR (1) KR20210121726A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230055156A (en) * 2021-10-18 2023-04-25 티에스엠카본 주식회사 Composition for light-shielding film and light-shielding film using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169277A (en) 1991-12-18 1993-07-09 Toyota Motor Corp Resistance welding device
KR20100133075A (en) 2009-06-11 2010-12-21 장관식 Antistatic coating composition, antistatic sheet and sheet employing the same, method of manufacturing the same and antistatic product employing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169277A (en) 1991-12-18 1993-07-09 Toyota Motor Corp Resistance welding device
KR20100133075A (en) 2009-06-11 2010-12-21 장관식 Antistatic coating composition, antistatic sheet and sheet employing the same, method of manufacturing the same and antistatic product employing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230055156A (en) * 2021-10-18 2023-04-25 티에스엠카본 주식회사 Composition for light-shielding film and light-shielding film using the same

Similar Documents

Publication Publication Date Title
CN1543399B (en) Coatings containing carbon nanotubes
TWI688624B (en) Antistatic powder coating composition
KR101772783B1 (en) Coatings having filler-polymer compositions with combined low dielectric constant, high resistivity, and optical density properties and controlled electrical resistivity, devices made therewith, and methods for making same
US20100000441A1 (en) Nano graphene platelet-based conductive inks
KR102482030B1 (en) Ink composition for carbon material dispersion and method for preparing the same
KR20070083877A (en) Dispersions, films, coatings and composites
AU2002254367A1 (en) Coatings containing carbon nanotubes
WO2015076390A1 (en) Carbon heating composition and carbon heating element
EP2636710B1 (en) Carbon nanofiber dispersion liquid, coating composition, and paste composition
KR20090118606A (en) Conductive coating composition containing multiwall carbon nanotube
CN113421695B (en) Aqueous carbon nanotube dispersion liquid, conductive slurry and preparation method thereof
JPWO2020129872A1 (en) Carbon nanotube dispersion liquid and its manufacturing method
Wu et al. Latex co‐coagulation approach to fabrication of polyurethane/graphene nanocomposites with improved electrical conductivity, thermal conductivity, and barrier property
TWI496846B (en) Ink composition and anti-static film using them
JP2023516471A (en) Bright conductive coating
CN107746628A (en) A kind of water-based carbon nano conductive printing ink, preparation method and its heating product
CN112646489A (en) Conductive coating and preparation method thereof
JP4968570B2 (en) Carbon nanofiber dispersion and composition comprising the dispersion
KR20210121726A (en) Highly dispersed nano-carbon coating composition
CN109473197B (en) High-resolution conductive silver paste containing silver-supermolecule organogel and preparation method thereof
JP2020180185A (en) Composite material, method for producing the same and application thereof
KR101454454B1 (en) Ingredient of conducting pastes based on nano carbon materials having multiple hydrogen bonding motifs for printing and their fabrication method
WO2020202819A1 (en) Porous carbon material and resin composition
SUGIURA et al. Preparation, characterization, and application of organic conducting polypyrrole-silica nanocomposite inks
Tekin et al. The synthesis of covalent bonded single‐walled carbon nanotube/polyvinylimidazole composites by in situ polymerization and their physical characterization

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application