KR20130078106A - Electric vehicle charing apparatus - Google Patents

Electric vehicle charing apparatus Download PDF

Info

Publication number
KR20130078106A
KR20130078106A KR1020110146876A KR20110146876A KR20130078106A KR 20130078106 A KR20130078106 A KR 20130078106A KR 1020110146876 A KR1020110146876 A KR 1020110146876A KR 20110146876 A KR20110146876 A KR 20110146876A KR 20130078106 A KR20130078106 A KR 20130078106A
Authority
KR
South Korea
Prior art keywords
phase
electric vehicle
reactor
current
switching switch
Prior art date
Application number
KR1020110146876A
Other languages
Korean (ko)
Inventor
강태환
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020110146876A priority Critical patent/KR20130078106A/en
Priority to PCT/KR2012/011461 priority patent/WO2013100559A1/en
Publication of KR20130078106A publication Critical patent/KR20130078106A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • B60L2210/42Voltage source inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/526Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

PURPOSE: Electric vehicle charging apparatus is provided to use a motor inverter inside a vehicle in both directions, thereby lengthening the life of the inverter and to supply an output voltage in a wide range. CONSTITUTION: Electric vehicle charging apparatus charges the battery of an electric vehicle using a three-phase AC power supply and includes a current conversion unit (200) which acts as an inverter for controlling the motor of the electric vehicle according to the flow direction of the current or acts as a converter for converting AC to DC; a reactor (410) which is connected to each phase of the three-phase AC power supply and of which the reactance value is controllable; a single phase changeover switch (420) which, in order to convert the three-phase AC power supplied from the three-phase AC power supply, is positioned among the current conversion unit, the reactor, and the neutral line of the three-phase AC power supply and switches between the reactor and the neutral line of the three-phase AC power supply; and a motor (500) which is connected to the current conversion unit and drives the electric vehicle.

Description

전기자동차 충전장치{ELECTRIC VEHICLE CHARING APPARATUS}EV Charging Device {ELECTRIC VEHICLE CHARING APPARATUS}

본 발명은 전기자동차 충전장치에 관한 것으로, 보다 자세하게는 양방향 인버터를 이용하여 폭넓은 범위의 전압을 출력제어할 수 있는 전기자동차 충전장치에 관한 것이다.The present invention relates to an electric vehicle charging apparatus, and more particularly, to an electric vehicle charging apparatus capable of output control of a wide range of voltage using a bidirectional inverter.

종래에 엔진에 의해 구동되는 차량은 엔진, 변속기 및 드라이브샤프트, 유압브레이크, 기타 엔진과 관련하여 연료공급장치, 흡기 및 배기장치, 냉각 및 윤활장치, 방진장치 등 수많은 부품이 소요되고 배기가스에 의해 대기를 오염시키는 많은 문제점을 발생시키고 있었다. 이러한 문제점을 해소하기 위하여 현재 전기모터를 장착한 차량, 수소자동차, 연료전지 또는 태양에너지를 이용한 차세대 자동차 등이 개발되고 있다.Conventionally, a vehicle driven by an engine requires a large number of parts such as fuel supply, intake and exhaust, cooling and lubrication system, and dustproof device in relation to the engine, transmission and drive shaft, hydraulic brake, and other engines. There were many problems that caused air pollution. In order to solve this problem, vehicles equipped with electric motors, hydrogen cars, fuel cells, or next generation cars using solar energy have been developed.

이러한 전기자동차의 배터리는 모터 구동용 인버터를 양방향으로 사용하여 충전할 수 있다. 도 1은 종래의 전기자동차 충전 장치의 회로를 나타낸 도면이다. 도 1을 참조하면, 양방향 인버터를 이용하여 배터리를 충전하기 위해서는, 배터리 충전 시 4개의 스위치로 정류를 하고, 2개의 스위치로 DC/DC 컨버터를 구성한다. AC/DC 정류기 입력 필터와 DC/DC 컨버터 출력 필터의 리액터는 모터 고정자 코일의 리액턴스 성분으로 구성한다. 그리고 3상 모터 고정자 코일에 대해 상 전환하여 AC/DC 정류기 입력 필터와 DC/DC 컨버터의 출력 필터의 리액턴스 값을 조정한다. 이와 관련된 상세한 내용은 PCT 공개 특허 제97/008009호에 언급되어 있다.The battery of the electric vehicle can be charged by using a motor-driven inverter in both directions. 1 is a view showing a circuit of a conventional electric vehicle charging device. Referring to FIG. 1, in order to charge a battery using a bidirectional inverter, the battery is rectified by four switches and a DC / DC converter is configured by two switches. The reactor of the AC / DC rectifier input filter and the DC / DC converter output filter consist of the reactance component of the motor stator coil. Phase change is then performed for the three-phase motor stator coil to adjust the reactance values of the AC / DC rectifier input filter and the output filter of the DC / DC converter. Details in this regard are mentioned in PCT Publication No. 97/008009.

그러나 이러한 종래의 기술은 AC/DC 정류기의 파워퀄리티가 떨어지고, 인버터 내의 스위칭 소자가 비대칭적으로 사용되어 고장 발생의 확률이 증가시키고, 이로 인해 인버터의 수명을 단축시킨다. 또한, 모터의 스테이터(Stator)의 코일을 사용하여 리액턴스를 구성하므로 리액턴스 값의 자유도가 현저히 떨어지고, 전체적인 충전 시스템의 최적화를 저해하며, 효율 및 제어 성능에 악영향을 미친다.However, such a conventional technique is poor in power quality of the AC / DC rectifier, the switching element in the inverter is used asymmetrically to increase the probability of failure, thereby reducing the lifetime of the inverter. In addition, since the reactance is configured using the coil of the stator of the motor, the degree of freedom of the reactance value is remarkably decreased, which hinders the optimization of the overall charging system and adversely affects the efficiency and control performance.

본 발명이 해결하고자 하는 과제는, 차량 내부 모터 구동 인버터를 양방향으로 활용하여 인버터의 수명을 연장시키고, 넓은 범위의 출력 전압을 갖는 경량의 전기자동차 충전장치를 제공하는 것이다.The problem to be solved by the present invention is to provide a lightweight electric vehicle charging device having a wide range of output voltage to extend the life of the inverter by utilizing the motor drive inverter in-vehicle in both directions.

이러한 기술적 과제를 해결하기 위한 본 발명의 전기자동차 충전장치는 전류의 흐름 방향에 따라 전기자동차의 모터를 제어하는 인버터 또는 교류를 직류로 변환하는 컨버터 역할을 하는 전류변환수단; 상기 삼상교류전원의 각 상에 연결되고 리액턴스 값이 조절가능한 리액터; 상기 삼상교류전원에서 입력되는 삼상전원을 변환시키기 위해, 상기 리액터, 상기 삼상교류전원의 중성선 및 상기 전류변환수단 사이에 위치하여 상기 리액터와 상기 삼상교류전원의 중성선 사이를 스위칭하는 단상 절환 스위치; 및 상기 전류변환수단에 연결되어 전기자동차를 구동하는 모터;를 포함하는 것을 특징으로 한다.The electric vehicle charging device of the present invention for solving the technical problem is a current conversion means that serves as an inverter for controlling the motor of the electric vehicle or a converter for converting AC into direct current according to the flow direction of the current; A reactor connected to each phase of the three-phase AC power supply and having a reactance value adjustable; A single-phase switching switch located between the reactor, the neutral line of the three-phase AC power source and the current converting means to switch the three-phase power source input from the three-phase AC power source to switch between the reactor and the neutral wire of the three-phase AC power source; And a motor connected to the current conversion means to drive the electric vehicle.

또한, 상기 전류변환수단에 단상 전원을 공급하기 위한 상기 충방전 절환 스위치는, 상기 단상 절환 스위치가 상기 중성선 측으로 스위칭 된 경우, 상기 단상 절환 스위치 측으로 스위칭 연결하는 제1 충방전 절환 스위치; 상기 리액터 측으로 스위칭 연결하는 제2 충방전 절환 스위치; 및 상기 리액터 측으로 스위칭 연결을 하지 않는 제3 충방전 절환 스위치를 포함하여 구성할 수 있다.In addition, the charge-discharge switching switch for supplying the single-phase power to the current conversion means, the first charge-discharge switching switch for switching to the single-phase switching switch side, when the single-phase switching switch is switched to the neutral line side; A second charge / discharge switching switch connected to the reactor for switching; And a third charge / discharge switching switch which does not have a switching connection to the reactor side.

또한, 상기 전류변화수단에 단상 전원을 공급하기 위한 상기 충방전 절환 스위치는 상기 단상 절환 스위치가 상기 중성선 전원 측으로 스위칭 된 경우, 상기 단상 절환 스위치 측으로 스위칭 연결을 통해 전기적 회로를 형성하는 제1 충방전 절환 스위치; 상기 리액터 측으로 스위칭 연결을 통해 전기적 회로를 제2 충방전 절환 스위치; 및 상기 리액터 측으로 스위칭 연결하지 않아 전기적 회로를 구성하지 않는 제3 충방전 절환 스위치를 포함하여 구성될 수 있다.In addition, the charge-discharge switching switch for supplying the single-phase power to the current change means is the first charge-discharge to form an electrical circuit through the switching connection to the single-phase switching switch side, when the single-phase switching switch is switched to the neutral line power supply side Switching switch; A second charge / discharge switch for switching an electrical circuit to the reactor side through a switching connection; And a third charge / discharge switching switch which does not constitute an electrical circuit by not switching to the reactor side.

또한, 상기 전류변환수단이 교류를 직류로 변환하는 컨버터 역할을 하는 경우, AC/DC PWM(Pulse Width Modulation) 컨버터로서 동작할 수 있다.In addition, when the current converting means serves as a converter for converting alternating current into direct current, it may operate as an AC / DC pulse width modulation (PWM) converter.

또한, 상기 리액터는 상기 전기자동차의 외부에 위치할 수 있다.
In addition, the reactor may be located outside the electric vehicle.

본 발명에 의하면, 차량 내부 모터 구동 인버터를 양방향으로 활용하고, 별도의 추가 스위칭 회로 없이 기존 인버터 회로만을 사용하여 넓은 범위의 출력 전압을 갖는 경량의 전기자동차 충전장치를 제공할 수 있다. 또한, AC/DC PWM 컨버터를 사용하여 정류하므로 파워 퀄리티를 증가시킬 수 있으며, 인버터 스위치를 균형적으로 사용할 수 있어 전체적인 인버터의 수명을 연장시킬 수 있다.
According to the present invention, it is possible to provide a lightweight electric vehicle charging apparatus having a wide range of output voltages by utilizing the in-vehicle motor driving inverter in both directions and using only the existing inverter circuit without any additional switching circuit. In addition, rectification using an AC / DC PWM converter increases power quality, and the use of inverter switches in a balanced manner extends the life of the overall inverter.

도 1은 종래 발명에 따른 전기자동차 충전 장치의 회로도.
도 2는 본 발명의 일 실시예에 따른 전기자동차 충전 장치의 회로도.
도 3a 및 3b는 본 발명의 일 실시예에 따른 단상 절환 스위치의 동작을 설명하기 위한 회로도.
도 4a 및 4b는 본 발명의 일 실시예에 따른 충방전 절환 스위치의 동작을 설명하기 위한 회로도.
도 5는 본 발명의 일 실시예에 따른 충방전 절환 스위치 및 단상 절환 스위치의 동작을 설명하기 위한 회로도.
1 is a circuit diagram of a charging apparatus for an electric vehicle according to the related art.
2 is a circuit diagram of an electric vehicle charging device according to an embodiment of the present invention.
3A and 3B are circuit diagrams for explaining the operation of a single-phase switching switch according to an embodiment of the present invention.
4A and 4B are circuit diagrams for describing an operation of a charge / discharge switching switch according to an embodiment of the present invention.
5 is a circuit diagram for explaining the operation of the charge-discharge switching switch and the single-phase switching switch according to an embodiment of the present invention.

이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.

도 2는 발명의 일 실시예에 따른 전기자동차 충전장치의 회로도이다.2 is a circuit diagram of an electric vehicle charging apparatus according to an embodiment of the present invention.

도 2를 참고하면, 전기자동차 충전장치는 배터리(100), 전류변환수단(200), 삼상교류전원, 리액터(410), 단상 절환 스위치(420), 충방전 절환 스위치(300) 및 모터(500) 구성을 포함한다.Referring to FIG. 2, the electric vehicle charging device includes a battery 100, a current converting means 200, a three phase AC power supply, a reactor 410, a single phase switch 420, a charge / discharge switch 300, and a motor 500. ) Configuration.

배터리(100)는 도 2에서 보는 바와 같이 전기적으로 연결된 전류변환수단(200)으로부터 직류를 공급받아 배터리(100) 내 셀에 전력을 저장하며, 저장된 전력을 모터(500)에 공급하기 위해 전류변환수단(200)에 직류를 공급하는 역할을 한다.As shown in FIG. 2, the battery 100 receives direct current from an electrically connected current converting means 200, stores power in a cell in the battery 100, and converts current to supply the stored power to the motor 500. It serves to supply direct current to the means (200).

전류변환수단(200)은 외부에 위치한 삼상교류전원으로부터 교류를 공급받고 이를 직류로 변환하여 배터리(100)에 공급하고, 또한, 배터리(100)로부터 직류를 공급받고 이를 교류로 변환하여 모터(500)에 공급하고 제어하는 역할을 한다. The current converting means 200 is supplied with alternating current from an external three-phase AC power source and converts it to a direct current to the battery 100, and also receives a direct current from the battery 100 and converts it into an alternating current motor 500 ) To feed and control.

즉, AC/DC PWM(Pulse Width Modulation) 컨버터 및 DC/AC 인버터 기능을 수행하는 전류변환수단(200)은 IGBT(Insulated Gate Bi-Polar Transistor) 등 스위칭 기능이 있는 여섯 개의 전력반도체로 구성될 수 있으나 이와 같은 종류나 개수에 한정되지 않으며, 전류를 양방향으로 통과시키며, 방향에 따라 직류를 교류로 전환하거나 교류를 직류로 전환하는 수단이면 족하다.That is, the current conversion means 200 which performs an AC / DC pulse width modulation (PWM) converter and a DC / AC inverter function may include six power semiconductors having a switching function such as an insulated gate bi-polar transistor (IGBT). However, the present invention is not limited to this kind or number, and means for passing current in both directions and converting direct current into alternating current or alternating current into direct current depending on the direction.

삼상교류전원은 차량의 외부에 위치한 전원으로 배터리(100)에 충전되는 전원을 공급하는 역할을 하는 것으로, 일반적인 가정용의 삼상 사선식 220V 교류를 공급하는 전원이 될 수 있다.The three-phase AC power supply serves to supply power to the battery 100 with a power source located outside the vehicle, and may be a power supply for supplying three-phase four-wire 220V AC in general home.

리액터(Reator)(410)는 전기자동차의 외부에 위치하고, 삼상교류전원의 각 상에 연결된 제1 리액터(411) 내지 제3 리액터(413)로 구성된 것으로서, 전기자동차 충전장치의 리액턴스 값을 설정하는 역할을 한다. 교류회로에서 리액턴스 조절은 당업자에게 널리 알려진 것으로 본 명세서에서의 자세한 설명은 생략한다. Reactor 410 is composed of the first reactor 411 to the third reactor 413 located outside the electric vehicle, and connected to each phase of the three-phase AC power supply, and sets the reactance value of the electric vehicle charging device. Play a role. Reactance control in the AC circuit is well known to those skilled in the art, detailed description thereof will be omitted.

도 1과 같이, 종래 발명은 리액턴스 값 설정을 위해 전기자동차의 모터(500)에 설치된 고정자 코일을 활용해야 하기 때문에 리액턴스 값의 설정이 제한적이며, 리액턴스 값의 자유도가 현격히 떨어지는 문제점이 있다. As shown in FIG. 1, the conventional invention has a problem in that the setting of the reactance value is limited because the stator coil installed in the motor 500 of the electric vehicle is used to set the reactance value, and the freedom of the reactance value is significantly reduced.

그러나 도 2의 본 발명의 실시예에서 보는 바와 같이, 본 발명은 전기자동차에 설치된 모터(500)의 고정자 코일 대신 전기자동차의 외부에 설치된 리액터(410)를 활용하기 때문에 리액턴스 값의 섬세한 조절이 가능하며, 전기자동차의 전체적인 무게도 감소시킬 수 있다.However, as shown in the embodiment of the present invention of Figure 2, the present invention utilizes the reactor 410 installed on the outside of the electric vehicle instead of the stator coil of the motor 500 installed in the electric vehicle, it is possible to finely adjust the reactance value In addition, the overall weight of the electric vehicle can be reduced.

단상 절환 스위치(420)는 리액터(410), 전류변환수단(200) 및 삼상교류전원 사이에 위치하여, 전류전환수단에 공급되는 전원을 삼상과 비삼상 사이에서 전환시키는 역할을 한다. The single-phase switching switch 420 is located between the reactor 410, the current conversion means 200 and the three-phase AC power supply, and serves to switch the power supplied to the current conversion means between three and non-three phases.

단상 절환 스위치(420)는 도 3a와 같이, 삼상교류전원의 각 상 모두를 이용하는 충전하는 경우에는 제1 리액터(411) 측으로 스위칭하여 리액터(410)와 전류변환수단(200)을 전기적으로 연결한다. 그리고 도 3b와 같이, 삼상교류전원 중 삼상 전원이 아닌 비삼상 전원을 이용하여 배터리(100)를 충전하는 경우에는, 단상 절환 스위치(420)가 제1 리액터(411)로부터 중성선으로 스위칭되어 전류변환수단(200)과 삼상교류전원의 중성선을 전기적으로 연결한다.As shown in FIG. 3A, the single-phase switching switch 420 switches to the first reactor 411 to electrically connect the reactor 410 and the current converting means 200 when charging using each phase of the three-phase AC power supply. . In addition, as shown in FIG. 3B, when the battery 100 is charged using a non-three-phase power source other than the three-phase power source among the three-phase AC power sources, the single-phase switching switch 420 is switched from the first reactor 411 to the neutral wire to convert the current. Electrically connecting the means 200 and the neutral wire of the three-phase AC power supply.

일반적으로 삼상사선 220V 교류 입력 조건에서는 전류변환수단(200)으로부터 360V이 공급되나, 단상 절환 스위치(420)가 삼상전원의 중성선과 연결됨으로써 360V 미만의 전원이 전류변환수단(200)으로부터 배터리(100)로 공급될 수 있다.In general, in the three-phase four-wire 220V AC input condition, 360V is supplied from the current conversion means 200, but a single-phase switching switch 420 is connected to the neutral wire of the three-phase power supply, the power of less than 360V from the current conversion means 200, the battery 100 Can be supplied.

모터(500)는 전류변환수단(200)에 연결되고, 배터리(100)로부터 전류변환수단(200)을 거쳐 공급된 교류를 이용하여 구동된다.The motor 500 is connected to the current converting means 200 and is driven by using an alternating current supplied from the battery 100 via the current converting means 200.

충방전 절환 스위치(300)는 전류변환수단(200), 리액터(410) 및 모터(500) 사이에 위치하여, 리액터(410)로부터 공급되는 전원을 전류전환수단에게 공급하여 배터리(100)를 충전하거나 전류전환수단으로부터 공급되는 교류를 모터(500)에 공급하여 배터리(100)를 방전하는 것을 결정하기 위해 스위칭한다. The charge / discharge switching switch 300 is located between the current conversion means 200, the reactor 410, and the motor 500, and supplies the power supplied from the reactor 410 to the current conversion means to charge the battery 100. Or switch to determine that the battery 100 is discharged by supplying alternating current supplied from the current switching means to the motor 500.

도 4a와 같이 배터리(100)가 충전되는 경우에는 제1 내지 제3 충방전 절환 스위치(310, 320, 330) 모두가 리액터(410) 측으로 스위칭되어 삼상교류전원으로부터 전원을 공급받고, 도 4b와 같이 배터리(100)가 방전되는 경우에는 제1 내지 제3 충방전 절환 스위치(310, 320, 330)가 모두 모터(500) 측으로 스위칭되어, 배터리(100) 전원을 모터(500)에 공급한다.When the battery 100 is charged as shown in FIG. 4A, all of the first to third charge / discharge switching switches 310, 320, and 330 are switched to the reactor 410 to receive power from the three-phase AC power supply. When the battery 100 is discharged as described above, all of the first to third charge / discharge switching switches 310, 320, and 330 are switched to the motor 500 to supply the battery 100 with power to the motor 500.

그리고 충방전 절환 스위치(300)는 단상 절환 스위치(420)와 함께 배터리(100) 충전 시 삼상교류전원을 단상교류전원으로 전환시키는 역할을 한다. 즉, 도 5와 같이, 제1 충방전 절환 스위치(310)는 단상 절환 스위치(420)와 연결되어 삼상교류전원의 중성선에 전기적으로 연결되고, 제2 충방전 절환 스위치(320)는 제2 리액터(412)에 연결되며, 제3 충방전 절환 스위치(330)는 오프될 수 있다. In addition, the charge / discharge switching switch 300 serves to switch the three-phase alternating current power supply to the single-phase alternating current power when the battery 100 is charged together with the single-phase switching switch 420. That is, as shown in FIG. 5, the first charge / discharge switching switch 310 is connected to the single-phase switching switch 420 to be electrically connected to the neutral line of the three-phase AC power supply, and the second charge / discharge switching switch 320 is the second reactor. The third charge / discharge switching switch 330 may be turned off.

이처럼 충방전 절환 스위치(300)와 단상 절환 스위치(420)를 동시에 이용하여 삼상교류전원에서 단상만을 추출하여 단상교류전원을 전류변환수단(200)에 입력할 수 있다. As such, the single-phase AC power source may be inputted to the current converting means 200 by extracting only the single phase from the three-phase AC power supply using the charge / discharge switching switch 300 and the single-phase switching switch 420 simultaneously.

이를 통해 220V 교류의 외부 입력 환경에서, 전류변환수단(200)의 출력 전압을 180V까지 낮게 제어할 수 있다. 더욱 상세하게, 하기의 식과 같이 낮은 전압 공급이 가능하다.Through this, in the external input environment of 220V AC, it is possible to control the output voltage of the current conversion means 200 to 180V. In more detail, a low voltage supply is possible as in the following equation.

220V 삼상 사선식 삼상 PWM 컨버터의 출력 전압의 경우, 하기의 식과 같이 357.8 V가 된다.In the case of the output voltage of the 220V three-phase four-wire three-phase PWM converter, it becomes 357.8V as shown in the following equation.

Figure pat00001
V
Figure pat00001
V

그러나 본 발명을 통해, 220V 삼상 사선식에서 1상과 중성선을 입력으로 하는 단상 PWM컨버터의 출력 전압은 하기의 식과 같이 179.6V로 낮게 제어될 수 있다.However, through the present invention, the output voltage of the single-phase PWM converter with a single phase and a neutral wire in the 220V three-phase four-wire can be controlled as low as 179.6V as shown in the following equation.

Figure pat00002
Figure pat00002

단, VDC는 출력 DC 전압Where V DC is the output DC voltage

VLPK는 입력 선간 전압의 피크치V LPK is the peak value of input line voltage

Dm은 PWM 신호의 변조 인덱스(Modulation Index), 0~1의 값을 가짐D m is the modulation index of the PWM signal and has a value between 0 and 1.

아울러, 반드시 제2 충방전 절환 스위치(320)가 제2 리액터(412)에 연결되고, 제3 충방전 절환 스위치(330)는 오픈(Open)되는 것에 한정될 필요는 없으며, 제3 충방전 절환 스위치(330)가 제3 리액터(413)에 연결되고 제2 충방전 절환 스위치(320)가 오픈되어도 무방하다.In addition, the second charge / discharge switching switch 320 is not necessarily limited to being connected to the second reactor 412, the third charge-discharge switching switch 330 is open, the third charge-discharge switching The switch 330 may be connected to the third reactor 413 and the second charge / discharge switching switch 320 may be opened.

본 발명을 통하여, 차량 내부 모터(500) 구동 인버터를 양방향으로 활용하고, 별도의 추가 스위칭 회로 없이 기존 인버터 회로만을 사용하여 넓은 범위의 출력 전압을 갖는 경량의 전기자동차 충전장치를 제공할 수 있다. 또한, AC/DC PWM 컨버터를 사용하여 정류하므로 파워 퀄리티를 증가시킬 수 있으며, 인버터 스위치 6개를 모두 균형적으로 사용할 수 있어 전체적인 인버터의 수명을 연장시킬 수 있다.Through the present invention, it is possible to provide a light-weight electric vehicle charging apparatus having a wide range of output voltages by utilizing the in-vehicle motor 500 driving inverter in both directions and using only the existing inverter circuit without an additional additional switching circuit. In addition, rectification using an AC / DC PWM converter increases power quality, and the use of all six inverter switches in a balanced manner extends the life of the overall inverter.

이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, Of the right.

100 : 배터리 200 : 전류변환수단
300 : 충방전 절환 스위치 310 : 제1 충방전 절환 스위치
320 : 제2 충방전 절환 스위치 330 : 제3 충방전 절환 스위치
400 : 외부충전장치 410 : 리액터
411 : 제1 리액터 412 : 제2 리액터
413 : 제3 리액터 420 : 단상 절환 스위치
500 : 모터
100: battery 200: current conversion means
300: charge and discharge switching switch 310: the first charge and discharge switching switch
320: second charge-discharge switching switch 330: third charge-discharge switching switch
400: external charging device 410: reactor
411: first reactor 412: second reactor
413: third reactor 420: single-phase switching switch
500: motor

Claims (5)

삼상교류전원을 이용하여 전기자동차의 배터리를 충전하는 장치에 있어서,
전류의 흐름 방향에 따라 전기자동차의 모터를 제어하는 인버터 또는 교류를 직류로 변환하는 컨버터 역할을 하는 전류변환수단;
상기 삼상교류전원의 각 상에 연결되고 리액턴스 값이 조절가능한 리액터;
상기 삼상교류전원에서 입력되는 삼상전원을 변환시키기 위해, 상기 리액터, 상기 삼상교류전원의 중성선 및 상기 전류변환수단 사이에 위치하여 상기 리액터와 상기 삼상교류전원의 중성선 사이를 스위칭하는 단상 절환 스위치; 및
상기 전류변환수단에 연결되어 전기자동차를 구동하는 모터;를 포함하는 것을 특징으로 하는 전기자동차 충전장치
In the device for charging a battery of an electric vehicle using a three-phase AC power supply,
Current converting means serving as an inverter for controlling the motor of the electric vehicle or a converter for converting alternating current into direct current according to the direction of current flow;
A reactor connected to each phase of the three-phase AC power supply and having a reactance value adjustable;
A single-phase switching switch located between the reactor, the neutral line of the three-phase AC power source and the current converting means to switch the three-phase power source input from the three-phase AC power source to switch between the reactor and the neutral wire of the three-phase AC power source; And
An electric vehicle charging device comprising: a motor connected to the current conversion means to drive an electric vehicle.
제1 항에 있어서,
상기 배터리의 충전과 방전을 전환시키기 위해, 상기 전류변환수단, 상기 리액터 및 상기 모터 사이에서 스위칭하는 충방전 절환 스위치를 더 포함하는 것을 특징으로 하는 전기자동차 충전장치.
The method according to claim 1,
And a charge / discharge switching switch for switching between the current converting means, the reactor, and the motor to switch between charging and discharging the battery.
제2 항에 있어서,
상기 전류변환수단에 단상 전원을 공급하기 위한 상기 충방전 절환 스위치는,
상기 단상 절환 스위치가 상기 중성선 측으로 스위칭 된 경우, 상기 단상 절환 스위치 측으로 스위칭 연결하는 제1 충방전 절환 스위치;
상기 리액터 측으로 스위칭 연결하는 제2 충방전 절환 스위치; 및
상기 리액터 측으로 스위칭 연결을 하지 않는 제3 충방전 절환 스위치를 포함하여 구성하는 것을 특징으로 하는 전기자동차 충전장치.
The method of claim 2,
The charge-discharge switching switch for supplying single-phase power to the current conversion means,
A first charging / discharging switching switch which switches to the single phase switching switch side when the single phase switching switch is switched to the neutral line side;
A second charge / discharge switching switch connected to the reactor for switching; And
And a third charging / discharging switching switch which does not have a switching connection to the reactor.
제1 항에 있어서,
상기 전류변환수단이 교류를 직류로 변환하는 컨버터 역할을 하는 경우, AC/DC PWM(Pulse Width Modulation) 컨버터로서 동작하는 것을 특징으로 하는 전기자동차 충전장치.
The method according to claim 1,
When the current conversion means serves as a converter for converting alternating current into direct current, electric vehicle charging apparatus characterized in that it operates as an AC / DC Pulse Width Modulation (PWM) converter.
제1 항에 있어서,
상기 리액터는 상기 전기자동차의 외부에 위치하는 것을 특징으로 하는 전기자동차 충전장치.
The method according to claim 1,
The reactor is an electric vehicle charging apparatus, characterized in that located on the outside of the electric vehicle.
KR1020110146876A 2011-12-30 2011-12-30 Electric vehicle charing apparatus KR20130078106A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020110146876A KR20130078106A (en) 2011-12-30 2011-12-30 Electric vehicle charing apparatus
PCT/KR2012/011461 WO2013100559A1 (en) 2011-12-30 2012-12-26 Electric vehicle charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110146876A KR20130078106A (en) 2011-12-30 2011-12-30 Electric vehicle charing apparatus

Publications (1)

Publication Number Publication Date
KR20130078106A true KR20130078106A (en) 2013-07-10

Family

ID=48697926

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110146876A KR20130078106A (en) 2011-12-30 2011-12-30 Electric vehicle charing apparatus

Country Status (2)

Country Link
KR (1) KR20130078106A (en)
WO (1) WO2013100559A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104608649A (en) * 2015-02-06 2015-05-13 山东大学 Integrated type electrical vehicle electrical energy conversion system
KR20160024594A (en) * 2014-08-26 2016-03-07 엘지전자 주식회사 Driving module for vehicle
US9902275B2 (en) 2013-12-09 2018-02-27 Hanwha Land Systems Co., Ltd. Method and device for reciprocally supplying electricity between electric vehicle and other vehicle
KR20190115831A (en) * 2018-04-04 2019-10-14 현대자동차주식회사 Battery charger for electric vehicle
KR20190115598A (en) * 2018-04-03 2019-10-14 현대자동차주식회사 Battery charger for electric vehicle
CN110690749A (en) * 2018-07-05 2020-01-14 现代自动车株式会社 Charging device of electric automobile
KR20200105556A (en) 2019-02-28 2020-09-08 감기백 Battery charging device and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111409482B (en) * 2020-03-30 2023-01-31 上海电气集团股份有限公司 Integrated circuit of vehicle-mounted charger and motor controller and electric vehicle
CA3179533A1 (en) 2020-04-10 2021-10-14 Bae Systems Controls Inc. Onboard field weakened ac charger
CN111614267A (en) * 2020-06-17 2020-09-01 深圳威迈斯新能源股份有限公司 DCDC conversion circuit suitable for wide input voltage and vehicle-mounted charger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06178407A (en) * 1992-12-08 1994-06-24 Kyushu Electric Power Co Inc Vehicle-borne charger for electric vehicle
JP3178146B2 (en) * 1992-12-25 2001-06-18 富士電機株式会社 Electric vehicle electric system
KR100657473B1 (en) * 2004-08-25 2006-12-13 엘지전자 주식회사 Inrush protection circuit and its method for inverter
KR101479241B1 (en) * 2008-08-08 2015-01-05 삼성전자 주식회사 Single-phase control circuit of three phase power supply
KR20110105034A (en) * 2010-03-18 2011-09-26 전자부품연구원 Electric vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9902275B2 (en) 2013-12-09 2018-02-27 Hanwha Land Systems Co., Ltd. Method and device for reciprocally supplying electricity between electric vehicle and other vehicle
KR20160024594A (en) * 2014-08-26 2016-03-07 엘지전자 주식회사 Driving module for vehicle
US10044247B2 (en) 2014-08-26 2018-08-07 Lg Electronics Inc. Driving module for vehicles
CN104608649A (en) * 2015-02-06 2015-05-13 山东大学 Integrated type electrical vehicle electrical energy conversion system
KR20190115598A (en) * 2018-04-03 2019-10-14 현대자동차주식회사 Battery charger for electric vehicle
KR20190115831A (en) * 2018-04-04 2019-10-14 현대자동차주식회사 Battery charger for electric vehicle
CN110341509A (en) * 2018-04-04 2019-10-18 现代自动车株式会社 Charging unit for electric vehicle
CN110341509B (en) * 2018-04-04 2023-06-09 现代自动车株式会社 Charging device for electric vehicle
CN110690749A (en) * 2018-07-05 2020-01-14 现代自动车株式会社 Charging device of electric automobile
KR20200004963A (en) * 2018-07-05 2020-01-15 현대자동차주식회사 Battery charger for electric vehicle
KR20200105556A (en) 2019-02-28 2020-09-08 감기백 Battery charging device and method

Also Published As

Publication number Publication date
WO2013100559A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
KR20130078106A (en) Electric vehicle charing apparatus
CN109687722B (en) Integrated multi-mode power converter for electric automobile and control method thereof
US10771001B2 (en) Controller for an inductive load having one or more inductive windings
KR101387717B1 (en) Battery charger and electric vehicle having the same
JP4770798B2 (en) Power supply
KR101553747B1 (en) Inverter-charger combined device for electric vehicles
US9000711B2 (en) Power converter
US9013168B2 (en) System for transferring energy from an energy source and method of making same
CN103647483B (en) The power conversion unit that a kind of switch reluctance motor drives and battery charges
CN103647465B (en) A kind of power conversion unit
KR20120125886A (en) integrated module of inverter and charger circuit
CN103684202A (en) Motor controller having driving, charging and discharging functions
WO2007041948A2 (en) An starting and generating multiplying control system, and a method for using the system, and an electromotion mixed dynamic vehicle which uses the system and the method
CN203708154U (en) Power conversion device integrating switch reluctance motor driving and battery charging
WO2014026460A1 (en) Conversion device integrated with switched reluctance motor drive and low-voltage battery charging
CN113400959B (en) Electric drive reconstruction type charging system for electric vehicle considering secondary power pulsation suppression
JPS5961402A (en) Charger for battery driven vehicle
AU2010269743A1 (en) Electric vehicle control device
CN203708127U (en) Power conversion device
KR102111092B1 (en) Inverter-charger combined device and controlling method thereof
JP2012090458A (en) Power supply device
Niakinezhad et al. A new modular asymmetrical half-bridge switched reluctance motor integrated drive for electric vehicle application
JP2012044765A (en) Battery controller and vehicle
JP5629667B2 (en) Multi-phase converter
KR20210102723A (en) Integrated Power Conversion System for Electric Vehicle

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right