KR20110034728A - Method for continuous surface treatments of carbon fibers by atmospheric pressure plasma - Google Patents

Method for continuous surface treatments of carbon fibers by atmospheric pressure plasma Download PDF

Info

Publication number
KR20110034728A
KR20110034728A KR1020090092125A KR20090092125A KR20110034728A KR 20110034728 A KR20110034728 A KR 20110034728A KR 1020090092125 A KR1020090092125 A KR 1020090092125A KR 20090092125 A KR20090092125 A KR 20090092125A KR 20110034728 A KR20110034728 A KR 20110034728A
Authority
KR
South Korea
Prior art keywords
carbon fiber
plasma
atmospheric pressure
surface treatment
pressure plasma
Prior art date
Application number
KR1020090092125A
Other languages
Korean (ko)
Inventor
박수진
장용환
김병주
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020090092125A priority Critical patent/KR20110034728A/en
Publication of KR20110034728A publication Critical patent/KR20110034728A/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/36Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to carbon fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

PURPOSE: A method for continuously treating the surface of carbon fibers using an atmospheric pressure plasma device is provided to manufacture carbon fiber having excellent interface coherence since electric energy, processing time, gas mixing rate, and distance between electrode and carbon fiber are optimized. CONSTITUTION: A method for continuously treating the surface of carbon fibers using an atmospheric pressure plasma device comprises the following steps. Carbon fiber material comprises a carbon black, a carbon fiber, or fullerene. The intensity of atmospheric pressure plasma is 10-600W. The processing time of the atmospheric pressure plasma is 1-600sec. The atmosphere in plasma processing is mixed with helium gas 80-99.99% and oxygen gas 0.01-20%. The distance between an electrode and the carbon fiber material is 1-50mm. The frequency in the plasma processing is 13.56 MHz.

Description

연속식 상압플라즈마 장치를 이용한 탄소섬유의 표면처리방법{Method for continuous surface treatments of carbon fibers by atmospheric pressure plasma}Method for continuous surface treatments of carbon fibers by atmospheric pressure plasma}

본 발명은 연속식 상압플라즈마 장치를 이용한 탄소섬유의 표면처리방법에 관한 것으로, 더욱 상세하게는 탄소섬유의 표면처리방법에 있어서, 상압플라즈마 장치를 사용하여 표면처리를 하되, 플라즈마 처리시의 전력량, 처리시간, 가스혼합비율, 전극과 탄소섬유와의 거리 등을 최적화 하여 계면결합력이 우수한 탄소섬유를 제조할 수 있는 탄소섬유의 표면처리방법에 관한 것이다. The present invention relates to a surface treatment method of carbon fibers using a continuous atmospheric plasma apparatus, and more particularly, in the surface treatment method of carbon fibers, the surface treatment using an atmospheric pressure plasma apparatus, the amount of power during plasma treatment, The present invention relates to a carbon fiber surface treatment method capable of producing carbon fibers having excellent interfacial bonding force by optimizing treatment time, gas mixing ratio, distance between electrode and carbon fiber, and the like.

우주항공산업, 핵, 일반기술 및 고기술 분야와 베어링, 기어, 그리고 자동차 동체 등과 같은 운송 분야에서 고분자 복합재료가 많이 이용되고 있다.Polymer composites are widely used in the aerospace, nuclear, general and high technology sectors as well as in the transportation sectors such as bearings, gears, and automotive fuselage.

고분자 복합재료란, 고분자, 금속, 세라믹 및 탄소재료 등에서 얻은 하나 또는 그 이상의 강화제와 연속상인 고분자 수지 결합재 또는 기지로 구성된 시스템을 의미한다.The polymer composite material means a system composed of a polymer resin binder or matrix in continuous phase with one or more reinforcing agents obtained from polymers, metals, ceramics and carbon materials.

이와 같은 시스템에서 강화제는 흔히 섬유상과 충전상으로 나눌 수 있으며, 현재 선진 고분자 복합재료에서는 탄소섬유가 주종을 이루고 있다.In these systems, reinforcing agents are often divided into fibrous and packed phases, and carbon fiber is dominated by advanced polymer composites.

탄소섬유는 내열성, 화학적 안정성, 전기전도성, 유연성 등 다양하게 우수한 특징을 가지고 있어 여러 산업분야에서 폭넓은 응용이 가능하고, 특히 우수한 계면 결합력을 가지는 탄소섬유는 고분자 복합재료에 주재료로 사용될 만한 물질로 연구되고 있다.Carbon fiber has various characteristics such as heat resistance, chemical stability, electrical conductivity, and flexibility, so that it can be widely applied in various industrial fields. Especially, carbon fiber having excellent interfacial bonding strength can be used as a main material for polymer composite materials. Is being studied.

탄소섬유의 계면결합력을 향상시키기 위한 탄소섬유의 표면처리방법은 기상산화, 액상산화, 전기화학적 산화 등이 있다. 액체를 이용한 산화법과 전기 화학적 처리방법은 화학약품에 의한 처리 후 발생하는 폐수와 장시간의 전기화학적 처리 및 관리비용이 필요하다는 단점이 있기 때문에 공정이 간단하고, 부산물이 거의 없으며, 섬유 자체 물성의 손상이 가장 적은 기상산화(플라즈마)법이 최근 주로 사용된다.Surface treatment methods of carbon fibers to improve the interfacial bonding strength of the carbon fibers include gas phase oxidation, liquid phase oxidation, electrochemical oxidation. Oxidation and electrochemical treatment using liquids have the disadvantage of requiring wastewater generated after chemical treatment and long-term electrochemical treatment and maintenance costs, so the process is simple, there are few by-products, and the property of fiber itself is damaged. This least vapor phase oxidation (plasma) method is mainly used recently.

그러나, 온도, 압력 등에 의한 플라즈마 발생의 불안정한 조건들로 인해 연속식 플라즈마 장치를 구성하는데는 어려움이 있다.However, there are difficulties in constructing a continuous plasma apparatus due to unstable conditions of plasma generation due to temperature, pressure, and the like.

이에 본 발명자들은 탄소섬유의 계면결합력을 향상시킬 수 있는 상압플라즈마 장치를 이용한 탄소섬유의 표면처리 방법을 최적화 하고자 예의 검토한 결과, 전력의 세기(전력량), 가스 비율, 처리시간, 전극과 탄소섬유 시편 간의 거리가 최적의 조건으로 고정된 연속식 상압플라즈마 장치로부터 발생되는 상압플라즈마를 이용하여 탄소섬유 표면을 처리함에 따라 탄소섬유의 접착력이 개선되는 것을 확인하고, 본 발명을 완성하였다. Accordingly, the present inventors have diligently studied to optimize the surface treatment method of the carbon fiber using the atmospheric pressure plasma device that can improve the interfacial bonding force of the carbon fiber, the power intensity (power amount), gas ratio, treatment time, electrode and carbon fiber It was confirmed that the adhesive force of the carbon fiber is improved by treating the surface of the carbon fiber by using the atmospheric pressure plasma generated from the continuous atmospheric plasma device in which the distance between the specimens is fixed at the optimum condition, and completed the present invention.

결국, 본 발명의 주된 목적은 연속식 상압플라즈마장치를 이용한 탄소섬유의 표면처리방법을 제공하는데 있다. After all, the main object of the present invention is to provide a method for surface treatment of carbon fibers using a continuous atmospheric plasma apparatus.

상기 목적을 달성하기 위하여, 본 발명은 연속식 상압플라즈마장치를 이용한 탄소섬유의 표면처리방법을 제공한다.In order to achieve the above object, the present invention provides a carbon fiber surface treatment method using a continuous atmospheric plasma apparatus.

본 발명은 또한 상기 방법에 따라 표면처리된 탄소섬유를 제공한다.The present invention also provides a carbon fiber surface treated according to the above method.

본 발명은 연속식 상압플라즈마장치를 이용하여 탄소섬유의 표면을 처리하는 방법을 제공하는 효과가 있다.The present invention has the effect of providing a method for treating the surface of the carbon fiber using a continuous atmospheric plasma device.

본 발명에 따른 연속식 상압플라즈마장치를 이용한 탄소섬유의 표면처리방법은 플라즈마가 탄소섬유에 주는 영향력이 좋은 최적의 조건을 사용함으로써 높은 계면결합력을 갖는 탄소섬유를 제조할 수 있다. The surface treatment method of the carbon fiber using the continuous atmospheric pressure plasma apparatus according to the present invention can produce a carbon fiber having a high interfacial bonding force by using the optimum conditions that the plasma has a high impact on the carbon fiber.

또한, 본 발명에 따른 방법은 진공이 필요 없는 상온, 상압에서 실시하므로 공정의 안정성이 부여될 뿐만 아니라, 상압플라즈마 처리를 연속적으로 수행함으로써 공정 시간을 단축하고 제조원가를 낮출 수 있다. In addition, the method according to the present invention is carried out at room temperature and atmospheric pressure, which does not require vacuum, and thus not only the stability of the process is provided but also the process time can be shortened and the manufacturing cost can be lowered by continuously performing the atmospheric pressure plasma treatment.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 연속식 상압플라즈마장치를 이용한 탄소섬유의 표면처리방법을 제공한다. The present invention provides a method for treating carbon fibers using a continuous atmospheric plasma apparatus.

구체적으로, 본 발명은 플라즈마 발생에 영향을 주는 인자들을 포함하여 화 학적 반응을 이용한 플라즈마 발생에 탄소섬유를 노출시키는 것을 포함하는 연속식 상압플라즈마장치를 이용한 탄소섬유의 표면처리방법을 제공한다.Specifically, the present invention provides a method for surface treatment of carbon fibers using a continuous atmospheric pressure plasma apparatus including exposing the carbon fibers to plasma generation using a chemical reaction, including factors affecting plasma generation.

본 발명에 있어서, 상기 탄소섬유는 카본 블랙, 카본 섬유 또는 풀러렌을 포함할 수 있다.In the present invention, the carbon fiber may include carbon black, carbon fiber or fullerene.

또한, 플라즈마 처리시의 상압플라즈마 세기(전력량)는 10 내지 600 W인 것이 바람직하다. 상압플라즈마의 세기가 10 W 미만에서는 플라즈마의 발생량이 너무 적어 섬유 표면에 영향을 주는데 적합하지 못하고, 600 W를 초과하는 경우에는 섬유 표면에 손상을 주며 섬유가 끊어지고 타버릴 우려가 있어 바람직하지 못하다. Moreover, it is preferable that the atmospheric pressure plasma intensity (electric power amount) at the time of plasma processing is 10-600W. If the intensity of the atmospheric pressure plasma is less than 10 W, the amount of plasma generated is too low to be suitable for affecting the fiber surface, and if it exceeds 600 W, it is not preferable because the fiber surface may be damaged and the fiber may be broken and burned. .

또한, 플라즈마 처리시의 상압플라즈마 처리 시간은 1 내지 600초인 것이 바람직하다. 1초 미만에서는 화학적 반응이 일어나기 어려우며, 600초를 초과하면 섬유 표면이 손상되어 섬유 자체가 타버리는 현상이 발생되기 때문이다.Moreover, it is preferable that the atmospheric pressure plasma processing time at the time of plasma processing is 1 to 600 second. This is because chemical reactions are less likely to occur in less than 1 second, and in excess of 600 seconds, the surface of the fiber is damaged and the fiber itself burns out.

또한, 플라즈마 처리시 분위기는 비활성 가스와 활성가스가 혼합된 혼합가스인 것이 바람직하고, 더욱 바람직하게는 헬륨가스와 산소가스가 혼합된 분위기에서 처리되는 것이 좋고, 가장 바람직하게는 헬륨가스 80 내지 99.99% 및 산소가스 0.01 내지 20%의 비율로 이루어지는 혼합가스 분위기에서 처리되는 것이 좋다. 산소가스의 비율이 0.01% 미만에서는 탄소섬유 표면에 산소를 함유하는 극성 관능기가 도입되는데 산소 가스가 영향을 주기 어려우며, 20%를 초과하면 산소가스의 양이 플라즈마 발생을 불안정하게 하기 때문에 바람직하지 않다.In addition, it is preferable that the atmosphere during the plasma treatment is a mixed gas in which an inert gas and an active gas are mixed, and more preferably, it is treated in an atmosphere in which helium gas and oxygen gas are mixed, and most preferably helium gas 80 to 99.99. It is preferred to be treated in a mixed gas atmosphere composed of% and oxygen gas at a ratio of 0.01 to 20%. If the ratio of oxygen gas is less than 0.01%, the polar functional group containing oxygen is introduced to the surface of the carbon fiber, but it is difficult to influence the oxygen gas, and if it exceeds 20%, the amount of oxygen gas is undesirably unstable to generate plasma. .

또한, 플라즈마 처리시 전극과 탄소섬유와의 거리는 1 내지 50 ㎜인 것이 바람직하다. 탄소섬유와 전극간의 거리가 1 ㎜ 보다 짧을 경우, 처리가 어렵고 반대 로 50 ㎜를 넘을 경우에는 플라즈마의 세기가 약해져서 탄소섬유에 영향을 주기 어렵다.In the plasma treatment, the distance between the electrode and the carbon fiber is preferably 1 to 50 mm. When the distance between the carbon fiber and the electrode is shorter than 1 mm, the treatment is difficult. On the contrary, when the distance between the carbon fiber and the electrode is larger than 50 mm, the strength of the plasma is weakened, and thus it is difficult to affect the carbon fiber.

또한, 플라즈마 처리시의 주파수는 플라즈마를 안정적으로 형성시키는 13.56 ㎒인 것이 바람직하며, 캐리어 가스의 주입량은 매스 플로우 컨트롤러(Mass Flow Controller, MFC)를 사용하여 일정하게 유지시키는 것이 바람직하다. In addition, the frequency during the plasma treatment is preferably 13.56 MHz to stably form the plasma, and the injection amount of the carrier gas is preferably kept constant using a mass flow controller (MFC).

본 발명은 또한 상기 방법에 따라 표면처리된 탄소섬유를 제공한다.The present invention also provides a carbon fiber surface treated according to the above method.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

측정예 1. 연속식 상압플라즈마장치로 표면처리된 탄소섬유의 표면특성분석Measurement Example 1. Surface Characterization of Carbon Fibers Surface-treated by Continuous Atmospheric Pressure Plasma

본 발명에 따라 표면처리된 탄소섬유의 표면특성을 분석하기 위하여, 탄소섬유의 관능기 변화를 FT-IR(Fourier Transform-Infrared Spectroscope; Hartmann&Brown Model Bomen MB 102, 미국)를 사용하여 관찰하였다(도 2 참조). In order to analyze the surface characteristics of the carbon fiber surface-treated according to the present invention, the functional group change of the carbon fiber was observed using a Fourier Transform-Infrared Spectroscope (Hartmann & Brown Model Bomen MB 102, USA) (see Fig. 2). ).

측정예 2. 연속식 상압플라즈마장치로 표면처리된 탄소섬유의 표면 자유에너지 측정Measurement Example 2 Measurement of Surface Free Energy of Carbon Fiber Surface-treated by Continuous Atmospheric Pressure Plasma

본 발명에 따라 표면처리된 탄소섬유의 표면 자유에너지 변화는, 표면장력 측정 장치를 사용한 sorption 방법(Kruss Processor Tensionmeter K100, Kruss Gmbh, 독일)으로 상온에서 탄소섬유의 표면 자유 에너지를 측정하였다. 이때, 접촉각 측정을 위해서 젖음액으로는 n-헥산(hexane), 에틸렌글리콜(ethylene glycol), 디요오드메탄(diiodomethane)을 사용하였고, 각각 10회 반복 측정하였으며, 얻어진 결과는 평균값으로 나타내었다(표 1 참조).The surface free energy change of the carbon fiber surface treated according to the present invention was measured by the sorption method (Kruss Processor Tensionmeter K100, Kruss Gmbh, Germany) using the surface tension measuring device at room temperature. In this case, n-hexane, ethylene glycol, and diiodomethane were used as wet liquids for measuring contact angles, and the results were repeated 10 times. 1).

측정예 3. 연속식 상압플라즈마장치로 표면처리된 탄소섬유의 성분 분석Measurement Example 3 Analysis of Components of Carbon Fiber Surface-treated by Continuous Atmospheric Pressure Plasma Equipment

본 발명에 따라 표면처리된 탄소섬유의 화학적 성분 분석을 위해, XPS(LAB MK-Ⅱ, VG Scientific Co., 미국)를 이용하여 X-ray 소스로는 Mg, Ka를 사용하고, 챔버 내 압력을 10-1~10-9 ㎜Hg으로 조절하여 분석하였다(표 1 참조).For chemical component analysis of surface treated carbon fibers according to the present invention, XPS (LAB MK-II, VG Scientific Co., USA) was used as the X-ray source using Mg, Ka, and the pressure in the chamber The analysis was adjusted to 10 −1 to 10 −9 mmHg (see Table 1).

실시예 1. Example 1.

본 발명에서 탄소섬유는 태광산업에서 생산된 폴리아크릴로니트릴(polyacrylonitrile, PAN)계 고강도 탄소섬유(TZ-307)를 아세톤으로 2시간 동안 세척한 후 진공오븐에서 건조하여 전처리한 장섬유를 사용하여 다음과 같이 플라즈마 처리하였다.In the present invention, the carbon fiber is a polyacrylonitrile (PAN) -based high-strength carbon fiber (TZ-307) produced in the Taekwang industry by washing with acetone for 2 hours and dried in a vacuum oven using a pre-treated long fiber Plasma treatment was performed as follows.

상기 플라즈마 처리는 상압플라즈마 발생장치(ATMOSTM-multi, Plasmart, 한국) 사용하여, 산소를 1%로 함유한 헬륨(99%) 가스를 캐리어 가스로 이용하였다. 주파수는 플라즈마를 안정적으로 형성시키는 13.56 ㎒로 고정하였고, 전압을 250 W 를 이용하였다. 또한, 캐리어 가스의 주입량은 매스 플로우 컨트롤러(MFC)를 사용하여 5 ℓ/분으로 유지하였고, 전극과 탄소섬유간의 거리는 30 ㎜로 하였으며, 처리시간은 30초로 1회 처리하였다.In the plasma treatment, an atmospheric pressure plasma generator (ATMOSTM-multi, Plasmart, Korea) was used, and a helium (99%) gas containing 1% oxygen was used as a carrier gas. The frequency was fixed at 13.56 MHz to stably form the plasma, and the voltage was used at 250 W. In addition, the injection amount of the carrier gas was maintained at 5 L / min using a mass flow controller (MFC), the distance between the electrode and the carbon fiber was 30 mm, and the treatment time was treated once with 30 seconds.

실시예 2.Example 2.

상기 실시예 1과 동일한 과정으로 실시하되, 플라즈마의 전압을 100 W로 조정하여 1회 표면처리 하였다. The same process as in Example 1 was performed, but the surface treatment was performed once by adjusting the voltage of the plasma to 100 W.

실시예 3.Example 3.

상기 실시예 1과 동일한 과정으로 실시하되, 플라즈마의 전압을 150 W로 조정하여 1회 표면처리 하였다. The same process as in Example 1 was performed, but the surface treatment was performed once by adjusting the voltage of the plasma to 150 W.

실시예 4.Example 4.

상기 실시예 1과 동일한 과정으로 실시하되, 플라즈마의 전압을 200 W로 조정하여 1회 표면처리 하였다. The same process as in Example 1 was performed, but the surface treatment was performed once by adjusting the voltage of the plasma to 200 W.

실시예 5.Example 5.

상기 실시예 1과 동일한 과정으로 실시하되, 플라즈마 처리시간을 5초로 조정하여 1회 표면처리 하였다. The same process as in Example 1 was carried out, but the plasma treatment time was adjusted to 5 seconds to perform one surface treatment.

실시예 6.Example 6.

상기 실시예 1과 동일한 과정으로 실시하되, 플라즈마 처리시간을 15초로 조정하여 1회 표면처리 하였다. The same process as in Example 1 was carried out, but the plasma treatment time was adjusted to 15 seconds and subjected to surface treatment once.

실시예 7. Example 7.

상기 실시예 1과 동일한 과정으로 실시하되, 캐리어 가스의 산소 가스를 0.3%로 조정하여 1회 표면처리 하였다. The same process as in Example 1 was carried out, but the surface treatment was performed once by adjusting the oxygen gas of the carrier gas to 0.3%.

실시예 8.Example 8.

상기 실시예 1과 동일한 과정으로 실시하되, 캐리어 가스의 산소 가스를 0.5%로 조정하여 1회 표면처리 하였다. The same process as in Example 1 was carried out, but the surface treatment was performed once by adjusting the oxygen gas of the carrier gas to 0.5%.

실시예 9.Example 9.

상기 실시예 1과 동일한 과정으로 실시하되, 캐리어 가스의 산소 가스를 5%로 조정하여 1회 표면처리 하였다. The same process as in Example 1 was carried out, but the surface treatment was performed once by adjusting the oxygen gas of the carrier gas to 5%.

비교예 1.Comparative Example 1.

상기 실시예 1과 동일한 과정으로 실시하되, 플라즈마의 전압을 9 W로 조정하여 1회 표면처리 하였다. The same process as in Example 1 was carried out, but the surface voltage was adjusted once by adjusting the voltage of the plasma to 9 W.

비교예 2.Comparative Example 2

상기 실시예 1과 동일한 과정으로 실시하되, 플라즈마 처리 시간을 1초로 조정하여 1회 표면처리 하였다. The same process as in Example 1 was carried out, but the surface treatment was performed once by adjusting the plasma treatment time to 1 second.

비교예 3.Comparative Example 3

상기 실시예 1과 동일한 과정으로 실시하되, 캐리어 가스의 산소 가스를 0.01%로 조정하여 1회 표면처리 하였다. The same process as in Example 1 was carried out, but the surface treatment was performed once by adjusting the oxygen gas of the carrier gas to 0.01%.

비교예 4.Comparative Example 4.

상기 실시예 1과 동일한 과정으로 실시하되, 플라즈마 전압을 600 W로 조정하여 1회 표면처리 하였다. The same process as in Example 1 was carried out, but the plasma voltage was adjusted to 600 W and subjected to surface treatment once.

비교예 5.Comparative Example 5.

상기 실시예 1과 동일한 과정으로 실시하되, 플라즈마 처리 시간을 600초로 조정하여 1회 표면처리 하였다. The same process as in Example 1 was carried out, but the plasma treatment time was adjusted to 600 seconds to perform one surface treatment.

비교예 6.Comparative Example 6.

상기 실시예 1과 동일한 과정으로 실시하되, 캐리어 가스의 산소 가스를 20%로 조정하여 1회 표면처리 하였다. The same process as in Example 1 was carried out, but the surface treatment was performed once by adjusting the oxygen gas of the carrier gas to 20%.

비교예 7.Comparative Example 7.

상기 실시예 1과 동일한 과정으로 실시하되, 섬유와 전극간의 거리를 60 ㎜로 조정하여 1회 표면처리 하였다. The same procedure as in Example 1 was carried out, but the surface treatment was performed once by adjusting the distance between the fiber and the electrode to 60 mm.

하기의 표 1은 본 발명에 따른 연속식 상압플라즈마장치를 이용하여 표면처리한 탄소섬유의 젖음성을 나타내는 표면자유에너지와 산소 함량을 나타낸 결과이다.Table 1 below shows the results of surface free energy and oxygen content indicating the wettability of the carbon fiber surface treated using the continuous atmospheric plasma apparatus according to the present invention.

본 발명에 따라 표면처리된 탄소섬유의 표면자유에너지 및 산소 함량Surface Free Energy and Oxygen Content of Surface-treated Carbon Fibers According to the Present Invention 표면자유에너지[mJ/㎡]Surface free energy [mJ / ㎡] 산소함량(O1S/C1S)[%]Oxygen content (O 1S / C 1S ) [%] 실시예 1Example 1 6262 25.1825.18 실시예 2Example 2 4444 16.4616.46 실시예 3Example 3 4646 19.0019.00 실시예 4Example 4 5151 22.3622.36 실시예 5Example 5 4444 16.4416.44 실시예 6Example 6 4545 18.7218.72 실시예 7Example 7 6565 27.3627.36 실시예 8Example 8 6767 30.6130.61 실시예 9Example 9 6262 26.3326.33 비교예 1Comparative Example 1 4242 15.2815.28 비교예 2Comparative Example 2 4141 14.8014.80 비교예 3Comparative Example 3 4141 14.7414.74 비교예 4Comparative Example 4 3838 11.2411.24 비교예 5Comparative Example 5 3636 10.1410.14 비교예 6Comparative Example 6 4242 15.3815.38 비교예 7Comparative Example 7 4141 14.5014.50

상기에서 살펴본 바와 같이, 본 발명의 연속식 상압플라즈마 장치를 이용한 탄소섬유의 표면처리방법은, 탄소섬유의 소수성 표면에 극성 관능기를 도입하여 표면 엣칭을 통해 친수화가 부여되고, 젖음성이 향상되어 플라스틱과의 우수한 접착특성을 구현할 수 있는 것이 확인되었다. As described above, the carbon fiber surface treatment method using the continuous atmospheric pressure plasma apparatus of the present invention, by introducing a polar functional group to the hydrophobic surface of the carbon fiber is given hydrophilization through surface etching, the wettability is improved to It was confirmed that the excellent adhesion of the can be implemented.

이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. As described above, specific portions of the contents of the present invention have been described in detail, and for those skilled in the art, these specific techniques are merely preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

도 1은 본 발명의 연속식 상압플라즈마 장치를 개략적으로 도시한 것이며,Figure 1 schematically shows a continuous atmospheric plasma apparatus of the present invention,

도 2는 본 발명의 연속식 상압플라즈마 장치를 이용하여 표면처리 후 탄소섬유의 표면특성을 관찰한 FT-IR 결과이다(a: 실시예 1; b: 실시예 6; c: 실시예 5; 및 d: 비교예 1).Figure 2 is a FT-IR results of observing the surface characteristics of the carbon fiber after the surface treatment using the continuous atmospheric pressure plasma apparatus of the present invention (a: Example 1; b: Example 6; c: Example 5; and d: comparative example 1).

Claims (7)

연속식 상압플라즈마장치를 이용한 탄소섬유의 표면처리방법.Surface treatment method of carbon fiber using a continuous atmospheric plasma device. 제 1항에 있어서,The method of claim 1, 상기 탄소섬유는 카본 블랙, 카본 섬유 또는 풀러렌을 포함하는 것을 특징으로 하는 연속식 상압플라즈마장치를 이용한 탄소섬유의 표면처리방법. The carbon fiber is a surface treatment method of the carbon fiber using a continuous atmospheric plasma device, characterized in that containing carbon black, carbon fiber or fullerene. 제 1항에 있어서,The method of claim 1, 플라즈마 처리시의 상압플라즈마 세기(전력량)는 10 내지 600 W인 것을 특징으로 하는 연속식 상압플라즈마장치를 이용한 탄소섬유의 표면처리방법. The atmospheric pressure plasma intensity (power amount) during the plasma treatment is 10 to 600 W, the surface treatment method of the carbon fiber using a continuous atmospheric plasma apparatus. 제 1항에 있어서,The method of claim 1, 플라즈마 처리시의 상압플라즈마 처리 시간은 1 내지 600초인 것을 특징으로 하는 연속식 상압플라즈마장치를 이용한 탄소섬유의 표면처리방법. The atmospheric pressure plasma treatment time during the plasma treatment is 1 to 600 seconds, characterized in that the carbon fiber surface treatment method using a continuous atmospheric plasma apparatus. 제 1항에 있어서, The method of claim 1, 플라즈마 처리시 분위기는 헬륨가스 80 내지 99.99% 및 산소가스 0.01 내지 20%의 비율로 혼합된 것을 특징으로 하는 연속식 상압플라즈마장치를 이용한 탄소섬유의 표면처리방법. Atmosphere during the plasma treatment is a surface treatment method of carbon fiber using a continuous atmospheric plasma apparatus, characterized in that the mixture of helium gas 80 to 99.99% and oxygen gas 0.01 to 20%. 제 1항에 있어서,The method of claim 1, 플라즈마 처리시 전극과 탄소섬유와의 거리는 1 내지 50 ㎜인 것을 특징으로 하는 연속식 상압플라즈마장치를 이용한 탄소섬유의 표면처리방법. A method of surface treatment of carbon fibers using a continuous atmospheric plasma apparatus, characterized in that the distance between the electrode and the carbon fibers in the plasma treatment is 1 to 50 mm. 제 1항에 있어서,The method of claim 1, 플라즈마 처리시의 주파수는 13.56 ㎒인 것을 특징으로 하는 연속식 상압플라즈마장치를 이용한 탄소섬유의 표면처리방법. A surface treatment method of carbon fiber using a continuous atmospheric plasma apparatus, characterized in that the frequency during the plasma treatment is 13.56 MHz.
KR1020090092125A 2009-09-29 2009-09-29 Method for continuous surface treatments of carbon fibers by atmospheric pressure plasma KR20110034728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090092125A KR20110034728A (en) 2009-09-29 2009-09-29 Method for continuous surface treatments of carbon fibers by atmospheric pressure plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090092125A KR20110034728A (en) 2009-09-29 2009-09-29 Method for continuous surface treatments of carbon fibers by atmospheric pressure plasma

Publications (1)

Publication Number Publication Date
KR20110034728A true KR20110034728A (en) 2011-04-06

Family

ID=44043180

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090092125A KR20110034728A (en) 2009-09-29 2009-09-29 Method for continuous surface treatments of carbon fibers by atmospheric pressure plasma

Country Status (1)

Country Link
KR (1) KR20110034728A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140142255A1 (en) * 2012-11-19 2014-05-22 Ut-Battelle, Llc Atmospheric pressure plasma processing of polymeric materials utilizing close proximity indirect exposure
KR101472736B1 (en) * 2013-04-15 2014-12-15 주식회사 뉴파워 프라즈마 Treatments apparatus of carbon fibers
KR101658455B1 (en) * 2015-03-31 2016-09-23 서울과학기술대학교 산학협력단 Method for treating surface of carbon nanofibers
KR20170093819A (en) * 2014-12-09 2017-08-16 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Surface-treated carbon fiber, surface-treated carbon fiber strand, and manufacturing method therefor
KR102375409B1 (en) 2021-11-23 2022-03-16 한국섬유소재연구원 Surface treatment method of textile fabric using continuous atmospheric pressure plasma device
CN114318593A (en) * 2021-12-10 2022-04-12 山东大学 Fullerene-doped high-regularity carbon nanofiber and preparation method and application thereof
KR20230133517A (en) 2022-03-11 2023-09-19 한국섬유소재연구원 Dyeing method using environment-friendly pretreatment method applied with continuous atmospheric pressure plasma

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140142255A1 (en) * 2012-11-19 2014-05-22 Ut-Battelle, Llc Atmospheric pressure plasma processing of polymeric materials utilizing close proximity indirect exposure
US9447205B2 (en) * 2012-11-19 2016-09-20 Ut-Battelle, Llc Atmospheric pressure plasma processing of polymeric materials utilizing close proximity indirect exposure
US10138305B2 (en) 2012-11-19 2018-11-27 Ut-Battelle, Llc Atmospheric pressure plasma processing of polymeric materials utilizing close proximity indirect exposure
KR101472736B1 (en) * 2013-04-15 2014-12-15 주식회사 뉴파워 프라즈마 Treatments apparatus of carbon fibers
KR20170093819A (en) * 2014-12-09 2017-08-16 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Surface-treated carbon fiber, surface-treated carbon fiber strand, and manufacturing method therefor
KR101658455B1 (en) * 2015-03-31 2016-09-23 서울과학기술대학교 산학협력단 Method for treating surface of carbon nanofibers
KR102375409B1 (en) 2021-11-23 2022-03-16 한국섬유소재연구원 Surface treatment method of textile fabric using continuous atmospheric pressure plasma device
CN114318593A (en) * 2021-12-10 2022-04-12 山东大学 Fullerene-doped high-regularity carbon nanofiber and preparation method and application thereof
CN114318593B (en) * 2021-12-10 2023-01-17 山东大学 Fullerene-doped high-regularity carbon nanofiber and preparation method and application thereof
KR20230133517A (en) 2022-03-11 2023-09-19 한국섬유소재연구원 Dyeing method using environment-friendly pretreatment method applied with continuous atmospheric pressure plasma

Similar Documents

Publication Publication Date Title
KR20110034728A (en) Method for continuous surface treatments of carbon fibers by atmospheric pressure plasma
Liu et al. Surface modification of high performance PBO fibers using radio frequency argon plasma
Jia et al. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure
Baniya et al. Generation and characterization of an atmospheric-pressure plasma jet (APPJ) and its application in the surface modification of polyethylene terephthalate
De Geyter et al. Surface modification of poly-ε-caprolactone with an atmospheric pressure plasma jet
Nishi et al. High fracture resistance of carbon fiber treated by electron beam irradiation
JP2013049819A (en) Method of producing surface-modified fluororesin film, and surface-modified fluororesin film
WO2014132738A1 (en) Carbon film formation method, and carbon film
WO2016093250A1 (en) Surface-treated carbon fiber, surface-treated carbon fiber strand, and manufacturing method therefor
Lin et al. Study on CO2-based plasmas for surface modification of polytetrafluoroethylene and the wettability effects
Chen et al. Effects of oxygen plasma treatment power on surface properties of poly (p-phenylene benzobisoxazole) fibers
Allred et al. CO2 plasma modification of high-modulus carbon fibers and their adhesion to epoxy resins
Wang et al. Surface characteristic of poly (p‐phenylene terephthalamide) fibers with oxygen plasma treatment
CN106409450A (en) Method of increasing vacuum surface flashover voltage of insulating dielectric material and modified insulating dielectric material
Santos et al. Carbon fiber surface modification by plasma treatment for interface adhesion improvements of aerospace composites
Zhang et al. Plasma-grafting polymerization on carbon fibers and its effect on their composite properties
Kusano et al. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement
Kaczorowski et al. Effect of plasma treatment on the surface properties of polydimethylsiloxane
Bhatnagar et al. Physico-chemical characteristics of high performance polymer modified by low and atmospheric pressure plasma
Zhang et al. Surface analysis of oxygen plasma treated poly (p-phenylene benzobisoxazole) fibers
Yu et al. Rapid hydrophobicity recovery of contaminated silicone rubber using low-power microwave plasma in ambient air
Laput et al. Effect of low-temperature plasma barrier discharge on elemental composition and wettability of polylactic acid surface
CN108565081A (en) A method of for improving solid dielectric insulation vacuum edge flashing performance
Qin et al. Improved adhesion performances of aramid fibers with vinyl epoxy via supercritical carbon dioxide modification
CN115181340A (en) Electromagnetic shielding natural rubber for effectively constructing three-dimensional conductive network structure and preparation thereof

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20120710

Effective date: 20130508