KR20060012062A - Fabrication of magnetic nanoparticles by -irradiation - Google Patents

Fabrication of magnetic nanoparticles by -irradiation Download PDF

Info

Publication number
KR20060012062A
KR20060012062A KR1020040060767A KR20040060767A KR20060012062A KR 20060012062 A KR20060012062 A KR 20060012062A KR 1020040060767 A KR1020040060767 A KR 1020040060767A KR 20040060767 A KR20040060767 A KR 20040060767A KR 20060012062 A KR20060012062 A KR 20060012062A
Authority
KR
South Korea
Prior art keywords
nanoparticles
gamma
irradiation
feooh
magnetic nanoparticles
Prior art date
Application number
KR1020040060767A
Other languages
Korean (ko)
Inventor
강영수
Original Assignee
강영수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강영수 filed Critical 강영수
Priority to KR1020040060767A priority Critical patent/KR20060012062A/en
Publication of KR20060012062A publication Critical patent/KR20060012062A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/081Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing particle radiation or gamma-radiation
    • B01J19/082Gamma-radiation only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0038Manufacturing processes for forming specific nanostructures not provided for in groups B82B3/0014 - B82B3/0033
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

본 발명은 감마선 조사에 의해 상온상압에서 자성체 나노입자인 Fe3O4, CoFe2 O4, BaFe2O4의 제조 방법을 제공한다. 제조된 반도체 나노입자는 자성체 소자로 이용되며 본 발명에 의해 대량생산이 가능하다.The present invention provides a method for producing magnetic nanoparticles Fe 3 O 4 , CoFe 2 O 4 , BaFe 2 O 4 at room temperature and normal pressure by gamma irradiation. The manufactured semiconductor nanoparticles are used as a magnetic element and can be mass-produced by the present invention.

감마선, 자성체 나노입자, Fe3O4, CoFe2O4, BaFe2O4Gamma rays, magnetic nanoparticles, Fe3O4, CoFe2O4, BaFe2O4

Description

감마선 조사에 의한 자성체 나노입자의 제조기술 {Fabrication of Magnetic Nanoparticles by γ-Irradiation}Fabrication Technology of Magnetic Nanoparticles by Gamma Irradiation {Fabrication of Magnetic Nanoparticles by γ-Irradiation}

감마선 조사에 의한 신물질의 합성, 변형 및 조작은 최근에 많은 연구가 진행되고 있다. 특히 식물과 동물의 유전자 조작에 의한 생물 유동물질의 조작은 이미 많은 연구가 되었다. 식품의 보존을 위한 연구 등에 관한 많은 연구로 국내외에서 진행되었다. 본 발명에서는 계면활성제를 사용하지 않고 간단히 방사선의 한 종류인 감마선을 조사하여 자성체 나노입자(Fe3O4, CoFe2O4, BaFe2 O4)를 제조한다. 이 기술은 원자력 연구 분야의 감마선 조사에 의한 자성체 나노입자의 새로운 합성법의 개발과 더불어 실온에서 간단한 공정에 의해 제조하며 학술적 가치뿐만 아니라 경제, 사회, 기술적 중요성이 크다고 할 수 있다. 기존의 나노입자 제조방법은 다양한 계면활성제를 이용한 복잡한 화학적·물리적 산화나 환원방법으로 고온의 열원 혹은 강산 및 강염기 등의 조건을 필요로 하며 방법 또한 매우 복잡하다. 또한 유기용매와 독성이 있는 계면활성제 등을 capping agent로 사용하기 때문에 인체에 유해하고, 고가의 전구체를 사용하기 때문에 제조에 있어 많은 문제점을 지니고 있다. 위와 같은 문제점을 해결하고자 감마선 조사에 의해 상온상압의 수용액 하에서 제조하고, 제조시 계면활성제를 전혀 사용하지 않기 때문에 자성체 나노입자의 이용시 분리 단계가 필요없는 장점이 있다.The synthesis, modification, and manipulation of new materials by gamma irradiation have recently been studied. In particular, the manipulation of biological fluids by genetic engineering of plants and animals has already been studied. Many studies on food preservation have been conducted at home and abroad. In the present invention, magnetic nanoparticles (Fe 3 O 4 , CoFe 2 O 4 , BaFe 2 O 4 ) are prepared by simply irradiating gamma rays, which are one type of radiation, without using a surfactant. This technology is developed by a simple process at room temperature, along with the development of a new method for the synthesis of magnetic nanoparticles by gamma-irradiation in the field of nuclear research, and is of great economic, social and technical importance as well as academic value. Conventional nanoparticle manufacturing methods are complex chemical and physical oxidation or reduction methods using various surfactants and require conditions such as high temperature heat source or strong acid and strong base, and the method is also very complicated. In addition, since organic solvents and toxic surfactants are used as capping agents, they are harmful to the human body and have many problems in manufacturing because they use expensive precursors. In order to solve the problems described above, it is prepared under an aqueous solution of room temperature and normal pressure by gamma irradiation, and since there is no use of a surfactant at the time of preparation, there is an advantage that a separation step is not necessary when using magnetic nanoparticles.

본 발명은 감마선 조사에 의하여 자성체 나노입자인 Fe3O4, CoFe2O4 , BaFe2O4를 상온상압의 수용액에서 제조하는 기술에 관한 발명이다.
The present invention relates to a technique for producing magnetic nanoparticles Fe 3 O 4 , CoFe 2 O 4 , BaFe 2 O 4 in an aqueous solution at room temperature by gamma irradiation.

본 발명에서는 먼저 FeCl3·6H2O 수용액을 산화시켜 FeOOH 나노로드를 제조하고, 이를 isopropanol이 함유된 수용액에 분산시켜 감마선을 조사하여 Fe3O4 자성체 나노입자를 합성한다. 비슷한 방법으로 CoFe2O4와 BaFe2O4를 제조한다. In the present invention, FeOOH nanorods are first prepared by oxidizing FeCl 3 · 6H 2 O aqueous solution, and dispersed in an aqueous solution containing isopropanol to irradiate gamma rays to synthesize Fe 3 O 4 magnetic nanoparticles. In a similar manner, CoFe 2 O 4 and BaFe 2 O 4 are prepared.

합성예: 나노입자의 제조Synthesis Example: Preparation of Nanoparticles

FeOOH 나노로드는 FeCl3·6H2O 수용액을 50 oC에서 산화시켜 만들었다. 산화시키기전에 먼저 Fe3+가 균일하게 녹아있는 용액을 먼저 준비하여야한다. 그러한 용액을 만들기 위해 증류수에 1000mL에 FeCl3·6H2O를 8.9 g을 넣어 완전히 녹여 균일한 용액을 만든다. 이렇게 만들어진 용액을 pH, 온도, 산화시간 등을 변화시키면서 FeOOH 나노입자를 제조했다. 제조된 나노입자들은 10000 rpm에서 30분 동안 원심분리하여 상층액을 따라 내고 이 침전물을 증류수로 Cl- 이온이 검출되지 않을 때까지 10회 정도 세척하여 침전물에 포함될 수 있는 염을 모두 제거하였다. 이렇게 세척된 침전물을 상온에서 24시간 동안 진공 건조하여 분말을 얻었다. pH에 따른 입자의 합성을 연구하기 위해 0.1 M HCl과 0.1 M NaOH를 이용하여 pH 2 - 13 까지 변화시켰고, 온도에 의한 영향을 연구하기 위해 30 - 80 oC의 온도에서 24 시간 동안 산화시켜 나노입자를 얻어 분석했다. 그리고 Fe3O4 나노입자는 제조된 FeOOH 나노입자 3 g을 증류수 100 mL에 넣고, isopropanol을 20 mL 넣고 1시간 동안 초음파처리를 한다. 이 용액에 방사선인 감마선을 세기를 변화시키면서 조사하여 둥근모양의 Fe3O4 나노입자를 제조한다. 감마선원으로 코발트(원자번호 27, 원자량 58.93의 철족에 속하는 금속원소)에 중성자 조사를 하여 얻어지는 인공방사성핵종의 하나인 60Co를 사용하였고, 조사된 감마선의 세기를 100 Gy - 90,000 Gy까지 조절하고, 감마선이 조사되어진 용액을 증류수로 세척, 여과한 후, 건조하면 Fe3O4 분말이 얻어진다. CoFe2O4와 BaFe2O4 나노입자는 CoCl2·6H 2O와 BaCl2·2H2O를 FeCl3·6H2O와 몰비로 각각 1 : 2로 섞어 반응물로 사용하여 Fe3O4 나노입자제조와 같은 방법을 사용하였다. 제조된 자성체 나노입자 Fe3O4, CoFe2O4, BaFe2 O4를 다음의 방법에 따라 평가하였다.FeOOH nanorods were made by oxidizing FeCl 3 · 6H 2 O aqueous solution at 50 o C. Before oxidizing, a solution in which Fe 3+ is uniformly dissolved must be prepared first. To make such a solution, 8.9 g of FeCl 3 · 6H 2 O is added to 1000 mL of distilled water and completely dissolved to form a uniform solution. FeOOH nanoparticles were prepared by varying the pH, temperature, oxidation time, and the like. The prepared nanoparticles were centrifuged at 10000 rpm for 30 minutes to drain the supernatant, and the precipitate was washed 10 times with distilled water until no Cl ions were detected to remove all salts that could be included in the precipitate. The precipitate thus washed was vacuum dried at room temperature for 24 hours to obtain a powder. In order to study the synthesis of particles according to pH, it was changed to pH 2-13 using 0.1 M HCl and 0.1 M NaOH, and oxidized for 24 hours at a temperature of 30-80 o C to study the effect of temperature. Particles were obtained and analyzed. The Fe 3 O 4 nanoparticles were put in 3 g of the prepared FeOOH nanoparticles in 100 mL of distilled water, 20 mL of isopropanol and sonicated for 1 hour. The solution was irradiated with varying intensity of gamma rays as radiation to prepare rounded Fe 3 O 4 nanoparticles. As a gamma source, 60 Co, one of the artificial radionuclides obtained by neutron irradiation on cobalt (a metal element belonging to the iron group of atomic number 27 and atomic weight 58.93), was used, and the intensity of the irradiated gamma ray was adjusted to 100 Gy-90,000 Gy, The solution irradiated with gamma rays is washed with distilled water, filtered and then dried to obtain Fe 3 O 4 powder. CoFe 2 O 4 and BaFe 2 O 4 nanoparticles CoCl 2 · 6H 2 O and BaCl 2 · 2H 2 O of FeCl 3 · 6H 2 O and 1 each in a molar ratio: the mix of 2 used as reactant Fe 3 O 4 nano The same method as for producing particles was used. The prepared magnetic nanoparticles Fe 3 O 4 , CoFe 2 O 4 , BaFe 2 O 4 were evaluated according to the following method.

(1) 나노입자의 XRD 구조 분석(1) XRD structure analysis of nanoparticles

제조된 나노입자들의 구조 및 상 분석은 Philips사의 MAX-2000 X-ray diffractometer (XRD)를 이용하여 CuKα(Kα1 = 1.54056, Kα2 = 1.54439, Kα2/Kα1 intensity ratio = 0.5) 파장으로 scan step size 0.02도, scan time 0.5/s의 조건으로 20도 - 60도의 2θ범위에서 측정하였다.Structural and phase analysis of the prepared nanoparticles was performed using Philips MAX-2000 X-ray diffractometer (XRD) with CuK α (K α1 = 1.54056, K α2 = 1.54439, K α2 / K α1 intensity ratio = 0.5) wavelength. The scan step size was 0.02 degrees and was measured in the 2θ range of 20 degrees to 60 degrees under the condition of a scan time of 0.5 / s.

(2) 나노입자의 입자크기와 형태 분석(2) Analysis of particle size and morphology of nanoparticles

입자크기와 형태는 투과전자현미경 (TEM)을 이용하여 측정하였다. TEM은 일본 제올 사의 JEM-2010 투과전자현미경을 이용하여 carbon이 코팅된 지름 3 mm copper grid에 나노입자가 분산된 용액에 담근 후 꺼내어 건조하여 촬영하였다.Particle size and shape were measured using a transmission electron microscope (TEM). TEM was photographed by dipping into a solution in which nanoparticles were dispersed in a 3 mm diameter copper grid coated with carbon using a JEM-2010 transmission electron microscope manufactured by Zeol, Japan.

(3) 나노입자의 성분분석(3) Component Analysis of Nanoparticles

투과전자현미경에서 관찰되는 나노입자들의 원소조성을 알아보기 위해 영국의 Oxford사의 Energy Dispersive X-Ray Spectrometer로 EDX 스펙트럼을 얻어 측정하였고, 구조 및 결정성을 알아보기 위해 selected area diffraction을 측정하였다.To determine the elemental composition of the nanoparticles observed in the transmission electron microscope, EDX spectra were measured with the Energy Dispersive X-Ray Spectrometer of Oxford, UK, and the selected area diffraction was measured for the structure and crystallinity.

pH가 13, 11, 9 일 때는 용액의 색이 검붉은 색으로 즉시 변하면서 바로 산화가 진행되어 산화철이 만들어 졌고, pH가 5, 3, 2 일 때는 가열을 해도 산화가 되지 않고 Fe가 이온상태로 존재했다. 그리고 pH 7 일 때 가열에 의해 용액의 색이 변하면서 산화물이 합성되었는데, 도 1은 50 oC에서 24시간 가열에 의해 합성된 분말의 XRD peak들이 JCPDS card No. 75-1594에서 나타난 (110), (200), (130), (400), (211), (330), (301), (140), (600), (251)면과 정확하게 일치함으로 다른 산화철 상이 존재하지 않는 순수한 FeOOH가 합성됨을 알 수 있었다. 그리고 도 2에서 투과전자현미경사진으로 길이가 100 ∼ 120 nm, 폭이 20 ∼ 30 nm 정도의 아주 고른 크기의 나노로드가 합성되었을 알 수 있었다. 그래서 감마선 조사에 의한 자성체 나노입자의 합성은 pH 7의 50 oC에서 24시간 가열에 의해 합성된 FeOOH 나노로드를 출발물질로 사용했다. 이렇게 합성한 FeOOH 나노로드 3 g을 증류수 100 mL에 넣고 여기에 OH scavenger로 작용할 isopropanol 20 mL를 넣어 1시간동안 sonication 시켰 다. 이 용액을 상온에서 100 Gy, 1000 Gy, 10000 Gy, 30000 Gy, 50000 Gy, 90000 Gy의 세기로 감마선을 조사하였다. 이 용액을 10000 rpm에서 30분 동안 원심분리하여 상층액을 따라 내고, 이 침전물을 증류수로 5회 정도 세척하여 침전물에 포함될 수 있는 불순물을 모두 제거하였다. 이렇게 세척된 침전물을 상온에서 24시간 동안 진공 건조하여 Fe3O4 나노입자 분말을 얻었다. 도 3은 감마선 조사량을 달리했을 때 합성되는 입자들의 XRD 스펙트럼으로 A는 FeOOH의 XRD 스펙트럼으로 앞에서 고찰한 바와 같이 순수한 FeOOH의 XRD peak만 나타났으며 B는 30000 Gy의 감마선을 조사한 시료의 XRD 스펙트럼으로 JCPDS card No. 79-0418의 Fe3O4 XRD peak와 일치하는 peak이 나타났다. 즉 30000 Gy의 감마선을 시료에 조사했을 때 일부 FeOOH의 결정상이 Fe3O4 결정상으로 상전이가 일어나 Fe3O4가 합성됨을 확인할 수 있었다. 도 4의 A는 50000 Gy 감마선을 조사했을 때 XRD 스펙트럼으로 거의 FeOOH 결정상이 사라지고 Fe3O4 결정상만 확인할 수 있었다. 그러나 20도 - 35도 사이에 불순물 peak가 존재했고, peak 세기가 약해 결정성이 좋은 편은 아님을 알 수 있다. B는 90000 Gy 감마선을 조사했을 때 XRD 스펙트럼으로 불순물 peak가 완전히 사라지고 순수한 Fe3O4에 의해 나타나는 peak만 존재했고, peak의 세기도 크고, 신호대 잡음비 값이 커 합성된 Fe3O4가 아주 결정성이 좋음을 확인할 수 있었다. 도 5는 감마선 조사량을 달리했을 때 합성되는 입자들의 투과전자현미경 사진으로 A의 경우 앞에서 고찰한 바와 같이 크기가 아주 균일한 FeOOH 나노로드임을 알 수 있었고, B의 경우 10000 Gy의 감마선을 조사한 시료로 FeOOH 나노로드들이 뭉쳐지고 일부 나노로드가 둥근 모양으로 변했다. 그러나 XRD 분석 결과 Fe3O4로의 상전이는 일어나지 않았다. C의 경우 20000 Gy의 감마선을 조사한 시료로 끝이 뾰족한 나노로드들이 끝이 뭉텅한 크기가 일정치 않은 나노로드로 변했고, B의 경우와 마찬가지로 일부 입자들이 둥근 모양이 관찰되었지만 Fe3O4 결정상은 나타나지 않았다. D의 경우 30000 Gy의 감마선을 조사한 시료로 30 - 50 nm 사이의 둥근 입자들이 많이 증가했고, 앞의 XRD 분석에서와 같이 FeOOH 결정상 뿐만 아니라 Fe3O4 결정상이 공존했으며 전자현미경으로 봤을 때 나노로드와 둥근입자가 거의 50 %씩 존재하는 것으로 관찰되었다. E의 경우 50000 Gy의 감마선을 조사한 시료로 아직 FeOOH의 결정상이 존재했고, F의 경우 90000 Gy의 감마선을 조사한 시료로 XRD 분석에서 고찰한 바와 같이 FeOOH 나노로드가 완전히 사라졌으며 순수하게 30 - 50 nm 사이의 둥근 Fe3O4 나노결정만 관찰할 수 있었다. 이는 90000 Gy의 감마선에 의해 FeOOH가 거의 100 % Fe3O4로 상전이 되었음을 알 수 있고, 감마선 조사에 의해 순수한 Fe3O 4 나노입자들이 잘 합성됨을 확인할 수 있었다. 도 6은 감마선 조사량에 따른 나노입자들의 전자회절 패턴으로 실제 도 5에서 관찰한 투과전자현미경상의 나노로드와 둥근 나노입자들이 FeOOH와 Fe3O4의 결정성이 있는 지를 확인하기 위한 실험으로 A는 도 5의 A에서 관찰한 나노로드의 전자회절 패턴으로 이들 패턴은 전형적인 FeOOH 전자회절 패턴을 나타났다. 즉 이들 나노로드들이 결정성의 FeOOH 입자임을 확인할 수 있었고, B는 도 5의 D에서 관찰한 나노로드와 둥근 나노입자들의 전자회절 패턴으로 FeOOH 전자회절 패턴 사이로 Fe3O4의 (311)면과 (440)면에 의한 전자회절 패턴이 나타나 이들 나노입자들 중 Fe3O4 결정상을 지닌 나노입자가 존재함을 알 수 있었다. C는 도 5의 F의 둥근 나노입자들의 전자회절 패턴으로 Fe3O4의 (220), (311), (400), (422), (333), (440)면에 의한 전자회절 패턴만 관찰되었고, 이는 이들이 둥근 나노입자들이 순수한 Fe3O4 결정상을 지닌 나노입자임을 알 수 있었다. 또한 도 7, 도 8, 도 9에서 나타난 것과 같이 감마선에 의해 CoFe2O4 나노입자가 제조되었고, 그리고 도 10, 도 11, 도 12로부터 BaFe2O4 나노입자도 상온상압에서 감마선 조사에 의해 제조됨을 알 수 있다. When the pH was 13, 11, and 9, the color of the solution immediately changed to a reddish color, and oxidation proceeded immediately to form iron oxide.When pH was 5, 3, or 2, Fe was not oxidized even when heated, and Fe was in an ionic state. Existed. And the oxide was synthesized by changing the color of the solution by heating at pH 7, Figure 1 is the XRD peaks of the powder synthesized by heating for 24 hours at 50 ° C JCPDS card No. (110), (200), (130), (400), (211), (330), (301), (140), (600), and (251) faces exactly as shown in 75-1594. It was found that pure FeOOH without the iron oxide phase was synthesized. In addition, it can be seen from Fig. 2 that the nanorods having a very uniform size of 100 to 120 nm in length and 20 to 30 nm in width were synthesized by transmission electron micrographs. Thus, the synthesis of magnetic nanoparticles by gamma irradiation used FeOOH nanorods synthesized by heating for 24 hours at 50 ° C. at pH 7 as a starting material. 3 g of the synthesized FeOOH nanorods were added to 100 mL of distilled water, and 20 mL of isopropanol to act as OH scavenger was sonicated for 1 hour. This solution was irradiated with gamma rays at an intensity of 100 Gy, 1000 Gy, 10000 Gy, 30000 Gy, 50000 Gy, 90000 Gy at room temperature. The solution was centrifuged at 10000 rpm for 30 minutes to drain the supernatant, and the precipitate was washed 5 times with distilled water to remove all impurities that could be included in the precipitate. The precipitate thus washed was vacuum dried at room temperature for 24 hours to obtain Fe 3 O 4 nanoparticle powder. 3 is an XRD spectrum of particles synthesized at different gamma-irradiation doses, where A is an XRD spectrum of FeOOH, and only XRD peaks of pure FeOOH are observed as described above, and B is an XRD spectrum of a sample irradiated with gamma rays of 30000 Gy. JCPDS card No. The peak coincided with the Fe3O4 XRD peak of 79-0418. That is, when 30000 Gy gamma-rays were irradiated to the sample, it was confirmed that Fe 3 O 4 was synthesized due to a phase transition to Fe 3 O 4 crystal phase. 4A, when irradiated with 50000 Gy gamma rays, almost FeOOH crystal phase disappeared in the XRD spectrum, and only Fe 3 O 4 crystal phase could be confirmed. However, impurity peaks existed between 20 and 35 degrees, and the peak intensity is weak, indicating that the crystallinity is not good. B is when irradiated with 90000 Gy gamma radiation XRD spectrum as the impurity peak has completely disappeared was present only the peak exhibited by the pure Fe 3 O 4, the intensity of peak also large, the very determined signal-to-noise ratio value is greater synthesized Fe 3 O 4 Good sex was confirmed. 5 is a transmission electron micrograph of particles synthesized at different gamma-irradiation doses, it can be seen that A was a very uniform FeOOH nanorod as discussed above, and B was a sample irradiated with gamma rays of 10000 Gy. FeOOH nanorods agglomerated and some nanorods turned round. However, XRD analysis showed no phase transition to Fe 3 O 4. In the case of C, a sample irradiated with a gamma ray of 20000 Gy showed that the nanorods with pointed ends turned into nanorods with non-uniform size, and as in the case of B, some particles were rounded, but Fe 3 O 4 crystal phase Did not appear. Nanorods when made to increase more rounded particles between 50 nm, as FeOOH crystal phase, as in the preceding XRD analysis as Fe 3 O 4 crystalline phase coexist were viewed in the electron microscope - if D 30 to review the 30000 Gy gamma radiation sample And spherical particles were observed to be nearly 50%. In the case of E, a sample irradiated with gamma rays of 50000 Gy was still present in the crystal phase of FeOOH, and in the case of F, a sample irradiated with gamma rays of 90000 Gy, the FeOOH nanorods disappeared completely and were purely 30-50 nm. Only the round Fe 3 O 4 nanocrystals in between could be observed. It can be seen that the phase change of FeOOH to almost 100% Fe 3 O 4 by gamma ray of 90000 Gy, it was confirmed that the pure Fe 3 O 4 nanoparticles are well synthesized by gamma irradiation. FIG. 6 is an electron diffraction pattern of nanoparticles according to gamma-irradiation, in which the nanorods and round nanoparticles of the transmission electron microscope observed in FIG. 5 are the crystals of FeOOH and Fe 3 O 4 . The electron diffraction pattern of the nanorods observed in FIG. 5A shows the typical FeOOH electron diffraction pattern. That is, these nanorods could be confirmed as crystalline FeOOH particles, B is the electron diffraction pattern of the nanorods and round nanoparticles observed in D of FIG. 5 and the (311) plane of Fe 3 O 4 between the FeOOH electron diffraction pattern ( The electron diffraction pattern by the plane showed that the nanoparticles with the Fe 3 O 4 crystal phase existed. C is the electron diffraction pattern of the round nanoparticles of F of FIG. 5, and only the electron diffraction pattern of (220), (311), (400), (422), (333) and (440) planes of Fe 3 O 4 It was observed that it was found that these round nanoparticles were nanoparticles with a pure Fe 3 O 4 crystal phase. In addition, CoFe 2 O 4 nanoparticles were prepared by gamma rays as shown in FIGS. 7, 8 and 9, and BaFe 2 O 4 nanoparticles were also gamma-irradiated at normal temperature and pressure from FIGS. 10, 11, and 12. It can be seen that manufactured.

도면 1. pH 7, 50 oC에서 합성된 FeOOH의 XRD 스펙트럼Figure 1. XRD spectra of FeOOH synthesized at pH 7, 50 o C

도면 2. FeOOH 나노입자의 투과전자현미경 사진Figure 2. Transmission electron micrograph of FeOOH nanoparticles

도면 3. 감마선 조사량에 따른 XRD 스펙트럼 (A: FeOOH, B: 30000 Gy 감마선을 조사했을 때)Figure 3. XRD spectra according to gamma radiation dose (A: FeOOH, B: 30000 Gy gamma irradiation)

도면 4. 감마선 조사량에 따른 XRD 스펙트럼 (A: 50000 Gy, B: 90000 Gy 감마선을 조사했을 때)4. XRD spectra according to gamma-irradiation (A: 50000 Gy, B: 90000 Gy when gamma-irradiated)

도면 5. 감마선 조사량에 따른 투과전자현미경 사진 (A: FeOOH, B: 10000 Gy, C: 20000 Gy, D: 30000 Gy, E: 50000 Gy, F: 90000 Gy)5. Transmission electron micrograph according to gamma radiation dose (A: FeOOH, B: 10000 Gy, C: 20000 Gy, D: 30000 Gy, E: 50000 Gy, F: 90000 Gy)

도면 6. 감마선 조사량에 따른 나노입자의 전자회절 패턴 (A: FeOOH, B: 30000 Gy, C: 90000 Gy 감마선 조사)6. Electron diffraction pattern of nanoparticles according to gamma irradiation dose (A: FeOOH, B: 30000 Gy, C: 90000 Gy gamma-irradiation)

도면 7. 감마선 조사량에 따른 CoFe2O4 나노입자의 XRD 스펙트럼의 변화 (A: 50000 Gy, B: 90000 Gy 감마선을 조사했을 때)Figure 7. Change of XRD spectrum of CoFe 2 O 4 nanoparticles according to gamma-irradiation (A: 50000 Gy, B: 90000 Gy gamma rays)

도면 8. 90000 Gy의 감마선 조사에 의해 합성된 CoFe2O4의 EDX 스펙트럼8. EDX spectrum of CoFe 2 O 4 synthesized by gamma irradiation of 90000 Gy

도면 9. 감마선 조사량에 따른 CoFe2O4 나노입자의 투과전자현미경 사진 (A: 30000 Gy, B: 90000 Gy)9. Transmission electron micrograph of CoFe 2 O 4 nanoparticles according to gamma-irradiation (A: 30000 Gy, B: 90000 Gy)

도면 10. 감마선 조사량에 따른 BaFe2O4 나노입자의 XRD 스펙트럼의 변화 (A: 50000 Gy, B: 90000 Gy 감마선을 조사했을 때)10. Change of XRD spectrum of BaFe 2 O 4 nanoparticles according to gamma-irradiation (A: 50000 Gy, B: 90000 Gy gamma-irradiation)

도면 11. 90000 Gy의 감마선 조사에 의해 합성된 BaFe2O4의 EDX 스펙트럼11. EDX spectrum of BaFe 2 O 4 synthesized by gamma irradiation of 90000 Gy

도면 12. 감마선 조사량에 따른 BaFe2O4 나노입자의 투과전자현미경 사진 (A: 30000 Gy, B: 90000 Gy)12. Transmission electron micrograph of BaFe 2 O 4 nanoparticles according to gamma irradiation dose (A: 30000 Gy, B: 90000 Gy)

이상에서 살펴본 바와 같이 본 발명은 상온상압의 수용액의 조건에서 감마선을 이용하여 간단히 자성체 소자인 Fe3O4, CoFe2O4, BaFe2O 4 나노입자들을 제조할 수 있다. 또한 제조시 반응물의 양을 증가시킴으로서 손쉽게 대량생산이 가능하다.
As described above, the present invention can simply prepare Fe 3 O 4 , CoFe 2 O 4 , BaFe 2 O 4 nanoparticles, which are magnetic elements, using gamma rays under the condition of an aqueous solution at room temperature. In addition, it is possible to easily mass production by increasing the amount of reactants during manufacture.

Claims (3)

모든 자성체 나노입자의 제조는 상온상압의 수용액에서 진행된다.Preparation of all magnetic nanoparticles is carried out in an aqueous solution of normal temperature and pressure. 모든 자성체 나노입자 제조에 전구체로 FeOOH를 이용한다.FeOOH is used as a precursor for the preparation of all magnetic nanoparticles. Fe3O4, CoFe2O4, BaFe2O4 자성체 나노입자 제조에 이용되는 감마선의 세기는 100 Gy 이상으로 한다.The intensity of the gamma ray used to produce Fe 3 O 4 , CoFe 2 O 4 , and BaFe 2 O 4 magnetic nanoparticles is 100 Gy or more. 도면 1Drawing 1
Figure 112004034558418-PAT00001
Figure 112004034558418-PAT00001
도면 2Drawing 2
Figure 112004034558418-PAT00002
Figure 112004034558418-PAT00002
도면 3Drawing 3
Figure 112004034558418-PAT00003
Figure 112004034558418-PAT00003
도면 4Drawing 4
Figure 112004034558418-PAT00004
Figure 112004034558418-PAT00004
도면 5Drawing 5
Figure 112004034558418-PAT00005
Figure 112004034558418-PAT00005
도면 6Drawing 6
Figure 112004034558418-PAT00006
Figure 112004034558418-PAT00006
도면 7Drawing 7
Figure 112004034558418-PAT00007
Figure 112004034558418-PAT00007
도면 8Drawing 8
Figure 112004034558418-PAT00008
Figure 112004034558418-PAT00008
도면 9Drawing 9
Figure 112004034558418-PAT00009
Figure 112004034558418-PAT00009
도면 10Drawing 10
Figure 112004034558418-PAT00010
Figure 112004034558418-PAT00010
도면 11Drawing 11
Figure 112004034558418-PAT00011
Figure 112004034558418-PAT00011
도면 12Drawing 12
Figure 112004034558418-PAT00012
Figure 112004034558418-PAT00012
KR1020040060767A 2004-08-02 2004-08-02 Fabrication of magnetic nanoparticles by -irradiation KR20060012062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040060767A KR20060012062A (en) 2004-08-02 2004-08-02 Fabrication of magnetic nanoparticles by -irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040060767A KR20060012062A (en) 2004-08-02 2004-08-02 Fabrication of magnetic nanoparticles by -irradiation

Publications (1)

Publication Number Publication Date
KR20060012062A true KR20060012062A (en) 2006-02-07

Family

ID=37121860

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040060767A KR20060012062A (en) 2004-08-02 2004-08-02 Fabrication of magnetic nanoparticles by -irradiation

Country Status (1)

Country Link
KR (1) KR20060012062A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103710389A (en) * 2013-11-25 2014-04-09 大连理工大学 Biosynthesis method of magnetic Pd nanocomposite material
CN108420955A (en) * 2018-01-30 2018-08-21 电子科技大学中山学院 Immobilized acidic ionic liquid extraction method of wheat germ phenol extract

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103710389A (en) * 2013-11-25 2014-04-09 大连理工大学 Biosynthesis method of magnetic Pd nanocomposite material
CN103710389B (en) * 2013-11-25 2015-12-30 大连理工大学 The biosynthetic means of the magnetic Pd nano composite material of a kind of tool
CN108420955A (en) * 2018-01-30 2018-08-21 电子科技大学中山学院 Immobilized acidic ionic liquid extraction method of wheat germ phenol extract

Similar Documents

Publication Publication Date Title
Yousefi et al. Photo-degradation of organic dyes: simple chemical synthesis of Ni (OH) 2 nanoparticles, Ni/Ni (OH) 2 and Ni/NiO magnetic nanocomposites
Rashid et al. Structural-and optical-properties analysis of single crystalline hematite (α-Fe 2 O 3) nanocubes prepared by one-pot hydrothermal approach
Qin et al. Template‐free fabrication of Bi2O3 and (BiO) 2CO3 nanotubes and their application in water treatment
Amendola et al. Magnetic iron oxide nanoparticles with tunable size and free surface obtained via a “green” approach based on laser irradiation in water
Xu et al. α-Fe 2 O 3 hollow structures: formation of single crystalline thin shells
Gervas et al. Synthesis of rare pure phase Ni3S4 and Ni3S2 nanoparticles in different primary amine coordinating solvents
Ficai et al. Synthesis of rod-like magnetite by using low magnetic field
Sivagurunathan et al. Effect of temperatures on structural, morphological and magnetic properties of zinc ferrite nanoparticles
Gaur et al. Fe-induced morphological transformation of 1-D CuO nanochains to porous nanofibers with enhanced optical, magnetic and ferroelectric properties
Majeed et al. Novel spherical hierarchical structures of GdOOH and Eu: GdOOH: rapid microwave-assisted synthesis through self-assembly, thermal conversion to oxides, and optical studies
Ning et al. Facile synthesis of magnetic metal (Mn, Fe, Co, and Ni) oxides nanocrystals via a cation-exchange reaction
Kumar et al. Impact of Gd3+ doping on structural, electronic, magnetic, and photocatalytic properties of MnFe2O4 nanoferrites and application in dye-polluted wastewater remediation
Sanchez-Lievanos et al. Controlling cation distribution and morphology in colloidal zinc ferrite nanocrystals
Jang et al. Dynamic transition between Zn-HDS and ZnO; growth and dissolving mechanism of dumbbell-like ZnO bipod crystal
Azim et al. Structural and optical properties of cr-substituted co-ferrite synthesis by coprecipitation method
Ahmed Seed-mediated synthesis and characterization of ZnO@ γ-Fe2O3 nanospheres: Building up the core-shell model
Tamilmani et al. Tuned synthesis of doped rare-earth orthovanadates for enhanced luminescence
Tavana et al. Synthesis of cobalt ferrite nanoparticles from thermolysis of prospective metal-nitrosonaphthol complexes and their photochemical application in removing methylene blue
Ekoko et al. Gamma irradiation inducing the synthesis of magnetic Fe3O4 nanorod particles in alkaline medium
Naik et al. Low-temperature microwave-assisted synthesis and antifungal activity of CoFe2O4 nanoparticles
Tajik et al. Novel and feasible synthetic routes to copper ferrite nanoparticles: Taguchi optimization and photocatalytic application
KR20060012062A (en) Fabrication of magnetic nanoparticles by -irradiation
KR20160044404A (en) Preparation method of carbon nanotube adsorbent with metal ferrocyanide having a selective adsorption property to cesium or strontium, adsorbent prepared by the method, and seperation method of cesium or strontium using the adsorbent
KR101127864B1 (en) The method for preparation of monodisperse iron oxide nanoparticles using electron beam irradiation and monodisperse iron oxide nanoparticles thereof
JP2007128991A (en) Method of combining magnetic ultra-fine particles of rare-earth metal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J801 Dismissal of trial

Free format text: REJECTION OF TRIAL FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20060320

Effective date: 20060621