KR20020040645A - Method of preparing fibrous carbonaceous nano-materials and electrode materials for electrochemical capacitor using them - Google Patents

Method of preparing fibrous carbonaceous nano-materials and electrode materials for electrochemical capacitor using them Download PDF

Info

Publication number
KR20020040645A
KR20020040645A KR1020010073567A KR20010073567A KR20020040645A KR 20020040645 A KR20020040645 A KR 20020040645A KR 1020010073567 A KR1020010073567 A KR 1020010073567A KR 20010073567 A KR20010073567 A KR 20010073567A KR 20020040645 A KR20020040645 A KR 20020040645A
Authority
KR
South Korea
Prior art keywords
hydrogen
gas
carbon
nano material
fibrous
Prior art date
Application number
KR1020010073567A
Other languages
Korean (ko)
Other versions
KR100421557B1 (en
Inventor
김동철
박철완
Original Assignee
김동철
주식회사 동운인터내셔널
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김동철, 주식회사 동운인터내셔널 filed Critical 김동철
Publication of KR20020040645A publication Critical patent/KR20020040645A/en
Application granted granted Critical
Publication of KR100421557B1 publication Critical patent/KR100421557B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE: A manufacturing method of fibrous carbonaceous nano material and electrode material for electro chemical capacitor using the same are provided to accomplish charge storage and emission performance, reduce manufacture cost, obtain desirable crystalline, and accomplish fast electrolytic double layer formation and removal characteristic. CONSTITUTION: For manufacturing fibrous carbonaceous nano material, nickel particle is obtained by precipitating and γ-ferrite is obtained by colloidal dispersion and freeze drying. The nickel particle 10 mg and the γ-ferrite of average particle diameter 40 nm 60 mg are placed in a horizontal furnace having a quartz tube of an inner diameter 10 cm, and reduced in a reduction furnace at 550°C for 2 hours with hydrogen-helium mixed gas at a fluid speed of 4cm/sec. Then, carbon monoxide-hydrogen mixed gas having 80% carbon monoxide is reacted at a fluid speed of 200 ml/min at 580°C for 1.5 hours to manufacture fibrous ultra fine carbon. After reaction, the furnace is reduced with helium gas and cooled down to obtain fibrous carbonaceous nano material.

Description

섬유상 탄소나노물질의 제조방법 및 이를 이용한 전기화학 캐패시터용 전극재 {Method of preparing fibrous carbonaceous nano-materials and electrode materials for electrochemical capacitor using them}Method of preparing fibrous carbon nanomaterials and electrode materials for electrochemical capacitors using them {Method of preparing fibrous carbonaceous nano-materials and electrode materials for electrochemical capacitor using them}

본 발명은 전기화학 캐패시터용 전극재, 특히, 전기이중층 캐패시터용 전극재 등에 사용될 수 있는 신규한 구조의 섬유상 탄소나노물질(Fibrous carbonaceous nano materials)의 제조방법 및 이를 이용한 전기화학 캐패시터용 전극재에 관한 것이다.The present invention relates to an electrode material for electrochemical capacitors, in particular, to a method for producing a novel carbonaceous carbonaceous material (Fibrous carbonaceous nano materials) that can be used in the electrode material for an electric double layer capacitor, and an electrode material for an electrochemical capacitor using the same will be.

전기 자동차, 분산형 및 로드 레벨링(Load leveling)용 에너지 저장장치의 시장이 급격히 확대되고 새롭게 창출됨에 따라 고성능 캐패시터에 사용되는 전극재료의 중요성이 나날이 더해가고 있다.As the market for electric vehicles, decentralized and load leveling energy storage devices has expanded rapidly and newly created, the importance of electrode materials used in high performance capacitors is increasing day by day.

전기화학 캐패시터는, 일반적으로 고비표면적 전도성 재료표면에 형성되는 전기이중층의 물리 전하 저장현상을 이용한 전기이중층 캐패시터(electrolytic double layer capacitors: EDLC)와, 다공성 산화물에서 일어나는 수소 및 양이온 흡탈착 같은 유사 캐파시턴스를 이용한 전기화학 산화물 캐패시터(electrochemical oxide capacitors: EOC), 및 그것의 혼성체들로 구분할 수 있다.Electrochemical capacitors generally include electrolytic double layer capacitors (EDLC) utilizing physical charge storage of electrical double layers formed on surfaces of high specific surface area conductive materials, and similar capacitors such as hydrogen and cation adsorption and desorption from porous oxides. It is possible to distinguish between electrochemical oxide capacitors (EOC) using a watt, and hybrids thereof.

이 중, 표면의 전기이중층의 형성/해체를 이용하는 전기이중층 캐패시터는 고비표면적을 가지는 탄소재료인 입상 및 섬유상 활성탄(Activated carbons)을 전극재로 사용하여 제조한다.Among these, the electric double layer capacitor using formation / disassembly of the electric double layer on the surface is manufactured using granular and fibrous activated carbons, which are carbon materials having a high specific surface area, as electrode materials.

활성탄을 제조할 때에는 주로 입상 및 섬유상의 수지계 및 피치계 원료를 사용하여 탄소화 및 활성화 처리를 거쳐 제조하기 때문에, 원료의 단가가 높고 최종 수율이 10 내지 50% 내외로 낮아 최종 산물인 활성탄의 제조단가를 높이는 요인으로 작용한다.Since activated carbon is mainly manufactured through carbonization and activation using granular and fibrous resin-based and pitch-based raw materials, the production cost of activated carbon is low, and the final yield is about 10-50%. It acts as a factor to increase the unit price.

활성 탄소섬유의 경우, 1200 ㎡/g의 비표면적을 가진 재료가 황산 수용액계에서 재료특성을 테스트했을 때 120 F/g의 축전용량을 가진다. 따라서, 실제 고성능 캐패시터를 제작했을 때 약 30 F/g의 용량을 가지게 되며, 대표적인 고비표면적 탄소재인 분자채 탄소재료(비표면적: 1500 ㎡/g)는 100 내지 150 F/g의 축전용량을 발휘한다.In the case of activated carbon fibers, a material with a specific surface area of 1200 m 2 / g has a storage capacity of 120 F / g when tested for material properties in aqueous sulfuric acid solution. Therefore, when the actual high performance capacitor is manufactured, it has a capacity of about 30 F / g, and the molecular carbon material (specific surface area: 1500 m 2 / g), which is a typical high specific surface carbon material, exhibits a storage capacity of 100 to 150 F / g. do.

일반적인 탄소재료를 활성화시켜 제조한 활성탄 및 활성탄소섬유는 전기전도성이 비교적 떨어지기 때문에 고출력 특성이 좋지 않다.Activated carbon and activated carbon fiber produced by activating a general carbon material is poor in high output characteristics because the electrical conductivity is relatively low.

제올라이트 또는 실리카 표면에 기상으로 성장시킨 메조포러스 카본(Chem. Mater,9, 609)의 경우, 높은 전기전도성 덕분에 고출력 특성이 뛰어난 전극재료로 기대할 수 있지만, 활성탄의 약 30 배에 가까운 제조단가 때문에 실용화가 불가능한 문제점이 있었다. 또한, HF를 사용하기 때문에 공정화하기 어렵다는 문제점도 있었다.In the case of mesoporous carbon ( Chem. Mater , 9 , 609) grown on the surface of zeolite or silica by gas phase, it can be expected to be an electrode material having high output characteristics due to high electrical conductivity, but due to manufacturing cost nearly 30 times that of activated carbon There was a problem that is not practical. In addition, there was also a problem that it is difficult to be processed because HF is used.

따라서, 본 발명은 이러한 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 일거에 해결하는 것을 목적으로 한다.Therefore, an object of the present invention is to solve the problems of the prior art and the technical problems that have been requested from the past.

즉, 본 발명은 종래의 수지계 활성탄 및 활성 탄소섬유보다 뛰어난 전하 저장 및 방출능력을 가지며, 제조단가가 낮을 뿐만 아니라 결정성이 우수하여, 빠른 전기이중층 형성 및 제거 특성을 발휘할 수 있는 신규한 섬유상 탄소나노물질을 제공하는 것을 목적으로 한다.In other words, the present invention has a superior charge storage and emission capability than the conventional resin-based activated carbon and activated carbon fiber, and has a low manufacturing cost and excellent crystallinity, and thus is a novel fibrous carbon capable of exhibiting rapid electric double layer formation and removal characteristics. It is an object to provide a nanomaterial.

도 1은 본 발명의 실시예 2에 따른 섬유상 탄소나노물질의 순환전위주사법에 의한 전하량 그래프이고;1 is a graph of the charge amount by the cyclic potential scanning method of the fibrous carbon nano material according to Example 2 of the present invention;

도 2는 본 발명의 실시예 3에 따른 섬유상 탄소나노물질의 순환전위주사법에 의한 전하량 그래프이고;Figure 2 is a graph of the charge amount by the cyclic potential scanning method of the fibrous carbon nano material according to Example 3 of the present invention;

도 3은 본 발명의 실시예 4에 따른 섬유상 탄소나노물질의 순환전위주사법에 의한 전하량 그래프이고;3 is a charge amount graph by a cyclic potential scanning method of the fibrous carbon nano material according to Example 4 of the present invention;

도 4는 본 발명의 실시예 1에 따른 아코디언형 구조를 지닌 섬유상 탄소나노물질의 고분해능 투과형 전자현미경의 저배율 사진이고;4 is a low magnification photograph of a high resolution transmission electron microscope of a fibrous carbon nanomaterial having an accordion type structure according to Example 1 of the present invention;

도 5는 본 발명의 실시예 1에 따른 아코디언형 구조를 지닌 섬유상 탄소나노물질의 고분해능 투과형 전자현미경의 900만배 고배율 사진이다.5 is a 9 million times higher magnification photograph of a high resolution transmission electron microscope of a fibrous carbon nanomaterial having an accordion type structure according to Example 1 of the present invention.

이러한 목적을 달성하기 위한 본 발명의 섬유상 탄소나노물질의 제조방법은,Method for producing a fibrous carbon nano material of the present invention for achieving this object,

콜로이드 분산으로 제조하여 동결 건조한 평균 입경 20 내지 80 ㎚의 산화철(γ-ferrite) 및 침전법으로 제조한 니켈입자를 철산화물과 니켈입자의 중량비 6/4 내지 9/1(wt/wt) 비로 혼련한 후, 이를 400 내지 700℃ 환원분위기에서 환원시킨 뒤, 일산화탄소 및/또는 탄화수소를 원료가스로 하여 이동상 및/또는 고정상의 촉매 표면에서 수소와 혼합하여 촉매 표면에서 500 내지 700℃로 기상 분해하여 아코디언형의 구조를 지닌 섬유상 탄소나노물질을 제조하는 것을 특징으로 한다.Iron oxide (γ-ferrite) with an average particle diameter of 20 to 80 nm, prepared by colloidal dispersion, and nickel particles prepared by the precipitation method are kneaded at a ratio of iron oxide and nickel particles in a weight ratio of 6/4 to 9/1 (wt / wt). Then, it is reduced in a reducing atmosphere at 400 to 700 ° C., and then mixed with hydrogen at the surface of the catalyst in the mobile and / or fixed bed using carbon monoxide and / or hydrocarbon as the source gas, and gas phase decomposition at 500 to 700 ° C. on the surface of the catalyst to accordion It is characterized by producing a fibrous carbon nano material having a structure of the type.

따라서, 본 발명의 제조방법은 상기와 같은 방법으로 제조된 산화철과 니켈입자의 혼련 금속을 기본촉매로 사용하고 촉매상에서 에틸렌 등의 탄화수소를 분해시켜 카본 필라멘트를 성장시키는 화학적 기상 성장법(chemical vapor growth method)으로 진행된다.Therefore, the method of the present invention uses a chemical vapor growth method of growing carbon filaments by using a kneaded metal of iron oxide and nickel particles prepared as described above as a basic catalyst and decomposing hydrocarbons such as ethylene on a catalyst. method).

본 명세서에서 사용되는 용어인 "기본촉매"는 환원처리전의 혼련 금속을 의미하며, "촉매"는 환원처리후의 혼련 금속을 의미한다. 본 명세서에서 사용되는 용어인 "기본촉매"는 환원처리전의 산화철을 의미하며, "촉매"는 환원처리후의 산화철을 의미한다.As used herein, the term "base catalyst" refers to a kneaded metal before the reduction treatment, and "catalyst" refers to a kneaded metal after the reduction treatment. As used herein, the term "basic catalyst" means iron oxide before the reduction treatment, and "catalyst" means iron oxide after the reduction treatment.

상기 극미세 산화철 입자는 입자간의 응결이 극히 제한됨으로써 각각의 입자가 니켈입자와 용이하게 혼련되도록 하는 것이 바람직하므로, 물을 용매로 한 콜로이드 상으로 분산시켜 균일하게 안정한 분산상태로 유지한 상태에서 동결건조하여 사용된다.The ultra-fine iron oxide particles are preferably so that the particles are easily kneaded with the nickel particles because the condensation between particles is extremely limited, so that water is dispersed in a colloidal phase with a solvent and kept frozen in a uniformly stable state. It is used by drying.

상기 니켈입자의 제조를 위한 침전법은, 베스트-러셀법(R.J. Best, W. W. Russell,J. Am. Chem. Soc. , 76, 838)에 따라, 질산 니켈(nickel nitrate) 수용액에 중탄산 나트륨(ammonium bicarbonate)을 첨가하여 중탄산 니켈 침전을 얻고, 이를 건조시킨 뒤 하소(calcination)하여 산화니켈을 제조하며, 최종적으로 하소된 산화니켈을 환원시켜 극미세 니켈 입자를 제조하는 방법이다.Precipitation method for the production of the nickel particles, R-J. Best, W. W. Russell,J. Am. Chem. Soc. , 76, According to 838), to obtain nickel bicarbonate precipitate by adding ammonium bicarbonate to an aqueous nickel nitrate solution, and drying and calcining to prepare nickel oxide, and finally calcined nickel oxide It is a method for producing ultra-fine nickel particles by reducing the.

이렇게 제조된 산화철과 니켈입자의 혼련비는 6/4 내지 9/1(wt/wt)이 바람직한바, 6/4 이하이면 니켈입자가 너무 많아져서 섬유상의 것이 얻어지지 않고, 9/1 이상이면 검댕(soot)이가 형성되는 문제점이 있다.The kneading ratio of the iron oxide and nickel particles thus prepared is preferably 6/4 to 9/1 (wt / wt). If it is 6/4 or less, the nickel particles are too large to obtain a fibrous one. There is a problem that soot (soot) is formed.

이러한 촉매를 환원분위기에서 환원시키는데, 환원분위기는 수소와 질소의 혼합가스, 수소와 아르곤의 혼합가스, 수소와 헬륨의 혼합가스 등을 사용할 수 있다. 상기 혼합가스 중의 수소의 함량은 바람직하게는 2 내지 50 부피%이다. 수소의 함량이 적으면 환원반응이 일어나기 어렵고, 많으면 폭발의 위험성이 있다.In order to reduce the catalyst in a reducing atmosphere, the reducing atmosphere may use a mixed gas of hydrogen and nitrogen, a mixed gas of hydrogen and argon, a mixed gas of hydrogen and helium, and the like. The content of hydrogen in the mixed gas is preferably 2 to 50% by volume. When the content of hydrogen is small, it is difficult to cause a reduction reaction, and when there is a large amount, there is a risk of explosion.

환원처리의 온도는 보통 400 내지 700℃이며, 400℃ 이하이면 반응의 개시가 용이하지 않고 처리에 장시간이 요구되며, 700℃ 이상이면 미세 입자들의 응집 현상이 발생할 수 있다. 환원처리의 시간은 환원처리 온도와 같은 여러 조건에 의해 변화될 수 있는바, 대략 0.5 내지 24 시간이 소요된다. 하나의 구체적인 예로서, 상기 혼련 금속 기본촉매를 수소-헬륨 혼합가스를 사용하여 550℃에서 2시간 환원 처리하는 방법을 들 수 있다.The temperature of the reduction treatment is usually 400 to 700 ° C., if the temperature is 400 ° C. or less, the reaction may not be easily initiated and a long time is required for the treatment. If the temperature is 700 ° C. or more, aggregation of fine particles may occur. The time of the reduction treatment can be varied by various conditions such as the reduction treatment temperature, which takes about 0.5 to 24 hours. As one specific example, a method of reducing the kneaded metal base catalyst by using a hydrogen-helium mixed gas at 550 ° C. for 2 hours may be mentioned.

상기 원료가스 중, 탄화수소는 수소와 탄소로 구성된 불포화 및/또는 포화 탄화수소로서, 탄소수가 1 내지 4인 아세틸렌(C2H2), 메탄(CH4), 에틸렌(C2H4), 에탄(C2H6), 프로필렌(C3H6), 프로판(C3H8), 부탄(C4H10), 부틸렌(C4H8), 부타디엔(C4H6)과 그의 이성질체로 구성된 군에서 선택된 하나 또는 둘 이상이 사용될 수 있다.원료가스의 가격, 취급의 용이성, 반응성 등을 고려할 때, 에틸렌이 특히 바람직하다. 이러한 탄화수소는 단일의 형태로 사용되거나 Ar, He 등과 같은 불활성가스와의 혼합 형태로 사용될 수도 있다.In the source gas, hydrocarbons are unsaturated and / or saturated hydrocarbons composed of hydrogen and carbon, each having 1 to 4 carbon atoms such as acetylene (C 2 H 2 ), methane (CH 4 ), ethylene (C 2 H 4 ), and ethane ( C 2 H 6 ), propylene (C 3 H 6 ), propane (C 3 H 8 ), butane (C 4 H 10 ), butylene (C 4 H 8 ), butadiene (C 4 H 6 ) and its isomers One or two or more selected from the group consisting of these may be used. Ethylene is particularly preferred in view of the price of raw gas, ease of handling, reactivity, and the like. Such hydrocarbons may be used in a single form or in a mixture with an inert gas such as Ar, He or the like.

원료가스와 수소가스의 혼합비율은 체적당 원료가스의 비율이 바람직하게는 5 내지 92%이고, 더욱 바람직하게는 10 내지 90%이다. 원료가스의 비율이 5% 이하이면 생성되는 탄소나노튜브의 양이 작아 경제적이지 못하고, 92% 이상이면 반응이 일찍 종료되어 역시 경제적이지 못하다.The mixing ratio of the source gas and the hydrogen gas is preferably 5 to 92%, more preferably 10 to 90%. If the proportion of the source gas is 5% or less, the amount of carbon nanotubes produced is not economical, and if it is 92% or more, the reaction is terminated early, which is not economical either.

상기 기상분해의 온도는 바람직하게는 500 내지 700℃이며, 더욱 바람직하게는 550 내지 620℃이다. 기상분해 온도가 500℃ 이하이면 기상분해가 완전히 이루어지지 않거나 과도한 시간을 요하게 되며, 700℃ 이상이면 공극의 소멸에 의해 비표면적이 급격히 감소됨으로써 유효한 기공(pore)의 수량이 적어지는 문제점이 있다. 기상분해의 시간은 기상분해 온도와 같은 여러 조건에 의해 변화될 수 있는바, 대략 10 분 내지 10 시간 정도가 소요된다. 하나의 구체적인 예로서, 에틸렌-수소 혼합가스를 반응온도 580℃에서 1.5 시간 반응시키는 것을 들 수 있다.The temperature of the gas phase decomposition is preferably 500 to 700 ° C, more preferably 550 to 620 ° C. If the gas phase decomposition temperature is 500 ° C. or less, gas phase decomposition may not be completely performed or excessive time is required. If the temperature is 700 ° C. or more, the specific surface area is rapidly reduced by the disappearance of pores, thereby reducing the number of effective pores. The time of gas phase decomposition can be changed by various conditions such as the temperature of gas phase decomposition, and it takes about 10 minutes to 10 hours. As one specific example, the ethylene-hydrogen mixed gas may be reacted at a reaction temperature of 580 ° C. for 1.5 hours.

이와 같이, 산화철 입자 및 니켈입자로부터 성장한 나노튜브를 헬륨 가스로 분위기를 치환하여 상온으로 냉각함으로써 최종적으로 아코디언 구조를 가진 섬유상 탄소나노물질을 회수하게 된다. 이러한 구조의 탄소나노물질은 일찍이 보고된 바가 없는 신규한 것이다.As described above, the nanotubes grown from the iron oxide particles and the nickel particles are replaced with helium gas and cooled to room temperature to finally recover the fibrous carbon nano material having the accordion structure. Carbon nanomaterials of this structure are novel and have not been reported before.

경우에 따라서는, 제조된 섬유상 탄소나노물질에 대해 활성화 열처리를 더 행하여 비표면적을 높일 수도 있다.In some cases, the specific surface area may be increased by further performing an activation heat treatment on the manufactured fibrous carbon nanomaterial.

상기 활성화 열처리는, 혼합비 1/9 내지 9/1(vol/vol)의 이산화탄소-불활성 가스 혼합물을 사용하여 450 내지 750℃에서 10 분 내지 24 시간동안 실시함으로써, 전체 부피에는 큰 영향을 주지않고 섬유상 탄소나노물질의 일부를 산화분해시키는 것이다. 그 결과, 앞서의 설명과 같이, 활성화된 섬유상 물질의 비표면적은 큰 폭으로 증가하게 된다. 이렇게 활성화된 섬유상 탄소나노물질은 고성능 전기화학 캐패시터용 전극재 등에 사용될 수 있다. 상기 혼합기가 1/9 이하이면 활성화 열처리에 많은 시간이 소요되며, 9/1 이상이면 반응이 급히 진행되어 구조가 파괴되는 문제점이 있다. 또한, 활성화 열처리 온도가 450℃ 이하이면 활성화도가 낮게 되고, 750℃ 이상이면 구조가 파괴되는 문제점이 있다. 상기 활성화 열처리 시간은 열처리 온도에 따라 달라질 수 있는 범위를 가지며, 상대적으로 낮은 온도에서 단시간동안 열처리를 하게되면 열처리의 효과가 거의 없게 되고, 상대적으로 높은 온도에서 장시간동안 열처리를 하게되면 너무 많은 탄소 성분이 산화분해되어 구조체의 강도가 낮아지는 문제점이 있다. 상기 불활성 가스의 특히 바람직한 예로는 아르곤(Ar) 가스를 들 수 있다.The activation heat treatment is performed for 10 minutes to 24 hours at 450 to 750 ° C. using a carbon dioxide-inert gas mixture having a mixing ratio of 1/9 to 9/1 (vol / vol), so that the overall volume is not significantly affected. Oxidative decomposition of some carbon nanomaterials. As a result, as described above, the specific surface area of the activated fibrous material is greatly increased. The activated fibrous carbon nano material may be used for electrode materials for high performance electrochemical capacitors. If the mixer is less than 1/9 takes a lot of time for the activation heat treatment, if more than 9/1 there is a problem that the reaction proceeds quickly and the structure is destroyed. In addition, if the activation heat treatment temperature is 450 ° C or less, the activation degree is low, if the 750 ° C or more there is a problem that the structure is destroyed. The activation heat treatment time has a range that can vary depending on the heat treatment temperature, and if the heat treatment for a short time at a relatively low temperature is almost no effect of heat treatment, if too much carbon component heat treatment for a long time at a relatively high temperature This oxidative decomposition causes a problem that the strength of the structure is lowered. Particularly preferred examples of the inert gas include argon (Ar) gas.

본 발명은 또한 상기와 같은 방법으로 제조된 섬유상 탄소나노물질을 사용한 전기화학 캐패시터용 전극재, 특히, 전기이중층 캐패시터용 전극재에 관한 것이다. 전기화학 캐패시터용 전극재는 당업계에 공지되어있으므로 그에 대한 자세한 설명은 생략한다.The present invention also relates to an electrode material for an electrochemical capacitor, in particular, an electrode material for an electric double layer capacitor, using the fibrous carbon nanomaterial prepared by the above method. Electrode materials for electrochemical capacitors are well known in the art and thus detailed description thereof will be omitted.

이하, 실시예와 그에 대한 비교예를 참조하여 본 발명을 더욱 상세히 설명하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples thereof, but the scope of the present invention is not limited thereto.

실시예 1Example 1

0.5 M의 질산 니켈 수용액 500 ㎖에 2 g의 중탄산 암모늄을 첨가하여 수산화탄산 니켈 침전을 얻은 다음, 100℃ 진공오븐에서 24 시간에 걸쳐 건조시키고 500℃에서 2 시간 동안 하소하여 산화니켈을 제조하였다. 하소된 산화니켈을 1% H2/He 분위기에서 2 시간 동안 500℃에서 환원시켜 니켈입자를 제조하였다.Nickel hydroxide was obtained by adding 2 g of ammonium bicarbonate to 500 ml of 0.5 M aqueous nickel nitrate solution, followed by drying in a vacuum oven at 100 ° C. for 24 hours and calcining at 500 ° C. for 2 hours to prepare nickel oxide. The calcined nickel oxide was reduced at 500 ° C. for 2 hours in a 1% H 2 / He atmosphere to prepare nickel particles.

상기에서 제조된 니켈입자 10 ㎎과, 콜로이드 분산으로 제조하여 동결 건조한 평균입경 40 ㎚의 극미세 철산화물(γ-ferrite, γ-Fe3O4) 미립자(神鳥和彦, 表面, 32-3, 35, 1994) 60 ㎎을 세라믹 보트에 담은 채, 내경 10 ㎝의 석영관을 장착한 수평로의 중심부에 위치시킨 뒤, 수소의 혼합비율이 체적당 20%인 수소-헬륨 혼합가스를 4 ㎝/sec의 유속으로 흘리면서 550℃까지 승온한 후, 550℃에서 2 시간 동안 환원 처리하였다.10 mg of the nickel particles prepared above, and fine particles of γ-ferrite (γ-Fe 3 O 4 ) particles having a mean particle size of 40 nm which were prepared by colloidal dispersion and freeze-dried (神 (和 彦, 表面, 32-3, 35) , 1994) 60 mg in a ceramic boat, placed in the center of a horizontal furnace equipped with a 10 cm inner diameter quartz tube, followed by a 4 cm / sec mixture of hydrogen and helium with a hydrogen mixing ratio of 20% per volume. The temperature was raised to 550 ° C. while flowing at a flow rate of and then reduced at 550 ° C. for 2 hours.

그런 다음, 일산화탄소의 혼합비율이 80%인 일산화탄소-수소 혼합가스를 유속 200 ㎖/min으로 하여 580℃에서 1.5 시간 반응시켜 섬유상의 극세 탄소를 제조하고, 반응이 완료된 후, 헬륨 가스로 분위기를 치환하여 상온으로 냉각하여 섬유상 탄소나노물질을 상기 세라믹 보트로부터 회수하였다. 이때 회수된 섬유상 탄소나노물질의 무게는 1220 ㎎이었다.Then, the carbon monoxide-hydrogen mixed gas having a carbon monoxide mixing ratio of 80% was reacted at 580 ° C. for 1.5 hours at a flow rate of 200 ml / min to prepare fibrous microfine carbon, and after the reaction was completed, the atmosphere was replaced with helium gas. After cooling to room temperature, the fibrous carbon nano material was recovered from the ceramic boat. At this time, the weight of the recovered fibrous carbon nano material was 1220 mg.

상기 섬유상 탄소나노물질을 CuKα의 광원을 이용한 광각 엑스선 회절분석기를 사용하여 분말 흑연 결정자 분석법 (學進法, 大谷彬郞, 炭素纖維, 附錄, 講談社, 東京, 1984, (일본어))을 사용하여 40 ㎃, 30 ㎸의 조건으로 5 내지 90°까지회절 패턴을 조사하고 회절 패턴으로부터 계산한 섬유상 탄소나노물질의 평균 면간거리(d002)는 3.402 Å으로서, 비교적 높은 흑연화성을 나타냄을 알 수 있다. 도 4에는 고분해능 투과형 전자현미경(High resolution transmission electron microscope: ×12,000,000배)으로 촬영한 사진이 개시되어 있다. 도 4의 사진으로부터, 본 발명에 따른 섬유상 탄소나노물질은 직경이 20 내지 450 ㎚이고 발달된 흑연 결정 층면이 마치 아코디언의 형태로 적층되어 있으며 적층의 일정한 단위가 벌어져 적절한 공극을 나타냄을 알 수 있다. 상기 제조된 섬유상 탄소나노물질을 BET법으로 측정한 비표면적은 114 ㎡/g를 나타내어 비교적 큰 비표면적을 지니고 있음을 알 수 있다.The fibrous carbon nanomaterial was subjected to powder graphite crystallite analysis using a wide-angle X-ray diffractometer using a CuKα light source. The average interplanar distance (d 002 ) of the fibrous carbon nanomaterials calculated from the diffraction pattern was investigated at a diffraction pattern of 5 to 90 ° under the conditions of ㎃ and 30 ㎸, which is 3.402 Å, indicating relatively high graphitization. 4 shows a photograph taken with a high resolution transmission electron microscope (x12,000,000 times). From the photograph of FIG. 4, it can be seen that the fibrous carbon nanomaterial according to the present invention has a diameter of 20 to 450 nm, and the developed graphite crystal layer surface is stacked in the form of an accordion, and uniform units of the lamination are formed to show appropriate pores. . It can be seen that the specific surface area measured by the BET method of the prepared fibrous carbon nanomaterial is 114 m 2 / g and has a relatively large specific surface area.

실시예 2Example 2

원료가스를 일산화탄소 대신에 에틸렌으로 하여 실시예 1과 동일한 방법으로 섬유상 탄소나노물질 4304 ㎎을 제조하였다. 이렇게 제조된 섬유상 탄소나노물질을 고분해능 투과형 전자현미경(×9,000,000배)으로 관찰한 결과, 직경이 20 내지 450 ㎚이고 실시예 1과 같이 발달된 흑연 결정 층면이 아코디언의 형태로 적층되어 있으며 적층의 일정한 단위가 벌어져 공극을 형성하고 있음을 확인하였다. 또한, 이것을 BET N2법으로 측정한 비표면적은 180 ㎡/g으로서, 비교적 큰 비표면적을 지니고 있음을 알 수 있다.4304 mg of fibrous carbon nano material was prepared in the same manner as in Example 1, using the source gas as ethylene instead of carbon monoxide. As a result of observing the fibrous carbon nanomaterial thus prepared with a high resolution transmission electron microscope (× 9,000,000 times), the graphite crystal layer surface having a diameter of 20 to 450 nm and developed as in Example 1 was laminated in the form of accordion, It was confirmed that the unit was opened to form voids. In addition, the specific surface area measured by the BET N 2 method is 180 m 2 / g, and it can be seen that it has a relatively large specific surface area.

실시예 3Example 3

실시예 1 및 실시예 2에 따라 제조된 섬유상 탄소나노물질 각각 1000 ㎎을,동일한 형태의 열처리로를 사용하여 CO2/Ar(체적비 30/70)의 비로 총유속 200 ㎖/min을 유지하면서 600℃에서 1시간 30분 동안 활성화 열처리하였다. 생성된 활성화 섬유상 탄소나노물질의 무게는 550 ㎎으로서, CO2/Ar 가스 열처리에 의해 산화 분해되어 가스화된 번-오프(Burn-off)율은 45%이었다.1000 mg each of the fibrous carbon nanomaterials prepared according to Examples 1 and 2 was 600 while maintaining a total flow rate of 200 ml / min in a ratio of CO 2 / Ar (volume ratio 30/70) using a heat treatment furnace of the same type. Activated heat treatment was carried out for 1 hour 30 minutes at ℃. The weight of the activated fibrous carbon nanomaterial was 550 mg, and the burn-off ratio of oxidized and gasified by CO 2 / Ar gas heat treatment was 45%.

생성된 활성화 섬유상 탄소나노물질의 비표면을 BET N2흡착법으로 측정한 결과, 실시예 1의 섬유상 탄소나노물질은 180 ㎡/g, 실시예 2의 섬유상 탄소나노물질은 540㎡/g의 높은 비표면적을 가지고 있음을 확인하였다.The specific surface of the resultant activated fibrous carbon nanomaterial was measured by BET N 2 adsorption. As a result, the fibrous carbon nanomaterial of Example 1 was 180 m 2 / g, and the fibrous carbon nano material of Example 2 was 540 m 2 / g. It was confirmed that it has a surface area.

실시예 4Example 4

실시예 1과 실시예 2에 따라 제조된 섬유상 탄소나노물질 각각 1000 ㎎을, 동일한 형태의 열처리로를 사용하여 CO2/Ar(체적비 50/50)의 비로 총유속 200 ㎖/min을 유지하면서 600℃에서 1시간 30분 동안 활성화 열처리하였다. 생성된 활성화 섬유상 탄소나노물질의 무게는 450 ㎎으로서, CO2/Ar 가스 열처리에 의한 번-오프율은 55%이었다.1000 mg each of the fibrous carbon nanomaterials prepared according to Examples 1 and 2 was 600 while maintaining a total flow rate of 200 ml / min in a ratio of CO 2 / Ar (volume ratio 50/50) using a heat treatment furnace of the same type. Activated heat treatment was carried out for 1 hour 30 minutes at ℃. The resulting activated fibrous carbon nanomaterial weighed 450 mg, and the burn-off ratio by heat treatment of CO 2 / Ar gas was 55%.

생성된 활성화 섬유상 탄소나노물질의 비표면적을 BET N2흡착법으로 측정한 결과, 실시예 1의 섬유상 탄소나노물질은 240 ㎡/g, 실시예 2의 섬유상 탄소나노물질은 680 ㎡/g의 높은 비표면적을 가지고 있음을 확인하였다.The specific surface area of the resultant activated fibrous carbon nanomaterial was measured by BET N 2 adsorption. As a result, the fibrous carbon nanomaterial of Example 1 was 240 m 2 / g, and the fibrous carbon nano material of Example 2 was 680 m 2 / g. It was confirmed that it has a surface area.

실시예 5Example 5

본 실시예는 전기이중층 전하량 측정 실험에 관한 것으로서, 실시예 2에 따라 제조된 섬유상 탄소나노물질을 전극재료하고 질량비 30%의 황산수용액을 전해액으로 하는 3극 시스템에서, 순환전위주사법을 이용해 20 ㎷/sec의 주사속도로 전하량을 측정하였다.The present embodiment relates to an electric double layer charge measurement experiment. In a three-pole system in which a fibrous carbon nanomaterial prepared according to Example 2 is used as an electrode material and an aqueous solution of sulfuric acid solution having a mass ratio of 30% is used as an electrolyte, the cyclic potential scanning method is performed using The amount of charge was measured at a scanning rate of / sec.

그 결과를 'A'라 칭하고, 전하량은 도 1과 같다.The result is called "A", and the charge amount is as shown in FIG.

실시예 6Example 6

실시예 3에 따라 제조된 활성화 섬유상 탄소나노물질 중 비표면적이 540 ㎡/g의 극세 탄소를 전극재료로 하고 질량비 30%의 황산수용액을 전해액으로 하는 3극 시스템에서, 순환전위주사법을 이용해 20 ㎷/sec의 주사속도로 전하량을 측정하였다.The activated fibrous carbon nanomaterial prepared according to Example 3 has a specific surface area of 540 m 2 / g of ultrafine carbon as an electrode material and a tripolar system having an aqueous solution of sulfuric acid solution having a mass ratio of 30% as an electrolyte. The amount of charge was measured at a scanning rate of / sec.

그 결과를 'B'라 칭하고, 전하량은 도 2와 같다.The result is referred to as 'B', and the charge amount is as shown in FIG.

실시예 7Example 7

실시예 4에 따라 제조된 활성화 섬유상 탄소나노물질 중 비표면적이 680 ㎡/g의 극세 탄소를 전극재료로 하고 질량비 30%의 황산수용액을 전해액으로 하여 3극 시스템에서, 순환전위주사법을 이용해 20 ㎷/sec의 주사속도로 전하량을 측정한다.The activated fibrous carbon nanomaterial prepared according to Example 4 had a specific surface area of 680 m 2 / g of ultrafine carbon as an electrode material and an aqueous solution of sulfuric acid solution having a mass ratio of 30% as an electrolyte in a tripolar system. The amount of charge is measured at a scanning rate of / sec.

그 결과를 'C'라 칭하고, 전하량은 도 3과 같다.The result is called "C", and the charge amount is as shown in FIG.

본 발명에 따른 방법과의 비교를 위하여 하기와 같은 다양한 방법에 의한 비교 실험을 행하였다.In order to compare with the method according to the present invention, a comparative experiment by various methods was performed.

비교예 1Comparative Example 1

본 발명에 따른 섬유상 탄소나노물질 대신에 분자체 탄소재료(Molecularsieving carbons, MSC, 칸사이열화학, 일본; 비표면적 :1220 ㎡/g)를 전극으로 하여, 3극 시스템에서 순환전위주사법을 이용해 20 ㎷/sec의 주사속도로 전하량을 측정한 결과, 비용량은 70 F/g이었다.Molecular sieve carbon materials (Molecularsieving carbons, MSC, Kansai thermal chemistry, Japan; specific surface area: 1220 m 2 / g) instead of fibrous carbon nanomaterials according to the present invention, using 20 전극 / As a result of measuring the charge amount at a scanning speed of sec, the specific amount was 70 F / g.

비교예 2Comparative Example 2

PAN(Poly acrylonitrile)으로부터 제조된 활성탄소섬유(비표면적 970 ㎡/g)를 전극으로 하여, 3극 시스템에서 순환전위주사법을 이용하여 20 ㎷/sec의 주사속도로 전하량을 측정한 결과, 비용량은 85 F/g이었다.As a result of measuring the amount of charge at a scanning rate of 20 s / sec using a cyclic potential scanning method in a three-pole system using activated carbon fibers (specific surface area 970 m 2 / g) manufactured from poly acrylonitrile (PAN) as electrodes, Was 85 F / g.

상기 비용량 측정결과가 하기 표 1에 정리되어있다.The specific amount measurement results are summarized in Table 1 below.

종 류Kinds 비표면적(㎡/g)Specific surface area (㎡ / g) 비축적용량(F/g)Specific storage capacity (F / g) 실시예 5Example 5 탄소 나노섬유 ACarbon Nanofiber A 180180 2020 실시예 6Example 6 활성화 탄소 나노섬유 BActivated Carbon Nanofiber B 540540 180180 실시예 7Example 7 활성화 탄소 나노섬유 CActivated Carbon Nanofiber C 680680 185185 비교예 1Comparative Example 1 분자체 입상 활성탄Molecular Sieve Granular Activated Carbon 12201220 7070 비교예 2Comparative Example 2 PAN계 활성탄소섬유PAN based activated carbon fiber 970970 8585

표 1에서 볼 수 있는 바와 같이, 일산화탄소나 여러 탄화수소로부터 제조되는 본 발명의 섬유상 탄소나노물질 및 그것의 활성화 열처리 물질은, 종래의 입상 활성탄 및 활성 탄소섬유와 비견되는 비표면적을 가지고 있어서 큰 비축전용량을 보인다. 또한, 결정성의 다층 탄소층으로 이뤄져있어서, 높은 전기전도성과 함께 고속 전기이중층 형성능력이 뛰어나며, 단섬유상으로 이루어져 있어 전극판의 ESR 또한 입상 활성탄을 사용한 것에 비해 낮다.As can be seen from Table 1, the fibrous carbon nanomaterial of the present invention made from carbon monoxide and various hydrocarbons and its activated heat treatment material have a specific surface area comparable to that of conventional granular activated carbon and activated carbon fibers, and thus have a large specific storage capacity. Shows capacity. In addition, since it is made of a crystalline multilayer carbon layer, it has excellent electrical conductivity and high-speed electric double layer forming ability, and is composed of short fibers so that the ESR of the electrode plate is also lower than that of granular activated carbon.

또한, 천연가스 및/또는 탄화수소를 원료로 하여 제조되었으므로, 제조단가가 낮고, 전극합제를 만들 때 가공성이 뛰어나 사이클 안정성이 우수하다.In addition, since it is manufactured using natural gas and / or hydrocarbon as a raw material, the production cost is low, and excellent workability and excellent cycle stability when making an electrode mixture.

본 발명에 따라 제조된 섬유상 탄소나노물질을 고성능 전기화학 캐패시터용 전극재로 활용할 경우에는, 제조단가가 높은 종래의 활성탄 및 활성탄소섬유보다도 높은 전기이중층 축전량 값을 가지며, 고출력특성이 우수한 재료를 제조할 수 있다. 또한, 본 발명의 활성화 섬유상 탄소나노물질은 단순한 공정으로 제조될 수 있으므로 제조단가가 현저히 낮고, 수율 또한 고분자계 및 수지계 탄소재로부터 제조된 활성탄에 비해 높은 장점이 있다.In the case of utilizing the fibrous carbon nanomaterial prepared according to the present invention as an electrode material for a high performance electrochemical capacitor, a material having an electric double layer storage value higher than that of conventional activated carbon and activated carbon fiber having a high manufacturing cost, and having high output characteristics It can manufacture. In addition, since the activated fibrous carbon nanomaterial of the present invention can be produced by a simple process, the manufacturing cost is remarkably low, and the yield is also higher than that of activated carbon prepared from polymer-based and resin-based carbon materials.

Claims (6)

콜로이드 분산으로 제조하여 동결 건조한 평균 입경 20 내지 80 ㎚의 산화철 (γ-ferrite) 및 침전법으로 제조한 니켈입자를 철산화물과 니켈입자의 중량비 6/4 내지 9/1(wt/wt) 비로 혼련한 후, 이를 400 내지 700℃ 환원분위기에서 환원처리한 뒤, 일산화탄소 및/또는 탄화수소를 원료가스로 하여 이동상 및/또는 고정상의 촉매 표면에서 수소와 혼합하여 촉매 표면에서 500 내지 700℃로 기상 분해하여 제조하는 것을 특징으로 하는, 아코디언형의 구조를 지닌 섬유상 탄소나노물질의 제조 방법.Iron particles prepared by colloidal dispersion and freeze-dried iron oxide (γ-ferrite) having an average particle diameter of 20 to 80 nm and nickel particles prepared by the precipitation method are kneaded at a ratio of iron oxide and nickel particles in a weight ratio of 6/4 to 9/1 (wt / wt). After the reduction treatment in a reducing atmosphere of 400 to 700 ℃, carbon monoxide and / or hydrocarbons as a source gas and mixed with hydrogen on the catalyst surface of the mobile phase and / or fixed bed gas phase decomposition to 500 to 700 ℃ on the catalyst surface A method for producing a fibrous carbon nano material having an accordion type structure, characterized in that for producing. 제 1 항에 있어서, 상기 환원분위기는 수소와 질소의 혼합가스, 수소와 아르곤의 혼합가스, 또는 수소와 헬륨의 혼합가스이며, 상기 혼합가스 중의 수소의 함량이 2 내지 50 부피%인 것을 특징으로 하는 섬유상 탄소나노물질의 제조방법.The method of claim 1, wherein the reducing atmosphere is a mixed gas of hydrogen and nitrogen, a mixed gas of hydrogen and argon, or a mixed gas of hydrogen and helium, characterized in that the content of hydrogen in the mixed gas is 2 to 50% by volume. Method for producing a fibrous carbon nano material to be. 제 1 항에 있어서, 상기 원료가스 중, 탄화수소는 수소와 탄소로 구성된 불포화 및/또는 포화 탄화수소로서, 탄소수가 1 내지 4인 아세틸렌(C2H2), 메탄(CH4), 에틸렌(C2H4), 에탄(C2H6), 프로필렌(C3H6), 프로판(C3H8), 부탄(C4H10), 부틸렌(C4H8), 부타디엔(C4H6)과 그의 이성질체로 구성된 군에서 선택된 하나 또는 둘 이상이 사용되며,The method of claim 1, wherein in the source gas, the hydrocarbon is an unsaturated and / or saturated hydrocarbon composed of hydrogen and carbon, acetylene (C 2 H 2 ), methane (CH 4 ), ethylene (C 2 ) having 1 to 4 carbon atoms H 4 ), ethane (C 2 H 6 ), propylene (C 3 H 6 ), propane (C 3 H 8 ), butane (C 4 H 10 ), butylene (C 4 H 8 ), butadiene (C 4 H 6 ) and one or more selected from the group consisting of isomers thereof, 원료가스와 수소가스의 상기 혼합비율은 체적당 원료가스의 비율이 바람직하게는 10 내지 95%인 것을 특징으로 하는 섬유상 탄소나노물질의 제조방법.The mixing ratio of the source gas and hydrogen gas is a method of producing a fibrous carbon nano material, characterized in that the ratio of the source gas per volume is preferably 10 to 95%. 제 1 항에 있어서, 상기 제조된 섬유상 탄소나노물질에 대해 활성화 열처리를 더 행하여 비표면적을 높이는 것을 특징으로 하는 섬유상 탄소나노물질의 제조방법.The method of claim 1, wherein the prepared carbonaceous carbon nanomaterial is further subjected to activation heat treatment to increase the specific surface area. 제 4 항에 있어서, 상기 활성화 열처리는, 혼합비 1/9 내지 9/1(vol/vol)의 이산화탄소-불활성 가스 혼합물을 사용하여 450 내지 750℃에서 10분 내지 24 시간동안 실시하는 것을 특징으로 하는 섬유상 탄소나노물질의 제조방법.The method of claim 4, wherein the activation heat treatment, characterized in that performed for 10 minutes to 24 hours at 450 to 750 ℃ using a carbon dioxide-inert gas mixture of the mixing ratio 1/9 to 9/1 (vol / vol). Method for producing fibrous carbon nano material. 제 1 항 내지 제 5 항의 방법에 의해 제조된 섬유상 탄소나노물질을 사용한 전기화학 캐패시터용 전극재.An electrode material for an electrochemical capacitor using fibrous carbon nanomaterials produced by the method of claim 1.
KR20010073567A 2000-11-24 2001-11-24 Method of preparing fibrous carbonaceous nano-materials and electrode materials for electrochemical capacitor using them KR100421557B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020000070511 2000-11-24
KR20000070511 2000-11-24

Publications (2)

Publication Number Publication Date
KR20020040645A true KR20020040645A (en) 2002-05-30
KR100421557B1 KR100421557B1 (en) 2004-03-09

Family

ID=19701339

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20010073567A KR100421557B1 (en) 2000-11-24 2001-11-24 Method of preparing fibrous carbonaceous nano-materials and electrode materials for electrochemical capacitor using them

Country Status (2)

Country Link
JP (1) JP3712972B2 (en)
KR (1) KR100421557B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100475254B1 (en) * 2002-08-28 2005-03-10 주식회사 동운인터내셔널 Novel structural fibrous carbon
KR100485603B1 (en) * 2002-06-14 2005-04-27 한국화학연구원 Preparation of activated carbon fibers using nano fibers
KR100497775B1 (en) * 2002-08-23 2005-06-23 나노미래 주식회사 Catalyst for Process of Graphite Nanofibers And Process Thereof, Graphite Nanofibers And Process of Graphite Nanofibers
KR100672372B1 (en) * 2005-04-11 2007-01-24 엘지전자 주식회사 Energy storage capacitor and method for fabricating the same
US7354823B2 (en) 2004-09-08 2008-04-08 Samsung Electronics Co., Ltd. Methods of forming integrated circuit devices having carbon nanotube electrodes therein
CN101329924B (en) * 2008-07-30 2010-12-15 中国科学院山西煤炭化学研究所 Method for preparing high performance electrode material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382214C (en) * 2003-07-03 2008-04-16 中国科学院电工研究所 A composite carbon-based electrode material for super capacitor and method for making same
KR100599874B1 (en) * 2003-11-19 2006-07-13 한국과학기술연구원 Method for preparing hybrid electrode of carbon nanomaterials and nano-sized metal oxides for electrochemical capacitor
JP6303850B2 (en) * 2014-06-18 2018-04-04 株式会社Ihi Catalyst production method
WO2022030684A1 (en) * 2020-08-05 2022-02-10 전북대학교산학협력단 Porous energy-storing fiber electrode using colloid template, energy storage apparatus comprising same, and method for producing same
CN114524427B (en) * 2022-02-22 2023-04-21 华南理工大学 Accordion-shaped lignin cube carbon material, preparation method thereof and application thereof in super capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485603B1 (en) * 2002-06-14 2005-04-27 한국화학연구원 Preparation of activated carbon fibers using nano fibers
KR100497775B1 (en) * 2002-08-23 2005-06-23 나노미래 주식회사 Catalyst for Process of Graphite Nanofibers And Process Thereof, Graphite Nanofibers And Process of Graphite Nanofibers
KR100475254B1 (en) * 2002-08-28 2005-03-10 주식회사 동운인터내셔널 Novel structural fibrous carbon
US7354823B2 (en) 2004-09-08 2008-04-08 Samsung Electronics Co., Ltd. Methods of forming integrated circuit devices having carbon nanotube electrodes therein
KR100672372B1 (en) * 2005-04-11 2007-01-24 엘지전자 주식회사 Energy storage capacitor and method for fabricating the same
CN101329924B (en) * 2008-07-30 2010-12-15 中国科学院山西煤炭化学研究所 Method for preparing high performance electrode material

Also Published As

Publication number Publication date
JP2002242026A (en) 2002-08-28
KR100421557B1 (en) 2004-03-09
JP3712972B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
Wang et al. Co-gelation synthesis of porous graphitic carbons with high surface area and their applications
CN108328706B (en) Preparation and application of MOF-derived porous carbon/graphene composite electrode material
Tang et al. Morphology tuning of porous CoO nanowall towards enhanced electrochemical performance as supercapacitors electrodes
KR100708730B1 (en) Mesoporous carbon, manufacturing method thereof, and fuel cell using the same
Li et al. Synthesis, modification strategies and applications of coal-based carbon materials
KR100805104B1 (en) Carbonaceous material having high surface area and conductivity and method of preparing same
Liu et al. Leaf-inspired interwoven carbon nanosheet/nanotube homostructures for supercapacitors with high energy and power densities
KR100421557B1 (en) Method of preparing fibrous carbonaceous nano-materials and electrode materials for electrochemical capacitor using them
Kukulka et al. Electrochemical performance of MOF-5 derived carbon nanocomposites with 1D, 2D and 3D carbon structures
Wang et al. MOF-derived manganese oxide/carbon nanocomposites with raised capacitance for stable asymmetric supercapacitor
JP5099300B2 (en) Nanocarbon material composite and method for producing the same
Yao et al. Nitrogen-doped graphitic hierarchically porous carbon nanofibers obtained via bimetallic-coordination organic framework modification and their application in supercapacitors
Xu et al. Facile hydrothermal synthesis of tubular kapok fiber/MnO 2 composites and application in supercapacitors
KR100599874B1 (en) Method for preparing hybrid electrode of carbon nanomaterials and nano-sized metal oxides for electrochemical capacitor
Zhang et al. Carbon nanoflakes for energy storage: scalable and low-cost synthesis, excellent performances toward comprehensive application
Zhao et al. ZIF-derived hierarchical pore carbons as high-performance catalyst for methane decomposition
JP2006282444A (en) Method for manufacturing spherical alga-like carbon having large specific surface area and electric double layer capacitor using the same
Prakash et al. Reticulated porous carbon foam with cobalt oxide nanoparticles for excellent oxygen evolution reaction
KR101585294B1 (en) Porous graphene/carbon complex and method for preparing the same
KR20020040644A (en) Multi-walled carbon nanotube and a manufacturing method thereof
KR100444141B1 (en) Anode active materials for lithium secondary battery, anode plates and secondary battery using them
KR100444140B1 (en) Conducting materials for high quality secondary battery and secondary batteries using them
Inagaki Structure and texture of carbon materials
Kijima et al. Efficient thermal conversion of polyyne-type conjugated polymers to nano-structured porous carbon materials
KR101040928B1 (en) Platelet carbon nano fiber and method for fabricating thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130214

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140127

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160324

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee