KR102601396B1 - Method Of Manufacturing Inorganic Nano­Fiber Web At Low­Temperature - Google Patents

Method Of Manufacturing Inorganic Nano­Fiber Web At Low­Temperature Download PDF

Info

Publication number
KR102601396B1
KR102601396B1 KR1020210130589A KR20210130589A KR102601396B1 KR 102601396 B1 KR102601396 B1 KR 102601396B1 KR 1020210130589 A KR1020210130589 A KR 1020210130589A KR 20210130589 A KR20210130589 A KR 20210130589A KR 102601396 B1 KR102601396 B1 KR 102601396B1
Authority
KR
South Korea
Prior art keywords
perbromate
perchlorate
bro
clo
nitrate
Prior art date
Application number
KR1020210130589A
Other languages
Korean (ko)
Other versions
KR20230047571A (en
Inventor
지승용
김명길
부이탄탄
Original Assignee
주식회사 레몬
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레몬, 성균관대학교산학협력단 filed Critical 주식회사 레몬
Priority to KR1020210130589A priority Critical patent/KR102601396B1/en
Priority to PCT/KR2021/014177 priority patent/WO2023054785A1/en
Publication of KR20230047571A publication Critical patent/KR20230047571A/en
Application granted granted Critical
Publication of KR102601396B1 publication Critical patent/KR102601396B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Fibers (AREA)

Abstract

본 발명은 산화성 금속염과 니트로셀룰로오스를 함유하는 방사용액을 전기방사 한 후 저온소성을 통해 안정적이고, 연속적으로 무기나노 파이버웹을 저온으로 대량생산하는 방법에 관한 것이다.The present invention relates to a method for stably and continuously mass-producing an inorganic nanofiber web at low temperature through electrospinning of a spinning solution containing oxidizing metal salt and nitrocellulose and then low-temperature firing.

Description

무기나노 파이버웹의 저온 제조방법{Method Of Manufacturing Inorganic Nano­Fiber Web At Low­Temperature} Low-temperature manufacturing method of inorganic nanofiber web {Method Of Manufacturing Inorganic NanoFiber Web At LowTemperature}

본 발명은 산화성 금속염과 니트로셀룰로오스를 함유하는 방사용액을 전기방사 한 후 저온소성을 통해 안정적이고, 연속적으로 무기나노 파이버웹을 저온으로 대량생산하는 방법에 관한 것이다.The present invention relates to a method for stably and continuously mass-producing an inorganic nanofiber web at low temperature through electrospinning of a spinning solution containing oxidizing metal salt and nitrocellulose and then low-temperature firing.

무기나노섬유(산화물, 금속)는 차세대 기능성 섬유소재로서 전자소재, 광학소재, 촉매소재, 환경소재 등의 응용에 널리 사용되어 각광을 받고 있는 소재이다. 특히, 전자소재로 적용시 유연한 플라스틱 혹은 신축성 기판에 적용이 될 경우 유연하고 신축성있는 전자 웨어러블 장치에 유망한 소재로서 차세대 전자소자로의 응용이 가능하다.Inorganic nanofibers (oxides, metals) are next-generation functional fiber materials that are in the spotlight as they are widely used in applications such as electronic materials, optical materials, catalyst materials, and environmental materials. In particular, when applied as an electronic material to a flexible plastic or stretchable substrate, it is a promising material for flexible and stretchable electronic wearable devices and can be applied to next-generation electronic devices.

이러한 무기나노섬유의 제조방법은 세라믹과 금속을 포함하는 무기나노섬유들을 제조하는 이전의 방법들은 폴리머 바인더와 졸-겔 전구체들을 전기 방사하여 제조하였다. 그러나 이러한 종래의 기술은 규소, 티타늄, 지르코늄 등의 특정한 금속의 산화물로 제한되고, 또한 2단계의 반응 단계를 필요로 하여 방법이 복잡하였으며, 용액법을 이용한 종래의 금속 산화물 나노 섬유의 합성법도 아연, 알루미늄 등의 특정한 금속에만 적용이 가능하였다.Previous methods of producing inorganic nanofibers containing ceramics and metals were produced by electrospinning polymer binders and sol-gel precursors. However, this conventional technology is limited to oxides of specific metals such as silicon, titanium, and zirconium, and the method is complicated as it requires two reaction steps. The conventional method for synthesizing metal oxide nanofibers using a solution method also uses zinc. , it could only be applied to certain metals such as aluminum.

이러한 문제점을 해결하기 위해 대한민국특허등록제10-0803716호에서는 고분자 수지 용액에 금속이온함유 전구체를 혼합하여 금속 수산화물이 함유된 혼합액을 준비하는 단계, 상기 혼합액을 전기 방사하여 상기 금속 수산화물 및 상기 고분자 수지를 포함하는 금속 수산화물 함유 복합 섬유를 제조하는 단계 및 상기 금속 수산화물을 금속 산화물로 변환시키고 상기 고분자 수지를 제거하기 위하여 상기 복합 섬유를 소성(燒成)하는 단계를 포함하는 금속 산화물 나노 섬유의 제조 방법을 제공하고 있다.To solve this problem, Korean Patent Registration No. 10-0803716 discloses the steps of preparing a mixed solution containing a metal hydroxide by mixing a metal ion-containing precursor with a polymer resin solution, electrospinning the mixed solution to produce the metal hydroxide and the polymer resin. A method for producing metal oxide nanofibers comprising the steps of producing a composite fiber containing a metal hydroxide and sintering the composite fiber to convert the metal hydroxide into a metal oxide and remove the polymer resin. It is provided.

그러나 상기 선행기술에서도 복합 섬유의 소성은 400 내지 800℃에서 이루어지고 있어, 고온에서 사용가능한 금속, 실리콘 웨이퍼, 유리등의 지지체 위에 전기방사한 후 고온 소결하고 이를 유연기판에 전사하는 복잡한 공정을 거치게 되어 응용소자의 제작에 제한을 받는 문제점을 가진다. 또한 고온소성의 부작용으로서 무기나노섬유의 형태변형이 발생하여 균일한 웹의 형성이 어려운 문제점이 있었다.However, even in the above prior art, the firing of composite fibers is carried out at 400 to 800°C, requiring a complex process of electrospinning on a support such as metal, silicon wafer, or glass that can be used at high temperatures, then sintering at high temperature, and transferring it to a flexible substrate. This has the problem of limiting the production of application devices. In addition, as a side effect of high-temperature firing, deformation of the shape of the inorganic nanofibers occurred, making it difficult to form a uniform web.

또한, 필터소재로서 적용을 하는 경우에도 투과성을 가지고 절곡공정등의 적용이 가능한 고분자 부직포 기재에 직접적인 전기방사를 한 후 이의 무기소재 변환공정을 거쳐야 하는데, 이경우 역시 고온에서 소결할 경우 상기 고분자 부직포기재의 용융 내지 열변형에 의해 안정적인 웹형성이 불가능한 문제를 가지고 있었다.In addition, even when applied as a filter material, it must be directly electrospun on a polymer nonwoven fabric base material that has permeability and can be applied to bending processes, etc., and then goes through a process to convert it into an inorganic material. In this case, too, when sintered at a high temperature, the polymer nonwoven base material There was a problem that stable web formation was impossible due to melting or thermal deformation.

대한민국특허등록제10-0803716호(2008년02월18일 공고)Republic of Korea Patent Registration No. 10-0803716 (announced on February 18, 2008)

그러므로 본 발명에 의하면, 전기방사된 무기파이버웹 중에 존재하는 매트릭스를 완전히 소성시키고 무기소재 전구체를 변환하는 동시에 300℃ 이하의 저온에서만 사용이 가능한 나노섬유웹지지체인 종이 또는 고분자로 된 지지체를 사용할 수 있어 roll-to-roll방식으로 연속적인 대량생산이 가능하고, 제조되는 무기파이버웹의 무기섬유가 고온에서 뭉쳐지지 않고 목표로 하는 무기소재를 형성할 수 있을 뿐만 아니라 파이버형태를 잘 유지시킬 수 있도록 하여 안정적인 웹을 제공할 수 있는 것을 기술적과제로 한다.Therefore, according to the present invention, it is possible to completely sinter the matrix present in the electrospun inorganic fiber web and convert the inorganic material precursor, while using a support made of paper or polymer, which is a nanofiber web support that can be used only at low temperatures below 300°C. Continuous mass production is possible using the roll-to-roll method, and the inorganic fibers of the manufactured inorganic fiber web are not only able to form the target inorganic material without agglomerating at high temperatures, but also maintain the fiber shape well. The technical task is to provide a stable web.

그러므로 본 발명에 의하면, 1종 또는 2종이상의 산화성 금속염을 용매에 용해시켜 전구체조성물을 형성한 후,
상기 전구체조성물에 니트로셀룰로오스를 첨가하고 연속적으로 교반하여 전기 방사를 위한 방사용액을 준비한 후,
상기 방사용액을 전기방사장치에 공급하여 방사하여 나노웹을 형성한 후,
200 ~ 300℃에서 어닐링하여 상기 나노웹 중 니트로셀룰로오스를 소성시켜 무기나노 파이버웹만을 잔류시키는 것을 특징으로 하는 무기나노 파이버웹의 저온 제조방법이 제공된다.
Therefore, according to the present invention, one or two or more types of oxidizing metal salts are dissolved in a solvent to form a precursor composition,
After adding nitrocellulose to the precursor composition and continuously stirring to prepare a spinning solution for electrospinning,
After supplying the spinning solution to an electrospinning device and spinning it to form a nanoweb,
A low-temperature manufacturing method of an inorganic nanofiber web is provided, which involves annealing at 200 to 300°C to sinter nitrocellulose in the nanoweb, leaving only the inorganic nanofiber web.

삭제delete

삭제delete

삭제delete

이하 본 발명을 보다 상세히 설명하기로 한다. Hereinafter, the present invention will be described in more detail.

본 발명은 산화성 금속염과 니트로셀룰로오스를 함유하는 방사용액을 전기방사한 후 저온소성을 통해 안정적인 웹을 형성하고, 연속적으로 무기나노 파이버웹을 저온으로 대량생산하는 방법에 관한 것이다.The present invention relates to a method for electrospinning a spinning solution containing an oxidizing metal salt and nitrocellulose, forming a stable web through low-temperature firing, and continuously mass-producing an inorganic nanofiber web at low temperature.

본 발명의 전기방사를 위한 방사용액은 다음과 같이 준비하게 된다. 우선, 1종 또는 2종이상의 산화성 금속염을 용매에 용해시켜 전구체조성물을 형성하는데, 상기 산화성 금속염은 질산염, 과염소산염, 과브롬산염 중 어느 하나인 금속화합물 또는 2종이상의 혼합물인 것을 특징으로 한다.The spinning solution for electrospinning of the present invention is prepared as follows. First, one or two or more types of oxidizing metal salts are dissolved in a solvent to form a precursor composition, wherein the oxidizing metal salts are a metal compound selected from nitrate, perchlorate, and perbromate, or a mixture of two or more types.

상기 산화성 금속염은 용매에 용해되어 전구체 조성물이 되어 전기방사후 무기나노 파이버웹을 이루게 되는데, 이후 추가되는 고분자물질이 매트릭스로서 작용을 하여 웹을 형성할 수 있게 된다. The oxidizing metal salt is dissolved in a solvent to form a precursor composition to form an inorganic nanofiber web after electrospinning, and the added polymer material acts as a matrix to form a web.

상기 산화성 금속염 중 상기 질산염 금속화합물은 질산인듐수화물(In(NO3)3ㆍxH2O(x=3~6)), 질산갈륨수화물(Ga(NO3)3ㆍxH2O(x=3~6)), 질산알루미늄 9수화물(Al(NO3)3ㆍ9H2O), 질산아연 6수화물(Zn(NO3)3ㆍ6H2O), 질산카드뮴 (Cd(NO3)2), 질산주석(Sn(NO3)x, x=2 or 4), 질산납(Pb(NO3)2), 질산알칼리금속(ANO3, A=Li,Na,K,Rb,Cs), 질산알칼리토금속(A(NO3)2, A=Mg,Ca,Sr,Ba) 질산은(AgNO3), 질산구리(Cu(NO3)2), 질산산소지르코늄수화물(ZrO(NO3)2ㆍxH2O), 질산산소하프늄수화물 (HfO(NO3)2ㆍxH2O) 중 어느 하나이고, Among the oxidizing metal salts, the nitrate metal compound is indium nitrate hydrate (In(NO 3 ) 3 ㆍxH 2 O(x=3~6)), gallium nitrate hydrate (Ga(NO 3 ) 3 ㆍxH 2 O(x=3) ~6)), aluminum nitrate nonahydrate (Al(NO 3 ) 3 ㆍ9H 2 O), zinc nitrate hexahydrate (Zn(NO 3 ) 3 ㆍ6H 2 O), cadmium nitrate (Cd(NO 3 ) 2 ), Tin nitrate ( Sn ( NO 3 ) Earth metal (A(NO 3 ) 2 , A=Mg,Ca, Sr, Ba) silver nitrate (AgNO 3 ), copper nitrate (Cu(NO 3 ) 2 ), zirconium oxynitrate hydrate (ZrO(NO 3 ) 2 ㆍxH 2 O), hafnium oxynitrate hydrate (HfO(NO 3 ) 2 ㆍxH 2 O),

과염소산염금속화합물은 과염소산인듐(In(ClO4)3), 과염소산갈륨(Ga(ClO4)3), 과염소산알루미늄(Al(ClO4)3), 과염소산아연(Zn(ClO4)2), 과염소산카드뮴 (Cd(ClO4)2), 과염소산주석(Sn(ClO4)x, x = 2 or 4), 과염소산납(Pb(ClO4)2), 과염소산알칼리금속(AClO4, A = Li, Na, K, Rb, Cs), 과염소산알칼리토금속(A(ClO4)2, A = Mg, Ca, Sr, Ba), 과염소산은(AgClO4), 과염소산구리 (Cu(ClO4)2), 과염소산지르코늄(Zr(ClO4)4), 과염소산하프늄(Hf(ClO4)4)중 어느 하나이고, Perchlorate metal compounds include indium perchlorate (In(ClO 4 ) 3 ), gallium perchlorate (Ga(ClO 4 ) 3 ), aluminum perchlorate (Al(ClO 4 ) 3 ), zinc perchlorate (Zn(ClO 4 ) 2 ), and perchloric acid. Cadmium (Cd(ClO 4 ) 2 ), tin perchlorate (Sn(ClO 4 ) x , x = 2 or 4), lead perchlorate (Pb(ClO 4 ) 2 ), alkali metal perchlorate (AClO 4 , A = Li, Na , K, Rb, Cs), alkaline earth metal perchlorate (A(ClO 4 ) 2 , A = Mg, Ca, Sr, Ba), silver perchlorate (AgClO 4 ), copper perchlorate (Cu(ClO 4 ) 2 ), zirconium perchlorate (Zr(ClO 4 ) 4 ), hafnium perchlorate (Hf(ClO 4 ) 4 ),

과브롬산염 금속화합물은 과브롬산인듐(In(BrO4)3), 과브롬산갈륨(Ga(BrO4)3), 과브롬산알루미늄(Al(BrO4)3), 과브롬산아연(Zn(BrO4)2), 과브롬산카드뮴(Cd(BrO4)2), 과브롬산주석 (Sn(BrO4)x, x = 2 or 4), 과브롬산납(Pb(BrO4)2), 과브롬산알칼리금속(ABrO4, A = Li, Na, K, Rb, Cs), 과브롬산알칼리토금속(A(BrO4)2, A = Mg, Ca, Sr, Ba), 과브롬산은(AgBrO4), 과브롬산구리(Cu(BrO4)2), 과브롬산지르코늄(Zr(BrO4)4), 과브롬산하프늄(Hf(BrO4)4)중 어느 하나인 것이 저온에서 산화성 금속염의 열분해로부터 생성된 산소라디컬을 통하여 유기잔류물의 원활한 제거가 가능하다는 점에서 바람직하다.Perbromate metal compounds include indium perbromate (In(BrO 4 ) 3 ), gallium perbromate (Ga(BrO 4 ) 3 ), aluminum perbromate (Al(BrO 4 ) 3 ), and zinc perbromate (Zn). (BrO 4 ) 2 ), cadmium perbromate (Cd(BrO 4 ) 2 ), tin perbromate (Sn(BrO 4 ) x , x = 2 or 4), lead perbromate (Pb(BrO 4 ) 2 ) , alkali metal perbromate (ABrO 4 , A = Li, Na, K, Rb, Cs), alkaline earth metal perbromate (A(BrO 4 ) 2 , A = Mg, Ca, Sr, Ba), silver perbromate (AgBrO 4 ), copper perbromate (Cu(BrO 4 ) 2 ), zirconium perbromate (Zr(BrO 4 ) 4 ), or hafnium perbromate (Hf(BrO 4 ) 4 ) at low temperatures. This is desirable because it allows smooth removal of organic residues through oxygen radicals generated from thermal decomposition of oxidizing metal salts.

또한, 상기 용매는 2-메톡실에탄올, 메탄올, 에탄올, 아이소프로필알콜, 프로판올, 부탄올 중 어느 하나인 알코올, 아세톤, 아세틸아세톤, 디메틸포름아마이드(dimethylformamide). N-메틸포름아마이드(N-methylformamide), 디메틸술폭사이드(dimethylsulfoxdie), 유기 아민류(RNH2, R2NH, R3N: R= CnH2n +1이며 n=1-9)의 단독용매인 것이 극성 또는 배위성 용매를 이용한 금속염의 원활한 용해를 위해 바람직하다. In addition, the solvent is any one of 2-methoxylethanol, methanol, ethanol, isopropyl alcohol, propanol, butanol, acetone, acetylacetone, and dimethylformamide. A sole solvent of N-methylformamide, dimethylsulfoxdie, and organic amines (RNH 2 , R 2 NH, R 3 N: R= C n H 2n +1 and n=1-9) is preferable for smooth dissolution of metal salts using polar or coordinating solvents.

특히, 상기 용매는 2-메톡실에탄올, 메탄올, 에탄올, 아이소프로필알콜, 프로판올, 부탄올 중 어느 하나인 알코올과 아세톤이 중량비 2:8~8:2로 혼합된 혼합용매를 사용하는 것이 전기방사중 용매제거가 원활하며, 이에 따른 점도증가에 의해 나노섬유 형성이 잘되므로 보다 바람직하다. In particular, the solvent used during electrospinning is a mixed solvent in which any one of 2-methoxylethanol, methanol, ethanol, isopropyl alcohol, propanol, and butanol and acetone are mixed in a weight ratio of 2:8 to 8:2. This is more preferable because solvent removal is smooth and the resulting increase in viscosity facilitates the formation of nanofibers.

상기 용매는 몰 농도 0.02 ~ 1 mol/ℓ인 것이 바람직한데, 몰 농도 0.02 mol/ℓ미만의 낮은 농도에서는 점도의 부족으로 인해 원활한 나노섬유의 형성이 이루어지지 못하는 문제점이 발생하며, 몰 농도 1 mol/ℓ초과의 고농도에서는 높은 전기전도도 및 점도로 인하여 전기방사가 어려운 문제점이 발생할 수 있다. The solvent preferably has a molar concentration of 0.02 to 1 mol/l, but at low concentrations of less than 0.02 mol/l, there is a problem in that smooth nanofiber formation is not achieved due to lack of viscosity, and the molar concentration is 1 mol. At high concentrations exceeding /l, problems with electrospinning may occur due to high electrical conductivity and viscosity.

이후 이렇게 준비된 상기 전구체조성물에 니트로셀룰로오스를 첨가하고 연속적으로 교반하여 전기 방사를 위한 방사용액을 만들게 된다. Afterwards, nitrocellulose is added to the precursor composition prepared in this way and continuously stirred to prepare a spinning solution for electrospinning.

상기 니트로셀룰로오스는 192 ~ 202℃의 온도에서 분해가 가능한 고에너지 반응성 고분자 소재로서 전기방사 공정에 적용되는 방사용액의 매트릭스로 도입되며, 상기 온도에서 빠른 연소로 시스템에 내장된 화학적 에너지원으로서 동시에 활용된다. 따라서 상기 고분자물질은 화학적 변환을 위한 거대한 고유 에너지를 제공하여 어닐링 온도를 낮추는 데 기여할 수 있게 된다. The nitrocellulose is a high-energy reactive polymer material that can be decomposed at a temperature of 192 ~ 202 ℃, and is introduced as a matrix of the spinning solution applied to the electrospinning process, and is simultaneously used as a chemical energy source built into the system due to rapid combustion at this temperature. do. Therefore, the polymer material can contribute to lowering the annealing temperature by providing enormous intrinsic energy for chemical transformation.

또한, 300℃ 미만의 저온상태에서 충분히 소성되도록 하여 금속나노 섬유 형태로 전환될 수 있도록 할 수 있어 고분자벨트상에 전기방사를 하고 연속적으로 소성(어닐링)을 할 수 있어 연속적인 무기섬유웹의 생산이 가능하다. In addition, it can be converted into a metal nanofiber form by sufficiently firing it at a low temperature of less than 300℃, so it can be electrospun on a polymer belt and fired (annealed) continuously, producing a continuous inorganic fiber web. This is possible.

상기 전구체조성물 100중량부에 상기 니트로셀룰로오스를 10~40중량부 첨가하는 것이 바람직한데, 10중량부미만시에는 낮은 점도로 인하여 전기방사중에 섬유형상의 형성이 제대로 이루어지지 못하는 문제점이 발생하며, 40중량부를 초과하면 너무 높은 용액의 점도로 인하여 전기방사시의 용액 전달이 어려운 문제점이 발생할 수 있다. It is preferable to add 10 to 40 parts by weight of the nitrocellulose to 100 parts by weight of the precursor composition. If it is less than 10 parts by weight, a problem occurs in which the fiber shape cannot be properly formed during electrospinning due to low viscosity. 40 If it exceeds parts by weight, problems may arise where it is difficult to transfer the solution during electrospinning due to the viscosity of the solution being too high.

이렇게 준비된 상기 방사용액을 전기방사장치에 공급하여 방사하여 나노웹을 형성한 후, 80 ~ 300℃에서 어닐링하여 본 발명의 무기나노 파이버웹을 제조하게 된다. 상기 어닐링공정에 의해 전기방사장치에 의해 방사된 나노웹 중의 매트릭스부분이 소성되게 되어 무기나노 파이버웹이 형성되게 된다. The spinning solution prepared in this way is supplied to an electrospinning device and spun to form a nanoweb, and then annealed at 80 to 300°C to produce the inorganic nanofiber web of the present invention. Through the annealing process, the matrix portion of the nanoweb spun by the electrospinning device is fired, thereby forming an inorganic nanofiber web.

상기 어닐링시 80℃미만시에는 용매 및 파이버웹 중의 매트릭스부분의 소성이 미진한 문제점이 발생하며, 300℃를 초과하면 금, 은, 구리와 같은 금속소재 나노웹의 구성파이버가 일부 용융되어 파이버 형상이 파괴되고, 또한 전기방사시 웹지지체인 고분자지지체의 열변형이 발생하여 안정적인 웹이 형성되지 못하는 문제점이 발생할 수 있다. When the annealing temperature is below 80℃, a problem arises in which the plasticity of the solvent and the matrix portion of the fiber web is insufficient, and when the annealing temperature exceeds 300℃, some of the constituent fibers of the nanoweb made of metal materials such as gold, silver, and copper are partially melted, causing the fiber shape to change. It may be destroyed, and thermal deformation of the polymer support, which is the web support, may occur during electrospinning, which may cause problems in forming a stable web.

이와 같이 본 발명의 제조공정에서 80 ~ 300℃에서 어닐링함으로써 300℃ 미만의 저온에서만 사용이 가능한 나노섬유웹지지체인 종이 또는 고분자로 된 지지체를 사용하여 roll-to-roll방식으로 연속적인 대량생산 공정에 적용할 수 있다. 또한, 제조되는 무기파이버웹의 무기섬유가 고온에서 뭉쳐지지 않고 파이버형태를 잘 유지시킬 수 있도록 하여 안정적인 웹을 제조할 수 있게 된다.As such, in the manufacturing process of the present invention, a continuous mass production process is carried out using a roll-to-roll method using a support made of paper or polymer, which is a nanofiber web support that can be used only at low temperatures below 300°C by annealing at 80 to 300°C. Can be applied to. In addition, the inorganic fibers of the manufactured inorganic fiber web are able to maintain their fiber shape without clumping at high temperatures, making it possible to manufacture a stable web.

또한, 상기 어닐링할 때 파장이 150-400nm 사이인 광을 추가로 조사하여 광활성화 반응을 일으킴으로써 보다 원활한 무기소재로의 전구체 변환 및 반응온도의 감소를 달성할 수 있어 바람직하다. In addition, during the annealing, it is preferable to additionally irradiate light with a wavelength between 150 and 400 nm to cause a photoactivation reaction, thereby achieving a smoother conversion of the precursor to an inorganic material and a reduction in the reaction temperature.

그러므로 본 발명에 의하면, 300℃ 미만에서 어닐링하여 무기파이버웹 중에 존재하는 매트릭스인 니트로셀룰로오스를 완전히 소성시키며 높은 화학적 에너지를 이용하여 전구체 금속염의 무기소재로의 변환을 달성할 수 있고, 300℃ 미만의 저온에서만 사용이 가능한 나노섬유웹지지체인 종이 또는 고분자로 된 지지체를 사용할 수 있어 roll-to-roll방식으로 연속적인 대량생산이 가능한 효과가 있다. 또한, 제조되는 무기파이버웹의 무기섬유가 고온에서 뭉쳐지지 않고 파이버형태를 잘 유지시킬 수 있도록 하여 안정적인 웹을 제조할 수 있게 되며, 나노수준의 두께로 인한 유연성과 신축성, 나노소재가 가지는 높은 비표면적의 장점을 가지는 무기나노 파이버웹을 제공할 수 있다. 상기 무기나노 파이버웹은 전자소재, 광학소재, 촉매 소재, 환경 소재 등의 다양한 산업분야의 응용에 있어서 유연/신축성 전자/광학 소재, 고비표면적 고반응성 촉매 소재, 대기중 혹은 수중 유해인자 필터 등으로의 응용이 가능할 수 있다. Therefore, according to the present invention, nitrocellulose, which is a matrix present in the inorganic fiber web, is completely calcined by annealing below 300°C, and conversion of the precursor metal salt into an inorganic material can be achieved using high chemical energy. As a nanofiber web support that can only be used at low temperatures, a support made of paper or polymer can be used, which has the effect of enabling continuous mass production in a roll-to-roll method. In addition, it is possible to manufacture a stable web by ensuring that the inorganic fibers of the manufactured inorganic fiber web do not agglomerate at high temperatures and maintain their fiber shape well, and the flexibility and elasticity due to nano-level thickness and the high ratio of nanomaterials are achieved. It is possible to provide an inorganic nanofiber web with an advantage in surface area. The inorganic nanofiber web is used in various industrial fields such as electronic materials, optical materials, catalyst materials, and environmental materials as a flexible/stretchable electronic/optical material, a highly reactive catalyst material with a high specific surface area, and a filter for harmful factors in the air or water. application may be possible.

도 1은 실시예 1의 In2O3 전구체의 열중량분석 및 시차열분석결과이며,
도 2는 실시예 1의 In2O3 산화물 나노섬유의 X-선 회절 분석결과이며,
도 3은 실시예 1에서 제조된 인듐산화물 (In2O3) 나노섬유 막의 전계방사주사현미경(FE-SEM)사진으로서 열처리전과 열처리후를 나타낸 것이며,
도 4는 실시예 2의 ZnO 나노섬유의 전계방사현미경 사진이며,
도 5a는 실시예 3의 Ag나노 파이버웹의 X-선 회절 분석결과이며,
도 5b는 실시예 3의 Ag나노 파이버웹의 열분석결과이며,
도 6은 실시예 3의 Ag나노 파이버웹의 250℃ 열처리후 얻어진 Ag나노섬유의 전계 방사현미경 이미지이며,
도 7은 실시예 3의 Ag나노 파이버웹의 투과도 및 면저항결과이며,
도 8은 실시예 4의 Al2O3 나노섬유의 전계방사현미경 사진이며,
도 9는 실시예 5의 산화구리 나노섬유의 X-선 회절 분석 결과이며,
도 10은 실시예 5의 산화구리 나노섬유의 전계방사현미경 사진이며,
도 11은 실시예 6의 In2O3 나노섬유 박막트랜지스터의 전기적 특성결과이며,
도 12는 실시예 7의 In2O3 나노섬유 박막트랜지스터의 전기적 특성결과이다.
Figure 1 shows the results of thermogravimetric analysis and differential thermal analysis of the In 2 O 3 precursor of Example 1;
Figure 2 shows the results of X-ray diffraction analysis of the In 2 O 3 oxide nanofibers of Example 1;
Figure 3 is a field emission scanning microscope (FE-SEM) photo of the indium oxide (In 2 O 3 ) nanofiber membrane prepared in Example 1, showing before and after heat treatment;
Figure 4 is a field emission micrograph of the ZnO nanofibers of Example 2;
Figure 5a shows the results of X-ray diffraction analysis of the Ag nanofiber web of Example 3;
Figure 5b is the thermal analysis result of the Ag nanofiber web of Example 3,
Figure 6 is a field emission microscope image of Ag nanofibers obtained after heat treatment at 250°C of the Ag nanofiber web of Example 3;
Figure 7 shows the transmittance and sheet resistance results of the Ag nanofiber web of Example 3;
Figure 8 is a field emission micrograph of Al2O3 nanofibers of Example 4;
Figure 9 shows the results of X-ray diffraction analysis of the copper oxide nanofibers of Example 5;
Figure 10 is a field emission micrograph of the copper oxide nanofibers of Example 5;
Figure 11 shows the electrical characteristics results of the In2O3 nanofiber thin film transistor of Example 6;
Figure 12 shows the electrical characteristics results of the In2O3 nanofiber thin film transistor of Example 7.

다음의 실시예에서는 본 발명의 무기나노 파이버웹을 제조하는 비한정적인 예시를 하고 있다.The following example provides a non-limiting example of manufacturing the inorganic nanofiber web of the present invention.

[실시예 1][Example 1]

Ⅰ. 방사용액 준비Ⅰ. Preparation of spinning solution

1. 산화성 금속염(Indium (III) nitrate hydrate ((In(NO3)3) 질산인듐수화물) 0.3g을 5㎖의 용매(2- 메톡시에탄올 : 아세톤 = 3 : 2)에 완전히 용해되어 전구체조성물을 형성하였다.1. 0.3 g of oxidizing metal salt (Indium (III) nitrate hydrate ((In(NO 3 ) 3 ) indium nitrate hydrate) is completely dissolved in 5 ml of solvent (2-methoxyethanol: acetone = 3: 2) to obtain a precursor composition. was formed.

2. 전기 방사를 위한 방사용액을 준비하기 위해 상기 전구체조성물에 니트로셀룰로오스 0.66g을 첨가하고 12 시간 동안 60℃에서 연속적으로 교반하여 균일한 방사용액을 제조하였다.2. To prepare a spinning solution for electrospinning, 0.66 g of nitrocellulose was added to the precursor composition and stirred continuously at 60°C for 12 hours to prepare a uniform spinning solution.

Ⅱ. 나노 섬유 제조Ⅱ. Nanofiber manufacturing

1. 준비된 방사 용액을 전기방사기에 넣고 전기 방사기의 수직틀에 장전하였다. 전기 방사 공정은 30kV의 고전압 및 3㎖/ hr의 공급 속도에서 수행하여 전기방사를 하였으며, 방사구 끝에서 접지된 수집기까지의 거리는 16cm이다.1. The prepared spinning solution was placed in an electrospinning machine and loaded into the vertical frame of the electrospinning machine. The electrospinning process was performed at a high voltage of 30 kV and a supply rate of 3 ㎖/hr, and the distance from the tip of the spinneret to the grounded collector was 16 cm.

2. 전기방사된 파이버웹의 유기 성분 제거 및 금속산화물의 형성을 위해 300℃ 온도에서 30분간 열처리를 하여 무기나노 파이버웹을 얻었다.2. To remove organic components and form metal oxides in the electrospun fiber web, heat treatment was performed at 300°C for 30 minutes to obtain an inorganic nanofiber web.

Ⅲ. 나노섬유 전구체 및 나노섬유 멤브레인의 분석Ⅲ. Analysis of nanofiber precursors and nanofiber membranes

1. 상기 제조된 전기방사 용액의 열화학 특성의 분석을 위하여 건조된 전구체에 대한 열중량분석 (TGA) 및 시차열분석(DTA)를 대기중에서 실시하여 도 1과 같은 결과를 얻었으며, 190-200℃에서 강한 발열반응과 동시에 전구체의 변환반응이 완료됨을 확인하였다.1. To analyze the thermochemical properties of the electrospinning solution prepared above, thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were performed on the dried precursor in air, and the results shown in Figure 1 were obtained, 190-200 It was confirmed that the conversion reaction of the precursor was completed simultaneously with a strong exothermic reaction at ℃.

2. 상기 제조된 인듐산화물 (In2O3) 나노섬유 막의 X-선 회절 분석을 통하여 도 2와 같이 300℃에서 약한 결정질을 형성하기 시작함을 확인하였다.2. Through X-ray diffraction analysis of the prepared indium oxide (In 2 O 3 ) nanofiber membrane, it was confirmed that weak crystallinity began to form at 300°C, as shown in FIG. 2.

3.상기 제조된 인듐산화물 (In2O3) 나노섬유 막을 전계방사주사현미경(FE-SEM)으로 관찰하여 도 3과 같이 방사된 균일한 금속염-나이트로셀룰로오즈 혼합물 전구체 나노섬유 (평균직경 273nm) 의 형성을 확인하고, 이의 300℃ 어닐링을 통하여 저온에서 균일한 산화물 나노섬유(평균직경 120 nm)로의 변환이 일어남을 확인하였다.3. The prepared indium oxide (In 2 O 3 ) nanofiber film was observed with a field emission scanning microscope (FE-SEM) to reveal a uniform metal salt-nitrocellulose mixture precursor nanofiber spun as shown in FIG. 3 (average diameter 273 nm). The formation of was confirmed, and it was confirmed that conversion into uniform oxide nanofibers (average diameter 120 nm) occurred at low temperature through annealing at 300°C.

[실시예 2][Example 2]

실시예 1에서 산화성 금속염을 Zn(II) nitrate ((Zn(NO3)2) 질산아연)을 사용하는 것을 제외하고는 실시예 1과 동일하게 실시하여 무기나노 파이버웹을 얻었다. 또한 이에 대한 전계방사주사현미경 분석을 수행하여 도 4와 같이 ZnO 나노섬유 막의 형성을 확인하였다.An inorganic nanofiber web was obtained in the same manner as in Example 1, except that Zn(II) nitrate ((Zn(NO 3 ) 2 ) zinc nitrate) was used as the oxidizing metal salt. In addition, field emission scanning microscopy analysis was performed on this to confirm the formation of a ZnO nanofiber film, as shown in Figure 4.

[실시예 3][Example 3]

실시예 1에서 산화성 금속염을 Silver nitrate ((AgNO3) 질산은)을 사용하고 열처리 온도를 250℃에서 수행하는 것을 제외하고는 실시예 1과 동일하게 무기나노 파이버웹을 얻었다. 실시예 1에서 수행된 것과 유사하게 X-선 회절 분석, 열분석, 및 전계방사현미경 분석을 수행하여, 도 5a 및 도 b와 같이 250℃이상에서 Ag의 결정상이 명확하게 형성되고 200℃ 전후에서 전구체의 분해반응을 확인하였으며, 도 6과 같이 나노섬유의 형성 또한 확인하였다. An inorganic nanofiber web was obtained in the same manner as in Example 1, except that silver nitrate ((AgNO 3 ) silver nitrate) was used as the oxidizing metal salt and the heat treatment was performed at 250°C. X-ray diffraction analysis, thermal analysis, and field emission microscopy analysis were performed similarly to those performed in Example 1, and as shown in FIGS. 5A and 5B, the crystalline phase of Ag was clearly formed above 250°C and at around 200°C. The decomposition reaction of the precursor was confirmed, and the formation of nanofibers was also confirmed, as shown in Figure 6.

또한, 이렇게 형성된 나노섬유 막의 전기적 특성 및 광학적 특성을 확인하여 도 7에 표시된 바와 같이 투명전극으로의 응용을 위하여 350nm~800 nm 파장의 가시광하에서의 투과도와 면저항을 확인하였다.In addition, the electrical and optical properties of the nanofiber membrane formed in this way were confirmed, and the transmittance and sheet resistance under visible light with a wavelength of 350 nm to 800 nm were confirmed for application as a transparent electrode, as shown in FIG. 7.

[실시예 4][Example 4]

실시예 1에서 산화성 금속염을 Aluminum nitrate nonahydrate ((Al(NO3)3.9H2O) 질산알루미늄 9수화물)을 사용하는 것을 제외하고는 실시예 1과 동일하게 실시하여 스레인레스 스틸 메쉬에 무기나노 파이버웹을 얻었다. 300℃의 열처리후에 얻어진 Al2O3 나노섬유 막의 공기필터 효율 측정을 위하여 TSI8130A 분석기를 이용하여 0.92mmAq의 차압에 44.8%의 여과효율을 달성하였다. 도 8과 같이 나노섬유의 형성 또한 확인하였다. In Example 1, the same procedure as Example 1 was carried out, except that the oxidizing metal salt was used as Aluminum nitrate nonahydrate ((Al(NO 3 ) 3.9H 2 O) Aluminum nitrate nonahydrate), and the inorganic material was deposited on the stainless steel mesh. Got nano fiber web. To measure the air filter efficiency of the Al2O3 nanofiber membrane obtained after heat treatment at 300°C, a filtration efficiency of 44.8% was achieved at a differential pressure of 0.92mmAq using a TSI8130A analyzer. As shown in Figure 8, the formation of nanofibers was also confirmed.

[실시예 5][Example 5]

실시예 1에서 산화성 금속염을 Copper(II) nitrate ((Cu(NO3)2) 질산구리)를 사용하고 열처리 온도를 200~300℃에서 수행하는 것을 제외하고는 실시예 1과 동일하게 무기나노 파이버웹을 얻었다. 실시예 1에서 수행된 것과 유사하게 X-선 회절 분석 및 전계방사현미경 분석을 수행하여, 도 9와 같이 250℃ 이상에서 Cu2O/CuO의 결정상이 명확하게 형성됨을 확인하였으며, 도 10과 같이 나노섬유의 형성 또한 확인하였다.Inorganic nanofibers were prepared in the same manner as in Example 1, except that copper(II) nitrate ((Cu(NO 3 ) 2 ) copper nitrate) was used as the oxidizing metal salt in Example 1 and the heat treatment temperature was performed at 200-300°C. Got the web. By performing an The formation of nanofibers was also confirmed.

[실시예 6 ][Example 6]

금속산화물 나노섬유 박막트랜지스터 소자의 구현을 위하여, 고열건식산화로 성장시킨 300nm SiO2가 올라간 p++ Si 웨이퍼를 기판으로 사용하여, 실시예 1에서 보여준 In2O3 나노섬유 전기방사후에 300℃에서 열처리를 30분 동안 함께 적용하였다. 300nm SiO2가 올라간 p++ Si 웨이퍼는 기판 및 게이트 전극, 절연체로 사용되어, 열처리로 형성된 In2O3 나노섬유위에 추가로 쉐도우마스크(shadow mask)를 통과하는 열증착을 이용해서 50 nm 두께의 Al 전극을 채널 넓이 1000 ㎛ 및 채널 길이 50㎛로 형성하였다. To implement a metal oxide nanofiber thin film transistor device, a p++ Si wafer topped with 300 nm SiO 2 grown by high-temperature dry oxidation was used as a substrate, and heat treated at 300°C after electrospinning the In 2 O 3 nanofiber as shown in Example 1. were applied together for 30 minutes. A p++ Si wafer with 300 nm SiO 2 is used as a substrate, gate electrode, and insulator, and a 50 nm thick Al layer is formed on the In 2 O 3 nanofibers formed by heat treatment using thermal evaporation that passes through a shadow mask. The electrode was formed with a channel width of 1000 μm and a channel length of 50 μm.

[실시예 7][Example 7]

금속산화물 나노섬유 박막트랜지스터 소자의 구현을 위하여, 고열건식산화로 성장시킨 300nm SiO2가 올라간 p++ Si 웨이퍼를 기판으로 사용하여, 실시예 1에서 보여준 In2O3 나노섬유 전기방사후에 300℃에서 열처리/자외선 (UV) 처리를 30 분 동안 함께 적용하였다. 300nm SiO2가 올라간 p++ Si 웨이퍼는 기판 및 게이트 전극, 절연체로 사용되어, 광열처리로 형성된 In2O3 나노섬유위에 추가로 쉐도우마스크(shadow mask)를 통과하는 열증착을 이용해서 50 nm 두께의 Al 전극을 채널 넓이 1000 ㎛ 및 채널 길이 50㎛로 형성하였다.To implement a metal oxide nanofiber thin film transistor device, a p++ Si wafer topped with 300 nm SiO 2 grown by high-temperature dry oxidation was used as a substrate, and heat treated at 300°C after electrospinning the In 2 O 3 nanofiber as shown in Example 1. /ultraviolet (UV) treatment was applied together for 30 minutes. The p++ Si wafer with 300 nm SiO 2 is used as a substrate, gate electrode, and insulator, and a 50 nm thick layer is formed using thermal evaporation through an additional shadow mask on the In 2 O 3 nanofibers formed by photothermal treatment. An Al electrode was formed with a channel width of 1000 ㎛ and a channel length of 50 ㎛.

아래 도 11에서 알 수 있듯이 300℃의 열처리를 통하여 결정질 In2O3가 형성되나 불충분한 격자의 안정화로 TFT 소자 특성이 거의 보이지 않는 것을 알 수 있으나, 도 12의 광조사를 동반한 열처리의 경우 TFT 소자의 이동도가 0.52 ㎠/Vs로 향상되어 광열반응을 통한 산화물 반도체 나노섬유의 전기적 특성의 개선을 확인하였다.As can be seen in FIG. 11 below, crystalline In 2 O 3 is formed through heat treatment at 300°C, but TFT device characteristics are barely visible due to insufficient lattice stabilization. However, in the case of heat treatment with light irradiation in FIG. 12, The mobility of the TFT device was improved to 0.52 cm2/Vs, confirming the improvement of the electrical properties of the oxide semiconductor nanofibers through photothermal reaction.

Claims (8)

1종 또는 2종이상의 산화성 금속염을 용매에 용해시켜 전구체조성물을 형성한 후,
상기 전구체조성물에 니트로셀룰로오스를 첨가하고 연속적으로 교반하여 전기 방사를 위한 방사용액을 준비한 후,
상기 방사용액을 전기방사장치에 공급하여 방사하여 나노웹을 형성한 후,
200 ~ 300℃에서 어닐링하여 상기 나노웹 중 니트로셀룰로오스를 소성시켜 무기나노 파이버웹만을 잔류시키는 것을 특징으로 하는 무기나노 파이버웹의 저온 제조방법.
After dissolving one or two or more types of oxidizing metal salts in a solvent to form a precursor composition,
After adding nitrocellulose to the precursor composition and continuously stirring to prepare a spinning solution for electrospinning,
After supplying the spinning solution to an electrospinning device and spinning it to form a nanoweb,
A low-temperature manufacturing method of an inorganic nanofiber web, characterized in that nitrocellulose in the nanoweb is calcined by annealing at 200 to 300°C, leaving only the inorganic nanofiber web.
제 1항에 있어서,
상기 산화성 금속염은 질산염, 과염소산염, 과브롬산염 중 어느 하나인 금속화합물 또는 2종이상의 혼합물인 것을 특징으로 하는 무기나노 파이버웹의 저온 제조방법.
According to clause 1,
A low-temperature manufacturing method of an inorganic nanofiber web, wherein the oxidizing metal salt is a metal compound selected from nitrate, perchlorate, and perbromate, or a mixture of two or more types.
제 2항에 있어서,
상기 질산염 금속화합물은 질산인듐수화물(In(NO3)3ㆍxH2O (x=3~6)), 질산갈륨수화물(Ga(NO3)3ㆍxH2O (x=3~6)), 질산알루미늄 9수화물(Al(NO3)3ㆍ9H2O), 질산아연 6수화물(Zn(NO3)3ㆍ6H2O), 질산카드뮴(Cd(NO3)2), 질산주석(Sn(NO3)x, x = 2 or 4), 질산납(Pb(NO3)2), 질산알칼리금속(ANO3, A=Li,Na,K,Rb,Cs), 질산알칼리토금속(A(NO3)2, A=Mg,Ca,Sr,Ba), 질산은(AgNO3), 질산구리(Cu(NO3)2), 질산산소지르코늄수화물(ZrO(NO3)2ㆍxH2O), 질산산소하프늄수화물(HfO(NO3)2ㆍxH2O) 중 어느 하나이고,
과염소산염 금속화합물은 과염소산인듐(In(ClO4)3), 과염소산갈륨(Ga(ClO4)3), 과염소산알루미늄(Al(ClO4)3), 과염소산아연(Zn(ClO4)2), 과염소산카드뮴(Cd(ClO4)2), 과염소산주석(Sn(ClO4)x, x = 2 or 4), 과염소산납(Pb(ClO4)2), 과염소산 알칼리금속(AClO4, A = Li, Na, K, Rb, Cs), 과염소산 알칼리토금속(A(ClO4)2, A = Mg, Ca, Sr, Ba), 과염소산은(AgClO4), 과염소산구리(Cu(ClO4)2), 과염소산지르코늄(Zr(ClO4)4), 과염소산하프늄(Hf(ClO4)4)중 어느 하나이고,
과브롬산염 금속화합물은 과브롬산인듐(In(BrO4)3), 과브롬산갈륨(Ga(BrO4)3), 과브롬산알루미늄(Al(BrO4)3), 과브롬산아연(Zn(BrO4)2), 과브롬산카드뮴(Cd(BrO4)2), 과브롬산주석(Sn(BrO4)x, x = 2 or 4), 과브롬산납(Pb(BrO4)2), 과브롬산 알칼리금속(ABrO4, A = Li, Na, K, Rb, Cs), 과브롬산 알칼리토금속(A(BrO4)2, A = Mg, Ca, Sr, Ba), 과브롬산은(AgBrO4), 과브롬산구리(Cu(BrO4)2), 과브롬산지르코늄(Zr(BrO4)4), 과브롬산하프늄(Hf(BrO4)4)중 어느 하나인 것을 특징으로 하는 무기나노 파이버웹의 저온 제조방법.
According to clause 2,
The nitrate metal compound is indium nitrate hydrate (In(NO 3 ) 3 ㆍxH 2 O (x=3~6)) and gallium nitrate hydrate (Ga(NO 3 ) 3 ㆍxH 2 O (x=3~6)). , aluminum nitrate hexahydrate (Al(NO 3 ) 3 ㆍ9H 2 O), zinc nitrate hexahydrate (Zn(NO 3 ) 3 ㆍ6H 2 O), cadmium nitrate (Cd(NO 3 ) 2 ), tin nitrate (Sn) ( NO 3 ) _ NO 3 ) 2 , A=Mg,Ca,Sr,Ba), silver nitrate (AgNO 3 ), copper nitrate (Cu(NO 3 ) 2 ), zirconium oxynitrate hydrate (ZrO(NO 3 ) 2 ㆍxH 2 O), Any one of hafnium nitrate hydrate (HfO(NO 3 ) 2 ㆍxH 2 O),
Perchlorate metal compounds include indium perchlorate (In(ClO 4 ) 3 ), gallium perchlorate (Ga(ClO 4 ) 3 ), aluminum perchlorate (Al(ClO 4 ) 3 ), zinc perchlorate (Zn(ClO 4 ) 2 ), and perchloric acid. Cadmium (Cd(ClO 4 ) 2 ), tin perchlorate (Sn(ClO 4 ) x , x = 2 or 4), lead perchlorate (Pb(ClO 4 ) 2 ), alkali metal perchlorate (AClO 4 , A = Li, Na , K, Rb, Cs), alkaline earth metal perchlorate (A(ClO 4 ) 2 , A = Mg, Ca, Sr, Ba), silver perchlorate (AgClO 4 ), copper perchlorate (Cu(ClO 4 ) 2 ), zirconium perchlorate (Zr(ClO 4 ) 4 ), hafnium perchlorate (Hf(ClO 4 ) 4 ),
Perbromate metal compounds include indium perbromate (In(BrO 4 ) 3 ), gallium perbromate (Ga(BrO 4 ) 3 ), aluminum perbromate (Al(BrO 4 ) 3 ), and zinc perbromate (Zn). (BrO 4 ) 2 ), cadmium perbromate (Cd(BrO 4 ) 2 ), tin perbromate (Sn(BrO 4 ) x , x = 2 or 4), lead perbromate (Pb(BrO 4 ) 2 ) , alkali metal perbromate (ABrO 4 , A = Li, Na, K, Rb, Cs), alkaline earth metal perbromate (A(BrO 4 ) 2 , A = Mg, Ca, Sr, Ba), silver perbromate (AgBrO 4 ), copper perbromate (Cu(BrO 4 ) 2 ), zirconium perbromate (Zr(BrO 4 ) 4 ), and hafnium perbromate (Hf(BrO 4 ) 4 ). Low-temperature manufacturing method of inorganic nanofiber web.
제 1항에 있어서,
상기 용매는 2-메톡실에탄올, 메탄올, 에탄올, 아이소프로필알콜, 프로판올, 부탄올 중 어느 하나인 알코올, 아세톤, 아세틸아세톤, 디메틸포름아마이드(dimethylformamide). N-메틸포름아마이드(N-methylformamide), 디메틸술폭사이드(dimethylsulfoxdie), 유기 아민류(RNH2, R2NH, R3N: R= CnH2n+1이며 n=1-9)의 단독용매인 것을 특징으로 하는 무기나노 파이버웹의 저온 제조방법.
According to clause 1,
The solvent is any one of 2-methoxylethanol, methanol, ethanol, isopropyl alcohol, propanol, butanol, acetone, acetylacetone, and dimethylformamide. N-methylformamide, dimethylsulfoxdie, sole solvent of organic amines (RNH 2 , R 2 NH, R 3 N: R= C n H 2n+1 and n=1-9) A low-temperature manufacturing method of an inorganic nanofiber web, characterized in that:
제 1항에 있어서,
상기 용매는 2-메톡실에탄올, 메탄올, 에탄올, 아이소프로필알콜, 프로판올, 부탄올 중 어느 하나인 알코올과 아세톤이 중량비 2:8~8:2으로 혼합된 혼합용매인 것을 특징으로 하는 무기나노 파이버웹의 저온 제조방법.
According to clause 1,
The solvent is an inorganic nanofiber web characterized in that it is a mixed solvent in which acetone and any one of 2-methoxylethanol, methanol, ethanol, isopropyl alcohol, propanol, and butanol are mixed at a weight ratio of 2:8 to 8:2. Low-temperature manufacturing method.
제 4항에 있어서,
상기 용매는 몰 농도 0.02 ~ 1mol/ℓ인 것을 특징으로 하는 무기나노 파이버웹의 저온 제조방법.
According to clause 4,
A low-temperature manufacturing method of an inorganic nanofiber web, characterized in that the solvent has a molar concentration of 0.02 to 1 mol/l.
제 1항에 있어서,
상기 전구체조성물 100중량부에 상기 니트로셀룰로오스를 10~40중량부 첨가하는 것을 특징으로 하는 무기나노 파이버웹의 저온 제조방법.
According to clause 1,
A low-temperature manufacturing method of an inorganic nanofiber web, characterized in that 10 to 40 parts by weight of the nitrocellulose is added to 100 parts by weight of the precursor composition.
제 1항에 있어서,
상기 200 ~ 300℃에서 어닐링시 파장이 150-400nm 사이인 광을 추가로 조사하는 것을 특징으로 하는 무기나노 파이버웹의 저온 제조방법.
According to clause 1,
A low-temperature manufacturing method of an inorganic nanofiber web, characterized by additionally irradiating light with a wavelength between 150-400 nm during annealing at 200-300°C.
KR1020210130589A 2021-10-01 2021-10-01 Method Of Manufacturing Inorganic Nano­Fiber Web At Low­Temperature KR102601396B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210130589A KR102601396B1 (en) 2021-10-01 2021-10-01 Method Of Manufacturing Inorganic Nano­Fiber Web At Low­Temperature
PCT/KR2021/014177 WO2023054785A1 (en) 2021-10-01 2021-10-14 Low-temperature preparation method for inorganic nanofiber web

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210130589A KR102601396B1 (en) 2021-10-01 2021-10-01 Method Of Manufacturing Inorganic Nano­Fiber Web At Low­Temperature

Publications (2)

Publication Number Publication Date
KR20230047571A KR20230047571A (en) 2023-04-10
KR102601396B1 true KR102601396B1 (en) 2023-11-13

Family

ID=85783016

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210130589A KR102601396B1 (en) 2021-10-01 2021-10-01 Method Of Manufacturing Inorganic Nano­Fiber Web At Low­Temperature

Country Status (2)

Country Link
KR (1) KR102601396B1 (en)
WO (1) WO2023054785A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102250489B1 (en) 2013-12-04 2021-05-12 코넬 유니버시티 Ceramic-polymer hybrid nanostructures, methods for producing and applications thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001719A1 (en) * 2004-06-24 2006-01-05 Massey University Polymer filaments
KR100803716B1 (en) 2006-12-06 2008-02-18 (재)대구경북과학기술연구원 Metal hydroxide containing complex fiber, metal oxide nanofiber and manufacturing method for the same
KR100954538B1 (en) * 2007-12-04 2010-04-22 주식회사 아모그린텍 Packing paper using the nanofibers of functional subjoin
KR101170059B1 (en) * 2009-09-30 2012-07-31 조선대학교산학협력단 Nano-fibered Membrane for Western Blot and Manufacturing Method of the Same
KR101955104B1 (en) * 2017-08-10 2019-03-06 울산과학기술원 Method of manufacturing transmittance electrode with high transparent and low resistance and transmittance electrode with high transparent and low resistance manufactured using the method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102250489B1 (en) 2013-12-04 2021-05-12 코넬 유니버시티 Ceramic-polymer hybrid nanostructures, methods for producing and applications thereof

Also Published As

Publication number Publication date
WO2023054785A1 (en) 2023-04-06
KR20230047571A (en) 2023-04-10

Similar Documents

Publication Publication Date Title
Raj et al. Significance of Ni doping on structure-morphology-photoluminescence, optical and photocatalytic activity of CBD grown ZnO nanowires for opto-photocatalyst applications
Krishnapriya et al. Investigation of the effect of reaction parameters on the microwave-assisted hydrothermal synthesis of hierarchical jasmine-flower-like ZnO nanostructures for dye-sensitized solar cells
Panigrahy et al. Polymer-mediated shape-selective synthesis of ZnO nanostructures using a single-step aqueous approach
Feng et al. Solvothermal synthesis of ZnO with different morphologies in dimethylacetamide media
Xu et al. Preparation of CuS nanoparticles embedded in poly (vinyl alcohol) nanofibre via electrospinning
Zhao et al. Fabrication of copper sulfide microstructures with the bottle-and thorny rod-shape
KR102601396B1 (en) Method Of Manufacturing Inorganic Nano­Fiber Web At Low­Temperature
KR20130070092A (en) Method for producing yttrium oxide powders and yttrium oxide powders prepared by the method
Roque-Ruiz et al. Sol-gel synthesis of strontium titanate nanofibers by electrospinning
Xu et al. Growth of hierarchical TiO 2 flower-like microspheres/oriented nanosheet arrays on a titanium mesh for flexible dye-sensitized solar cells
KR100851499B1 (en) The process for manufacturing zno nanorod and nanowall
Hu et al. Parallel patterning of SiO2 wafer via near-field electrospinning of metallic salts and polymeric solution mixtures
KR101336276B1 (en) Preparation of thermoelectric nanotube
JP5339372B2 (en) Hybrid film made of Zn (OH) 2 nanosheet and ZnO nanowhisker film, hybrid film made of ZnO nanosheet and ZnO nanowhisker film, and method for producing them
Mudra et al. Preparation and characterization of ceramic nanofibers based on lanthanum tantalates
KR20170114093A (en) BaSnO3 film, and method of low- temperature manufacturing the same
CA3097600A1 (en) An amorphous titanium dioxide precursor material. method of producing thereof and method of controlling crystalline phases thereof
Guo et al. Fabrication of novel La2O2CN2 one-dimensional nanostructures via facile electrospinning combined with cyanamidation technique
Sharma et al. Synthesis and characterization of CuO electrospum nanofiber using poly (vinyl acetate)/Cu (CH3COO) 2 annealing method
DE102021113087A1 (en) PROCESS FOR THE MANUFACTURE OF ATOMIC THIN FILMS FROM TRANSITION METAL OXIDES AND/OR HYDROXIDES
Liu et al. Facile fabrication of cerium niobate nano-crystalline fibers by electrospinning technology
KR101305554B1 (en) Indium complex nano material in form of plate or wire
KR101741667B1 (en) Method for manufacturing bismuth sulfide nanostructure by hydrothermal synthesis
CN114315591B (en) Preparation of MAPbX 3 Method of nanowires
KR101145098B1 (en) Synthesis Method of Metallic Oxide Nano-wires Using Spray of Nano-sized Seed Particles on the VLS Method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant