KR102310352B1 - Production method of silver particles and carbon nano material composite using Couette-Taylor reactor - Google Patents

Production method of silver particles and carbon nano material composite using Couette-Taylor reactor Download PDF

Info

Publication number
KR102310352B1
KR102310352B1 KR1020150025309A KR20150025309A KR102310352B1 KR 102310352 B1 KR102310352 B1 KR 102310352B1 KR 1020150025309 A KR1020150025309 A KR 1020150025309A KR 20150025309 A KR20150025309 A KR 20150025309A KR 102310352 B1 KR102310352 B1 KR 102310352B1
Authority
KR
South Korea
Prior art keywords
silver
carbon
carbon nanomaterial
silver particles
composite
Prior art date
Application number
KR1020150025309A
Other languages
Korean (ko)
Other versions
KR20160102791A (en
Inventor
한중탁
이건웅
백강준
정승열
정희진
김병국
장정인
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020150025309A priority Critical patent/KR102310352B1/en
Publication of KR20160102791A publication Critical patent/KR20160102791A/en
Application granted granted Critical
Publication of KR102310352B1 publication Critical patent/KR102310352B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2405Stationary reactors without moving elements inside provoking a turbulent flow of the reactants, such as in cyclones, or having a high Reynolds-number
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은, 외부원통과, 상기 외부원통과 동일한 축선을 따라 설치되는 내부원통과, 상기 내부원통을 회전구동가능하게 하는 모터와; 상기 외부원통과 연결된 주입구 및 배출구를 포함하는 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법에 있어서, 도전성 탄소나노소재에 관능기(Functional group) 도입을 위해 상기 탄소나노소재를 표면개질시키는 단계와; 표면개질된 상기 탄소나노소재를 이소시아네이트계 화합물과 피리미딘계 화합물을 혼합하여 상기 탄소나노소재에 은염 전구체와 반응가능한 관능기를 도입하는 단계와; 관능기가 도입된 상기 탄소나노소재를 용매와 함께 쿠에트-테일러 반응기의 상기 주입구에 주입하는 단계와; 상기 내부원통을 회전구동하면서 상기 은염 전구체를 용매와 함께 상기 주입구에 일정한 속도로 주입하는 단계와; 환원제를 상기 주입구에 일정한 속도로 주입하며, 상기 내부원통의 회전구동을 통해 쿠웨트-테일러 흐름을 형성시켜 균일한 직경의 은입자를 형성하는 단계를 포함하는 것을 기술적 요지로 한다. 이에 의해 탄소나노소재, 은전구체 및 환원제가 쿠에트-테일러 흐름에 의해 균일한 직경의 은입자로 합성되는 효과를 얻을 수 있다.The present invention comprises: an outer cylinder, an inner cylinder installed along the same axis as the outer cylinder, and a motor for rotationally driving the inner cylinder; In the method for producing a silver particle and carbon nanomaterial composite using a Couette-Taylor reactor including an inlet and an outlet connected to the external cylinder, the carbon nanomaterial is surface-modified to introduce a functional group into the conductive carbon nanomaterial. making; introducing a functional group capable of reacting with a silver salt precursor into the carbon nanomaterial by mixing the surface-modified carbon nanomaterial with an isocyanate-based compound and a pyrimidine-based compound; injecting the carbon nanomaterial into which the functional group is introduced together with a solvent into the inlet of the Couet-Taylor reactor; injecting the silver salt precursor together with a solvent into the inlet at a constant speed while rotating the inner cylinder; Injecting a reducing agent into the inlet at a constant speed, and forming a Kuwet-Taylor flow through the rotational driving of the inner cylinder to form silver particles of a uniform diameter. Thereby, it is possible to obtain the effect that the carbon nanomaterial, the silver precursor, and the reducing agent are synthesized into silver particles having a uniform diameter by the Kuett-Taylor flow.

Description

쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법 {Production method of silver particles and carbon nano material composite using Couette-Taylor reactor}{Production method of silver particles and carbon nano material composite using Couette-Taylor reactor}

본 발명은 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법에 관한 것으로, 더욱 상세하게는 탄소나노소재와 은전구체를 쿠에트-테일러 반응기에 주입하고 쿠에트-테일러 흐름에 의해 균일한 입자크기의 은을 합성하는 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a composite of silver particles and carbon nanomaterials using a Quett-Taylor reactor, and more particularly, to a method for manufacturing a composite of silver particles and carbon nanomaterials, and more particularly, injecting carbon nanomaterials and silver precursors into a Quett-Taylor reactor and uniformly using a Quett-Taylor flow It relates to a method for manufacturing a composite of silver particles and carbon nanomaterials using a Kuett-Taylor reactor for synthesizing silver of one particle size.

일반적으로 탄소나노튜브(Carbon nano tube), 그래핀(Graphene), 탄소섬유(Carbon fiber) 등과 같은 도전성 탄소나노소재는 투명전극, 대전방지, 전자파 차폐, 에너지 발생 및 저장소자용 전극소재, 방열소재, 고분자 복합체, 금속 복합체, 세라믹 복합체, 전도성 섬유 등의 다양한 분야에 적용 가능하다. 이러한 도전성 탄소나노소재를 코팅하거나 섬유형태로 제조하기 위해서는 묽은 용액이나 고점도 페이스트 형태의 코팅액 또는 방사도프가 필요하게 된다.In general, conductive carbon nanomaterials such as carbon nanotubes, graphene, and carbon fiber are transparent electrodes, antistatic, electromagnetic wave shielding, energy generation and storage electrode materials, heat dissipation materials, It can be applied to various fields such as polymer composites, metal composites, ceramic composites, and conductive fibers. In order to coat these conductive carbon nanomaterials or to manufacture them in the form of fibers, a coating solution or spinning dope in the form of a dilute solution or high-viscosity paste is required.

통상적으로 코팅액이나 페이스트를 제조하기 위해서는 계면활성제, 공중합체 고분자, 이온성 액체(Ionic liquid)와 같은 분산제가 필수적으로 사용된다. 물론 소재 표면에 관능기(functional group)를 과도하게 도입할 경우 분산이 용이하기는 하지만 도전성이 결여되는 문제가 발생하게 된다.In general, in order to prepare a coating solution or paste, a dispersant such as a surfactant, a copolymer polymer, or an ionic liquid is essentially used. Of course, when a functional group is excessively introduced to the surface of the material, dispersion is easy, but a problem of lack of conductivity occurs.

따라서, 분산제를 사용하지 않고 도전성을 유지하면서 도전성 탄소나노소재를 이용한 도전성 코팅액 또는 페이스트를 제조할 경우 원가 절감뿐만 아니라 공정을 간소화할 수 있다. 또한, 분산제가 필요하지 않기 때문에 다양한 바인더 소재, 금속 및 금속산화물과의 조합이 가능하다는 장점을 지니게 된다.Therefore, when manufacturing a conductive coating solution or paste using a conductive carbon nanomaterial while maintaining conductivity without using a dispersant, it is possible to reduce cost and simplify the process. In addition, since a dispersant is not required, it has the advantage that it can be combined with various binder materials, metals, and metal oxides.

이러한 탄소나노소재의 전기전도성을 향상시키기 위해 최근에는 금속입자를 도입하는 기술들이 보고되고 있다. 그 중 '대한민국특허청 등록특허 제10-1410854호'는 도전성 탄소나노소재에 다중수소결합이 가능한 관능기를 도입하여 탄소나노소재 간의 다중수소결합에 의해 고차구조를 지니는 탄소나노소재를 형성하고, 상기 고차구조를 지니는 탄소나노소재와 금속나노소재를 단순 혼합하여 복합소재가 형성됨을 특징으로 하는 다중수소결합에 의해 고차구조를 지니는 탄소나노소재와 금속나노소재를 하이브리드하여 형성된 고전도성 소재이다. 그러나 이러한 종래기술은 분산성은 우수하나 재료로 사용된 탄소나노소재와 금속나노소재의 결합력에 의해 개별적으로 분포되기 때문에 우수한 금속특성의 발현은 다소 미비하다는 문제점이 있다.In order to improve the electrical conductivity of such carbon nanomaterials, recently, techniques for introducing metal particles have been reported. Among them, 'Korea Intellectual Property Office Registration Patent No. 10-1410854' introduces a functional group capable of multiple hydrogen bonding to a conductive carbon nanomaterial to form a carbon nanomaterial having a higher order structure by multiple hydrogen bonding between carbon nanomaterials, and the higher order It is a highly conductive material formed by hybridizing a carbon nanomaterial having a higher-order structure and a metal nanomaterial by multiple hydrogen bonding, characterized in that a composite material is formed by simply mixing a carbon nanomaterial having a structure and a metal nanomaterial. However, although this prior art has excellent dispersibility, there is a problem in that the expression of excellent metal properties is rather insignificant because they are individually distributed by the bonding force of the carbon nanomaterial and the metal nanomaterial used as the material.

다른 종래기술로는 '대한민국특허청 공개특허 제10-2009-0117195호 은나노입자로 장식된 탄소나노튜브 나노복합체의 제조방법'이 소개되어 있다. 이 종래기술은 탄소튜브를 유기용매에 분산시킨 탄소나노튜브 분산액을 만드는 제1단계와; 상기 탄소나노튜브 분산액을 이온을 포함한 용액과 혼합하여 은나노입자를 상기 탄소나노튜브의 표면에 부착시키는 제2단계와; 사기 제2단계의 결과물에 원심분리 및 세척공정을 적용하는 제3단계;를 구비하는 단계로 이루어져 있다. 그러나 이러한 종래기술은 탄소나노튜브의 존재 하에 은이온을 은입자로 환원시켜 탄소나노튜브의 복합체는 형성되나, 은입자의 모양이 구형의 나노입자로 연속적인 형태를 이루고 있지 못하기 때문에 이를 이용해 고전도성 전극에 응용이 용이하지 못하다. 또한 탄소나노튜브의 관능기에 은입자가 도입되기 때문에 은입자 도입 후 복합체의 용매 내 분산성이 현저히 저하되어 별도의 분산제를 사용해야 하는 문제점이 있다.As another prior art, 'Korean Patent Office Laid-Open Patent Publication No. 10-2009-0117195, a method for manufacturing a carbon nanotube nanocomposite decorated with silver nanoparticles' is introduced. This prior art comprises a first step of making a carbon nanotube dispersion in which a carbon tube is dispersed in an organic solvent; a second step of adhering the silver nanoparticles to the surface of the carbon nanotubes by mixing the carbon nanotube dispersion with a solution containing ions; A third step of applying a centrifugal separation and washing process to the result of the second step; consists of a step of providing. However, in this prior art, a complex of carbon nanotubes is formed by reducing silver ions to silver particles in the presence of carbon nanotubes. It is not easy to apply to a conductive electrode. In addition, since the silver particles are introduced into the functional group of the carbon nanotube, the dispersibility of the composite in the solvent is significantly reduced after the introduction of the silver particles, so there is a problem that a separate dispersing agent must be used.

따라서 본 발명의 목적은 탄소나노소재, 은전구체 및 환원제가 쿠에트-테일러 흐름에 의해 균일한 직경의 은입자로 합성되는 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for manufacturing a composite of silver particles and carbon nanomaterials using a Couett-Taylor reactor in which a carbon nanomaterial, a silver precursor, and a reducing agent are synthesized into silver particles of a uniform diameter by a Cuett-Taylor flow. will be.

상기한 목적은, 외부원통과, 상기 외부원통과 동일한 축선을 따라 설치되는 내부원통과, 상기 내부원통을 회전구동가능하게 하는 모터와; 상기 외부원통과 연결된 주입구 및 배출구를 포함하는 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법에 있어서, 도전성 탄소나노소재에 관능기(Functional group) 도입을 위해 상기 탄소나노소재를 표면개질시키는 단계와; 표면개질된 상기 탄소나노소재를 이소시아네이트계 화합물과 피리미딘계 화합물을 혼합하여 상기 탄소나노소재에 은염 전구체와 반응가능한 관능기를 도입하는 단계와; 관능기가 도입된 상기 탄소나노소재를 용매와 함께 쿠에트-테일러 반응기의 상기 주입구에 주입하는 단계와; 상기 내부원통을 회전구동하면서 상기 은염 전구체를 용매와 함께 상기 주입구에 일정한 속도로 주입하는 단계와; 환원제를 상기 주입구에 일정한 속도로 주입하며, 상기 내부원통의 회전구동을 통해 쿠웨트-테일러 흐름을 형성시켜 균일한 직경의 은입자를 형성하는 단계를 포함하는 것을 특징으로 하는 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법에 의해 달성된다.The above object includes: an outer cylinder, an inner cylinder installed along the same axis as the outer cylinder, and a motor for enabling rotational driving of the inner cylinder; In the method for producing a silver particle and carbon nanomaterial composite using a Couette-Taylor reactor including an inlet and an outlet connected to the external cylinder, the carbon nanomaterial is surface-modified to introduce a functional group into the conductive carbon nanomaterial. making; introducing a functional group capable of reacting with a silver salt precursor into the carbon nanomaterial by mixing the surface-modified carbon nanomaterial with an isocyanate-based compound and a pyrimidine-based compound; injecting the carbon nanomaterial into which the functional group is introduced together with a solvent into the inlet of the Couet-Taylor reactor; injecting the silver salt precursor together with a solvent into the inlet at a constant speed while rotating the inner cylinder; Injecting a reducing agent into the inlet at a constant speed, and forming a Kuwet-Taylor flow through rotational driving of the inner cylinder to form silver particles of uniform diameter Kuett-Taylor reactor It is achieved by a method for manufacturing a composite using silver particles and carbon nanomaterials.

여기서, 상기 균일한 직경의 은입자를 형성하는 단계 이후에, 상기 내부원통의 회전구동을 정지시켜 상기 배출구로부터 은입자와 탄소나노소재 복합체를 획득하는 단계를 더 포함하는 것이 바람직하다.Here, after the step of forming the silver particles having a uniform diameter, it is preferable to further include the step of stopping the rotational driving of the inner cylinder to obtain the silver particles and the carbon nanomaterial composite from the outlet.

또한, 상기 탄소나노소재를 표면개질시키는 단계는, 상기 탄소나노소재 및 산화제가 혼합된 용액을 아임계수 또는 초임계수 조건의 표면처리반응조에 투입시키는 단계와; 상기 탄소나노소재와 상기 산화제가 반응하여 산화탄소나노소재가 형성되는 단계를 포함하거나, 상기 탄소나노소재를 강산에 침지하여 가열 및 교반하는 단계와; 상기 강산에 물 또는 증류수를 첨가하여 상기 강산을 희석시킨 희석액을 제조하는 단계와; 상기 희석액으로부터 상기 탄소나노소재를 여과하는 단계를 포함하는 것이 바람직하다.In addition, the step of surface-modifying the carbon nanomaterial may include: introducing a solution in which the carbon nanomaterial and the oxidizing agent are mixed into a surface treatment reactor under subcritical water or supercritical water conditions; a step of forming a carbon oxide nanomaterial by reacting the carbon nanomaterial with the oxidizing agent, or immersing the carbon nanomaterial in a strong acid and heating and stirring; preparing a diluted solution obtained by diluting the strong acid by adding water or distilled water to the strong acid; It is preferable to include the step of filtering the carbon nanomaterial from the diluent.

상술한 본 발명의 구성에 따르면 탄소나노소재, 은전구체 및 환원제가 쿠에트-테일러 흐름에 의해 균일한 직경의 은입자로 합성되는 효과를 얻을 수 있다.According to the above-described configuration of the present invention, it is possible to obtain the effect of synthesizing the carbon nanomaterial, the silver precursor, and the reducing agent into silver particles having a uniform diameter by the Kuet-Taylor flow.

도 1은 쿠에트-테일러 반응기의 단면도이고,
도 2는 본 발명의 실시예에 따른 은입자/탄소나노소재 복합체 제조방법의 순서도이고,
도 3 및 4는 실시예와 비교예에 따른 은입자/탄소나노소재 복합체의 SEM 사진이다.
1 is a cross-sectional view of a Kuett-Taylor reactor;
2 is a flowchart of a method for manufacturing a silver particle/carbon nanomaterial composite according to an embodiment of the present invention;
3 and 4 are SEM photographs of silver particle/carbon nanomaterial composites according to Examples and Comparative Examples.

이하 도면을 참조하여 본 발명의 실시예에 따른 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법을 상세히 설명한다.Hereinafter, a method for manufacturing a composite of silver particles and carbon nanomaterials using a Kuet-Taylor reactor according to an embodiment of the present invention will be described in detail with reference to the drawings.

도 1에 도시된 바와 같이 은입자/탄소나노소재 복합체를 합성하기 위해 사용되는 쿠에트-테일러(Couette-Taylor) 반응기(10)는 내부에 볼텍스(Vortex) 흐름을 형성시켜 반응을 일으키는 장치로, 외부원통(11), 외부원통(11)과 동일한 축선을 따라 설치되는 내부원통(13), 내부원통(13)을 회전시키는 모터(15), 외부원통(11)과 연결된 주입구(17) 및 배출구(19)를 포함한다. 외부원통(11)은 정지한 상태로 있으며 내부원통(13)을 회전구동가능하게 하도록 내부원통(13)에 연결된 모터(15)에 의해 내부원통(13)이 회전하게 되고 회전구동에 의해 볼텍스 흐름이 형성된다. 여기에 주입구(17) 내로 탄소나노소재, 은전구체 및 환원제를 주입하면 균일한 입자크기를 가지는 은입자가 탄소나노소재에 합성되고, 합성된 은입자/탄소나노소재 복합체는 배출구(19)를 통해 얻을 수 있다.
As shown in FIG. 1, the Couette-Taylor reactor 10 used to synthesize the silver particle/carbon nanomaterial composite is a device that causes a reaction by forming a vortex flow therein, The outer cylinder 11, the inner cylinder 13 installed along the same axis as the outer cylinder 11, the motor 15 for rotating the inner cylinder 13, the inlet 17 and the outlet connected to the outer cylinder 11 (19). The outer cylinder 11 is in a stationary state, and the inner cylinder 13 is rotated by a motor 15 connected to the inner cylinder 13 to enable the rotational driving of the inner cylinder 13, and the vortex flow by rotational driving this is formed Here, when carbon nanomaterial, silver precursor and reducing agent are injected into the inlet 17, silver particles having a uniform particle size are synthesized in the carbon nanomaterial, and the synthesized silver particle/carbon nanomaterial composite is passed through the outlet 19. can be obtained

이러한 합성과정을 좀 더 상세히 설명하면 먼저, 도 2에 도시된 바와 같이 탄소나노소재를 표면개질시킨다(S1).When explaining this synthesis process in more detail, first, as shown in FIG. 2, the carbon nanomaterial is surface-modified (S1).

탄소나노소재에 은전구체와 반응하는 관능기(Functional group)를 도입하기 위해 탄소나노소재를 표면개질한다. 탄소나노소재를 표면개질시키는 단계는 탄소나노소재의 종류에 따라서 상이한 방법을 사용한다. 여기서 탄소나노소재는 그래핀(Graphene), 탄소나노튜브(Carbon nano tuber), 탄소섬유(Carbon fiber), 카본블랙(Carbon black) 및 이의 혼합으로 이루어진 군으로부터 선택된 것이다.The carbon nanomaterial is surface-modified to introduce a functional group that reacts with the silver precursor to the carbon nanomaterial. The step of surface-modifying the carbon nanomaterial uses a different method depending on the type of the carbon nanomaterial. Here, the carbon nano material is selected from the group consisting of graphene, carbon nano tuber, carbon fiber, carbon black, and mixtures thereof.

예를 들어 그래핀(Graphene)을 표면개질할 경우 허머스 법을 이용하게 되는데, 허머스 법은 진공 분위기가 형성된 진공챔버 내에 그래핀을 투입하고 여기에 산소 가스를 주입하여 이루어진다. 산소 가스가 포함된 진공챔버를 가열하여 산소 가스의 분자를 원자로 해리시키면, 산소 원자와 그래핀이 반응하여 산화탄소나노소재가 형성된다. 그 후 동결건조를 통해 카르복실기가 도입된 산화그래핀을 얻게 된다. 즉 카르복실기로 표면개질된 산화그래핀이 된다.For example, in the case of surface modification of graphene, the Hummus method is used. The Hummus method is made by injecting graphene into a vacuum chamber in which a vacuum atmosphere is formed, and injecting oxygen gas thereto. When a vacuum chamber containing oxygen gas is heated to dissociate molecules of oxygen gas into atoms, oxygen atoms and graphene react to form carbon oxide nanomaterials. Thereafter, graphene oxide into which a carboxyl group is introduced is obtained through freeze-drying. That is, graphene oxide surface-modified with a carboxyl group is obtained.

또 다른 방법으로는 탄소섬유(Carbon fiber)를 표면개질할 경우 탄소섬유를 강산에 침지하여 가열하면서 교반하여 탄소섬유를 표면개질하고, 표면개질 후 강산에 물 또는 증류수를 첨가하여 강산을 희석시킨 희석액을 제조한다. 그 후 희석액으로부터 탄소섬유를 여과지 등을 통해 여과하여 표면개질된 탄소섬유를 획득하게 된다. 여기서 강산은 염산(HCl), 황산(H2SO4), 질산(HNO3), 인산(P2O3) 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.
As another method, when surface-modifying carbon fiber, the carbon fiber is immersed in a strong acid and stirred while heating to surface-modify the carbon fiber, and after surface modification, water or distilled water is added to the strong acid to dilute the strong acid to prepare a diluent. do. Thereafter, the carbon fibers are filtered from the diluent through a filter paper to obtain surface-modified carbon fibers. Here, the strong acid is preferably selected from the group consisting of hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), phosphoric acid (P 2 O 3 ), and mixtures thereof.

탄소나노소재에 관능기를 도입한다(S2).A functional group is introduced into the carbon nanomaterial (S2).

S1 단계에서 표면개질된 탄소나노소재에 은전구체와 반응할 수 있는 관능기를 도입한다. 관능기 도입은 탄소나노소재를 용매에 분산시킨 후 이소시아네이트계 화합물을 혼합하고 가열 및 교반하여 탄소나노소재에 이소시아네이트기를 도입한다. 여기에 피리미딘계 화합물을 추가한 후 가열 및 교반하여 접합반응을 진행하는 방식으로 관능기를 도입한다.In step S1, a functional group capable of reacting with the silver precursor is introduced into the surface-modified carbon nanomaterial. The functional group is introduced into the carbon nanomaterial by dispersing the carbon nanomaterial in a solvent, mixing the isocyanate-based compound, and heating and stirring to introduce the isocyanate group into the carbon nanomaterial. After adding a pyrimidine-based compound to this, a functional group is introduced in such a way that the conjugation reaction proceeds by heating and stirring.

여기서 이소시아네이트계 화합물은, 에틸렌 디이소시아네이트, 1,4-테트라메틸렌 디이소시아네이트, 1,6-헥사메틸렌 디이소시아네이트(HDI), 1,12-도데칸 디이소시아네이트, 시클로부탄-1,3-디이소시아네이트, 시클로헥산-1,3-디이소시아네이트, 시클로헥산-1,4-디이소시아네이트, 1-이소시아네이토-3,3,5-트리메틸-5-이소시아네이토메 틸-시클로헥산, 2,4- 헥사히드로톨루엔 디이소시아네이트, 2,6-헥사히드로톨루엔 디이소시아네이트, 헥사히드 로-1,3- 페닐렌 디이소시아네이트, 헥사히드로-1,4-페닐렌 디이소시아네이트, 퍼히드로-2,4'- 디페닐메탄 디이소시아네이트, 퍼히드로-4,4'-디페닐메탄 디이소시아네이트, 1,3- 페닐렌 디이소시아네이트, 1,4-페닐렌 디이소시아네이트, 1,4-두롤 디이소시아네이트(DDI), 4,4'-스틸벤 디이소시아네이트, 3,3'-디메틸-4,4'-비페닐렌 디이소시아네이트(TODI), 톨루엔 2,4-디이소시아네이트, 톨루엔 2,6-디이소시아네이트(TDI), 디페닐메탄-2,4'- 디이소시아네이트(MDI), 2,2'-디페닐메탄 디이소시아네이트(MDI), 디페닐메탄-4,4'-디이소시아네이트(MDI) 및 나프틸렌-1,5-이소시아네이트(NDI), 2,2-메틸렌디페닐디이소시아네이트, 5,7-디이소시아나토나프탈렌-1,4-디온, 이소포론 디이소시아네이트, m-크실렌디이소시아네이트, 3,3-디메톡시-4,4-바이페닐렌 디이소시아네이트, 3,3-디메톡시벤지딘-4,4-디이소시아네이트, 톨루엔 2,4-디이소시아네이트 말단기 지니는 폴리(프로필렌 글리콜), 톨루엔 2,4-디이소시아네이트 말단기 지니는 폴리(에틸렌 글리콜), 트리페닐메탄 트리이소시아네이트, 디페닐메탄 트리이소시아네이트, 부탄-1,2,2-트리이소시아네이트, 트리메틸올프로판토일렌 디디소시아네이트 트리머, 2,4,4-디페닐 에테르 트리이소시아네이트, 다수의 헥사메틸렌디이소시아네이트를 지니는 이소시아누레이트, 다수의 헥사메틸렌디이소시아네이트를 지니는 이미노옥사디아진, 폴리메틸렌폴리페닐 이소시아네이트 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.Here, the isocyanate-based compound is ethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate (HDI), 1,12-dodecane diisocyanate, cyclobutane-1,3-diisocyanate, Cyclohexane-1,3-diisocyanate, cyclohexane-1,4-diisocyanate, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane, 2,4 - Hexahydrotoluene diisocyanate, 2,6-hexahydrotoluene diisocyanate, hexahydro-1,3-phenylene diisocyanate, hexahydro-1,4-phenylene diisocyanate, perhydro-2,4'- Diphenylmethane diisocyanate, perhydro-4,4'-diphenylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 1,4-durol diisocyanate (DDI), 4 ,4'-stilbene diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate (TODI), toluene 2,4-diisocyanate, toluene 2,6-diisocyanate (TDI), di Phenylmethane-2,4'-diisocyanate (MDI), 2,2'-diphenylmethane diisocyanate (MDI), diphenylmethane-4,4'-diisocyanate (MDI) and naphthylene-1,5- Isocyanate (NDI), 2,2-methylenediphenyl diisocyanate, 5,7-diisocyanatonaphthalene-1,4-dione, isophorone diisocyanate, m-xylene diisocyanate, 3,3-dimethoxy-4, 4-biphenylene diisocyanate, 3,3-dimethoxybenzidine-4,4-diisocyanate, toluene 2,4-diisocyanate poly (propylene glycol) with end groups, toluene 2,4-diisocyanate poly with end groups (ethylene glycol), triphenylmethane triisocyanate, diphenylmethane triisocyanate, butane-1,2,2-triisocyanate, trimethylolpropantoylene didisocyanate trimer, 2,4,4-diphenyl ether triisocyanate, Isocyanurates with multiple hexamethylene diisocyanates, iminooxadiazines with multiple hexamethylene diisocyanates, polymethylene polyphenyl isocyanates It is preferably selected from the group consisting of tallow and mixtures thereof.

또한 피리미딘계 화합물은, 2-아미노-6-메틸-1H-피리도[2,3-d]피리미딘-4-온, 2-아미노-6-브로모피리도[2,3-d]피리딘-4(3H)-온, 2-아미노-4-히드록시-5-피리미딘카로보닉산 에틸 에스테르, 2-아미노-6-에틸-4-히드록시피리미딘, 2-아미노-4-히드록시-6-메틸 피리미딘, 2-아미노-5,6-디메틸-4-이드록시피리미딘 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.
In addition, pyrimidine-based compounds include 2-amino-6-methyl-1H-pyrido[2,3-d]pyrimidin-4-one, 2-amino-6-bromopyrido[2,3-d]pyridine -4(3H)-one, 2-amino-4-hydroxy-5-pyrimidinecarobonic acid ethyl ester, 2-amino-6-ethyl-4-hydroxypyrimidine, 2-amino-4-hydroxy It is preferably selected from the group consisting of -6-methyl pyrimidine, 2-amino-5,6-dimethyl-4-hydroxypyrimidine and mixtures thereof.

관능기가 도입된 탄소나노소재를 쿠에트-테일러 반응기에 주입한다(S3).The carbon nanomaterial into which the functional group is introduced is injected into the Couette-Taylor reactor (S3).

S2 단계를 통해 관능기가 도입된 탄소나노소재를 용매와 혼합한 후 이를 쿠에트-테일러 반응기(10)에 형성된 주입구(17)를 통해 외부원통(11) 내로 주입한다. 이때 일정한 속도 및 양으로 외부원통(11) 내에 탄소나노소재가 주입되도록 정량펌프를 이용한다.
After mixing the carbon nanomaterial into which the functional group is introduced through step S2 with the solvent, it is injected into the outer cylinder 11 through the injection hole 17 formed in the Couet-Tayler reactor 10 . At this time, a metering pump is used to inject the carbon nanomaterial into the outer cylinder 11 at a constant speed and amount.

주입구에 은염 전구체를 주입하여 혼합한다(S4).The silver salt precursor is injected into the inlet and mixed (S4).

관능기가 도입된 탄소나노소재가 주입되어 있는 외부원통(11) 내로 주입구(17)를 통해 은염 전구체를 용매와 함께 주입한다. 은염 전구체를 주입할 때에는 S3 단계와 마찬가지로 정량펌프를 통해 일정한 속도 및 양으로 주입하여 탄소나노소재와 균일하게 혼합되도록 한다. 이때 모터(15)를 이용하여 내부원통(13)을 회전구동시키면서 은염 전구체를 주입하게 되는데, 이와 같이 내부원통(13)을 회전구동하게 되면 외부원통(11)과 내부원통(13) 사이에 볼텍스 흐름이 형성되어 탄소나노소재와 은염 전구체가 더욱 균일하게 혼합된다.The silver salt precursor is injected together with the solvent through the injection hole 17 into the outer cylinder 11 into which the functional group is introduced into the carbon nanomaterial. When injecting the silver salt precursor, as in step S3, it is injected at a constant speed and amount through a metering pump so that it is uniformly mixed with the carbon nanomaterial. At this time, the silver salt precursor is injected while rotationally driving the inner cylinder 13 using the motor 15 . When the inner cylinder 13 is rotated in this way, the vortex is located between the outer cylinder 11 and the inner cylinder 13 . A flow is formed so that the carbon nanomaterial and the silver salt precursor are more uniformly mixed.

여기서 은염 전구체는, 실버나이트레이드(AgNO3), 실버퍼클로레이트(AgClO4), 실버테트라플루오로보레이트(AgBF4), 실버헥사플루오로포스페이트(AgPF6), 실버아세테이트(CH3COOAg), 실버트리플루오로메탄설포네이트(AgCF3SO3), 실버설페이트(Ag2SO4), 실버2,4-펜탄디오네이트(CH3COCH=COCH3Ag) 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.
Here, the silver salt precursor is silver nitride (AgNO 3 ), silver perchlorate (AgClO 4 ), silver tetrafluoroborate (AgBF 4 ), silver hexafluorophosphate (AgPF 6 ), silver acetate (CH 3 COOAg), silver tree It is preferably selected from the group consisting of fluoromethanesulfonate (AgCF 3 SO 3 ), silver sulfate (Ag 2 SO 4 ), silver 2,4-pentanedionate (CH 3 COCH=COCH 3 Ag) and mixtures thereof.

환원제를 주입하여 균일한 직경의 은입자를 형성한다(S5).A reducing agent is injected to form silver particles of uniform diameter (S5).

쿠에트-테일러 반응기(10)의 내부원통(13)을 회전시켜 볼텍스 흐름이 형성된 상태에서 외부원통(11)에 환원제를 정량펌프를 이용하여 주입구(17)에 일정한 속도 및 양으로 주입한다. 탄소나노소재와 은염 전구체가 내부에 존재하는 상태에서 환원제를 주입하게 되면 탄소나노소재와 은염 전구체가 반응하여 탄소나노소재에 은 입자가 합성된다. 이때 내부원통(13)의 회전속도가 증가하게 되면 내부의 유체들이 외부원통(11) 방향으로 나가려는 경향 때문에 유체가 불안정해지고, 특정 임계 속도 이상에서 테일러 와류가 형성된다. 테일러 와류는 축방향으로 매우 규칙적인 고리모양으로 배열되어 있고, 서로 반대방향으로 회전하기 때문에 축방향으로는 섞이지 않아 균일한 합성을 유도할 수 있다. 즉, 볼텍스 흐름이 형성된 상태에서 환원제가 일정하게 주입되면 합성되는 은입자가 볼텍스 흐름에 의해 균일한 직경을 가지도록 합성되기 때문에 일반적인 합성 공정을 통해 은입자를 합성할 때보다 일정한 크기의 은입자가 합성된다.By rotating the inner cylinder 13 of the Couet-Taylor reactor 10, a reducing agent is injected into the outer cylinder 11 in a state in which a vortex flow is formed, using a metering pump, into the inlet 17 at a constant speed and amount. When a reducing agent is injected in a state in which the carbon nanomaterial and the silver salt precursor are present, the carbon nanomaterial and the silver salt precursor react to synthesize silver particles in the carbon nanomaterial. At this time, when the rotational speed of the inner cylinder 13 increases, the fluid becomes unstable due to the tendency of the inner fluids to go out in the direction of the outer cylinder 11, and a Taylor vortex is formed above a certain critical speed. Taylor vortices are arranged in a very regular ring shape in the axial direction, and because they rotate in opposite directions, they do not mix in the axial direction, leading to uniform synthesis. That is, when the reducing agent is constantly injected in a state in which the vortex flow is formed, the synthesized silver particles are synthesized to have a uniform diameter by the vortex flow. are synthesized

여기서 환원제는, 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화 암모늄(NH4OH), 수소화붕소나트륨(NaBH4), 히드라진(N2H4), 히드리오딘 (HI), 아스코빅산(Ascorbic acid), 환원성 유기용매 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.Here, the reducing agent is sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 OH), sodium borohydride (NaBH 4 ), hydrazine (N 2 H 4 ), hydriodine (HI), ascorbic acid ( Ascorbic acid), a reducing organic solvent, and a mixture thereof are preferably selected.

경우에 따라서 은입자를 형성하는 단계에서 염화구리(CuCl2), 시트레이트 화합물(Citrate compound), 이미다졸 화합물(Imidazole compound), 전도성 고분자, 폴리아크릴산(Polyacrylate) 유도체 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 함께 첨가하여 합성 반응을 수행할 수도 있다.
In some cases, in the step of forming silver particles, copper chloride (CuCl 2 ), a citrate compound, an imidazole compound, a conductive polymer, a polyacrylate derivative, and a mixture thereof selected from the group consisting of It is also possible to carry out a synthesis reaction by adding them together.

은입자/탄소나노소재 복합체를 획득한다(S6).A silver particle/carbon nanomaterial composite is obtained (S6).

은입자의 합성이 완료되면 내부원통(13)의 회전구동을 정지시켜 배출구(19)로부터 은입자/탄소나노소재 복합체를 획득한다. 이와 같은 단계들을 통해 획득되는 은입자/탄소나노소재 복합체는 탄소나노소재의 표면에 은입자가 균일하게 합성되어 있다.When the synthesis of the silver particles is completed, the rotational driving of the inner cylinder 13 is stopped to obtain the silver particle/carbon nanomaterial composite from the outlet 19 . In the silver particle/carbon nanomaterial composite obtained through these steps, silver particles are uniformly synthesized on the surface of the carbon nanomaterial.

이하에서는 본 발명의 실시예를 좀 더 구체적으로 설명한다.
Hereinafter, embodiments of the present invention will be described in more detail.

<실시예 1><Example 1>

본 발명의 제1실시예로써 그래핀에 은이온 또는 은입자와 상호작용이 가능한 관능기를 도입하고, 관능기가 도입된 그래핀과 은입자 전구체를 쿠에트-테일러 반응기에 주입하여 용액에 전단응력을 가함으로써 입자의 균일한 분산상태에서 은입자의 합성이 이루어지게 유도하는 제조방법에 관한 것이다.As a first embodiment of the present invention, a functional group capable of interacting with silver ions or silver particles is introduced into graphene, and the functional group-introduced graphene and silver particle precursor are injected into the Couette-Taylor reactor to apply shear stress to the solution. It relates to a manufacturing method for inducing the synthesis of silver particles in a uniformly dispersed state of particles by adding them.

먼저, 10g의 흑연을 허머스 법에 의해 산화흑연으로 제조한 후 이를 수용액에서 박리하여 산화그래핀을 제조한다. 산화그래핀을 동결건조를 통해 카르복실기(-COOH)가 도입된 산화그래핀 파우더를 제조하였다. 카르복실기가 도입된 산화그래핀을 디메틸포름아미드(Dimethylformamide) 용매에 100mg/L로 분산시킨 후 톨루엔 디이소시아네이트(Toluene diisocyanate)를 혼합하여 100℃에서 12시간 동안 교반하는 방식으로 반응시켜 이소시아네이트(Isocyanate) 기를 도입시킨다.First, 10 g of graphite is prepared as graphite oxide by the Hummus method, and then it is peeled off in an aqueous solution to prepare graphene oxide. Graphene oxide powder into which a carboxyl group (-COOH) was introduced was prepared by freeze-drying graphene oxide. After dispersing graphene oxide into which a carboxyl group is introduced at 100 mg/L in a dimethylformamide solvent, toluene diisocyanate is mixed and reacted in a manner of stirring at 100° C. for 12 hours to form an isocyanate group. introduce

그 후, 이소시아네이트기가 도입된 산화그래핀에 2-아미노-4-히드록시-6-메딜 피리미딘(Amino-4-hydroxy-6-methyl-pyrimidine)을 혼합하고 100℃에서 20시간 동안 교반하여 접합반응을 진행하는 방식으로 4중 수소결합을 지니는 2-우레이도-4[1H]피리미디논(2-Ureido-4[1H]ptrimidone)을 도입한다.Thereafter, 2-amino-4-hydroxy-6-methyl-pyrimidine was mixed with graphene oxide into which an isocyanate group was introduced, and the mixture was stirred at 100° C. for 20 hours to bond. In such a way that the reaction proceeds, 2-ureido-4[1H]pyrimidinone having a quadruple hydrogen bond (2-Ureido-4[1H]ptrimidone) is introduced.

관능기가 도입된 산화그래핀을 디메틸포름아미드 용매에 2g/L로 분산시키고 이를 정량펌프를 이용하여 쿠에트-테일러 반응기에 주입한다. 여기에 실버나이트레이드(AgNO3)를 0.05mol/L로 디메틸포름아미드에 용해시킨 용액을 정량펌프를 이용하여 5분에 걸쳐 반응기에 주입하였다. 그리고 0.1mol/L의 히드라진 환원제 용액을 정량펌프로 10분에 걸쳐 주입하고 상온에서 1시간 동안 교반하여 그래핀과 은입자가 복합화된 복합소재를 제조하였다. 이와 같이 쿠에트-테일러 반응기를 이용하는 경우 일반 교반기를 사용한 반응보다 균일한 은입자를 수득할 수 있다.
The functional group-introduced graphene oxide is dispersed in a dimethylformamide solvent at 2 g/L, and this is injected into the Couette-Taylor reactor using a metering pump. Here, a solution of silver nitride (AgNO 3 ) dissolved in dimethylformamide at 0.05 mol/L was injected into the reactor over 5 minutes using a metering pump. Then, 0.1 mol/L of a hydrazine reducing agent solution was injected with a metering pump over 10 minutes and stirred at room temperature for 1 hour to prepare a composite material in which graphene and silver particles were complexed. In this way, when using the Quett-Taylor reactor, it is possible to obtain more uniform silver particles than the reaction using a general stirrer.

<실시예 2><Example 2>

본 발명의 제2실시예에서는 탄소나노소재로써 탄소섬유(Carbon fiber)를 사용하였다.In the second embodiment of the present invention, carbon fiber was used as a carbon nano material.

먼저, 탄소섬유를 10g 준비한다. 준비된 탄소섬유 10g을 7:3 부피비를 갖는 황산:질산 혼합액 200ml에 추가하고, 이를 80℃로 가열하여 24시간 동안 교반한 후 상온으로 냉각시킨다. 그런 다음, 800ml 증류수를 추가하여 혼합액을 희석시킨다. 희석된 혼합액을 여과지를 이용하여 탄소섬유에 남아있는 산 용액을 4회 이상의 여과를 통해 제거한 후 건조시키면 카르복실기(-COOH)가 도입된 탄소섬유가 제조된다.First, 10 g of carbon fiber is prepared. 10 g of the prepared carbon fiber was added to 200 ml of a sulfuric acid: nitric acid mixture having a volume ratio of 7:3, heated to 80° C., stirred for 24 hours, and then cooled to room temperature. Then, add 800 ml distilled water to dilute the mixture. After removing the acid solution remaining on the carbon fiber through filtration 4 or more times using filter paper, the diluted mixed solution is dried to prepare a carbon fiber having a carboxyl group (-COOH) introduced therein.

카르복실기가 도입된 탄소섬유를 디메틸포름아미드 용매에 100mg/L로 분산시킨 후 톨루엔 디이소시아네이트를 혼합하여 100℃에서 12시간 동안 교반하는 방식으로 반응시켜 이소시아네이트기를 도입시킨다. 그런 다음, 이소시아네이트기가 도입된 탄소섬유에 2-아미노-4-히드록시-6-메틸 피리미딘을 혼합하고 100℃에서 20시간 동안 교반하여 접합 반응을 진행하는 방식으로 4중 수소결합을 지니는 20우레이도-4[1H]피리미디논(2-Ureido-4[1H]ptrimidone)을 도입한다.After dispersing the carbon fiber introduced with the carboxyl group at 100 mg/L in a dimethylformamide solvent, toluene diisocyanate is mixed and reacted by stirring at 100° C. for 12 hours to introduce an isocyanate group. Then, 2-amino-4-hydroxy-6-methyl pyrimidine is mixed with the carbon fiber into which the isocyanate group is introduced and stirred at 100° C. for 20 hours to proceed with the conjugation reaction. Figure-4 [1H]pyrimidinone (2-Ureido-4[1H]ptrimidone) is introduced.

관능기가 도입된 탄소섬유를 디메틸포름아미드 용매에 2g/L로 분산시키고 이를 정량펌프를 이용하여 쿠에트-테일러 반응기에 주입한다. 여기에 실버나이트레이드(AgNO3)를 0.05mol/L로 디메틸포름아미드에 용해시킨 용액을 정량펌프를 이용하여 5분에 걸쳐 반응기에 주입하였다. 그리고 0.1mol/L의 히드라진 환원제 용액을 정량펌프로 10분에 걸쳐 주입하고 상온에서 1시간 동안 교반하여 탄소섬유와 은입자가 복합화된 복합소재를 제조하였다. 이와 같이 쿠에트-테일러 반응기를 이용하는 경우 일반 교반기를 사용한 반응보다 균일한 사이즈의 은입자를 수득할 수 있다.
The carbon fiber introduced with the functional group is dispersed in a dimethylformamide solvent at 2 g/L, and this is injected into the Couette-Taylor reactor using a metering pump. Here, a solution of silver nitride (AgNO 3 ) dissolved in dimethylformamide at 0.05 mol/L was injected into the reactor over 5 minutes using a metering pump. Then, a 0.1 mol/L hydrazine reducing agent solution was injected with a metering pump over 10 minutes and stirred at room temperature for 1 hour to prepare a composite material in which carbon fibers and silver particles were composited. In this way, when using the Quett-Taylor reactor, it is possible to obtain silver particles having a uniform size than the reaction using a general stirrer.

<비교예 1><Comparative Example 1>

본 발명의 제1비교예로써, 쿠에트-테일러 반응기를 사용하지 않고, 일반적인 유리반응기에서 일반적인 교반기를 사용하여 탄소나노소재와 은입자 복합체를 제조하는 예이다.As a first comparative example of the present invention, a composite of carbon nanomaterials and silver particles is prepared by using a general stirrer in a general glass reactor without using a Quett-Taylor reactor.

실시예 1과 동일하게 관능기가 도입된 산화그래핀 분산액을 준비하고, 디메틸포름아미드에 실버나이트레이드 0.05mol/L로 은염 반응액을 제조하고 이를 산화그래핀 분산액과 혼합한 후, 마그네틱 교반기봉(Magnetic bar) 및 교반기로 교반하면서 여기에 하이드라진(Hydrazine)을 환원제로 첨가하여 상온에서 1시간 동안 교반을 통해 산화그래핀/은입자 복합체를 제조하였다.
Prepare a graphene oxide dispersion into which a functional group is introduced in the same manner as in Example 1, prepare a silver salt reaction solution with 0.05 mol/L of silver nitride in dimethylformamide, and mix it with the graphene oxide dispersion, and then use a magnetic stirrer rod ( While stirring with a magnetic bar) and a stirrer, hydrazine was added thereto as a reducing agent, and a graphene oxide/silver particle composite was prepared by stirring at room temperature for 1 hour.

<비교예 2><Comparative Example 2>

본 발명의 제2비교예로써, 황산/질산으로 이루어진 혼합산을 이용하여 탄소섬유에 카르복실기만 도입하여 0.05mol/L의 은염 혼합액에 2g/L 농도로 첨가하고, 하이드라진을 환원제로 첨가하여 100℃에서 1시간 동안 마그네틱 교반기봉 및 교반기를 통해 교반하여 탄소섬유/은입자 복합체를 제조하였다.
As a second comparative example of the present invention, using a mixed acid consisting of sulfuric acid/nitric acid, only carboxyl groups were introduced into carbon fibers, added to a silver salt mixture of 0.05 mol/L at a concentration of 2 g/L, and hydrazine was added as a reducing agent at 100° C. A carbon fiber/silver particle composite was prepared by stirring through a magnetic stirrer rod and a stirrer for 1 hour.

도 3은 실시예 1 및 비교예 1로부터 합성된 그래핀/은입자 복합체를 나타낸 SEM 사진으로, 도 3a는 비교예 1의 그래핀/은입자 복합체로 은입자가 균일하지 못하며 서로 분산되지 않고 뭉쳐져 있는 것을 확인할 수 있다. 이에 비해 도 3b는 쿠에트-테일러를 이용해 합성한 그래핀/은입자 복합체로 은입자가 균일하며 서로 뭉치지 않고 일정 간격을 유지하는 것을 확인할 수 있다.3 is an SEM photograph showing the graphene/silver particle composite synthesized from Example 1 and Comparative Example 1, and FIG. 3a is the graphene/silver particle composite of Comparative Example 1, in which silver particles are not uniform and are not dispersed but agglomerated. can confirm that there is In contrast, FIG. 3b shows that the graphene/silver particle composite synthesized using Quett-Taylor has uniform silver particles and does not agglomerate with each other and maintains a certain interval.

도 4는 실시예 2 및 비교예 2로부터 합성된 탄소섬유/은입자 복합체를 나타낸 SEM 사진으로, 도 4a는 비교예 2의 탄소섬유/은입자 복합체로 은입자가 일정한 직경으로 형성되지 않은 것을 확인할 수 있다. 이에 비해 도 4b는 쿠에트-테일러를 이용해 합성한 탄소섬유/은입자 복합체로 은입자가 매우 균일하게 형성되어 있는 것을 확인할 수 있다.
4 is an SEM photograph showing the carbon fiber/silver particle composite synthesized from Example 2 and Comparative Example 2, and FIG. 4a is the carbon fiber/silver particle composite of Comparative Example 2, confirming that the silver particles are not formed with a constant diameter. can In contrast, in FIG. 4b , it can be seen that the silver particles are formed very uniformly with the carbon fiber/silver particle composite synthesized using Quett-Taylor.

종래에는 은입자를 형성하기 위하여 일반적인 교반기 및 합성방법을 이용하여 합성을 하였다. 하지만 종래의 방법을 사용할 경우 은입자의 직경이 균일하게 형성되지 않으며 서로 뭉치는 문제점이 있었다. 하지만 본 발명의 경우 쿠에트-테일러 반응기(10)를 사용하여 볼텍스 흐름을 이용해 은입자를 합성하기 때문에 은입자가 매우 균일한 직경을 가지도록 형성되며, 서로 뭉치지 않고 일정간격을 유지하도록 형성되는 것을 확인할 수 있다.Conventionally, synthesis was performed using a general stirrer and a synthesis method to form silver particles. However, when the conventional method is used, the diameters of the silver particles are not uniformly formed and there is a problem in that they are agglomerated. However, in the present invention, since silver particles are synthesized using a vortex flow using the Kuett-Taylor reactor 10, the silver particles are formed to have a very uniform diameter, and are formed to maintain a certain interval without agglomeration. can be checked

10: 쿠에트-테일러 반응기
11: 외부원통
13: 내부원통
15: 모터
17: 주입구
19: 배출구
10: Couet-Taylor Reactor
11: Outer cylinder
13: inner cylinder
15: motor
17: inlet
19: outlet

Claims (9)

외부원통과, 상기 외부원통과 동일한 축선을 따라 설치되는 내부원통과, 상기 내부원통을 회전구동가능하게 하는 모터와; 상기 외부원통과 연결된 주입구 및 배출구를 포함하는 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법에 있어서,
도전성 탄소나노소재에 관능기(Functional group) 도입을 위해 상기 탄소나노소재를 표면개질시키는 단계와;
표면개질된 상기 탄소나노소재를 이소시아네이트계 화합물과 피리미딘계 화합물을 혼합하여 상기 탄소나노소재에 은염 전구체와 반응가능한 관능기를 도입하는 단계와;
관능기가 도입된 상기 탄소나노소재를 용매와 함께 쿠에트-테일러 반응기의 상기 주입구에 주입하는 단계와;
상기 내부원통을 회전구동하면서 상기 은염 전구체를 용매와 함께 상기 주입구에 일정한 속도로 주입하는 단계와;
환원제를 상기 주입구에 일정한 속도로 주입하며, 상기 내부원통의 회전구동을 통해 쿠웨트-테일러 흐름을 형성시켜 균일한 직경의 은입자를 형성하는 단계를 포함하는 것을 특징으로 하는 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법.
an outer cylinder, an inner cylinder installed along the same axis as the outer cylinder, and a motor for rotationally driving the inner cylinder; In the method for producing a composite of silver particles and carbon nanomaterials using a Kuet-Taylor reactor including an inlet and an outlet connected to the external cylinder,
surface-modifying the carbon nanomaterial to introduce a functional group into the conductive carbon nanomaterial;
introducing a functional group capable of reacting with a silver salt precursor into the carbon nanomaterial by mixing the surface-modified carbon nanomaterial with an isocyanate-based compound and a pyrimidine-based compound;
injecting the carbon nanomaterial into which the functional group is introduced together with a solvent into the inlet of the Couet-Taylor reactor;
injecting the silver salt precursor together with a solvent into the injection hole at a constant speed while rotating the inner cylinder;
Injecting a reducing agent into the inlet at a constant speed, and forming a Kuwet-Taylor flow through rotational driving of the inner cylinder to form silver particles of a uniform diameter Kuett-Taylor reactor A method for manufacturing a composite using silver particles and carbon nanomaterials.
제 1항에 있어서,
상기 균일한 직경의 은입자를 형성하는 단계 이후에,
상기 내부원통의 회전구동을 정지시켜 상기 배출구로부터 은입자와 탄소나노소재 복합체를 획득하는 단계를 더 포함하는 것을 특징으로 하는 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법.
The method of claim 1,
After the step of forming the silver particles of the uniform diameter,
The method for producing a silver particle and carbon nanomaterial composite using a Kuet-Tayler reactor, characterized in that it further comprises the step of stopping the rotational driving of the inner cylinder to obtain the silver particle and carbon nanomaterial composite from the outlet.
제 1항에 있어서,
상기 탄소나노소재를 표면개질시키는 단계는,
상기 탄소나노소재 및 산화제가 혼합된 용액을 아임계수 또는 초임계수 조건의 표면처리반응조에 투입시키는 단계와;
상기 탄소나노소재와 상기 산화제가 반응하여 산화탄소나노소재가 형성되는 단계를 포함하는 것을 특징으로 하는 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법.
The method of claim 1,
The step of surface-modifying the carbon nanomaterial,
introducing a solution in which the carbon nanomaterial and the oxidizing agent are mixed into a surface treatment reactor under subcritical water or supercritical water conditions;
A method for manufacturing a composite of silver particles and carbon nanomaterials using a Couette-Tayler reactor, characterized in that it comprises the step of forming a carbon oxide nanomaterial by reacting the carbon nanomaterial with the oxidizing agent.
제 1항에 있어서,
상기 탄소나노소재를 표면개질시키는 단계는,
상기 탄소나노소재를 강산에 침지하여 가열 및 교반하는 단계와;
상기 강산에 물 또는 증류수를 첨가하여 상기 강산을 희석시킨 희석액을 제조하는 단계와;
상기 희석액으로부터 상기 탄소나노소재를 여과하는 단계를 포함하는 것을 특징으로 하는 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법.
The method of claim 1,
The step of surface-modifying the carbon nanomaterial,
heating and stirring the carbon nanomaterial by immersing it in a strong acid;
preparing a diluted solution obtained by diluting the strong acid by adding water or distilled water to the strong acid;
A method for producing a composite of silver particles and carbon nanomaterials using a Kuet-Tayler reactor, comprising the step of filtering the carbon nanomaterial from the diluent.
제 4항에 있어서,
상기 강산은 염산(HCl), 황산(H2SO4), 질산(HNO3), 인산(P2O3) 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 특징으로 하는 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법.
5. The method of claim 4,
The strong acid is hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), phosphoric acid (P 2 O 3 ), characterized in that selected from the group consisting of, and mixtures thereof - Silver particles using a Taylor reactor and carbon nanomaterial composite manufacturing method.
제 1항에 있어서,
상기 탄소나노소재는,
그래핀(Graphene), 탄소나노튜브(Carbon nano tuber), 탄소섬유(Carbon fiber), 카본블랙(Carbon black) 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 특징으로 하는 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법.
The method of claim 1,
The carbon nanomaterial is
Graphene, carbon nanotube (Carbon nano tuber), carbon fiber (Carbon fiber), carbon black (Carbon black), characterized in that selected from the group consisting of mixtures thereof - silver particles using a Taylor reactor and Carbon nanomaterial composite manufacturing method.
제 1항에 있어서,
상기 균일한 직경의 은입자를 형성하는 단계에서,
염화구리(CuCl2), 시트레이트 화합물(Citrate compound), 이미다졸 화합물(Imidazole compound), 전도성 고분자, 폴리아크릴산 유도체 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 함께 첨가하는 것을 특징으로 하는 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법.
The method of claim 1,
In the step of forming the silver particles of the uniform diameter,
Copper chloride (CuCl 2 ), a citrate compound (Citrate compound), an imidazole compound (Imidazole compound), a conductive polymer, polyacrylic acid derivatives, and a mixture thereof, characterized in that the addition selected from the group consisting of a kuett-Taylor reactor A method for manufacturing a composite of silver particles and carbon nanomaterials using
제 1항에 있어서,
상기 은염 전구체는,
실버나이트레이드(AgNO3), 실버퍼클로레이트(AgClO4), 실버테트라플루오로보레이트(AgBF4), 실버헥사플루오로포스페이트(AgPF6), 실버아세테이트(CH3COOAg), 실버트리플루오로메탄설포네이트(AgCF3SO3), 실버설페이트(Ag2SO4), 실버2,4-펜탄디오네이트(CH3COCH=COCH3Ag) 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 특징으로 하는 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법.
The method of claim 1,
The silver salt precursor is
Silver nitride (AgNO 3 ), silver perchlorate (AgClO 4 ), silver tetrafluoroborate (AgBF 4 ), silver hexafluorophosphate (AgPF 6 ), silver acetate (CH 3 COOAg), silver trifluoromethanesulfonate (AgCF 3 SO 3 ), silver sulfate (Ag 2 SO 4 ), silver 2,4-pentanedionate (CH 3 COCH=COCH 3 Ag), and a mixture thereof, characterized in that selected from the group consisting of Kuett-Tayler reactor A method for manufacturing a composite of silver particles and carbon nanomaterials using
제 1항에 있어서,
상기 환원제는,
수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화 암모늄(NH4OH), 수소화붕소나트륨(NaBH4), 히드라진(N2H4), 히드리오딘 (HI), 아스코빅산(Ascorbic acid), 환원성 유기용매 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 특징으로 하는 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법.
The method of claim 1,
The reducing agent,
Sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 OH), sodium borohydride (NaBH 4 ), hydrazine (N 2 H 4 ), hydriodine (HI), ascorbic acid (Ascorbic acid), A method for producing a composite of silver particles and carbon nanomaterials using a Kuet-Tayler reactor, characterized in that it is selected from the group consisting of a reducing organic solvent and a mixture thereof.
KR1020150025309A 2015-02-23 2015-02-23 Production method of silver particles and carbon nano material composite using Couette-Taylor reactor KR102310352B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150025309A KR102310352B1 (en) 2015-02-23 2015-02-23 Production method of silver particles and carbon nano material composite using Couette-Taylor reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150025309A KR102310352B1 (en) 2015-02-23 2015-02-23 Production method of silver particles and carbon nano material composite using Couette-Taylor reactor

Publications (2)

Publication Number Publication Date
KR20160102791A KR20160102791A (en) 2016-08-31
KR102310352B1 true KR102310352B1 (en) 2021-10-08

Family

ID=56877341

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150025309A KR102310352B1 (en) 2015-02-23 2015-02-23 Production method of silver particles and carbon nano material composite using Couette-Taylor reactor

Country Status (1)

Country Link
KR (1) KR102310352B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101727939B1 (en) * 2016-05-23 2017-04-18 주식회사 라미나 Surface treating method using Tayler Reactor
KR20180072952A (en) * 2016-12-22 2018-07-02 전자부품연구원 Preparing method of graphene oxide
KR102405516B1 (en) * 2017-06-20 2022-06-03 코오롱생명과학 주식회사 Method for preparing pyrithion salt and pyrithion salt prepared by using the same
KR20190036774A (en) * 2017-09-28 2019-04-05 전자부품연구원 Preparing method of graphene oxide functionalized with Fe3O4
KR102277797B1 (en) * 2018-07-27 2021-07-15 주식회사 하윤 Method for Preparing Chemically Modified Graphene
KR20230099306A (en) 2021-12-27 2023-07-04 에스케이이노베이션 주식회사 A method for production of sheet phase pseudo-boehmite using couette-taylor vortex reaction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504316A (en) 2010-12-08 2014-02-20 イノベイティブ・カーボン・リミテッド Granular materials, composite materials containing them, their preparation and use

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101121803B1 (en) * 2008-01-17 2012-03-20 경희대학교 산학협력단 Reaction apparatus with precise temperature control for continuous cooling crystallization and the system comprising the same
KR101034580B1 (en) * 2008-05-29 2011-05-12 한화케미칼 주식회사 Continuous method and apparatus of functionalizing Carbon Nanotube
KR101355996B1 (en) * 2012-05-15 2014-01-29 한국과학기술원 Ceramic nanocomposite powders reinforced by metal-coated carbon nanotubes and preparing method of the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504316A (en) 2010-12-08 2014-02-20 イノベイティブ・カーボン・リミテッド Granular materials, composite materials containing them, their preparation and use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Carbon, Volume 83, March 2015, Pages 217-223
Nature Communications, 4(1).2491

Also Published As

Publication number Publication date
KR20160102791A (en) 2016-08-31

Similar Documents

Publication Publication Date Title
KR102310352B1 (en) Production method of silver particles and carbon nano material composite using Couette-Taylor reactor
KR102190460B1 (en) Fabrication method of nanometal and nanocarbon hybrid materials
KR102521507B1 (en) Conducting fibers with metal nanobelt/nanocarbon material hybrid materials, and fabrication method
JP5047064B2 (en) Method for producing nickel nanoparticles
WO2016052890A2 (en) Method for preparing composite of nano-metal and carbon nanomaterial
CN108138367B (en) Nanofiber-nanowire composite and method for producing the same
CN101716684B (en) Highly dispersible spherical nano-silver powder and preparation method thereof
JP2019517625A (en) Method for producing core-shell silver-coated copper nanowires using chemical reduction method
EP2358489A1 (en) Method for producing metal nanoparticles and nanoparticles obtained in this way and use thereof
JP5484442B2 (en) Method for preparing silver nanoparticles
JP2009242209A (en) Method for producing organized graphite material
KR20150145892A (en) Silver Coated Copper Nano Wire and Method for Manufacturing Thereof
WO2014191633A2 (en) Zeta positive hydrogenated nanodiamond powder, zeta positive single digit hydrogenated nanodiamond dispersion, and methods for producing the same
CN106994517B (en) A kind of preparation method of high-thermal-conductivity low-expansibility W-Cu encapsulating material
KR20110030556A (en) Metal microparticle containing composition and process for production of the same
CN108975378A (en) A kind of dysprosia raw powder&#39;s production technology
CN104550941A (en) Preparation method of silica @ noble metal nano-composite microspheres
WO2018021667A1 (en) Conductive dispersion composition comprising metal particles and nanocarbon and method for preparing same
CN101745646B (en) Preparation method of nano silver solution and polyaniline/ silver nanocomposite
CN113369490A (en) Preparation method of hollow spherical silver powder
US5413617A (en) Process for the preparation of silver powder with a controlled surface area by reduction reaction
CN105542332A (en) Preparation method of polystyrene/graphene/precious metal composite particle
Sosnin et al. Synthesis of silver nanochains with a chemical method
KR20160099513A (en) Method of Preapring Silver Coated Copper Nanowire
KR20110019603A (en) Preparation of silver nano-powder from agcl by slurry reduction methods and silver nano-powder thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right