KR102107483B1 - IoT hybrid micro grid system - Google Patents

IoT hybrid micro grid system Download PDF

Info

Publication number
KR102107483B1
KR102107483B1 KR1020190087498A KR20190087498A KR102107483B1 KR 102107483 B1 KR102107483 B1 KR 102107483B1 KR 1020190087498 A KR1020190087498 A KR 1020190087498A KR 20190087498 A KR20190087498 A KR 20190087498A KR 102107483 B1 KR102107483 B1 KR 102107483B1
Authority
KR
South Korea
Prior art keywords
power
ess
hybrid
unit
controller
Prior art date
Application number
KR1020190087498A
Other languages
Korean (ko)
Inventor
홍사혁
임승률
Original Assignee
주식회사 에니텍시스
홍사혁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에니텍시스, 홍사혁 filed Critical 주식회사 에니텍시스
Priority to KR1020190087498A priority Critical patent/KR102107483B1/en
Application granted granted Critical
Publication of KR102107483B1 publication Critical patent/KR102107483B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • H02J3/382
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • H02J13/0075
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02M2001/0064
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/248UPS systems or standby or emergency generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/128Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment involving the use of Internet protocol

Abstract

According to an IoT hybrid micro grid system of the present invention, the electricity cost can be significantly reduced through self-appropriation of electric power in a corresponding area, the problem of power shortage and quality degradation can be solved by adopting a hybrid method that uses both distributed power and grid-connected power, power can be used without blackout by using residual power of an ESS and additional electricity production of the distributed power even when the power supply of the grid connection is unstable or is cut off since the ESS has a minimum charge amount above a certain level, the power can be more stably used by increasing the level of the minimum charge amount of the ESS in advance when the blackout is expected, energy resources can be collectively managed when monitoring and or controlling the micro grid system, users of facilities can collect, predict, and optimize field operation information, the technology that optimizes energy use, responds to changes in power demand, and monitors the status of inverters and ESS in real time can be applied by using IoT, and the control of the micro grid system through the IoT can be applied to and utilized in a smart building automation system. The IoT hybrid micro grid system includes a solar power generation device, a wind power generator, a hybrid inverter unit, a controller, an ESS, a control server, a user, and a power line system.

Description

IoT 하이브리드 마이크로 그리드 시스템 {IoT hybrid micro grid system}IoT hybrid micro grid system {IoT hybrid micro grid system}

본 발명은 IoT 하이브리드 마이크로 그리드 시스템에 관한 것으로, 더욱 구체적으로 설명하면, 태양광이나 풍력 등 복수의 분산전원 공급원으로부터 전기를 생산하는 하이브리드 발전장치를 주택이나 아파트 등 일정 구역에 설치하여 전기를 생산하고 ESS(Energy Storage System)에 저장하여 사용자가 전기를 사용하는 마이크로 그리드 시스템을 구축함에 있어서, ESS의 충전량 또는 하이브리드 발전장치의 전력생산량이 부족할 경우에 UPS(uninterruptible power supply) 기능을 이용하여 외부 계통과의 연결로 전기를 공급받아 ESS에 저장하고 사용자가 전기를 사용할 수 있으며, ESS의 충전량 또는 하이브리드 발전장치의 전력생산량이 충분하면 외부 계통과의 연결이 분리되고 하이브리드 발전장치에서 생산되는 전기로만 일정 구역에 전력을 공급하고, 상기 하이브리드 발전장치 및 ESS를 포함하는 전력시스템의 모니터링 등 관리를 원격지의 사용자의 스마트폰이나 온라인에 접속된 기타 기기를 통해 무선으로 제어할 수 있는 IoT 하이브리드 마이크로 그리드 시스템에 관한 것이다.The present invention relates to an IoT hybrid micro-grid system, and more specifically, to generate electricity by installing a hybrid power generator that generates electricity from a plurality of distributed power sources such as solar or wind power in a certain area, such as a house or apartment, In constructing a micro grid system that uses electricity by storing it in an ESS (Energy Storage System), when the charge amount of the ESS or the power generation amount of the hybrid power generation unit is insufficient, an uninterruptible power supply (UPS) function is used to connect to an external system. When the electricity is supplied through the connection, it is stored in the ESS and the user can use the electricity.If the charging amount of the ESS or the electric power generation of the hybrid power generator is sufficient, the connection to the external system is separated and only the electric furnace produced by the hybrid power generator has a certain area. To power, and the hybrid It relates to an IoT hybrid micro-grid system that can wirelessly control management, such as monitoring of a power system including a power generation device and an ESS, through a user's smartphone at a remote location or other devices connected online.

일반적으로 마이크로 그리드 시스템은 계통으로 연결되는 광역 전력시스템과는 독립된 분산전원에서 생산되는 전기를 이용하여 일정 범위의 구역에 전력을 공급하는 시스템으로, 최근 태양광, 풍력, 수력, 지열 등 신재생 에너지원의 활용이 확대되고 ESS 기술이 발전하면서 세계적으로 기술 개발과 설치가 증가하는 추세이며, 도서나 오지, 사막지역이 많거나, 독일처럼 탈(脫)원전을 추진하는 국가 등에서는 마이크로 그리드 시스템의 도입을 더욱 적극적으로 추진하고 있다. 마이크로 그리드 시스템은 구축기간과 투자비용이 상대적으로 적어 조기에 경제성을 확보하고, 시장을 형성할 수 있으며, 국내에서는 에너지 자립섬과 같은 도서지역의 마이크로그리드 구축이 주를 이루고 있고, 대학 캠퍼스, 산업단지, 병원, 군부대 등 그 범위를 커뮤니티 단위로 확대한다면 시장이 매우 빠르게 성장할 것으로 예상되고, 이렇게 구축된 커뮤니티 단위의 마이크로그리드가 전국 단위로 확대되고 향후 광역 전력계통과 연계되면 전국적으로 스마트그리드가 구축될 수 있다. In general, a micro grid system is a system that supplies electricity to a range of areas using electricity produced from a distributed power source independent of a wide-area power system connected to the grid. Recently, renewable energy such as solar, wind, hydro, geothermal With the expansion of the utilization of circles and the development of ESS technology, technology development and installation are increasing worldwide, and in many countries such as islands, remote areas, desert areas, or countries that are pursuing post nuclear power plants such as Germany, micro grid systems It is promoting the introduction more actively. The micro grid system has relatively little construction period and investment cost, so it is possible to secure economics and form a market in the early stage. In Korea, microgrid construction in island regions such as energy self-reliance islands is predominant, and university campuses and industries However, if the scope of hospitals, military units, etc. is expanded to the community level, the market is expected to grow very rapidly, and if the built-up microgrid of the community level is expanded to the nationwide level and linked to the wide-area power system in the future, the smart grid will be built nationwide. Can be.

마이크로 그리드 시스템의 장점으로는 장기적인 비용 절감의 측면과 친환경적인 특징, 광역 전력시스템과 별도로 운영되는 데 따른 독립성의 유지 등이 있으며, 반면에 단점으로는 초기설치 비용이 높고, 특정 기간 전력사용량이 증가하거나 소비전력이 기본적으로 높은 수요처의 경우에 전력수요량이 전력공급량을 초과하게 되어 전력 부족현상이 발생할 수 있게 되는 전기 공급의 불안정성 등이 있다.The advantages of the micro grid system include long-term cost reduction and eco-friendly features, and maintenance of independence by operating separately from the wide-area power system. On the other hand, the disadvantages are high initial installation cost and increased power consumption during a specific period. Or, in the case of a consumer with high power consumption, there is an instability of electricity supply, which may cause a power shortage due to the power demand exceeding the power supply.

이를 해결하기 위한 종래 기술로는 마이크로 그리드 시스템의 장점과 계통연결의 장점을 동시에 갖기 위해 안출된 한국 등록특허 제10-1402340호(등록일: 2014년 5월 26일) '태양에너지와 풍력을 이용한 공동주택의 신재생 복합발전시스템'이 태양광과 풍력을 매개로 축적한 신재생 전력을 사용함으로써 공동주택 내에 전기료를 절감할 수 있고, 축전된 전력의 소진시 이를 계통(한전측전력)으로 급선회시켜주는 발명으로써, 공동주택에 설치되며 태양으로부터 빛에너지를 흡수하여 전기에너지로 변환하는 태양광발전부(100): 공동주택에 설치되며 바람에너지를 전기에너지로 변환하는 풍력발전부(200): 공동주택에 설치되어 태양광발전부(100)와 풍력발전부(200)로부터 각각 발전된 전기를 저장하며 축전지측전선(L1)을 매개로 전력선변환장치(400)에 연결되는 축전지(300): 전체적으로 T자형을 이루고 내부가 T자형으로 관통되며 상면에는 내부와 연통되는 가이드부(411a)가 구비된 절연재질의 하우징(411), 상단부에 접속부걸이공(412a)을 갖추고서, 하우징(411)에 실장되어 배전선(L3)이 연결가능하게 고정되는 전도체재질의 배전선접속구(412), 일단에 유도면(413a)을 갖추고서, 길이방향으로 관통된 하우징(411)의 양측으로 삽입고정되어 타단으로 축전지측전선(L1)과 제1한전측전선(L2)이 각각 삽입고정되는 한 쌍의 전력선접속구(413), 하우징(411)에 내설되어 배전선접속구(412)의 상면을 일 방향으로 탄발하는 탄발편(414)을 갖춘 커넥터본체(410)와; 일측에 스크류(421a)를 갖추고서, 하우징(411) 상에 설치되며 제어부(600)에 의해 동작제어되어 정방향 또는 역방향으로 회전하는 모터(421), 상단부가 스크류(421a)에 설치되고 하단부가 가이드부(411a)을 관통하여 하우징(411)의 내부에 배치되는 절연재질의 이송블록(422), 일측이 이송블록(422)의 하단부에 수평하게 설치되고 타측이 접속부걸이공(412a)에 삽입관통되어 지지되며 이송블록(422)의 이동에 의해 한 쌍의 전력선접속구(413) 중 어느 하나에 삽입되어 축전지측전선(L1)과 배전선(L3)을 전기적으로 연결시키거나 또는 제1한전측전선(L2)과 배전선(L3)을 전기적으로 연결시키는 전도체재질의 접속부(423)를 갖춘 이송유닛(420);으로 구성된 전력선변환장치부(400): 양단부 외주면에 체결부(511a)가 구비된 바디부(511)와, 바디부(511)에 내설되어 양단에 형성된 반원형태의 홈과 복수의 접촉돌기(512a)가 바디부(511)의 양단을 통해 외부로 노출되는 금속재질의 단자부(512)로 이루어진 본체(510)와; 체결공(521)을 갖추고서, 단자부(512)에 삽입되어 접촉돌기(512a)에 맞대어지는 구체(520)와; 전체적으로 반원형상을 이루되 일측에는 십자형으로 절개시켜 형성한 가이드부(531)와 억류부(532)가 일체로 형성되고 내부에는 유리섬유(533)가 구비되며 타측 내주면에는 본체(510)의 체결부(511a)에 결합되는 체결부(534)가 일체로 형성되며 본체(510)에 착탈가능하게 결합되어 구체(520)를 감싸는 캡(530)과; 제1·2한전측전선(L2,L2')이 각각 수용되는 전선수용부(541a), 전선고정구(550)가 수용되는 전선고정구수용부(541b) 및 전선고정구(550)의 삽탈될 수 있도록 통로를 제공하는 삽탈홈(541c)이 구비된 연결구바디(541)와, 연결구바디(541)에 돌출되게 설치되어 구체(520)의 체결공(521)에 결합되며 전선수용부(541a)에 수용된 제1·2한전측전선(L2,L2')과 각각 전기적으로 연결되는 체결구(542)로 구성된 금속재질의 전선연결구(540)와; 내주면 길이방향을 따라 연속적으로 형성되며 제1·2한전측전선(L2,L2')의 둘레면에 각각 고정되는 전선억류부(551)와, 외주면으로부터 외향으로 연장되어 삽탈홈(541c)을 통해 삽탈되는 삽탈돌기(552)로 구성된 전선고정구(550)와; 일단부와 타단부가 본체(510)와 전선연결구(540)의 둘레면에 설치되어 본체(510)와 전선연결구(540) 사이를 밀폐하는 주름관(560);으로 구성된 연결장치부(500): 축전지(300)의 축전잔량을 확인하여 설정 값보다 작은 경우 전력선변환장치(400)를 동작제어하고, 일정시간이 경과하면 자동으로 전력선변환장치(400)를 동작제어하는 제어부(600):를 포함하는 것을 특징으로 하는 태양에너지와 풍력을 이용한 공동주택의 신재생 복합발전시스템을 개시한 바 있다. 그러나 상기 발명은 '축전지(300)의 축전잔량을 확인하여 설정 값보다 작은 경우 전력선변환장치(400)를 동작제어하고, 일정시간이 경과하면 자동으로 전력선변환장치(400)를 동작제어'함에 있어서, 전력선변환장치부(400)는 변환장치부본체(410)와 이송유닛(420)으로 구성된 것으로서, 본 실시 예의 경우 공동주택의 지하실(1';도 1 참조)에 설치되며, 제어부(600)에 의해 동작제어되어 축전지측전선(L1)과 배전선(L3)을 전기적으로 상호 연결시켜 태양광발전부(100)와 풍력발전부(200)로부터의 전력이 배전반(1a;도 1 참조)을 통해 각 세대로 공급되도록 하거나 또는 제1한전측전선(L2)과 배전선(L3)을 전기적으로 상호 연결시켜 발전소로부터의 전력이 배전반(1a;도 1 참조)을 통해 각 세대로 공급되도록 전환하는 과정에서 분산전원(태양광발전부, 풍력발전부)과 계통전원(한전측전선)의 전력이 선택적으로 사용되어 전력의 품질에 변화가 생기며 균일성이 저하되고 전력 종류의 선택이 이루어지는 시간 동안 일시적인 정전이 발생할 수 있게 되는 문제점이 있었다As a conventional technique for solving this problem, Korean Patent No. 10-1402340 (Registration Date: May 26, 2014), which was devised to have the advantages of microgrid system and grid connection at the same time, is a joint use of solar energy and wind power. By using renewable power accumulated through solar and wind power, the new and renewable combined power generation system of the house can reduce electricity bills in apartments and rapidly turn it into a system (KEPCO side power) when exhausted electricity is exhausted. As a main invention, a solar power generation unit 100 installed in an apartment house and absorbing light energy from the sun and converting it into electrical energy: a wind power generator 200 installed in an apartment house and converting wind energy into electric energy: a common house A shaft that is installed in a house and stores electricity generated from the photovoltaic power generation unit 100 and the wind power generation unit 200, respectively, and is connected to the power line conversion device 400 via a battery side electric wire L1. Battery 300: T-shaped as a whole, the inside is penetrated into a T-shaped, and the upper surface is provided with a housing 411 made of an insulating material having a guide portion 411a communicating with the inside, and a connection hooking hole 412a at the upper end. , It is mounted on the housing 411, the distribution line (L3) is provided with a conductive material distribution line connection 412 is fixed to be connectable, one end having a guide surface (413a), on both sides of the housing 411 penetrated in the longitudinal direction Inserted and fixed to the other end, the battery side electric wire L1 and the first electric power front electric wire L2 are respectively inserted and fixed in a pair of power line connection ports 413 and the housing 411, so that the upper surface of the power distribution line connection port 412 is installed. A connector body 410 having a bullet flake 414 to fire in the direction; A motor 421 having a screw 421a on one side, installed on the housing 411, and controlled by the control unit 600 to rotate in the forward or reverse direction, the upper end is installed on the screw 421a, and the lower end is guided. The transfer block 422 of an insulating material that penetrates through the portion 411a and is disposed inside the housing 411, one side is horizontally installed at the lower end of the transfer block 422, and the other side is inserted through the connection hook hole 412a. It is supported and inserted into any one of the pair of power line connection ports 413 by the movement of the transfer block 422 to electrically connect the battery side electric wire L1 and the power distribution wire L3 or the first electric front electric wire ( L2) and a transfer unit 420 having a connection portion 423 made of a conductor material that electrically connects the power distribution line L3; a power line conversion device portion 400 consisting of: a body portion provided with fastening portions 511a on outer circumferential surfaces of both ends 511 and a semi-circular shape formed on both ends of the body portion 511 Of the groove and a plurality of contact protrusions (512a), a body portion 511, body 510 via both ends made of a terminal portion 512 of the metal material which is exposed to the outside of and; A sphere 520 having a fastening hole 521 and inserted into the terminal portion 512 to face the contact protrusion 512a; A semi-circular shape is formed as a whole, but a guide portion 531 and a retaining portion 532 formed by cutting in a cross shape on one side are integrally formed, glass fibers 533 are provided inside, and a fastening portion of the body 510 is provided on the other inner circumferential surface. The fastening portion 534 coupled to the (511a) is integrally formed and is detachably coupled to the body 510 and the cap 530 surrounding the sphere 520; The first and second KEPCO side wires L2 and L2 'are accommodated in the wire receiving portion 541a, the wire fixing portion 550, and the wire fixing portion receiving portion 541b and the wire fixing portion 550, respectively. The connecting body 541 provided with the insertion groove 541c providing a passage and the connecting body 541 are installed to protrude and are coupled to the fastening hole 521 of the sphere 520 and accommodated in the wire receiving portion 541a A first and second KEPCO side wires (L2, L2 ') and a metal material wire connector 540 composed of fasteners 542 that are electrically connected to each; It is formed continuously along the inner circumferential surface longitudinal direction and is fixed to the circumferential surfaces of the first and second KEPCO front wires L2 and L2 ', respectively, and through the insertion / removal groove 541c extending outward from the outer circumferential surface. An electric wire fixing member 550 composed of the shoveling protrusions 552 to be inserted; One end and the other end is installed on the circumferential surface of the body 510 and the wire connector 540 to seal between the body 510 and the wire connector 540; a connecting device 500 consisting of: Includes a control unit 600 that controls the power line converting device 400 when the amount of power remaining in the storage battery 300 is smaller than a set value, and automatically controls the power line converting device 400 when a certain period of time has elapsed. Disclosed is a new and renewable combined cycle power generation system for multi-family houses using solar energy and wind power. However, in the present invention, in the case of 'confirming the remaining power of the storage battery 300 and controlling the power line converting device 400 when it is smaller than a set value, and automatically controlling the power line converting device 400 after a certain period of time', , The power line converter unit 400 is composed of a converter unit main body 410 and a transfer unit 420, in the case of this embodiment is installed in the basement (1 '; see FIG. 1) of the apartment, the control unit 600 Controlled by the operation, the battery side wire L1 and the power distribution line L3 are electrically interconnected so that power from the solar power generation unit 100 and the wind power generation unit 200 is transmitted through the switchboard 1a (see FIG. 1). In the process of being supplied to each household or by electrically interconnecting the first KEPCO (L2) and the power distribution line (L3), the power from the power plant is supplied to each household through the switchboard (see FIG. 1A). Distributed power (solar power generation, wind power generation) and grid Saenggimyeo power is changed to an optional used in the power quality (Korea Electric wire side) there is a problem of being able uniformity may result in a temporary power failure during the lowering and the selection of the type of power comprising time

등록특허 제10-1402340호(등록일: 2014년 5월 26일) "태양에너지와 풍력을 이용한 공동주택의 신재생 복합발전시스템"Registered Patent No. 10-1402340 (Registration Date: May 26, 2014) "Renewable Combined Cycle Power Generation System for Apartment Houses Using Solar Energy and Wind Power"

본 발명의 목적은 이러한 문제점을 해결하기 위한 것으로, 태양광과 풍력발전으로 생산한 전기를 일정 구역에 제공함에 있어서 자연 에너지를 분산전원으로 사용하는 마이크로 그리드 시스템에서 전력의 공급이 부족하거나 불안정하게 되는 문제점을 해소하고, 분산전원과 계통연결을 이용하여 전력을 공급하는 하이브리드 시스템에서 계통연결 전원을 탈착하여 전기를 공급 또는 중단하는 경우에 일시적인 단전이나 전력의 품질 저하 현상이 발생할 수 있는 문제점을 해소하고, 가정에서도 전기차를 충전하는 것이 가능하게 되며, 전문가가 아닌 일반 사용자가 하이브리드 마이크로 그리드 시스템을 원격으로 손쉽게 모니터링 및 제어하기 힘들었던 불편함을 보완하는 효과가 있는 IoT 하이브리드 마이크로 그리드 시스템을 제공하는 것이다.The object of the present invention is to solve this problem, and in providing electricity generated by solar and wind power in a certain area, the supply of power is insufficient or unstable in a micro grid system that uses natural energy as a distributed power source. It solves the problem and solves the problem that temporary power failure or power quality deterioration may occur when the grid-connected power is detached from the hybrid system that supplies power using distributed power and grid connection to supply or stop electricity. , It is possible to charge an electric vehicle even at home, and to provide an IoT hybrid micro grid system that has the effect of compensating for the inconvenience that it was difficult for a general user who is not an expert to remotely easily monitor and control the hybrid micro grid system.

본 발명의 이러한 목적은, 태양광이나 풍력 등 복수의 분산전원 공급원으로부터 전기를 생산하는 하이브리드 발전장치를 주택이나 아파트 등 일정 구역에 설치하여 전기를 생산하고 ESS(Energy Storage System)에 저장한 후 사용자가 전기를 사용하는 마이크로 그리드 시스템을 구축함에 있어서, ESS의 충전량 또는 하이브리드 발전장치의 전력생산량이 부족할 경우에 UPS(uninterruptible power supply) 기능을 이용하여 외부 계통과의 연결로 전기를 공급받아 ESS에 저장하고 사용자가 전기를 사용할 수 있으며, ESS의 충전량 또는 하이브리드 발전장치의 전력생산량이 충분하면 외부 계통과의 연결이 분리되고 하이브리드 발전장치에서 생산되는 전기로만 일정 구역에 전력을 공급하고, 상기 하이브리드 발전장치 및 ESS를 포함하는 전력시스템의 모니터링 등 관리를 멀리 떨어진 장소에서 사용자의 스마트폰이나 온라인에 접속된 기타 기기를 통해 무선으로 제어할 수 있는 본 발명에 따른 IoT 하이브리드 마이크로 그리드 시스템에 의하여 달성될 수 있다.The object of the present invention is to install a hybrid power generation device that generates electricity from a plurality of distributed power sources such as solar or wind power in a certain area, such as a house or apartment, to generate electricity, store it in an ESS (Energy Storage System), and then In constructing a micro grid system that uses electricity, when the ESS charge or the power generation capacity of the hybrid power generation unit is insufficient, the electricity is supplied to the ESS by connecting to an external system using an uninterruptible power supply (UPS) function. If the user can use electricity and the ESS charge or the power generation of the hybrid generator is sufficient, the connection to the external system is disconnected and power is supplied to a certain area only with electricity produced by the hybrid generator, and the hybrid generator And management of power systems including ESS It can be achieved by the IoT hybrid micro-grid system according to the present invention that can be controlled wirelessly through a user's smartphone or other devices connected to the online in a remote place.

본 발명에 따른 IoT 하이브리드 마이크로 그리드 시스템은, 한국의 전기요금 정책이 각 전기수요처의 총 전력사용량에 따라서 사용량 구간별로 전기요금의 단가를 차별하여 부과하는 누진제를 적용하고 있는데, 본 발명에 따른 해당 구역 전력의 자체 충당으로 전기 요금이 크게 절감되고, 분산전원과 계통연결된 전원을 모두 이용하는 하이브리드 방식을 채택함으로써 전력의 부족 및 품질저하 문제가 해결되고, ESS가 일정수준 이상의 최소 충전보유량을 갖게 되므로 계통연결의 전력 수급이 불안정하거나 단전되는 경우에도 ESS의 잔류 전력과 분산전원의 추가적인 전기 생산량을 이용하여 단전 없이 전력을 사용할 수 있게 되고, 만약 단전이 예상되는 경우에는 미리 ESS의 최소 충전보유량의 수준을 높여두어서 더욱 안정적으로 전력을 이용할 수 있게 되고, 마이크로 그리드 시스템을 모니터링하거나 제어(Control)함에 있어서 에너지 자원을 통합적으로 관리하고, 시설의 사용자가 현장 운영 정보를 수집, 예측, 최적화할 수 있게 하는 기술이 개발되고 있으며, 가정에서도 전기차를 충전하는 것이 가능하게 되며, 에너지 사용의 최적화, 전력 수요 변화의 대응, 인버터 및 ESS의 상태 등을 실시간 모니터링하는 기술이 IoT를 이용하여 적용될 수 있으며, 이와 같은 IoT를 통한 마이크로 그리드 시스템의 제어는 스마트 건물 자동화 시스템에 편입되어 활용될 수도 있는 응용가능성을 지니는 등 매우 우수한 효과가 있다.The IoT hybrid micro grid system according to the present invention applies a progressive system in which the electricity bill policy in Korea discriminates and charges the unit price of electricity bills for each usage section according to the total power consumption of each electricity demand. Electricity self-sufficiency greatly reduces electricity bills, and by adopting a hybrid method using both distributed and grid-connected power, the problem of power shortage and quality degradation is solved, and the ESS has a minimum charge holding capacity of a certain level or more. Even when power supply and demand is unstable or power is cut off, power can be used without power outage by using the residual power of ESS and additional electricity production from distributed power. If power outage is expected, the level of the minimum charge holding capacity of ESS can be increased in advance. So that power can be used more stably. In the meantime, technology is being developed to enable the user of the facility to collect, predict and optimize field operation information in an integrated manner in monitoring or controlling the micro grid system, and charging electric vehicles at home. The technology to optimize energy use, respond to changes in power demand, and monitor the status of inverters and ESS in real time can be applied using IoT, and the control of the micro grid system through such IoT is a smart building. It has a very good effect, such as having an application possibility that can be incorporated into an automation system and used.

도 1은 본 발명의 일실시예에 따른 IoT 하이브리드 마이크로 그리드 시스템의 개념도
도 2는 본 발명의 일실시예에 따른 IoT 하이브리드 마이크로 그리드 시스템의 하이브리드 인버터부의 연결구조도
도 3은 도 2의 하이브리드 인버터부의 블럭도
도 4는 본 발명의 제1실시예에 따른 IoT 하이브리드 마이크로 그리드 시스템의 연결관계가 도시된 연결도
도 5는 본 발명의 일실시예에 따른 시스템 활용 구상도
1 is a conceptual diagram of an IoT hybrid micro grid system according to an embodiment of the present invention
Figure 2 is a connection structure of a hybrid inverter unit of the IoT hybrid micro-grid system according to an embodiment of the present invention
Figure 3 is a block diagram of the hybrid inverter part of Figure 2
4 is a connection diagram showing a connection relationship of an IoT hybrid micro grid system according to a first embodiment of the present invention
5 is a system utilization plan according to an embodiment of the present invention

본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부 도면 및 도면에 기재된 내용을 참조하여야 한다.In order to fully understand the present invention, the operational advantages of the present invention, and the objects achieved by the practice of the present invention, reference should be made to the accompanying drawings and the contents described in the drawings, which illustrate preferred embodiments of the present invention.

본 발명의 일실시예에 따른 IoT 하이브리드 마이크로 그리드 시스템은, 도 1 에 도시한 바와 같이, 태양광 발전장치(1), 풍력발전기(2), 하이브리드 인버터부 및 컨트롤러(3), ESS(4), 컨트롤 서버(5), 사용자(6) 및 전력선 계통(7)을 포함한다.IoT hybrid micro grid system according to an embodiment of the present invention, as shown in Figure 1, a solar power generation device (1), a wind power generator (2), a hybrid inverter unit and controller (3), ESS (4) , Control server (5), user (6) and power line system (7).

이하, 도 1 내지 도 4를 참조하여 본 발명의 바람직한 실시예를 설명함으로써, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail by explaining preferred embodiments of the present invention with reference to FIGS. 1 to 4.

태양광 발전장치(1)는 본 발명의 사용자(Customer, 6)와 근접한 위치(주로 사용자 건물의 옥상 등)에 설치되며, 태양광패널을 이용하여 태양광으로부터 전기를 생산하고 하이브리드 인버터부 및 컨트롤러(3)와 전선으로 연결되어 하이브리드 인버터부 및 컨트롤러(3)로 전기를 공급하는 장치이다. The photovoltaic device 1 is installed at a location close to a user (Customer, 6) of the present invention (mainly a roof of a user's building, etc.), and produces electricity from sunlight using a solar panel, and a hybrid inverter unit and controller It is a device that is connected to (3) and wires to supply electricity to the hybrid inverter unit and controller (3).

발전용량에 있어서는 만약 태양광 발전장치(1)가 370W 규격의 태양광패널 8장으로 구성될 경우, 약 3kW 규격으로 맑은 날을 기준하여 1일 평균 약 11kW의 전기를 생산하게 된다.In terms of power generation capacity, if the photovoltaic device 1 is composed of 8 solar panels of the 370 W standard, it generates about 11 kW of electricity per day on a sunny day with a standard of 3 kW.

풍력발전기(2)는 본 발명의 사용자(C)와 근접한 위치(주로 사용자가 이용 중인 대지 위)에 기둥과 같은 형태로 설치되며, 바람에 의해 회전하는 날개와 제너레이터를 포함하여 전기를 생산하고, 하이브리드 인버터부 및 컨트롤러(3)와 전선으로 연결되어 하이브리드 인버터부 및 컨트롤러(3)로 전기를 공급하는 장치이다. The wind power generator 2 is installed in the form of a pillar at a position close to the user C of the present invention (mainly on the site being used by the user), and produces electricity including a blade and a generator rotated by wind. It is a device that is connected to the hybrid inverter unit and the controller 3 by electric wires to supply electricity to the hybrid inverter unit and the controller 3.

발전용량에 있어서는 만약 풍력발전기(2)의 날개가 1kW 규격일 경우 5m/s 정도의 바람이 부는 날을 기준하여 1일 평균 약 4.8kW의 전기를 생산하게 된다.In terms of power generation capacity, if the blades of the wind power generator 2 have a 1 kW standard, an average of about 4.8 kW of electricity is produced per day based on a windy day of about 5 m / s.

상기 하이브리드 인버터부 및 컨트롤러(3)는 하이브리드 인버터부(31)와 컨트롤러(32)로 구성되고, 하이브리드 인버터부 및 컨트롤러(3)는 상기 태양광 발전장치(1)와 풍력발전기(2) 및 외부 전력을 공급하는 계통(7)과 각각 전선으로 연결되고, 태양광 발전장치(1)와 풍력발전기(2)로부터 입력되는 전기를 ESS(4)로 출력하거나, 계통(7)에서 입력된 전력을 ESS 또는 사용자에게 출력하게 된다.The hybrid inverter unit and the controller 3 is composed of a hybrid inverter unit 31 and the controller 32, the hybrid inverter unit and the controller 3 is the solar power generator 1 and the wind generator 2 and the outside Electricity connected to the system 7 for supplying electric power and each wire, and outputting electricity input from the photovoltaic device 1 and the wind power generator 2 to the ESS 4, or receiving power input from the system 7 It will be output to the ESS or the user.

상기 하이브리드 인버터부 및 컨트롤러(3)의 하이브리드 인버터부(31)는, 직류로 공급되는 전기를 교류로 변환시키며, 상기 하이브리드 인버터부 및 컨트롤러(3)의 컨트롤러(32)는 상기 계통(7)과 하이브리드 인버터부(31)를 연결시키거나 단락시키고 상기 ESS(4)를 하이브리트 인버터(31)와 연결시키거나 단락시키는 기능을 수행한다.The hybrid inverter unit 31 of the hybrid inverter unit and the controller 3 converts electricity supplied from direct current into alternating current, and the controller 32 of the hybrid inverter unit and the controller 3 includes the system 7 The hybrid inverter unit 31 is connected or short-circuited, and the ESS 4 is connected to the hybrid inverter 31 or short-circuited.

상기 하이브리드 인버터부부(31)는 입력필터부(31a), 교류변환 회로부(31b), 내부 변압기부(31c), 스위칭부(31d) 및 출력필터부(31e)를 포함하고, 상기 하이브리드 인버터부부(31)는 상기 태양광 발전장치(1), 풍력발전기(2)로부터 직류전력을 인가받고, 상기 직류를 교류로 변환하여 출력한다. The hybrid inverter unit 31 includes an input filter unit 31a, an AC conversion circuit unit 31b, an internal transformer unit 31c, a switching unit 31d, and an output filter unit 31e, and the hybrid inverter unit unit ( 31) receives the DC power from the photovoltaic device 1 and the wind power generator 2, converts the DC into AC and outputs it.

구체적으로, 상기 하이브리드 인버터부부(31)는 직류로 인입된 전원을 교류전원으로 변환하여 출력하고, 상기 하이브리드 인버터부(31)에서 출력되는 교류전원은 상기 외부 전력선 계통(7)에서 사용되는 상기 상용 전력의 허용 주파수와 동기화되어 출력된다. Specifically, the hybrid inverter unit 31 converts and outputs power input to DC into AC power, and the AC power output from the hybrid inverter unit 31 is the commercial power used in the external power line system 7 It is output in synchronization with the allowable frequency of power.

상기 하이브리드 인버터부부(31)의 상기 입력필터부(31a)는, 인입되는 직류전원의 노이즈를 필터링하여 노이즈가 제거된 직류전원으로 변환하여 출력한다The input filter unit 31a of the hybrid inverter unit 31 filters noise of incoming DC power, converts it into DC power from which noise is removed, and outputs the noise.

상기 교류변환 회로부(31b)는 상기 입력필터부(31a)로부터 인가되는 상기 직류를 상기 전력선 계통(7) 내의 허용 주파수보다 높은 주파수를 갖는 고주파 3상 전원으로 변환하여 출력한다. The AC conversion circuit unit 31b converts and outputs the direct current applied from the input filter unit 31a into a high-frequency three-phase power source having a frequency higher than an allowable frequency in the power line system 7.

상기 내부 변압기부(31c)는 상기 교류변환 회로부(31b)로부터 인가된 상기 고주파 3상 전원을 각 상별로 분할된 3개의 내부 변압기들을 통해 출력시킨다. The internal transformer unit 31c outputs the high-frequency three-phase power applied from the AC conversion circuit unit 31b through three internal transformers divided for each phase.

상기 스위칭부(31d)는 상기 내부 변압기부(31c)로부터 출력되는 상기 고주파 3상 전원을 각 상별로 상기 허용 주파수, 즉 60Hz와 동기화되도록 스위칭하여 일차 3상 전원으로 변환하여 출력한다. The switching unit 31d switches the high-frequency three-phase power output from the internal transformer unit 31c so as to be synchronized with the allowable frequency, that is, 60 Hz for each phase, and converts the converted high-frequency three-phase power into a primary three-phase power.

상기 출력 필터부(31e)는 상기 스위칭부(31d)로부터 인가되는 상기 일차 3상 전원을 필터링하여 사인파(sine wave) 형태를 갖는 이차 3상 전원으로 변환하여 출력한다.The output filter unit 31e filters the primary three-phase power applied from the switching unit 31d, converts it into a secondary three-phase power source having a sine wave form, and outputs it.

상기 하이브리드 인버터부 및 컨트롤러(3)의 컨트롤러(32)는 태양광 발전장치(1), 풍력발전기(2), 하이브리드 인버터부(3), 계통(7), ESS(4), 및 사용자(6)의 상태를 모니터링 하고, 모니터링 결과에 따라서 하이브리드 인버터부(3), 계통(7), ESS(4), 사용자(6), 내부작동 스위치(8) 및 계통 스위치(9)의 동작을 제어하고 컨트롤 서버(5)와 송수신하는 기능을 수행한다. The controller 32 of the hybrid inverter unit and the controller 3 includes a photovoltaic device 1, a wind power generator 2, a hybrid inverter unit 3, a system 7, an ESS 4, and a user 6 ), And control the operation of the hybrid inverter unit 3, the system 7, the ESS 4, the user 6, the internal operation switch 8 and the system switch 9 according to the monitoring result. It performs a function of transmitting and receiving to and from the control server 5.

상기 컨트롤러(32)는 계통(7)에 정전이 발생하였는지 여부, 태양광 발정장치(1) 및/또는 풍력발전기(2)에서 발전이 되는가의 여부, 태양광 발정장치(1) 및/또는 풍력발전기(2)에서 전력을 생산하는 경우 그 생산량을 모니터링을 하고, ESS(4)의 충전 상태를 모니터링을 하고, 사용자(6)의 소비 전력량, 시간 등을 모니터링 할 수 있다. The controller 32 indicates whether a power outage has occurred in the system 7, whether the power is generated by the solar light emitting device 1 and / or the wind power generator 2, the solar light emitting device 1 and / or wind power When generating power from the generator 2, it is possible to monitor the production amount, monitor the state of charge of the ESS 4, and monitor the amount of power consumed by the user 6, time, and the like.

내부작동 스위치(8) 및 계통 스위치(9)는 하이브리드 인버터부 및 컨트롤러(3)와 계통(7) 사이에 직렬로 연결되며, 컨트롤러(32)의 제어에 따라서 on/off 동작을 수행하여 태양광 발전장치(1) 및 풍력발전기(2)와 계통(7) 사이의 전류의 흐름을 제어한다. 예를 들어, 태양광 발전장치(1) 및 풍력발전기(2) 및/또는 ESS(4)의 전력을 사용자(6)로 공급하는 경우 내부작동 스위치(8)를 on 으로 하고 계통 스위치(9)는 off 로 작동시킨다. The internal operation switch 8 and the grid switch 9 are connected in series between the hybrid inverter unit and the controller 3 and the grid 7, and perform on / off operation according to the control of the controller 32 to perform solar power. The current flow between the power generation device 1 and the wind power generator 2 and the system 7 is controlled. For example, when the power of the solar power generator 1 and the wind power generator 2 and / or the ESS 4 is supplied to the user 6, the internal operation switch 8 is turned on and the system switch 9 Operates off.

태양광 발전장치(1) 및 풍력발전기(2) 및/또는 ESS(4)의 전력을 계통(7)으로 공급하는 경우 또는 계통(7)의 전력을 사용자(6) 및/또는 ESS(4)에 공급하는 경우에는 계통 스위치(9)를 on 상태로 한다. 상기 내부작동 스위치(8) 및 계통 스위치(9)로는 큰 전류에 견딜 수 있는 릴레이(relay) 등의 스위칭 장치가 사용될 수 있다.When the power of the solar power generation device 1 and the wind power generator 2 and / or the ESS 4 is supplied to the system 7 or the power of the system 7 is used by the user 6 and / or the ESS 4 In case of supplying to, the system switch 9 is turned on. As the internal operation switch 8 and the system switch 9, a switching device such as a relay capable of withstanding a large current may be used.

ESS(4)는 태양광 발전장치(1) 및 풍력발전기(2) 및/또는 계통(7)의 전력을 공급받아 저장하고, 사용자(6) 또는 계통(7)에 저장하고 있는 전력을 공급한다. ESS(4)는 전력을 저장하는 부분과 이를 제어 및 보호하는 부분을 포함할 수 있다. The ESS 4 receives and stores the power of the photovoltaic device 1 and the wind power generator 2 and / or the system 7, and supplies the stored power to the user 6 or the system 7 . The ESS 4 may include a portion that stores power and a portion that controls and protects it.

하이브리드 인버터부 및 컨트롤러(3)의 입력과 출력의 연결은, 도 2에 도시된 바를 참고하여 보면, 사용자가 컨트롤러(32)를 이용하여 설정한 조건에 따라 각기 다르게 작동하는데, 현재 태양광 발전장치(1)와 풍력발전기(2)에서 공급되는 시간당 전기생산량(W1), 현재 사용자(6)의 시간당 전기사용량(W2), 현재 ESS(4)의 충전량(E)의 수치 및 사용자가 기설정한 기준치의 값에 따른다. 예를 들어, ESS(4)의 충전량(E)이 기설정된 기준치를 초과하는 상태일 때는 계통-사용자간 연결(S2) 및 계통-ESS간 연결(S3)이 차단되고 ESS-사용자간 연결(S1)이 이루어져 ESS(5)에서 사용자(6)에게 전력이 공급되며, ESS(4)의 충전량(E)이 기설정된 기준치(T1), 가령 2kW 이하가 되면 계통-사용자간 연결(S2)이 이루어지고 계통(7)에서 사용자(6)에게 전력이 공급되며, 이때 ESS(4)가 태양광 발전장치(1) 또는 풍력발전기(2)로부터 전력을 공급받아 ESS(4)의 충전량(E)이 기설정된 기준치(T1)를 초과하면 계통-사용자간 연결(S2)은 다시 차단된다.The connection between the input and the output of the hybrid inverter unit and the controller 3, referring to the bar shown in FIG. 2, operates differently according to the conditions set by the user using the controller 32, but the current photovoltaic device (1) and the amount of electricity produced per hour (W1) supplied by the wind power generator (2), the current user's hourly electricity consumption (W2), the current amount of charge (E) of the ESS (4), and the value set by the user According to the value of the reference value. For example, when the charge amount E of the ESS 4 exceeds a predetermined reference value, the system-user connection (S2) and the system-ESS connection (S3) are blocked and the ESS-user connection (S1) ) Is made, and power is supplied to the user 6 from the ESS 5, and when the charging amount E of the ESS 4 becomes a predetermined reference value T1, for example, 2 kW or less, a system-user connection S2 is made. Power is supplied to the user 6 from the losing system 7, wherein the ESS 4 receives power from the solar power generation device 1 or the wind power generator 2 and the charging amount E of the ESS 4 is When the predetermined reference value T1 is exceeded, the system-user connection S2 is blocked again.

하지만 사용자(6)가 설정하기에 따라서는, ESS(4)의 충전량(E)이 기설정된 기준치(T2)(상기 T1과는 다르게 설정되는 수치임), 가령 8kW 이하가 되었을 경우, 계통-ESS간 연결(S3)이 이루어지도록 컨트롤러(32)를 통해 설정할 수 있으며, 이와 같은 설정 변경의 효과로는 계통의 정전이 사전에 예고되어 있다거나 여름철 낙뢰 등에 의한 갑작스러운 계통 정전에 대비하여 ESS의 충전량(E)을 충분히 확보하여 두는 이점이 있다. 단, 상기 설정의 단점은 기준치 T2-T1 구간, 가령 충전량 2kW에서 8kW까지 ESS(4)의 충전이 이루어지는 동안 태양광 발전장치(1)와 풍력발전기(2)에서 생산되는 전력뿐만 아니라 계통(7)의 전력을 동시에 사용하게 되므로 ESS(4)가 완전 충전되었을 때부터 생산되는 태양광 발전장치(1)와 풍력발전기(2)의 잉여 전력을 충전에 사용하지 못하게 되고 계통(7)의 전력으로 미리 충전한 셈이 되어 전기요금의 상승이 발생할 수 있다. 이때, 태양광 발전장치의 경우 낮 시간에 한하여 발전이 주로 이루어지므로, ESS(4)의 충전량(E) 기준치(T2)를 시간대에 따라 다르게 설정되도록 하여 태양광 발전량이 상승하기 직전에는 기준치(T2)를 낮추고, 태양광 발전량이 하락한 직후에 기준치(T2)를 높이는 것도 가능하다고 할 것이다.However, depending on the setting by the user 6, when the charging amount E of the ESS 4 is a preset reference value T2 (a value set differently from the above T1), for example, 8 kW or less, the system-ESS It can be set through the controller 32 so that the inter-connection (S3) is made, and the effect of such a setting change is the amount of charge of the ESS in case of a system outage in advance or in case of a sudden system outage due to a lightning strike in the summer. There is an advantage of sufficiently securing (E). However, the disadvantage of the above setting is not only the electric power produced by the photovoltaic device 1 and the wind power generator 2 but also the system 7 while charging the ESS 4 from the reference value T2-T1 section, for example, 2kW to 8kW of charge. ) Is used at the same time, so it is impossible to use the surplus power of the photovoltaic device 1 and the wind power generator 2 produced from the time when the ESS 4 is fully charged, and the power of the system 7 is used. The charge may have been charged in advance, which may lead to an increase in electricity rates. At this time, in the case of the photovoltaic power generation device, power generation is mainly performed during the daytime, so the charging amount E of the ESS 4 is set differently according to the time zone, so that the photovoltaic power generation amount rises immediately before the photovoltaic power generation rises. It will be said that it is also possible to lower the) and increase the reference value (T2) immediately after the amount of solar power generation decreases.

컨트롤러(32)는 상기 하이브리드 인버터부 및 컨트롤러(3)와 연결되어 마이크로 그리드 시스템 각 부, 태양광 발전장치(1), 풍력발전기(2), 하이브리드 인버터부 및 컨트롤러(3), ESS(4)의 작동 상태를 모니터링하고 동작을 제어할 수 있으며, 외부의 컨트롤 서버(5)와 온라인을 통해 무선으로 연결되는 MCU로 구성된다. The controller 32 is connected to the hybrid inverter part and the controller 3, and each part of the micro grid system, a solar power generation device 1, a wind power generator 2, a hybrid inverter part and a controller 3, and an ESS 4 It can monitor the operation status and control the operation, and is composed of an external control server (5) and an MCU that is wirelessly connected online.

상기 컨트롤러(32)는 비상시에 계통(7)의 전원을 UPS(Uninterruptible Power Supply)와 같은 형태로 사용하는 기능을 제공하는데, 상기 하이브리드 인버터부 및 컨트롤러(3)의 설명에서 자세히 기술한 바와 같이, 태양광 발전장치(1) 또는 풍력발전기(2)의 전기 생산이 중단되거나 태양광 발전장치와 풍력발전기에서 공급되는 시간당 전기생산량(W1)이 사용자(6)의 시간당 전기사용량(W2)보다 낮아서 ESS(4)의 충전량이 기설정된 기준치(T1) 이하가 되는 경우, 계통(7)의 전력을 바이패스하여 사용자(6)에게 공급할 수 있도록 하고 태양광 발전장치(1) 또는 풍력발전기(2)로부터 전기의 공급이 재개되면 자동으로 계통(7)과 사용자(6)간의 연결이 분리되도록 한다.The controller 32 provides a function of using the power of the system 7 in the form of an uninterruptible power supply (UPS) in an emergency, as described in detail in the description of the hybrid inverter unit and the controller 3, ESS because the electricity production of the photovoltaic device 1 or the wind power generator 2 is interrupted or the hourly electricity production amount W1 supplied from the photovoltaic device and the wind power generator is lower than the electricity consumption per hour (W2) of the user 6 When the charging amount of (4) becomes equal to or lower than a predetermined reference value (T1), the electric power of the system 7 is bypassed to be supplied to the user 6 and from the solar power generation device 1 or the wind power generator 2 When the supply of electricity is resumed, the connection between the system 7 and the user 6 is automatically disconnected.

ESS(4)는 상기 하이브리드 인버터부 및 컨트롤러(3)와 연결되어서 태양광 발전장치(1) 또는 풍력발전기(2)에서 생산된 전기가 하이브리드 인버터부 및 컨트롤러(3)를 통해 공급되면서 충전되어 전력이 저장되고, 저장된 전력을 하이브리드 인버터부 및 컨트롤러(3)를 통해 사용자(6)에게 공급할 수 있다. 또한 상기 설명한 바와 같이, 사용자(6)의 설정에 따라서는 계통-ESS간 연결(S3)을 통해 계통(7)의 전력으로 ESS(5)를 충전하는 것이 가능하다. ESS(4)의 용량과 종류는, 예를 들어, 11.5kWh(DC 48V)급의 리튬-이온배터리로 이루어질 수 있다.ESS (4) is connected to the hybrid inverter unit and the controller (3) is charged with electricity generated by the solar inverter (1) or wind power generator (2) is supplied through the hybrid inverter unit and the controller (3) power The stored and stored power can be supplied to the user 6 through the hybrid inverter unit and the controller 3. In addition, as described above, depending on the setting of the user 6, it is possible to charge the ESS 5 with the power of the system 7 through the system-ESS connection S3. The capacity and type of the ESS 4 may be, for example, 11.5 kWh (DC 48V) class lithium-ion battery.

컨트롤 서버(5)는 상기 컨트롤러(32)와 통신망을 통해 연결되는 온라인 서버로서, 사용자가 웹사이트 또는 앱 등을 통해 컨트롤러(32)를 모니터링하거나 조작할 수 있도록 컨트롤러(32)와 사용자(6)를 무선으로 연결하여 하이브리드 마이크로 그리드 시스템이 IoT(Internet of Things) 기기로서 작동되도록 지원한다.The control server 5 is an online server connected to the controller 32 through a communication network, so that the controller 32 and the user 6 can monitor or operate the controller 32 through a website or app. It supports wireless hybrid grid system to operate as an Internet of Things (IoT) device.

상기 컨트롤 서버(5)는 다수의 사용자(6)가 가입되어 이를 운영하는 관리회사(도시되지 않음)이거나 사용자(6)의 가정에 설치된 컴퓨터(도시되지 않음)일 수가 있다.The control server 5 may be a management company (not shown) in which a plurality of users 6 are subscribed to operate it, or a computer (not shown) installed in the home of the user 6.

추가적으로는, 전기차 충전 시스템(8)을 구비하고 상기 하이브리드 인버터부 및 컨트롤러(3)와 전선으로 연결하여 전기차 충전 시스템(8)에 전력을 공급함으로써, 태양광 발전장치(1) 또는 풍력발전기(2)에서 생산되는 전력으로 전기차를 충전하는 것이 가능하게 된다.In addition, by providing an electric vehicle charging system (8) and connecting the hybrid inverter unit and the controller (3) with electric wires to supply electric power to the electric vehicle charging system (8), a solar power generator (1) or a wind generator (2) It is possible to charge the electric vehicle with the power produced by).

이상 설명한 바와 같이 도면과 명세서에서 최적 실시예가 개시되었다. 여기서 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미를 한정하거나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.As described above, optimal embodiments have been disclosed in the drawings and specifications. Although specific terms have been used herein, they are only used for the purpose of describing the present invention and are not used to limit the meaning or limit the scope of the present invention described in the claims. Therefore, those skilled in the art will understand that various modifications and other equivalent embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.

A: IoT 하이브리드 마이크로 그리드 시스템
1: 태양광 발전장치 2: 풍력발전기
3: 하이브리드 인버터부 및 컨트롤러
4: ESS 5: 컨트롤 서버
6: 사용자 7: 계통
8: 전기차 충전 시스템
W1: (현재) 태양광 발전장치와 풍력발전기에서 공급되는 시간당 전기생산량
W2: (현재) 사용자의 시간당 전기사용량
E: (현재) ESS의 충전량
S1: ESS-사용자간 연결 S2: 계통-사용자간 연결
S3: 계통-ESS간 연결
A: IoT hybrid micro grid system
1: Solar power generator 2: Wind power generator
3: Hybrid inverter part and controller
4: ESS 5: Control Server
6: User 7: System
8: Electric vehicle charging system
W1: (current) electricity production per hour supplied by solar power and wind power generators
W2: (current) user's hourly electricity consumption
E: (current) ESS charge
S1: ESS-user connection S2: System-user connection
S3: System-ESS connection

Claims (3)

IoT 하이브리드 마이크로 그리드 시스템에 있어서,
상기 IoT 하이브리드 마이크로 그리드 시스템은, 태양광 발전장치(1), 풍력발전기(2), 하이브리드 인버터부 및 컨트롤러(3), ESS(4), 컨트롤 서버(5), 사용자(6) 및 전력선 계통(7)을 포함하고,
상기 하이브리드 인버터부 및 컨트롤러(3)는 하이브리드 인버터부(31)와 컨트롤러(32)로 구성되고,
상기 하이브리드 인버터부(31)는 입력필터부(31a), 교류변환 회로부(31b), 내부 변압기부(31c), 스위칭부(31d) 및 출력필터부(31e)를 포함하고,
상기 컨트롤러(32)는 태양광 발전장치(1), 풍력발전기(2), 하이브리드 인버터(3), 계통(7), ESS(4), 및 사용자(6)의 상태를 모니터링 하고, 모니터링 결과에 따라서 하이브리드 인버터(3), 계통(7), ESS(4), 사용자(6), 내부작동 스위치(8) 및 계통 스위치(9)의 동작을 제어하고 컨트롤 서버(5)와 송수신하는 기능을 수행하고,
상기 하이브리드 인버터부(31)의 상기 입력필터부(31a)는, 인입되는 직류전원의 노이즈를 필터링하여 노이즈가 제거된 직류전원으로 변환하여 출력하고,
상기 교류변환 회로부(31b)는 상기 입력필터부(31a)로부터 인가되는 상기 직류를 상기 전력선 계통(7) 내의 허용 주파수보다 높은 주파수를 갖는 고주파 3상 전원으로 변환하여 출력하고,
상기 내부 변압기부(31c)는 상기 교류변환 회로부(31b)로부터 인가된 상기 고주파 3상 전원을 각 상별로 분할된 3개의 내부 변압기들을 통해 출력하고,
상기 스위칭부(31d)는 상기 내부 변압기부(31c)로부터 출력되는 상기 고주파 3상 전원을 각 상별로 상기 허용 주파수, 즉 60Hz와 동기화되도록 스위칭하여 일차 3상 전원으로 변환하여 출력하고,
상기 출력 필터부(31e)는 상기 스위칭부(31d)로부터 인가되는 상기 일차 3상 전원을 필터링하여 사인파(sine wave) 형태를 갖는 이차 3상 전원으로 변환하여 출력하고,
상기 컨트롤러(32)는 계통(7)에 정전이 발생하였는지 여부, 태양광 발정장치(1) 및/또는 풍력발전기(2)에서 발전이 되는가의 여부, 태양광 발정장치(1) 및/또는 풍력발전기(2)에서 전력을 생산하는 경우 그 생산량을 모니터링을 하고, ESS(4)의 충전 상태를 모니터링을 하고, 사용자(6)의 소비 전력량, 시간 등을 모니터링하고,
상기 내부작동 스위치(8) 및 계통 스위치(9)는 하이브리드 인버터부 및 컨트롤러(3)와 계통(7) 사이에 직렬로 연결되며, 상기 내부작동 스위치(8) 및 계통 스위치(9)로는 큰 전류에 견딜 수 있는 릴레이(relay)가 사용되고,
ESS(4)는 태양광 발전장치(1) 및 풍력발전기(2) 및/또는 계통(7)의 전력을 공급받아 저장하고, 사용자(6) 또는 계통(7)에 저장하고 있는 전력을 공급한다. ESS(4)는 전력을 저장하는 부분과 이를 제어 및 보호하는 부분을 포함하고,
상기 하이브리드 인버터부 및 컨트롤러(3)와 전선으로 연결하여 전기차 충전 시스템(8)에 전력을 공급하는 것을 특징으로 하는 IoT 하이브리드 마이크로 그리드 시스템
In the IoT hybrid micro grid system,
The IoT hybrid micro grid system includes a solar power generator 1, a wind power generator 2, a hybrid inverter unit and a controller 3, an ESS 4, a control server 5, a user 6, and a power line system ( 7),
The hybrid inverter unit and the controller 3 is composed of a hybrid inverter unit 31 and the controller 32,
The hybrid inverter unit 31 includes an input filter unit 31a, an AC conversion circuit unit 31b, an internal transformer unit 31c, a switching unit 31d, and an output filter unit 31e.
The controller 32 monitors the state of the photovoltaic device 1, the wind power generator 2, the hybrid inverter 3, the system 7, the ESS 4, and the user 6, and the monitoring result Therefore, it controls the operation of the hybrid inverter (3), the grid (7), the ESS (4), the user (6), the internal operation switch (8) and the grid switch (9) and performs the function of transmitting and receiving with the control server (5) and,
The input filter unit 31a of the hybrid inverter unit 31 filters the noise of the incoming DC power, converts it into DC power from which the noise is removed, and outputs it,
The AC conversion circuit unit 31b converts and outputs the direct current applied from the input filter unit 31a into a high-frequency three-phase power source having a frequency higher than an allowable frequency in the power line system 7,
The internal transformer unit 31c outputs the high-frequency three-phase power applied from the AC conversion circuit unit 31b through three internal transformers divided for each phase,
The switching unit 31d switches the high-frequency three-phase power output from the internal transformer unit 31c to be synchronized with the allowable frequency, that is, 60 Hz for each phase, and converts it to a primary three-phase power, and outputs it.
The output filter unit 31e filters the primary three-phase power applied from the switching unit 31d, converts it into a secondary three-phase power source having a sine wave, and outputs the converted output signal.
The controller 32 is whether or not a power outage has occurred in the system 7, whether the power is generated by the solar light emitting device 1 and / or the wind power generator 2, the solar light emitting device 1 and / or wind power When generating power from the generator 2, it monitors the production amount, monitors the charging state of the ESS 4, monitors the power consumption, time, etc. of the user 6,
The internal operation switch 8 and the grid switch 9 are connected in series between the hybrid inverter unit and the controller 3 and the grid 7, and the internal operation switch 8 and the grid switch 9 have a large current. A relay that can withstand
The ESS 4 receives and stores the power of the photovoltaic device 1 and the wind power generator 2 and / or the system 7, and supplies the stored power to the user 6 or the system 7 . The ESS 4 includes a portion for storing electric power and a portion for controlling and protecting it,
IoT hybrid micro grid system characterized by supplying electric power to the electric vehicle charging system (8) by connecting to the hybrid inverter unit and the controller (3) by wires
삭제delete 삭제delete
KR1020190087498A 2019-07-19 2019-07-19 IoT hybrid micro grid system KR102107483B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190087498A KR102107483B1 (en) 2019-07-19 2019-07-19 IoT hybrid micro grid system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190087498A KR102107483B1 (en) 2019-07-19 2019-07-19 IoT hybrid micro grid system

Publications (1)

Publication Number Publication Date
KR102107483B1 true KR102107483B1 (en) 2020-05-07

Family

ID=70733497

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190087498A KR102107483B1 (en) 2019-07-19 2019-07-19 IoT hybrid micro grid system

Country Status (1)

Country Link
KR (1) KR102107483B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113852109A (en) * 2021-09-23 2021-12-28 西南交通大学 Distributed control method for fair load margin of heterogeneous microgrid group
CN113964930A (en) * 2021-11-08 2022-01-21 国网湖南省电力有限公司 Automatic standby power supply switching cooperative control method and system for series power supply transformer substation
CN113991875A (en) * 2021-12-27 2022-01-28 江苏驷源电力有限公司 Low-voltage distribution network terminal equipment and message interaction method thereof
KR20220072032A (en) * 2020-11-23 2022-06-02 한국전력공사 Apparatus for management of microgrid
WO2022215793A1 (en) * 2021-04-08 2022-10-13 주식회사 세원전력 Regional electrical grid system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100073989A (en) * 2008-12-23 2010-07-01 삼성전기주식회사 Photovoltaic and fuel cell hybrid generation system using two converter and one inverter, and control method of the same
KR101402340B1 (en) 2014-03-25 2014-06-03 주식회사 이정이앤씨 The power generation by complex system which uses a solar energy and the wind power
KR101956232B1 (en) * 2018-05-29 2019-03-08 주식회사 대경산전 Energy management system and method of energy storage device (ESS) capable of maximum operation efficiency management

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100073989A (en) * 2008-12-23 2010-07-01 삼성전기주식회사 Photovoltaic and fuel cell hybrid generation system using two converter and one inverter, and control method of the same
KR101402340B1 (en) 2014-03-25 2014-06-03 주식회사 이정이앤씨 The power generation by complex system which uses a solar energy and the wind power
KR101956232B1 (en) * 2018-05-29 2019-03-08 주식회사 대경산전 Energy management system and method of energy storage device (ESS) capable of maximum operation efficiency management

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230104547A (en) * 2020-11-23 2023-07-10 한국전력공사 Apparatus for management of microgrid
KR20230104549A (en) * 2020-11-23 2023-07-10 한국전력공사 Apparatus for management of microgrid
KR102633286B1 (en) * 2020-11-23 2024-02-07 한국전력공사 Apparatus for management of microgrid
KR20220072032A (en) * 2020-11-23 2022-06-02 한국전력공사 Apparatus for management of microgrid
KR102633285B1 (en) * 2020-11-23 2024-02-07 한국전력공사 Apparatus for management of microgrid
KR102548200B1 (en) * 2020-11-23 2023-06-29 한국전력공사 Apparatus for management of microgrid
WO2022215793A1 (en) * 2021-04-08 2022-10-13 주식회사 세원전력 Regional electrical grid system
KR20220139743A (en) * 2021-04-08 2022-10-17 주식회사 세원전력 Regional unit power grid system
KR102616888B1 (en) * 2021-04-08 2023-12-21 이상선 Regional unit power grid system
CN113852109B (en) * 2021-09-23 2023-04-28 西南交通大学 Fair load margin distributed regulation and control method for heterogeneous micro-grid group
CN113852109A (en) * 2021-09-23 2021-12-28 西南交通大学 Distributed control method for fair load margin of heterogeneous microgrid group
CN113964930A (en) * 2021-11-08 2022-01-21 国网湖南省电力有限公司 Automatic standby power supply switching cooperative control method and system for series power supply transformer substation
CN113964930B (en) * 2021-11-08 2023-06-27 国网湖南省电力有限公司 Automatic cooperative control method and system for standby power supply of series power supply transformer substation
CN113991875A (en) * 2021-12-27 2022-01-28 江苏驷源电力有限公司 Low-voltage distribution network terminal equipment and message interaction method thereof

Similar Documents

Publication Publication Date Title
KR102107483B1 (en) IoT hybrid micro grid system
US7929327B2 (en) Alternative-source energy management
Bacha et al. Photovoltaics in microgrids: An overview of grid integration and energy management aspects
JP5265639B2 (en) Apartment house energy storage system, integrated power management system and control method therefor
US10431985B2 (en) Power management method
KR20110007256A (en) Storage system that maximizes the utilization of renewable energy
KR20200079755A (en) Microgrid system considering load environment and the Methods of operation
CN103703648A (en) Power management system and management method
KR20140137545A (en) Smart switchgear having energy storage module
KR102234560B1 (en) The Connection System of Distributing type Load and Gathering type Load using Low Voltage Direct Circuit and The Operating Method thereof
KR20140111118A (en) Solar-cell system having maximum power saving function and method thereof
Hamdaoui et al. Smart islanding in smart grids
JP6082610B2 (en) Power supply system and power storage type power supply device
WO2022236373A1 (en) Energy provision system and method
Martirano et al. Implementation of SCADA systems for a real microgrid lab testbed
KR101517566B1 (en) Hybrid electricity generator for emergency based on battery
JP2012191696A (en) Private power generation system
JP6401669B2 (en) Power supply system
JP2013153572A (en) Apparatus and method for controlling power supply
JP2020068555A (en) Power management system and complex housing
Kushwaha et al. Single-phase rooftop photovoltaic based grid-interactive electricity system
US10211639B2 (en) Padmount transformer with energy storage apparatus
Hameed The adoption of PV systems in the Maldives: A technological review
Despotović et al. Design and Implementation of a Hybrid Power for Telecommunication and Measuring Remote Station of the Surveillance, Alert and Warning System
Chilate et al. Case Study on Solar-Powered Hospital Elevator to Push Green Energy for the Use of Alternative Energy Sources-Sunlight

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant