KR101287136B1 - Control system of h-bridge 2-string grid tied pcs - Google Patents

Control system of h-bridge 2-string grid tied pcs Download PDF

Info

Publication number
KR101287136B1
KR101287136B1 KR1020120029161A KR20120029161A KR101287136B1 KR 101287136 B1 KR101287136 B1 KR 101287136B1 KR 1020120029161 A KR1020120029161 A KR 1020120029161A KR 20120029161 A KR20120029161 A KR 20120029161A KR 101287136 B1 KR101287136 B1 KR 101287136B1
Authority
KR
South Korea
Prior art keywords
current
voltage
unit
string
control signal
Prior art date
Application number
KR1020120029161A
Other languages
Korean (ko)
Inventor
김홍성
윤여영
정재기
Original Assignee
한빛이디에스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한빛이디에스(주) filed Critical 한빛이디에스(주)
Priority to KR1020120029161A priority Critical patent/KR101287136B1/en
Priority to PCT/KR2012/007659 priority patent/WO2013141452A1/en
Application granted granted Critical
Publication of KR101287136B1 publication Critical patent/KR101287136B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE: Control system for an H-bridge 2-string single phase grid connected power conditioning system (PCS) is provided to improve a harmonic characteristic by configuring a 2-string single phase grid connected power PCS using 5-level inverter topology. CONSTITUTION: A voltage control unit (100) controls intensity of AC current (Icon) and generates AC peak current (Ipeak). A synchronous loop unit (200) receives instantaneous system voltage (Vs) for unit power factor control and generates sinusoidal wave. A current control unit (300) generates a current control signal (Vcon*) for tracking control of a reference signal (Icon*). A calculation unit (400) generates an output power ratio of one PV string with respect to the total generation power. A control signal decoupling unit (500) generates a feedback control (FBC) signal of the each PV string using the current control signal. A phase shift pulse width modulation (PWM) unit (600) generates a pulse signal for driving a switch comprising each FBC. [Reference numerals] (600) Phase shift PWM unit; (AA) Sa1,Sa2,Sa3,Sa4 driving signal; (BB) Sb1,Sb2,Sb3,Sb4 driving signal; (CC,DD) Second LPF; (EE) Effective value calculation unit

Description

H-BRIDGE 2-STRING 단상 계통연계용 PCS의 제어 시스템{CONTROL SYSTEM OF H-BRIDGE 2-STRING GRID TIED PCS}Control system of PCS for single-phase system linkage {CONTROL SYSTEM OF H-BRIDGE 2-STRING GRID TIED PCS}

본 발명은 H-Bridge 2-String 단상 계통연계용 PCS(POWER CONVERSION SYSTEM)의 제어 시스템에 관한 것으로 더욱 상세하게는, 전류 제어신호를 비례적으로 분배하여, 2대의 PV-String의 발전전력을 각각 독립적으로 제어하는 기술에 관한 것이다.The present invention relates to a control system of PCS (POWER CONVERSION SYSTEM) for H-Bridge 2-String single phase grid connection. More specifically, the current control signal is proportionally distributed to generate power generated by two PV-Strings, respectively. It relates to a technology to control independently.

일반적으로 1열로 직렬 연결된 태양광 모듈의 집합인 PV-String을 병렬 연결하여 구성한 PV-array를 병렬로 결선하고 1대의 DC/DC컨버터 및 DC/AC컨버터로 구성되는 PCS를 Central Type라고 한다. In general, a PCS composed of one DC / DC converter and one DC / AC converter in parallel with the PV-array formed by parallel connection of PV-String, which is a set of PV modules connected in series, is called Central Type.

이러한 방식은 구성이 간단하여 저가의 시스템 구현이 가능하나, 1개의 PV-String이 고장이 나거나 특정 태양전지의 성능이 저하될 경우, PV-array의 전체 출력의 감소되는 단점이 있다.This method is simple in configuration and low cost system can be implemented. However, when one PV-String fails or the performance of a specific solar cell is degraded, the overall output of the PV-array is reduced.

상기와 같은 단점을 개선하기 위해 도 1과 같이 PV-String 별로 DC/DC 컨버터를 각각 배정하고, 출력을 하나로 통합하여 계통으로 출력하는 String Type PCS를 이용한 PV 시스템이 널리 사용되고 있다.In order to improve the above disadvantages, as shown in FIG. 1, a PV system using a String Type PCS for allocating a DC / DC converter for each PV-String and integrating the output into a system is output.

그러나, PCS의 부품수가 증가하고 제어계가 복잡해지는 문제점이 있고, 설비 대형화로 인한 저가 구현 및 유지보수 비용의 최소화 등을 해결할 수 없다.However, there is a problem that the number of parts of the PCS is increased and the control system is complicated, and low-cost implementation and minimization of maintenance costs due to the enlargement of the facility cannot be solved.

일본공개특허 2002-223565호(발명의 명칭: DC-DC 컨버터, 공개일: 2002.08.09, 출원인: 닛신 전기 주식회사)Japanese Patent Application Laid-Open No. 2002-223565 (Invention name: DC-DC converter, Publication date: Aug. 09, 2002, Applicant: Nisshin Electric Co., Ltd.)

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, H-Bridge 멀티 레벨 인버터 회로를 응용한 5-level 인버터 토폴로지를 이용하여 2-String 단상 계통연계용 PCS(이하 "H-Bridge 2-String 단상 계통연계용 PCS"라 명명)를 구성함으로써, DC/DC 컨버터 2대, DC/AC 인버터 1대로 구성되는 기존의 2-String 단상 계통연계용 PCS 보다 전력회로의 구조를 간단히 할 수 있고, 인덕터와 같은 자기 디바이스의 사용을 줄여 경량화 하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and uses a 5-level inverter topology using an H-Bridge multi-level inverter circuit, and uses a 2-string single phase grid-connected PCS (hereinafter referred to as "H-Bridge 2-String single phase"). By constructing the grid-connected PCS ", the structure of the power circuit can be simplified compared to the existing 2-string single-phase grid-connected PCS composed of two DC / DC converters and one DC / AC inverter. The purpose is to reduce the use of the same magnetic device to reduce the weight.

그러나, 본 발명은 2개의 독립된 입력, 1개의 중첩된 출력 형태로 구성되는 5-level 인버터 토폴로지를 적용한 H-Bridge 2-String PCS를 전류 제어신호를 비례적으로 분배하여, 2대의 PV-String의 발전전력을 각각 독립적으로 제어하여야 한다.However, the present invention proportionally distributes a current control signal to an H-Bridge 2-String PCS using a 5-level inverter topology consisting of two independent inputs and one superimposed output, thereby providing two PV-Strings. Generated power must be controlled independently.

이러한 기술적 과제를 달성하기 위한 본 발명의 H-Bridge 2-String 단상 계통연계용 PCS의 제어 시스템은, 전류 Icon 제어를 위한 제어입력 Vcon이 수식 1과 같이 두 개의 전압원(Vcona, Vconb)으로 구성되는 MISO(Multi Input Single Output)형태의 플랜트 구조를 가지므로 전류 제어기 출력 Vcon*을 이용하여 두 개의 제어신호 Vcona*, Vconb*을 도출하는 전류 제어 신호 decoupling 알고리즘이 필요하다.In order to achieve the above technical problem, the control system of the PCS for H-Bridge 2-String single phase grid connection according to the present invention includes a control input Vcon for controlling the current icon including two voltage sources Vcona and Vconb as shown in Equation 1. Since the plant has a MISO-type plant structure, a current control signal decoupling algorithm is needed to derive two control signals Vcona * and Vconb * using the current controller output Vcon *.

상기와 같은 전류 제어 신호 decoupling 알고리즘을 구현하기 위한 개념을 살펴보면 아래와 같다.Looking at the concept for implementing the current control signal decoupling algorithm as described above.

[수식 1][Equation 1]

Vcon = Vcona + Vconb Vcon = Vcona + Vconb

H-Bridge 2-String PCS 전력 회로 AC 측 순시 발전 전력은 다음의 [수식 2]와 같으며, 유효 발전전력은 다음의 [수식 3]과 같이 각 FBC(Full Bridge Circuit)의 출력 전압 Vcona 와 Vconb에 따라 적절히 분배 가능함을 알 수 있다.H-Bridge 2-String PCS Power Circuit The instantaneous generation power of AC side is as shown in [Equation 2] below, and the effective generating power is as shown in [Equation 3] below, the output voltage Vcona and Vconb of each FBC (Full Bridge Circuit) It can be seen that it can be properly distributed according to.

[수식 2][Equation 2]

Figure 112012023103747-pat00001
Figure 112012023103747-pat00001

Figure 112012023103747-pat00002
Figure 112012023103747-pat00002

[수식 3][Equation 3]

총 스위칭회로의 유효발전전력=

Figure 112012023103747-pat00003
Active Generation Power of Total Switching Circuit
Figure 112012023103747-pat00003

한편, 상기 [수식 1]의 우항을 다음의 [수식 4]와 같이 표현하면,On the other hand, if the right term of [Formula 1] is expressed as the following [Formula 4],

[수식 4][Equation 4]

Figure 112012023103747-pat00004
Figure 112012023103747-pat00004

여기서 A: 전체 발전 전력에 대한 1-스트링 출력 전력비.Where A: 1-string output power ratio to total generated power.

따라서, 상기 [수식 2]는 다음의 [수식 5]와 같이 표현할 수 있다.Therefore, Equation 2 may be expressed as Equation 5 below.

[수식 5][Equation 5]

PCS 스위칭회로의 순시발전전력=

Figure 112012023103747-pat00005
Instantaneous generation power of PCS switching circuit
Figure 112012023103747-pat00005

각 String FBC의 발전 전력은 [수식 5]와 같이 A값을 적절하게 선정함에 따라 분배 제어 가능함을 알 수 있으므로 A는 전력 분배 계수로 칭해 질 수 있다.Since the generated power of each String FBC can be dividedly controlled by properly selecting the value of A as shown in [Equation 5], A can be referred to as a power distribution coefficient.

따라서, 상기와 같은 개념을 구현하기 위해 본 발명에 따른 H-Bridge 2-String 단상 계통연계용 PCS의 제어 시스템은, PV-String에서 발전된 직류 전력을 교류계통 측으로 발전하기 위한 교류전류(Icon)의 크기를 조절하여 교류 피크치 전류(Ipeak)를 생성하는 전압 제어부; 단위 역율 제어를 위해 순시 계통 전압(Vs)을 입력받아 계통 전압과 동상인 정현파

Figure 112012023103747-pat00006
를 생성하는 위상 동기 루프부(Phase Locked Loop 이하 "PLL"); 전압 제어부를 통해 생성된 교류 피크치 전류와 위상 동기 루프부를 통해 생성된 계통 전압 및 동상인 정현파
Figure 112012023103747-pat00007
의 곱으로 생성된 전류 기준 신호(Icon*)의 추종 제어를 위한 전류 제어신호 Vcon*를 생성하는 전류 제어부; 피드포워드 전류(Iff)를 생성하고, 전체 발전 전력에 대한 PV-String 1대의 출력 전력비(k)를 생성하는 연산부; 전류 제어부를 통해 생성된 전류 제어신호 Vcon*을 이용하여 각 PV-String의 FBC 제어신호를 생성하는 제어신호 디커플링부; 및 제어신호 디커플링부를 통해 생성된 FBC 제어신호를 입력받아 각 FBC를 구성하는 스위치 구동을 위한 펄스 신호를 생성하는 위상전이 PWM부; 를 포함한다.Accordingly, in order to implement the above concept, the control system of the PCS for H-Bridge 2-String single phase grid connection according to the present invention is characterized in that the AC current (Icon) for generating DC power generated in the PV-String to the AC system side. A voltage controller configured to adjust an amplitude to generate an AC peak current Ipeak; Sinusoidal wave in phase with system voltage by receiving instantaneous grid voltage (Vs) for unit power factor control
Figure 112012023103747-pat00006
A phase locked loop portion (PLL) below generating a phase locked loop; AC peak current generated by the voltage control unit and grid voltage and in phase sine wave generated by the phase locked loop unit.
Figure 112012023103747-pat00007
A current controller configured to generate a current control signal Vcon * for following control of the current reference signal Icon * generated as a product of? An operation unit which generates a feedforward current Iff and generates an output power ratio k of one PV-String to the total generated power; A control signal decoupling unit configured to generate an FBC control signal of each PV-String using the current control signal Vcon * generated by the current control unit; And a phase shift PWM unit which receives the FBC control signal generated through the control signal decoupling unit and generates a pulse signal for driving a switch constituting each FBC. .

또한, 전압 제어부는 PV-String1의 전압(Vsol1), PV-String2의 전압(Vsol2), PV-String1의 출력 전류(Isol1) 및 PV-String2의 출력 전류(Isol2)를 입력 변수로 하는 것을 특징으로 한다.In addition, the voltage controller is characterized in that the voltage (Vsol1) of PV-String1, the voltage (Vsol2) of PV-String2, the output current (Isol1) of PV-String1 and the output current (Isol2) of PV-String2 as input variables. do.

또한, 전류 제어부는 계통 전압, 동상인 정현파

Figure 112012023103747-pat00008
, 교류 피크치 전류(Ipeak) 및 순시 계통 전압(Vs)를 입력 변수로 하는 것을 특징으로 한다.In addition, the current control unit is a system voltage, sine wave in phase
Figure 112012023103747-pat00008
, AC peak current (Ipeak) and instantaneous system voltage (Vs) is characterized in that the input variables.

또한, 연산부는 순시 계통 전압(Vs), PV-String1의 전압(Vsol1), PV-String2의 전압(Vsol2), PV-String1의 출력 전류(Isol1) 및 PV-String2의 출력 전류(Isol2)를 입력 변수로 하는 것을 특징으로 한다.In addition, the calculation unit inputs the instantaneous grid voltage (Vs), the voltage of PV-String1 (Vsol1), the voltage of PV-String2 (Vsol2), the output current of PV-String1 (Isol1) and the output current of PV-String2 (Isol2). Characterized in that the variable.

또한, 제어신호 디컬플링부는 전류 제어신호(Vcon*), PV-String1의 전압(Vsol1)과 기준신호(Vsol1) 사이의 차(err1) 및 PV-String2의 전압(Vsol2)과 기준신호(Vsol2) 사이의 차(err2)를 입력 변수로 하는 것을 특징으로 한다.In addition, the control signal decoupling unit includes a current control signal Vcon *, a difference err1 between the voltage Vsol1 of the PV-String1 and the reference signal Vsol1, and a voltage Vsol2 and a reference signal Vsol2 of the PV-String2. It is characterized by using the difference err2 as an input variable.

또한, 제어신호 디커플링부는 전류 제어부를 통해 생성된 전류 제어신호 Vcon*와 연산부를 통해 생성된 출력 전력비(k)를 이용하여 FBC1 제어신호(Vcona*) 및 FBC2 제어신호(Vconb*)를 생성하는 것을 특징으로 한다.In addition, the control signal decoupling unit generates the FBC1 control signal Vcona * and the FBC2 control signal Vconb * using the current control signal Vcon * generated by the current controller and the output power ratio k generated by the calculation unit. It features.

그리고, 제어신호 디커플링부는 각 PV-String의 운전전압이 다를 경우, PI제어기와 위상 동기 루프부를 통해 생성된 계통 전압 및 동상인 정현파

Figure 112012023103747-pat00009
를 이용하여 △Vcom1, △Vcom2를 생성하고, 다음의 [수식 6] 및 [수식 7]를 이용하여 FBC1 제어신호(Vcona*) 및 FBC2 제어신호(Vconb*)를 생성하는 것을 특징으로 한다.When the operating voltage of each PV-String is different, the control signal decoupling unit is a sinusoidal wave that is in phase with the grid voltage generated by the PI controller and the phase-lock loop.
Figure 112012023103747-pat00009
ΔVcom1 and ΔVcom2 are generated using the following equations, and the FBC1 control signal Vcona * and the FBC2 control signal Vconb * are generated using Equations 6 and 7 below.

[수식 6][Equation 6]

Figure 112012023103747-pat00010
Figure 112012023103747-pat00010

여기서 k는 k=Psol1/(Psol1+Psol2) 이다.Where k is k = Psol1 / (Psol1 + Psol2).

[수식 7][Equation 7]

Figure 112012023103747-pat00011
Figure 112012023103747-pat00011

상기와 같은 본 발명에 따르면, 5-level 인버터 토폴로지를 이용한 2-String 단상 계통연계용 PCS를 구성함으로써, 고조파의 특성을 향상시키고, 전력회로의 구조를 간단히 할 수 있으며, 인덕터와 같은 자기 디바이스의 사용을 줄여 경량화 시키는 효과가 있다.According to the present invention as described above, by constructing a PCS for 2-String single phase grid connection using a 5-level inverter topology, it is possible to improve the characteristics of harmonics, simplify the structure of the power circuit, and It is effective to reduce the use by reducing weight.

그리고, 본 발명에 따르면, 전류 제어신호를 비례적으로 분배하여, 2대의 PV-String의 발전전력을 각각 독립적으로 제어하는 효과가 있다.In addition, according to the present invention, there is an effect of proportionally distributing the current control signal to independently control the generated power of two PV-Strings.

도 1은 기존의 2-String 타입 PV 시스템의 구성도.
도 2는 기존의 2대의 PV-String 타입 PCS 전력회로의 상세 일예시도.
도 3은 기존의 2대의 PV-String 타입 PCS의 제어계에 관한 구성도.
도 4는 본 발명에 따른 H-Bridge 2-String 단상 계통연계용 PCS의 구성도.
도 5는 본 발명에 따른 H-Bridge 2-String 단상 계통연계용 PCS의 제어 시스템에 관한 구성도.
1 is a block diagram of a conventional 2-String type PV system.
2 is a detailed exemplary view of two conventional PV-String type PCS power circuits.
3 is a configuration diagram of a control system of two existing PV-String type PCS.
Figure 4 is a block diagram of a PCS for H-Bridge 2-String single phase grid connection in accordance with the present invention.
5 is a block diagram of a control system of the PCS for H-Bridge 2-String single phase grid connection in accordance with the present invention.

본 발명의 구체적인 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 할 것이다. 또한, 본 발명에 관련된 공지 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음에 유의해야 할 것이다.
Specific features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings. Prior to this, terms and words used in the present specification and claims are to be interpreted in accordance with the technical idea of the present invention based on the principle that the inventor can properly define the concept of the term in order to explain his invention in the best way. It should be interpreted in terms of meaning and concept. In addition, when it is determined that the detailed description of the known function and its configuration related to the present invention may unnecessarily obscure the subject matter of the present invention, it should be noted that the detailed description is omitted.

본 발명에서는 전류 제어기 제어신호의 비례적 분배 제어 개념을 이용하여 H-Bridge 2-String PCS를 위한 PV-string 2대의 발전전력을 독립적으로 제어하는 방식을 제안한다.The present invention proposes a method of independently controlling generation power of two PV-strings for H-Bridge 2-String PCS using the concept of proportional distribution control of current controller control signals.

도 2 및 도 3에 도시된 바와 같이, 기존에 일반적으로 많이 사용되는 2대의 PV-String으로 구성되는 PCS 구성시 무게에 영향이 큰 인덕터가 3개(L1, L2, L3) 사용되며, 시스템의 제어를 위한 센싱 변수가 9개(Vs, Icon, Vdcon,Id1, Id2,Isol1, Isol2, Vsol1, Vsol2)가 필요하다.As shown in FIG. 2 and FIG. 3, three inductors (L1, L2, L3) having a large influence on weight are used when configuring a PCS composed of two PV-Strings that are generally used. Nine sensing variables (Vs, Icon, Vdcon, Id1, Id2, Isol1, Isol2, Vsol1, Vsol2) for control are required.

또한, 도 3에 도시된 바와 같이, DC/DC컨버터의 제어계통은 PV-String에 대하여 각각의 MPPT(MPPT1, MPPT2)를 적용하여 발전 전력을 최대화 한다. 발전된 전력은 DC/AC컨버터의 전력 제어계통을 통해 교류 측으로 발전된다.In addition, as shown in FIG. 3, the control system of the DC / DC converter applies each MPPT (MPPT1, MPPT2) to the PV-String to maximize the generated power. The generated power is generated to the AC side through the power control system of the DC / AC converter.

DC/AC컨버터의 전력 제어계통은 외부 제어 Loop는 직류전압(Vdcon) 제어 기능을 담당하며, 내부 Loop는 출력전류(Icon) 제어 기능을 담당한다.In the power control system of DC / AC converter, the external control loop is in charge of DC voltage control and the inner loop is in charge of output current (Icon) control.

제어계통에서 직류 전압 제어부의 역할은 교류 측으로 발전되는 전류의 크기를 결정하는 역할을 수행하며, 출력전류(Icon)의 피크치 크기(Im)를 결정한다.The role of the DC voltage controller in the control system is to determine the magnitude of the current generated to the AC side, and determines the peak value Im of the output current Icon.

이때, 출력전류(Icon)의 피크치 크기(Im)는 다음의 [수식 8]과 같은 관계로 이해될 수 있다.At this time, the peak value Im of the output current Icon may be understood as a relationship as shown in Equation 8 below.

[수식 8][Equation 8]

Figure 112012023103747-pat00012
Figure 112012023103747-pat00012

즉, 각 PV-String의 발전전력 Psol1, Psol2의 합에 해당하는 총 발전 전력은 시스템 손실분을 제외하고 계통으로 발전됨을 의미한다.
In other words, the total generated power corresponding to the sum of the generated powers Psol1 and Psol2 of each PV-String is generated into the system excluding system losses.

한편, 교류전류 제어부는 전압제어기 출력(출력전류 Icon의 피크치 크기 Im) 및 계통전압(Vs)와 동상인 정현파 PLL 출력신호

Figure 112012023103747-pat00013
의 곱으로 결정되는 교류전류 기준 신호 Icon*를 이용하여 출력전류 Icon을 제어하는 기능을 수행하기 위해 DC/AC컨버터 스위칭 회로 출력전압(Vcon)의 기준신호 Vcon*를 만드는 SISO(Single Input Single Output)형태의 제어기로 구성된다.On the other hand, the AC current controller is a sinusoidal PLL output signal in phase with the voltage controller output (peak size magnitude of the output current icon) and the system voltage (Vs).
Figure 112012023103747-pat00013
Single Input Single Output (SISO) which makes the reference signal Vcon * of the DC / AC converter switching circuit output voltage (Vcon) to control the output current icon using the AC current reference signal Icon * determined by the product of It consists of a controller of the type.

또한, PWM부는 DC/AC 컨버터 스위칭 회로를 이용하여 기준신호 Vcon*에 해당하는 펄스형태의 출력 전압(Vcon)으로 변환시키기 위해 직류 전압 Vdcon에 대한 기준신호 Vcon*의 상대적인 크기를 비교하여 스위칭 회로의 on-off 시간을 계산하고 펄스형태의 스위치 구동 신호를 만드는 역할을 한다.
In addition, the PWM unit compares the relative magnitude of the reference signal Vcon * with respect to the DC voltage Vdcon to convert the output voltage Vcon corresponding to the reference signal Vcon * using the DC / AC converter switching circuit. It calculates the on-off time and produces the pulse drive switch signal.

이하, 본 발명에 따른 H-Bridge 2-String 단상 계통연계용 PCS의 제어 시스템에 대해 첨부한 예시도면을 토대로 상세히 설명한다.Hereinafter, the control system of the PCS for H-Bridge 2-String single phase grid connection according to the present invention will be described in detail with reference to the accompanying drawings.

도 4는 본 발명에 따른 H-Bridge 2-String 단상 계통연계용 PCS의 구성도이며, 도 5는 본 발명에 따른 H-Bridge 2-String 단상 계통연계용 PCS의 제어 시스템에 관한 구성도이다.4 is a configuration diagram of a PCS for H-Bridge 2-String single phase grid connection according to the present invention, and FIG. 5 is a configuration diagram of a control system of a PCS for H-Bridge 2-String single phase grid connection according to the present invention.

도 4 및 도 5에 도시된 바와 같이, H-Bridge 2-String 단상 계통연계용 PCS는 1개의 인덕터(L)와 6개의 센싱변수(Vs, Icon, Vsol1, Vsol2, Isol1, Isol2)를 가지는 시스템 제어 계통 및 스위치로 구성되는 FBC로 구성된다.As shown in FIGS. 4 and 5, the PCS for H-Bridge 2-String single phase grid connection has one inductor L and six sensing variables (Vs, Icon, Vsol1, Vsol2, Isol1, and Isol2). It consists of an FBC consisting of a control system and a switch.

상기 H-Bridge 2-String 단상 계통연계용 PCS는 2개의 독립된 입력과 1개의 중첩된 출력 형태의 5-level 인버터 토폴로지를 적용하여 H-Bridge 2-String 단상 계통연계용 PCS를 구성하기 위해서는 2개의 독립된 입력 전원별로 발전 전력 차이가 있을 경우 각각의 독립된 전력 제어가 필요하다.The H-Bridge 2-String single phase grid connection PCS uses two independent inputs and one superimposed output 5-level inverter topology to construct the H-Bridge 2-String single phase grid connection PCS. If there is a difference in generated power for each of the independent input power sources, each independent power control is required.

따라서, 전류(Icon)를 제어하기 위한 제어 입력전압(Vcon)이 [수식 1]과 같은 두 개의 입력전압 Vcona 와 Vconb로 구성되는 MISO(Multi Input Single Output) 형태의 플랜트 구조이다.Accordingly, a plant structure of MISO (Multi Input Single Output) type in which the control input voltage Vcon for controlling the current Icon is composed of two input voltages Vcona and Vconb as shown in [Equation 1].

[수식 1][Equation 1]

Vcon= Vcona+Vconb
Vcon = Vcona + Vconb

또한, H-Bridge 2-String 단상 계통연계용 PCS의 순시 발전 전력은 다음의 [수식 2]와 같다.In addition, the instantaneous power generation power of the PCS for H-Bridge 2-String single-phase system linkage is as shown in Equation 2 below.

[수식 2][Equation 2]

Figure 112012023103747-pat00014
Figure 112012023103747-pat00014

그리고, H-Bridge 2-String 단상 계통연계용 PCS의 유효 발전 전력은 순시 발전 전력의 평균치에 해당한다.
In addition, the effective generation power of the PCS for H-Bridge 2-String single phase grid connection corresponds to the average value of the instantaneous generation power.

한편, H-Bridge 2-String 단상 계통연계용 PCS를 제어하기 위한 H-Bridge 2-String 단상 계통연계용 PCS의 제어 시스템은 도 5에 도시된 바와 같이, 전압 제어부(100), 위상 동기 루프부(200), 전류 제어부(300), 연산부(400), 제어신호 디커플링부(500) 및 위상전이 PWM부(600)로 이루어진다.
Meanwhile, the control system of the H-Bridge 2-String single phase grid-connected PCS for controlling the H-Bridge 2-String single phase grid-connected PCS includes a voltage control unit 100 and a phase locked loop unit as shown in FIG. 5. 200, the current control unit 300, the operation unit 400, the control signal decoupling unit 500, and the phase shift PWM unit 600.

먼저, 전압 제어부(100)는 MPPT(Maximum Power Point Tracking) 기능을 수행하며, PV-String에서 발전된 직류 전력을 교류계통 측으로 발전하기 위해 교류전류(Icon)의 크기를 조절하여 교류 피크치 전류(Ipeak)를 생성한다.First, the voltage controller 100 performs an MPPT (Maximum Power Point Tracking) function, and adjusts the magnitude of the AC current Icon to generate the DC power generated from the PV-String to the AC system side. Create

이때, 상기 MPPT는 기준전압이 DC전압을 받고, 이 값을 기준으로 DC전압의 추종값을 제어하는 최대전력점 추종제어기능을 수행한다.In this case, the MPPT performs a maximum power point following control function of receiving a DC voltage from a reference voltage and controlling a tracking value of the DC voltage based on this value.

또한, 상기 전압 제어부(100)는 PV-String1의 전압(Vsol1), PV-String2의 전압(Vsol2), PV-String1의 출력 전류(Isol1) 및 PV-String2의 출력 전류(Isol2)를 입력변수로 사용한다.
In addition, the voltage controller 100 uses the voltage Vsol1 of PV-String1, the voltage Vsol2 of PV-String2, the output current Isol1 of PV-String1, and the output current Isol2 of PV-String2 as input variables. use.

또한, 위상 동기 루프부(200)는 단위 역율 제어를 위해 순시 계통 전압(Vs)을 입력받아 계통 전압과 동상인 정현파

Figure 112012023103747-pat00015
를 생성하는 기능을 한다.
In addition, the phase-locked loop unit 200 receives an instantaneous grid voltage (Vs) to control the unit power factor and sinusoidal wave in phase with the grid voltage.
Figure 112012023103747-pat00015
Function to generate

또한, 전류 제어부(300)는 상기 전압 제어부(100)를 통해 생성된 교류 피크치 전류(Ipeak)와 상기 위상 동기 루프부(200)를 통해 생성된 계통 전압 및 동상인 정현파

Figure 112012023103747-pat00016
의 곱으로 생성된 기준 신호(Icon*)의 추종 제어를 위한 전류 제어신호 Vcon*를 생성한다.In addition, the current controller 300 is a sine wave which is an AC peak current Ipeak generated through the voltage controller 100 and a grid voltage and in phase generated by the phase-locked loop unit 200.
Figure 112012023103747-pat00016
The current control signal Vcon * for tracking control of the reference signal Icon * generated by multiplying is generated.

상기 전류 제어부(300)는 계통 전압, 동상인 정현파

Figure 112012023103747-pat00017
, 교류 피크치 전류(Ipeak) 및 순시 계통 전압(Vs)를 입력 변수로 한다.
The current controller 300 is a sine wave which is a grid voltage and in phase
Figure 112012023103747-pat00017
, AC peak current (Ipeak) and instantaneous grid voltage (Vs) are input variables.

또한, 연산부(400)는 피드포워드 전류(Iff)를 생성하고, 전체 발전 전력에 대한 PV-String 1대의 출력 전력비(k)를 생성한다.In addition, the calculator 400 generates a feedforward current Iff and generates an output power ratio k of one PV-String to the total generated power.

상기 연산부(400)는 순시 계통 전압(Vs), PV-String1의 전압(Vsol1), PV-String2의 전압(Vsol2), PV-String1의 출력 전류(Isol1) 및 PV-String2의 출력 전류(Isol2)를 입력 변수로 한다.
The operation unit 400 includes an instantaneous grid voltage Vs, a voltage Vsol1 of PV-String1, a voltage Vsol2 of PV-String2, an output current Isol1 of PV-String1, and an output current Isol2 of PV-String2. Is the input variable.

또한, 제어신호 디커플링부(500)는 상기 전류 제어부(300)를 통해 생성된 전류 제어신호 Vcon*를 이용하여 각 PV-String의 FBC를 제어하는 FBC1 제어신호(Vcona*) 및 FBC2 제어신호(Vconb*)를 생성한다.In addition, the control signal decoupling unit 500 controls the FBC1 control signal Vcona * and the FBC2 control signal Vconb for controlling the FBC of each PV-String using the current control signal Vcon * generated by the current control unit 300. Produces *)

상기 제어신호 디커플링부(500)는 전류 제어신호(Vcon*), PV-String1의 전압(Vsol1)과 기준신호(Vsol1) 사이의 차(err1) 및 PV-String2의 전압(Vsol2)과 기준신호(Vsol2) 사이의 차(err2)를 입력 변수로 한다.The control signal decoupling unit 500 includes a current control signal Vcon *, a difference err1 between the voltage Vsol1 of the PV-String1 and the reference signal Vsol1, a voltage Vsol2 of the PV-String2, and a reference signal ( The difference (err2) between Vsol2) is taken as an input variable.

또한, 상기 제어신호 디커플링부(500)는 상기 전류 제어부(300)를 통해 생성된 전류 제어신호 Vcon*와 상기 연산부(400)를 통해 생성된 출력 전력비(k)를 이용하여 FBC1 제어신호(Vcona*) 및 FBC2 제어신호(Vconb*)를 생성한다.
In addition, the control signal decoupling unit 500 uses the current control signal Vcon * generated by the current controller 300 and the output power ratio k generated by the calculator 400 to control the FBC1 control signal Vcona *. ) And the FBC2 control signal Vconb *.

또한, 상기 제어신호 디커플링부(500)는 각 PV-String의 운전전압이 다를 경우, PI제어기와 상기 위상 동기 루프부(200)를 통해 생성된 계통 전압 및 동상인 정현파

Figure 112012023103747-pat00018
를 이용하여 △Vcom1, △Vcom2를 생성하고, 다음의 [수식 6] 및 [수식 7]를 이용하여 FBC1 제어신호(Vcona*) 및 FBC2 제어신호(Vconb*)를 생성한다.In addition, when the operation voltage of each PV-String is different, the control signal decoupling unit 500 includes a sine wave which is a system voltage and in phase generated by the PI controller and the phase-locked loop unit 200.
Figure 112012023103747-pat00018
[Delta] Vcom1 and [Delta] Vcom2 are generated, and FBC1 control signal Vcona * and FBC2 control signal Vconb * are generated using the following [Formula 6] and [Formula 7].

[수식 6][Equation 6]

Figure 112012023103747-pat00019
Figure 112012023103747-pat00019

여기서 k는 k=Psol1/(Psol1+Psol2) 이다.Where k is k = Psol1 / (Psol1 + Psol2).

[수식 7][Equation 7]

Figure 112012023103747-pat00020

Figure 112012023103747-pat00020

그리고, 위상전이 PWM부(600)는 상기 제어신호 디커플링부(500)를 통해 생성된 FBC1 제어신호(Vcona*) 및 FBC2 제어신호(Vconb*)를 입력받아 각 FBC를 구성하는 스위치의 구동을 위한 펄스 신호를 생성한다.The phase shift PWM unit 600 receives the FBC1 control signal Vcona * and the FBC2 control signal Vconb * generated through the control signal decoupling unit 500 for driving the switches constituting each FBC. Generate a pulse signal.

이때, 상기 FBC는 도 5에 도시된 바와 같이, Sa1, Sa2, Sa3, Sa4, Sb1, Sb2, Sb3 및 Sb4 구성된다.
At this time, the FBC is composed of Sa1, Sa2, Sa3, Sa4, Sb1, Sb2, Sb3 and Sb4, as shown in FIG.

이상으로 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 이와 같이 도시되고 설명된 그대로의 구성 및 작용에만 국한되는 것이 아니며, 기술적 사상의 범주를 일탈함이 없이 본 발명에 대해 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서 그러한 모든 적절한 변경 및 수정과 균등 물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.While the present invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. It will be appreciated by those skilled in the art that numerous changes and modifications may be made without departing from the invention. And all such modifications and changes as fall within the scope of the present invention are therefore to be regarded as being within the scope of the present invention.

100: 전압 제어부 200: 위상 동기 루프부
300: 전류 제어부 400: 연산부
500: 제어신호 디커플링부 600: 위상전이 PWM부
100: voltage control unit 200: phase locked loop portion
300: current controller 400: calculator
500: control signal decoupling unit 600: phase transition PWM unit

Claims (7)

H-Bridge 2-String 단상 계통연계용 PCS의 제어 시스템에 있어서,
PV-String에서 발전된 직류 전력을 교류계통 측으로 발전하기 위한 교류전류(Icon)의 크기를 조절하여 교류 피크치 전류(Ipeak)를 생성하는 전압 제어부(100);
단위 역률 제어를 위해 순시 계통 전압(Vs)을 입력받아 계통 전압과 동상인 정현파
Figure 112013028071613-pat00021
를 생성하는 위상 동기 루프부(200);
상기 전압 제어부(100)를 통해 생성된 교류 피크치 전류와 상기 위상 동기 루프부(200)를 통해 생성된 계통 전압 및 동상인 정현파
Figure 112013028071613-pat00022
의 곱으로 생성된 기준 신호(Icon*)의 추종 제어를 위한 전류 제어신호 Vcon*를 생성하는 전류 제어부(300);
피드포워드 전류(Iff)를 생성하고, 전체 발전 전력에 대한 PV-String 1대의 출력 전력비(k)를 생성하는 연산부(400);
상기 전류 제어부(300)를 통해 생성된 전류 제어신호 Vcon*을 이용하여 각 PV-String의 FBC 제어신호를 생성하는 제어신호 디커플링부(500); 및
상기 제어신호 디커플링부(500)를 통해 생성된 FBC 제어신호를 입력받아 각 FBC를 구성하는 스위치의 구동을 위한 펄스 신호를 생성하는 위상전이 PWM부(600); 를 포함하되,
상기 연산부(400)는,
순시 계통 전압(Vs), PV-String1의 전압(Vsol1), PV-String2의 전압(Vsol2), PV-String1의 출력 전류(Isol1) 및 PV-String2의 출력 전류(Isol2)를 입력 변수로 하는 것을 특징으로 하는 H-Bridge 2-String 단상 계통연계용 PCS의 제어 시스템.
In the control system of PCS for H-Bridge 2-String single phase grid connection,
A voltage controller (100) for generating an AC peak current (Ipeak) by adjusting the magnitude of an AC current (Icon) for generating DC power generated in the PV-String to an AC system side;
Sinusoidal wave in phase with grid voltage received from instantaneous grid voltage (Vs) for unit power factor control
Figure 112013028071613-pat00021
A phase locked loop unit 200 for generating a phase shift loop 200;
AC peak current generated by the voltage controller 100 and a sine wave which is in phase and system voltage generated by the phase-locked loop unit 200.
Figure 112013028071613-pat00022
A current controller 300 generating a current control signal Vcon * for following control of the reference signal Icon * generated as a product of?
An operation unit 400 generating a feedforward current Iff and generating an output power ratio k of one PV-String to the total generated power;
A control signal decoupling unit 500 for generating an FBC control signal of each PV-String using the current control signal Vcon * generated by the current control unit 300; And
A phase shift PWM unit 600 which receives the FBC control signal generated through the control signal decoupling unit 500 and generates a pulse signal for driving a switch constituting each FBC; Including but not limited to:
The operation unit 400,
Instantaneous grid voltage (Vs), voltage of PV-String1 (Vsol1), voltage of PV-String2 (Vsol2), output current of PV-String1 (Isol1) and output current of PV-String2 (Isol2) Characteristic control system of PCS for H-Bridge 2-String single phase grid connection.
제 1항에 있어서,
상기 전압 제어부(100)는,
PV-String1의 전압(Vsol1), PV-String2의 전압(Vsol2), PV-String1의 출력 전류(Isol1) 및 PV-String2의 출력 전류(Isol2)를 입력 변수로 하는 것을 특징으로 하는 H-Bridge 2-String 단상 계통연계용 PCS의 제어 시스템.
The method of claim 1,
The voltage controller 100,
H-Bridge 2 characterized in that the voltage Vsol1 of PV-String1, the voltage Vsol2 of PV-String2, the output current Isol1 of PV-String1, and the output current Isol2 of PV-String2 are input variables. -String PCS control system for single phase grid connection.
제 1항에 있어서,
상기 전류 제어부(300)는,
계통 전압, 동상인 정현파
Figure 112012023103747-pat00023
, 교류 피크치 전류(Ipeak) 및 순시 계통 전압(Vs)를 입력 변수로 하는 것을 특징으로 하는 H-Bridge 2-String 단상 계통연계용 PCS의 제어 시스템.
The method of claim 1,
The current controller 300,
Grid voltage, sine wave in phase
Figure 112012023103747-pat00023
The control system of the PCS for H-Bridge 2-String single phase grid connection, characterized in that the AC peak current (Ipeak) and the instantaneous grid voltage (Vs) are input variables.
삭제delete 제 1항에 있어서,
상기 제어신호 디커플링부(500)는,
전류 제어신호(Vcon*), PV-String1의 전압(Vsol1)과 기준신호(Vsol1) 사이의 차(err1) 및 PV-String2의 전압(Vsol2)과 기준신호(Vsol2) 사이의 차(err2)를 입력 변수로 하는 것을 특징으로 하는 H-Bridge 2-String 단상 계통연계용 PCS의 제어 시스템.
The method of claim 1,
The control signal decoupling unit 500,
The current control signal Vcon *, the difference between the voltage Vsol1 of the PV-String1 and the reference signal Vsol1, and the difference err2 between the voltage Vsol2 and the reference signal Vsol2 of the PV-String2 The control system of PCS for H-Bridge 2-String single-phase system linkage, characterized in that it is an input variable.
제 1항에 있어서,
상기 제어신호 디커플링부(500)는,
상기 전류 제어부(300)를 통해 생성된 전류 제어신호 Vcon*와 상기 연산부(400)를 통해 생성된 출력 전력비(k)를 이용하여 FBC1 제어신호(Vcona*) 및 FBC2 제어신호(Vconb*)를 생성하는 것을 특징으로 하는 H-Bridge 2-String 단상 계통연계용 PCS의 제어 시스템.
The method of claim 1,
The control signal decoupling unit 500,
The FBC1 control signal Vcona * and the FBC2 control signal Vconb * are generated by using the current control signal Vcon * generated by the current controller 300 and the output power ratio k generated by the calculator 400. The control system of the PCS for H-Bridge 2-String single phase grid connection.
삭제delete
KR1020120029161A 2012-03-22 2012-03-22 Control system of h-bridge 2-string grid tied pcs KR101287136B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120029161A KR101287136B1 (en) 2012-03-22 2012-03-22 Control system of h-bridge 2-string grid tied pcs
PCT/KR2012/007659 WO2013141452A1 (en) 2012-03-22 2012-09-24 Control system of pcs for h-bridge 2-string single-phase power system interconnection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120029161A KR101287136B1 (en) 2012-03-22 2012-03-22 Control system of h-bridge 2-string grid tied pcs

Publications (1)

Publication Number Publication Date
KR101287136B1 true KR101287136B1 (en) 2013-07-23

Family

ID=48997583

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120029161A KR101287136B1 (en) 2012-03-22 2012-03-22 Control system of h-bridge 2-string grid tied pcs

Country Status (2)

Country Link
KR (1) KR101287136B1 (en)
WO (1) WO2013141452A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014225827A1 (en) * 2014-12-15 2016-06-16 Robert Bosch Gmbh Method for operating a DC-DC converter
CN107394818B (en) * 2017-08-10 2021-05-18 中国电力科学研究院 Energy storage battery grid-connected operation control method and device based on energy storage converter
CN109412191B (en) * 2018-12-05 2021-06-11 华南理工大学 Phase locking method, device and equipment for high-voltage direct-current power transmission system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101034263B1 (en) * 2008-12-29 2011-05-16 한국전기연구원 DC-DC Convert for the Photovoltaic System

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809451B1 (en) * 2006-07-26 2008-03-07 창원대학교 산학협력단 An controlling apparatus of a power converter of three-phases current for photovoltaic generation system
KR20070033395A (en) * 2007-02-21 2007-03-26 주식회사기영미다스 String-based solar power control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101034263B1 (en) * 2008-12-29 2011-05-16 한국전기연구원 DC-DC Convert for the Photovoltaic System

Also Published As

Publication number Publication date
WO2013141452A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
EP2790312B1 (en) Power decoupling controller and method for power conversion system
ES2919781T3 (en) Maximum power point tracking for a power conversion system and method thereof
US9673732B2 (en) Power converter circuit
US9490724B2 (en) Methods for controlling electrical inverters and electrical inverters and systems using the same
US9484746B2 (en) Power converter circuit with AC output
US20130009700A1 (en) Power Converter Circuit with AC Output
US9804627B2 (en) Multi-input PV inverter with independent MPPT and minimum energy storage
Isobe et al. Control of DC-capacitor peak voltage in reduced capacitance single-phase STATCOM
Huang et al. Feedforward proportional carrier-based PWM for cascaded H-bridge PV inverter
Kerekes et al. Three-phase photovoltaic systems: structures, topologies, and control
Román et al. A single-phase current-source inverter with active power filter for grid-tied PV systems
JP5530737B2 (en) Solar power system
Trivedi et al. A review on direct power control for applications to grid connected PWM converters
KR101287136B1 (en) Control system of h-bridge 2-string grid tied pcs
JP2014192992A (en) Reactive power ratio controller, reactive power ratio control method, and power generation system using the same
Xinghua et al. A Pi-based control scheme for primary cascaded H-bridge rectifier in transformerless traction converters
Ren et al. Capacitor voltage regulation strategy for 7-level single DC source hybrid cascaded inverter
Mahendran et al. Triangular multicarrier SPWM technique for nine level cascaded inverter
Sędłak et al. Operation of four-leg three-level flying capacitor grid-connected converter for RES
Pulikanti et al. Control of five-level flying capacitor based active-neutral-point-clamped converter for grid connected wind energy applications
Zhang et al. Constraints and control strategies of quasi-Z-source cascaded multilevel inverter
Hung et al. Control and monitor of single-stage single-phase t-type grid-connected inverter based on IoT
Liu et al. Distributed generation interface using indirect matrix converter in boost mode with controllable grid side reactive power
Sędłak et al. Three-level four-leg flying capacitor converter for renewable energy sources
Rajani et al. DC link voltage stabilization in renewable source connected DC micro grid using adaptive sliding mode controller

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160711

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170721

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180711

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190711

Year of fee payment: 7