KR101264147B1 - Preparation of Concentrated CNT Dispersion Solution Using the Treated CNT - Google Patents

Preparation of Concentrated CNT Dispersion Solution Using the Treated CNT Download PDF

Info

Publication number
KR101264147B1
KR101264147B1 KR1020100079625A KR20100079625A KR101264147B1 KR 101264147 B1 KR101264147 B1 KR 101264147B1 KR 1020100079625 A KR1020100079625 A KR 1020100079625A KR 20100079625 A KR20100079625 A KR 20100079625A KR 101264147 B1 KR101264147 B1 KR 101264147B1
Authority
KR
South Korea
Prior art keywords
materials
carbon nanotubes
weight
dispersion
parts
Prior art date
Application number
KR1020100079625A
Other languages
Korean (ko)
Other versions
KR20120021807A (en
Inventor
한주희
도승회
이진서
홍성철
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Priority to KR1020100079625A priority Critical patent/KR101264147B1/en
Publication of KR20120021807A publication Critical patent/KR20120021807A/en
Application granted granted Critical
Publication of KR101264147B1 publication Critical patent/KR101264147B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 분산성이 향상된 표면 처리된 탄소나노튜브를 사용하여 물 뿐만 아니라 유기 용제에 탄소나노튜브를 분산시켜 분산 안정성이 증대된 고농도 탄소나노튜브 분산액에 관한 것으로 표면 처리된 탄소나노튜브, 분산제 및 분산매를 포함하되 표면 처리된 탄소나노튜브는 표면 처리된 탄소나노튜브 전체중량에 대하여 산소, 질소 및 황 또는 이들의 혼합물을 포함하는 작용기가 포함되는데 특징이 있다. 본 발명에 따른 탄소나노튜브 분산액은 종래에 비하여 분산성이 향상될 뿐 아니라 구체적으로 CNT의 균일한 분포도 확보, 우수한 장기 분산 안정성, 응용분야의 확대 및 CNT 표면 처리 중 발생되는 CNT의 손상을 최소화하여 전기 전도성· 열 전도성· 기계적 특성 등이 매우 향상되는 장점이 있다.The present invention relates to a high concentration carbon nanotube dispersion in which dispersion stability is increased by dispersing carbon nanotubes in an organic solvent as well as water using surface treated carbon nanotubes with improved dispersibility. The surface-treated carbon nanotubes, including the dispersion medium, are characterized by including a functional group including oxygen, nitrogen and sulfur or a mixture thereof with respect to the total weight of the surface-treated carbon nanotubes. The carbon nanotube dispersion according to the present invention not only improves dispersibility compared to the prior art but also specifically secures uniform distribution of CNTs, excellent long-term dispersion stability, expansion of applications, and minimizing damage of CNTs generated during CNT surface treatment. Electrical conductivity, thermal conductivity, mechanical properties, etc. are very improved.

Description

표면 처리된 탄소나노튜브를 사용한 고농도 탄소나노튜브 분산액의 제조 {Preparation of Concentrated CNT Dispersion Solution Using the Treated CNT}Preparation of Concentrated Carbon Nanotube Dispersions Using Surface-treated Carbon Nanotubes {Preparation of Concentrated CNT Dispersion Solution Using the Treated CNT}

본 발명은 표면 처리된 탄소나노튜브를 사용한 고농도 탄소나노튜브 분산액에 관한 것이다.The present invention relates to a high concentration carbon nanotube dispersion using the surface-treated carbon nanotubes.

탄소나노튜브(Carbon nanotube; 이하 CNT)는 1991년 그 구조가 처음 발견되었으며, 이에 관한 합성과 물성, 그리고 응용에 관한 연구가 활발히 수행되고 있다. 또한, CNT는 전기 방전시 Fe, Ni, Co 등과 같은 전이금속을 첨가하면 생성되는 것이 확인되었으며, 본격적인 연구는 1996년 레이저 증발법에 의해 상당량의 시료를 만들어 내면서부터 시작되었다. 이러한 CNT는 그래파이트(Graphite)면이 나노크기의 직경으로 둥글게 말린 속이 빈 튜브 형태이며, 이때 그래파이트 면이 말리는 각도 및 구조에 따라서 전기적 특성이 도체 또는 반도체 등이 된다. 또한, CNT는 그래파이트 벽의 수에 따라서 단일벽 탄소 나노튜브(Single-walled carbon nanotube; SWCNT), 이중벽 탄소 나노튜브(Double-walled carbon nanotube; DWCNT), 얇은벽 탄소 나노튜브(Thin multi-walled carbon nanotube), 다중벽 탄소 나노튜브(Multi-walled carbon nanotube;MWCNT), 다발형 탄소 나노튜브(Roped carbon nanotube)로 구분한다.Carbon nanotubes (CNT) were first discovered in 1991, and research on synthesis, physical properties, and applications has been actively conducted. In addition, it was confirmed that CNTs are produced by adding transition metals such as Fe, Ni, Co, etc. during electric discharge, and full-scale studies began in 1996 by producing a considerable amount of samples by laser evaporation. Such CNTs are in the form of hollow tubes in which graphite surfaces are rounded to a nano-sized diameter, and the electrical properties thereof are conductors or semiconductors according to angles and structures in which the graphite surfaces are dried. In addition, CNTs are single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), and thin multi-walled carbons, depending on the number of graphite walls. nanotubes), multi-walled carbon nanotubes (MWCNT), and rolled carbon nanotubes (Roped carbon nanotubes).

특히, CNT는 기계적 강도 및 탄성도가 뛰어나며, 화학적으로 안정하고, 환경 친화성을 가지고 있으며, 전기적으로 도체 및 반도체성을 가지고 있을 뿐만 아니라 직경이 1nm에서 수십 nm이고 길이가 수 ㎛에서 수십 ㎛로 종횡비가 약 1,000에 이르는 기존의 어떠한 물질보다도 크다. 또한, 비표면적이 매우 커, 향후 차세대 정보전자소재, 고효율 에너지 소재, 고기능성 복합소재, 친환경 소재 등의 분야에서 21세기를 이끌어갈 첨단 신소재로 각광을 받고 있다.In particular, CNTs have excellent mechanical strength and elasticity, are chemically stable, environmentally friendly, electrically conductive and semiconducting, and have diameters ranging from 1 nm to tens of nm and lengths of several to tens of μm. It is larger than any conventional material with an aspect ratio of about 1,000. In addition, the specific surface area is very large, and is being spotlighted as an advanced new material that will lead the 21st century in the fields of next-generation information electronic materials, high efficiency energy materials, high functional composite materials, and eco-friendly materials.

그러나, CNT가 가지고 있는 다양한 장점에도 불구하고 응집현상이 크고, 표면의 소수성(hydrophobic)이 크기 때문에 다른 매질과의 혼합 특성이 매우 열악할 뿐 아니라 물을 비롯한 유기 용제류에 대한 용해성도 없다. 따라서 CNT의 장점을 살리면서 다양한 용도로 활용폭을 넓히기 위해서는 다양한 매질과의 상용성을 증대시켜 분산 효율을 양호하게 할 수 있는 방법이 필요하다.However, in spite of the various advantages of CNTs, the cohesion phenomenon is large, and the surface hydrophobic property is large, so that the mixing properties with other media are very poor, and there is no solubility in water and organic solvents. Therefore, in order to utilize the advantages of CNT and to expand the range of applications for various purposes, a method for improving the dispersion efficiency by increasing the compatibility with various media is needed.

상기와 같은 문제점을 해결하기 위해 본 발명은 분산성이 향상된 표면 처리된 탄소나노튜브를 사용하여 물 뿐만 아니라 유기 용제에 탄소나노튜브를 분산시켜 분산 안정성이 증대된 고농도 탄소나노튜브 분산액을 제공하는데 목적이 있다. In order to solve the above problems, an object of the present invention is to provide a carbon nanotube dispersion having high dispersion stability by dispersing carbon nanotubes in not only water but also an organic solvent by using surface-treated carbon nanotubes having improved dispersibility. There is this.

본 발명은 표면 처리된 탄소나노튜브, 분산제 및 분산매를 포함하되 표면처리된 탄소나노튜브는 표면 처리된 탄소나노튜브 전체중량에 대하여 산소, 질소 및 황 중 어느 하나 이상의 원소가 0.1~10중량% 포함되는 것을 특징으로 하는 탄소나노튜브 분산액에 관한 것이다.The present invention includes a surface-treated carbon nanotubes, a dispersant and a dispersion medium, but the surface-treated carbon nanotubes contain 0.1 to 10% by weight of at least one element of oxygen, nitrogen, and sulfur based on the total weight of the surface-treated carbon nanotubes. It relates to a carbon nanotube dispersion, characterized in that.

본 발명의 탄소나노튜브는 단일벽(Single-walled), 이중벽(Double walled), 다중벽(Multi-walled), 다발형(Roped) 및 이들의 혼합물로 이루어진 군에서 선택되는 어떤 형태이든 가능하다.Carbon nanotubes of the present invention may be any type selected from the group consisting of single-walled, double-walled, multi-walled, bundled, and mixtures thereof.

상기 분산매는 물, 알코올, 케톤, 아민, 에스테르, 아미드, 알킬 할로겐, 에테르, 및 퓨란으로 이루어진 군에서 하나 이상 선택된 용제이며, 보다 바람직하게는 물을 사용하는 것이 좋다.The dispersion medium is at least one solvent selected from the group consisting of water, alcohols, ketones, amines, esters, amides, alkyl halogens, ethers, and furans, and more preferably water is used.

본 발명은 상기 표면 처리된 탄소나노튜브는 표면 처리에 의해 형성된 산소가 0.1~10중량%가 포함되도록 표면 처리된 것을 특징으로 한다.The present invention is characterized in that the surface-treated carbon nanotubes are surface-treated to include 0.1 to 10% by weight of oxygen formed by the surface treatment.

상기 표면처리된 탄소나노튜브는 산소, 공기, 오존, 과산화수소수, 질산, 니트로화합물 및 이들의 혼합물에서 선택되는 산화제를 사용하여 50 내지 400atm의 아임계 또는 초임계 조건에서 탄소나노튜브를 표면 처리하여 생성될 수 있다.The surface-treated carbon nanotubes are surface treated with carbon nanotubes in subcritical or supercritical conditions of 50 to 400 atm using an oxidant selected from oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds, and mixtures thereof. Can be generated.

상기 표면처리된 탄소나노튜브는 산소, 공기, 오존, 과산화수소수, 질산, 니트로화합물 및 이들의 혼합물에서 선택되는 산화제를 사용하여 50 내지 400atm의 압력과 100 내지 600℃온도의 아임계 또는 초임계 조건에서 탄소나노튜브 표면을 산화처리하고, 이어서 카르복실산, 카르복실염, 아민, 아민염, 4가-아민, 인산염, 황산염, 알코올, 티올, 에스테르, 아미드, 에폭사이드, 알데하이드, 케톤 및 이들의 혼합물로 이루어진 군에서 선택된 하나 이상의 관능기를 지닌 기능성화합물을 50 내지 400atm의 압력과 100 내지 600℃ 온도로 표면처리반응조에 주입하여 표면 처리되어 얻어질 수 있다.The surface-treated carbon nanotubes are subcritical or supercritical conditions at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. using an oxidant selected from oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds, and mixtures thereof. Oxidation of the carbon nanotube surface, followed by carboxylic acid, carboxyl salt, amine, amine salt, tetravalent-amine, phosphate, sulfate, alcohol, thiol, ester, amide, epoxide, aldehyde, ketone and their A functional compound having at least one functional group selected from the group consisting of a mixture may be obtained by surface treatment by injecting the functional compound into a surface treatment reactor at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C.

CNT의 표면처리 중 발생되는 CNT의 손상을 최소화하기 위해 반응온도, 체류시간, 산화제양을 최적화해야 한다. 표면처리된 CNT의 산화정도는 CNT 표면에 생성된 산소함량으로 확인한다. 반응온도는 150~250℃, 체류시간은 5~15분, 산화제 양은 CNT의 탄소 당량 대비 0.1~3.0당량으로 주입하는 것이 바람직하다.The reaction temperature, residence time, and oxidizing agent should be optimized to minimize CNT damage during CNT surface treatment. The oxidation degree of the surface-treated CNTs is confirmed by the oxygen content generated on the surface of the CNTs. The reaction temperature is 150 ~ 250 ℃, residence time is 5 ~ 15 minutes, the amount of oxidizing agent is preferably injected 0.1 to 3.0 equivalents to the carbon equivalent of CNT.

또 다른 예로는 상기 표면처리된 탄소나노튜브는 탄소나노튜브에 카르복실산, 질산, 인산 또는 황산 등을 첨가하여 탄소나노튜브 표면의 산화작용으로 얻어질 수 있는데, 산의 도입으로 간단하게 표면처리의 산화가 제공될 수 있다. 보다 구체적으로는 상기 표면 처리된 탄소나노튜브는 탄소나노튜브와 카르복실산, 질산, 인산, 황산, 불산, 염산, 과산화수소수 또는 이들의 혼합물을 혼합하여 탄소나노튜브 표면을 산화시켜 얻어진 것을 특징으로 한다.In another example, the surface-treated carbon nanotubes may be obtained by adding carboxylic acid, nitric acid, phosphoric acid or sulfuric acid to the carbon nanotubes by oxidation of the surface of the carbon nanotubes. Oxidation may be provided. More specifically, the surface-treated carbon nanotubes are obtained by oxidizing carbon nanotube surfaces by mixing carbon nanotubes with carboxylic acid, nitric acid, phosphoric acid, sulfuric acid, hydrofluoric acid, hydrochloric acid, hydrogen peroxide or a mixture thereof. do.

본 발명에서는 상기 분산제는 보다 상세하게 폴리아세탈, 아크릴산, 메틸메타아클릴레이트, 알킬(C1~C10)아크릴레이트, 2-에틸헥실아크릴레이트, 폴리카보네이트, 스티렌, 알파메틸스티렌, 비닐 아크릴레이트, 폴리에스테르, 폴리페닐렌에테르 수지, 폴리올레핀, 아크릴로니트릴-부타디엔-스티렌 공중합체, 폴리아릴레이트, 폴리아미드, 폴리아미드이미드, 폴리아릴설폰, 폴리에테르이미드, 폴리에테르설폰, 폴리페닐렌 설피드, 폴리이미드, 폴리에테르케톤, 폴리벤족사졸, 폴리옥사디아졸, 폴리벤조티아졸, 폴리벤지미다졸, 폴리피리딘, 폴리트리아졸, 폴리피롤리딘, 폴리디벤조퓨란, 폴리설폰, 폴리우레아, 폴리우레탄, 폴리포스파젠, 및 이들의 공중합체 군에서 하나 이상 선택된 것을 특징으로 한다.In the present invention, the dispersant is more specifically polyacetal, acrylic acid, methyl methacrylate, alkyl (C1-C10) acrylate, 2-ethylhexyl acrylate, polycarbonate, styrene, alpha methyl styrene, vinyl acrylate, poly Esters, polyphenylene ether resins, polyolefins, acrylonitrile-butadiene-styrene copolymers, polyarylates, polyamides, polyamideimides, polyarylsulfones, polyetherimides, polyethersulfones, polyphenylene sulfides, polyimides Mead, polyetherketone, polybenzoxazole, polyoxadiazole, polybenzothiazole, polybenzimidazole, polypyridine, polytriazole, polypyrrolidine, polydibenzofuran, polysulfone, polyurea, polyurethane, poly At least one selected from the group of phosphazenes, and copolymers thereof.

분산제의 보다 바람직한 예로써 스티렌계 모노머와 아크릴계 모노머를 중합한 스티렌/아크릴계 수용성 수지를 들 수 있다. 스티렌/아크릴계 수용성수지의 제조방법에 대하여 본 출원인이 기 출원한 우리나라 공개특허 제10-2001-0088773, 10-2001-0084640, 10-2000-040715 등에 기재된 방법에 의해 제조가 가능하다.As a more preferable example of a dispersing agent, the styrene / acrylic water-soluble resin which superposed | polymerized the styrene-type monomer and the acryl-type monomer is mentioned. It can be prepared by the method described in Korean Patent Application Nos. 10-2001-0088773, 10-2001-0084640, 10-2000-040715, etc., which the applicant has previously filed with respect to the method for producing a styrene / acrylic water-soluble resin.

본 발명에 따른 분산제는 디에틸렌글리콜모노에틸에테르 또는 디프로필렌글리콜메틸에테르와 물을 혼합시킨 혼합용매 하에서, 스티렌, 스티렌 및 알파메틸 스티렌의 혼합물,에서 선택되는 스티렌계 모노머와 아크릴계 모노머를 100 ~ 200℃의 반응온도에서 연속벌크중합시킨 중합체를 사용할 수 있다. 이때 상기 스티렌계 모노머 및 아크릴계 모노머를 60∼80:20∼40의 중량비로 혼합하여 이루어지며, 상기 스티렌계 모노머는 스티렌 단독 또는 혼합 중량비 50∼90:10∼50의 스티렌 및 알파메틸스티렌 모노머를 포함하고, 상기 아크릴계 모노머는 아크릴산 단독 또는 혼합 중량비 80∼90:10∼20의 아크릴산 및 알킬아크릴레이트 모노머를 포함할 수 있다. The dispersing agent according to the present invention is a styrene monomer and an acrylic monomer selected from a mixture of styrene, styrene and alphamethyl styrene, under a mixed solvent of diethylene glycol monoethyl ether or dipropylene glycol methyl ether and water. Polymers subjected to continuous bulk polymerization at a reaction temperature of 占 폚 may be used. In this case, the styrene monomer and the acrylic monomer are mixed by a weight ratio of 60 to 80:20 to 40, and the styrene monomer includes styrene and alpha methyl styrene monomer alone or in a mixing weight ratio of 50 to 90:10 to 50. In addition, the acrylic monomer may include acrylic acid alone or an acrylic acid and an alkyl acrylate monomer having a mixed weight ratio of 80 to 90:10 to 20.

그리고 상기 분산제는 디프로필렌글리콜메틸에테르와 물을 혼합한 혼합용매 존재 하에서, 중합체 전체중량에 대하여 스티렌은 25 ~ 45 중량%, 알파메틸스티렌은 25 ~ 45 중량% 아크릴산 25 ~ 35 중량%를 중합반응시켜 제조되며, 상기 제조된 중합체는 중량평균 분자량이 1,000~100,000인 중합체를 사용할 수 있다.In the presence of a mixed solvent in which dipropylene glycol methyl ether and water are mixed, the dispersing agent polymerizes 25 to 45 wt% of styrene and 25 to 35 wt% of acrylic acid with 25 to 45 wt% of acrylic acid based on the total weight of the polymer. The polymer is prepared by using the polymer having a weight average molecular weight of 1,000 ~ 100,000.

본 발명에서 상기 표면처리된 탄소나노튜브는 탄소나노튜브 분산액 전체 중량에 대하여 0.0001~10중량% 포함된 것이 바람직하며, 보다 바람직하게는 0.01~6중량%를 포함하는 것이 좋다.In the present invention, the surface-treated carbon nanotubes are preferably contained in 0.0001 to 10% by weight based on the total weight of the carbon nanotube dispersion, more preferably 0.01 to 6% by weight.

상기 분산제는 표면처리된 탄소나노튜브 100중량부에 대하여 10~500중량부를 포함된 것이 바람직하다. The dispersant may include 10 to 500 parts by weight based on 100 parts by weight of the surface treated carbon nanotubes.

분산제의 함량을 줄임으로 표면저항을 줄일 수 있으나, 상기 함량에 크게 미달하는 경우 분산되지 않는 탄소나노튜브 덩어리가 과량 존재할 수 있어 분산제의 함량을 감소시키는 것 만으로는 분산액의 제조가 곤란하다. 또한 본 발명에서 상기 탄소나노튜브 분산액은 분산안정제를 더 포함하는 것을 특징으로 한다.Although it is possible to reduce the surface resistance by reducing the content of the dispersant, it may be difficult to manufacture the dispersion simply by reducing the content of the dispersant because the excessive amount of carbon nanotubes that do not disperse may be present if the content is significantly below the content. In addition, the carbon nanotube dispersion in the present invention is characterized in that it further comprises a dispersion stabilizer.

상기 분산안정제는 음이온성·양이온성·비이온성 계면활성제, 습윤제, 젖음성 향상제 등의 첨가제로 이루어진 군으로부터 하나이상 선택된 것을 사용할 수 있으며, 보다 바람직하게는 비이온성 불소계 첨가제를 사용하는 것이 좋다. 상기 분산안정제는 표면처리된 탄소나노튜브 100중량부에 대하여 5~15중량부를 포함하는 것이 분산성 및 분산 안정성이 우수하다.The dispersion stabilizer may be one or more selected from the group consisting of additives such as anionic, cationic, nonionic surfactants, wetting agents, wetting enhancers, and more preferably nonionic fluorine-based additives. The dispersion stabilizer is 5 to 15 parts by weight based on 100 parts by weight of the surface-treated carbon nanotubes is excellent in dispersibility and dispersion stability.

본 발명은 탄소나노튜브 100중량부에 대해 아민계 화합물 또는 무기 알칼리 수용액을 1~150 중량부를 더 포함할 수 있다.The present invention may further include 1 to 150 parts by weight of an amine compound or an aqueous inorganic alkali solution based on 100 parts by weight of carbon nanotubes.

상기 아민계 화합물로는 모노에탄올아민, 디에탄올아민, 트리에탄올아민, 프로판올아민, 디프로판올아민 및 트리프로판올아민로부터 선택되어 사용하고, 상기 무기 알칼리용액은 KOH, NaOH, LiOH, K2CO3, Na2CO3 및 LiCO3 로부터 선택되어 사용하는 것이 좋다.The amine compound is selected from monoethanolamine, diethanolamine, triethanolamine, propanolamine, dipropanolamine and tripropanolamine, and the inorganic alkaline solution is KOH, NaOH, LiOH, K 2 CO 3 , Na It is preferable to use selected from 2 CO 3 and LiCO 3 .

상기 본 발명에 따른 탄소나노튜브 분산액은 대전방지 소재, 정전분산소재, 전도성 소재, 전자파 차폐재료, 전자파 흡수재, RF(Radio Frequency) 흡수재, 태양전지용 재료, 염료감응태양전지(DSSC)용 전극재료, 전기소자 재료, 전자소자 재료, 반도체소자 재료, 광전소자재료, 노트북 부품 재료, 컴퓨터 부품 재료, 핸드폰 부품 재료, PDA 부품 재료, PSP 부품 재료, 게임기용 부품 재료, 하우징 재료, 투명전극 재료, 불투명 전극 재료, 전계방출디스플레이 (FED;field emission display) 재료, BLU(back light unit)재료, 액정표시장치(LCD;liquid crystal display) 재료, 플라즈마표시패널(PDP;plasma display panel ) 재료, 발광다이오드(LED;Light emitting diode) 재료, 터치패널 재료, 전광판 재료, 광고판 재료, 디스플레이 소재, 발열체, 방열체, 도금 재료, 촉매, 조촉매, 산화제, 환원제, 자동차부품 재료, 선박 부품 재료, 항공기기 부품 재료, 보호테이프 재료, 접착제 재료, 트레이 재료, 클린룸 재료, 운송 기기 부품 재료, 난연 소재, 항균 소재, 금속 복합 재료, 비철 금속 복합재료, 의료 기기용 재료, 건축 재료, 바닥재 재료, 벽지재료, 광원 부품 재료, 램프 재료, 광학기기 부품 재료, 섬유제조용 재료, 의류제조용 재료, 전기제품용 재료, 전자제품제조용 재료, 이차전지용 양극활물질, 이차전지용 음극활물질, 이차전지재료, 연료전지재료, 태양전지재료, 메모리 소자 및 캐패시터 재료로 이루어진 군에서 하나이상 선택된 재료에 사용되는 것을 특징으로 한다.The carbon nanotube dispersion according to the present invention is an antistatic material, electrostatic dispersion material, conductive material, electromagnetic shielding material, electromagnetic wave absorber, RF (Radio Frequency) absorber, solar cell material, dye-sensitized solar cell (DSSC) electrode material, Electric device materials, electronic device materials, semiconductor device materials, optoelectronic device materials, notebook parts materials, computer parts materials, mobile phone parts materials, PDA parts materials, PSP parts materials, game machine parts materials, housing materials, transparent electrode materials, opaque electrodes Materials, field emission display (FED) materials, back light unit (BLU) materials, liquid crystal display (LCD) materials, plasma display panel (PDP) materials, light emitting diodes (LEDs) ; Light emitting diode materials, touch panel materials, billboard materials, billboard materials, display materials, heating elements, radiators, plating materials, catalysts, promoters, oxidizing agents, reducing agents, automotive parts materials , Ship parts materials, aircraft parts materials, protective tape materials, adhesive materials, tray materials, clean room materials, transportation equipment parts materials, flame retardant materials, antibacterial materials, metal composite materials, nonferrous metal composite materials, medical equipment materials, construction Material, flooring material, wallpaper material, light source component material, lamp material, optical device component material, textile manufacturing material, clothing manufacturing material, electric product material, electronic product manufacturing material, secondary battery positive electrode active material, secondary battery negative electrode active material, secondary battery It is used for one or more materials selected from the group consisting of materials, fuel cell materials, solar cell materials, memory elements and capacitor materials.

본 발명에 따른 탄소나노튜브 분산액은 종래에 비하여 분산성이 향상될 뿐 아니라 구체적으로 CNT의 균일한 입도 분포도 확보가 가능하며 장기 분산 안정성이 우수하다. 상기 분산액에 사용되는 CNT는 분산성을 향상시키기 위하여 표면 처리하는 것이 가능한데 CNT의 표면 처리 중 발생되는 CNT의 손상을 최소화하여 전기 전도성· 열 전도성· 기계적 특성 등이 매우 향상된 CNT 분산액을 이용한 다양한 응용이 가능하다.Carbon nanotube dispersion according to the present invention not only improves the dispersibility compared to the prior art, but also specifically can ensure a uniform particle size distribution of the CNT and excellent long-term dispersion stability. The CNTs used in the dispersion may be surface treated to improve dispersibility, and various applications using CNT dispersions having highly improved electrical conductivity, thermal conductivity, and mechanical properties by minimizing damage of CNTs generated during the surface treatment of CNTs are possible. It is possible.

도1은 실시예1, 실시예2 및 비교예2의 입도분석결과를 나타낸 것이다.
도2는 비교예1과 실시예1의 코팅막 표면을 나타낸 그림을 나타낸 것이다.
Figure 1 shows the particle size analysis results of Example 1, Example 2 and Comparative Example 2.
Figure 2 shows a figure showing the coating film surface of Comparative Example 1 and Example 1.

하기의 실시예를 통하여 본 발명에 대해 보다 상세하게 설명하고자 한다The present invention will be described in more detail with reference to the following examples.

[제조예 1][Production Example 1]

탄소나노튜브(CNT) 15g을 증류수 985g과 순환펌프로 혼합하여 전처리조에서 CNT용액을 준비하였다. 상기 CNT용액을 고압주입펌프를 통해 11g/min유속으로 예열조에 투입되기 전, 이와 함께 245atm 내지 252atm으로 압축된 기상상태의 산소는 열교환기의 전단에서 0.4g/min의 유속으로 CNT용액과 혼합되어 상기 혼합액은 열교환기를 통해 150 내지 200℃로 예열된 예열조에 투입하였다. 상기 예열된 혼합액은 210℃ 및 230atm 내지 250atm의 아임계수 상태의 표면처리반응기에 주입되어 표면 처리되고, 상기 생성물은 다시 열교환기로 이송되어 100℃로 1차 냉각 후, 다시 냉각장치를 통해 약 25℃의 온도로 냉각한 후 연속적으로 14.3g의 탄소나노튜브를 얻었다. 이때 탄소나노튜브 표면에 존재하는 산소 함량은 2.2wt%이다.15 g of carbon nanotubes (CNT) were mixed with 985 g of distilled water and a circulation pump to prepare a CNT solution in a pretreatment tank. Before the CNT solution is introduced into the preheater at a flow rate of 11 g / min through a high pressure injection pump, oxygen in the gaseous state compressed at 245 atm to 252 atm is mixed with the CNT solution at a flow rate of 0.4 g / min at the front end of the heat exchanger. The mixed solution was added to a preheater preheated to 150 to 200 ° C. through a heat exchanger. The preheated mixed solution is injected into a surface treatment reactor in a subcritical water state of 210 ° C. and 230 atm to 250 atm, and the surface is treated. After cooling to a temperature of 14.3g of carbon nanotubes were continuously obtained. At this time, the oxygen content present on the surface of the carbon nanotubes is 2.2wt%.

[제조예 2][Production Example 2]

산화제로 산소대신 공기 2g/min을 사용하는 것을 제외하고, 제조예 1과 동일하게 제조하였다.Except for using the air 2g / min instead of oxygen as the oxidizing agent was prepared in the same manner as in Preparation Example 1.

[제조예 3][Production Example 3]

산화제로 산소대신 오존 0.27g/min을 사용하는 것을 제외하고, 제조예 1과 동일하게 제조하였다.The preparation was carried out in the same manner as in Preparation Example 1, except that 0.27 g / min ozone was used instead of oxygen as the oxidizing agent.

[제조예 4][Production Example 4]

산화제로 산소대신 50% 과산화수소 수용액 3.4g을 첨가하는 것을 제외하고, 제조예 1과 동일하게 제조하였다. The preparation was carried out in the same manner as in Preparation Example 1, except that 3.4 g of 50% aqueous hydrogen peroxide solution was added instead of oxygen as the oxidizing agent.

[제조예 5][Production Example 5]

CNT의 표면을 개질하기 위하여 염산, 황산, 질산, 불산, 인산, 과산화수소수와 같은 유기산 혹은 무기산을 1종 혹은 그 이상을 혼합하여 12시간 이상 끓이고 나서 여과장치를 통해 고형분을 여과하고 순수물로 충분히 세척하여 표면개질된 CNT를 얻었다.In order to modify the surface of CNTs, one or more organic or inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, phosphoric acid, and hydrogen peroxide are mixed and boiled for at least 12 hours. Washing gave surface modified CNTs.

[제조예6] 분산제 제조Preparation Example 6 Preparation of Dispersant

스티렌계 모노머(스티렌 35% 및 알파메틸스티렌 32%)과 아크릴계 모노머(아크릴산 33%)를 사용하여 스티렌/아크릴계 수용성 수지 제조하였으며,용매로 디프로필렌글리콜메틸에테르/물 혼합물을 모노머 혼합물 100 중량부 대비 15 중량부를 사용하여 제조하였다.
A styrene / acrylic water-soluble resin was prepared using a styrene monomer (35% styrene and 32% alphamethylstyrene) and an acrylic monomer (33% acrylic acid), and a dipropylene glycol methyl ether / water mixture was used as a solvent to 100 parts by weight Prepared using 15 parts by weight.

[실시예1][Example 1]

상기 제조예1에 의해 제조된 표면 처리된 CNT 30g, 상기 제조예6에서 제조된 분산제 30g, 증류수 935.5g, 모노에탄올아민 4.5g을 혼합하고 분산 장비를 사용하여 완전 분산시켰다. 30 g of the surface-treated CNT prepared in Preparation Example 1, 30 g of the dispersant prepared in Preparation Example 6, 935.5 g of distilled water, and 4.5 g of monoethanolamine were mixed and completely dispersed using a dispersing equipment.

[실시예2][Example 2]

상기 실시예1과 동일하게 실시하되, 분산안정제로써 비이온성불소계첨가제인 2,5,8,11-테트라메틸-6-도데신-5,8-디올이토실레이트(2,5,8,11-Tetramethyl-6-dodecyn-5,8-Diol Ethoxylate) 4g을 추가한 것에 차이가 있으며 나머지는 상기 실시예1과 동일하게 실시하였다.In the same manner as in Example 1, but as a dispersion stabilizer, a nonionic fluorine-based additive 2,5,8,11-tetramethyl-6-dodecine-5,8-diol itosylate (2,5,8, 11-Tetramethyl-6-dodecyn-5,8-Diol Ethoxylate) 4g was added and the rest was the same as in Example 1.

[실시예3][Example 3]

상기 실시예2와 동일하게 실시하되 CNT의 표면에 결합된 산소함량이 6.0wt%인 CNT를 사용하는 것에 차이가 있으며 나머지는 상기 실시예1과 동일하게 실시하였다.Example 2 was carried out in the same manner as in Example 2 except that CNT having an oxygen content of 6.0 wt% bonded to the surface of CNT was used, and the rest was performed in the same manner as in Example 1.

[비교예1][Comparative Example 1]

표면처리되지 않은 CNT를 사용한 것에 차이가 있으며 나머지는 상기 실시예 1과 동일하게 실시하였다.There was a difference between using CNTs that were not surface treated, and the rest was performed in the same manner as in Example 1.

[비교예2][Comparative Example 2]

상기 제조예1에 의해 제조된 표면처리된 CNT 30g, 증류수970g을 혼합하고 분산장비를 활용하여 분산시켜 분산액을 제조한 후 입도분석기(Particle Size Analyzer), 점도계(Viscometer) 등을 측정하였다.The surface-treated CNTs prepared in Preparation Example 1 were mixed with 30 g of distilled water and 970 g of distilled water, and dispersed using a dispersion equipment to prepare a dispersion. Particle size analyzer, viscometer, and the like were measured.

[시험예][Test Example]

상기 실시예1 내지 3 및 비교예1 내지 2에 의해 제조된 분산액의 물성을 각각 측정하여 하기 표1에 그 결과를 나타내었다.The physical properties of the dispersions prepared in Examples 1 to 3 and Comparative Examples 1 and 2 were respectively measured, and the results are shown in Table 1 below.

1. 입도 분석1. Grain size analysis

입도분석기(Particle Size Analyzer)를 Malvern사의 모델 2000를 사용하여 측정하였다.Particle Size Analyzer was measured using Malvern's Model 2000.

상기 실시예1, 실시예2 및 비교예2의 입도분석결과를 하기 도1에 나타내었다. 도1을 참조하면 입도 분석에서 완전 분산이 이루어질 경우 1개의 Peak(Mono-Modal)가 보이며, 완전 분산이 이루어지지 않을 경우 large particle (10㎛ 이상)에서 입도 분포를 나타내는데 비교예2는 완전분산이 이루어지지 않음을 알 수 있었다.The particle size analysis results of Example 1, Example 2 and Comparative Example 2 are shown in Figure 1 below. Referring to FIG. 1, one peak (Mono-Modal) is shown when complete dispersion is made in the particle size analysis, and when the complete dispersion is not achieved, the particle size distribution is shown in large particles (10 μm or more). It could not be seen that.

2. 점도 측정2. Viscosity Measurement

점도계(Viscometer)를 Brookfield사의 모델 Viscometer DV-II PRO 로 측정하였고 조건은 Spindle 18 / 100rpm / 25℃의 조건에서 측정하였다.Viscometer was measured by Brookfield's model Viscometer DV-II PRO and the conditions were measured under conditions of Spindle 18/100 rpm / 25 ℃.

3. CNT 표면의 산소함량 측정3. Measurement of oxygen content on CNT surface

원소분석기(Elemental Analyzer)와 X-선 광전자분광법을 이용하여 측정하였다.It was measured using an elemental analyzer and X-ray photoelectron spectroscopy.

4. 표면저항 측정4. Surface resistance measurement

1) 코팅막 제조1) Coating film manufacturing

상기 실시예1 내지 3 및 비교예1 내지 2에 의해 제조된 분산액을 각각 기재의 표면에 10㎛ 두께로 코팅하였다. 코팅에 사용하는 기재는 유리를 사용하여 실시할 수 있었다. 코팅된 표면을 뜨거운 공기 혹은 자외선을 조사하여 표면 매질을 제거와 고화 또는 경화과정을 거쳐 제조하였다.The dispersions prepared in Examples 1 to 3 and Comparative Examples 1 to 2 were each coated with a thickness of 10 μm on the surface of the substrate. The base material used for coating could be implemented using glass. The coated surface was prepared by removing the surface medium and solidifying or curing the surface by irradiating hot air or ultraviolet rays.

비교예1과 실시예1의 코팅막 표면을 나타낸 그림을 하기 도2에 나타내었다. 하기 도2에 의해 비교예1은 분산제를 사용했음에도 불구하고 분산이 원활히 이루어지지 않아 코팅막이 불량한 것을 관찰 할 수 있었다.Figures showing the coating film surface of Comparative Example 1 and Example 1 are shown in Figure 2 below. According to FIG. 2, Comparative Example 1 was observed that the coating was poor because the dispersion was not performed smoothly even though the dispersant was used.

2) 미쯔비시社의 Loresta GP(MCP-T600)를 사용하여 JISK 7194/ASTM D991에 따라 상기 제조된 코팅막 표면저항을 측정하였다.2) Using Mitsubishi's Loresta GP (MCP-T600) to measure the surface resistance of the coating film prepared in accordance with JISK 7194 / ASTM D991.

표1Table 1

Figure 112010053040366-pat00001
Figure 112010053040366-pat00001

× : 도막질 불량, ◎ : 도막질 우수×: poor coating quality, ◎: excellent coating quality

(참고) 입도 분석에서 완전 분산이 이루어질 경우 1개의 Peak(Mono-Modal)가 보이며, 완전 분산이 이루어지지 않을 경우 large particle (10㎛ 이상)에서 입도 분포를 나타냄(Reference) In the particle size analysis, one peak (Mono-Modal) is shown when complete dispersion occurs, and when the complete dispersion is not achieved, the particle size distribution is shown in large particles (10 μm or more).

Claims (17)

표면 처리된 탄소나노튜브, 분산제, 분산매, 분산안정제 및 아민계 화합물 또는 무기 알칼리 수용액을 포함하되 표면 처리된 탄소나노튜브는 표면 처리된 탄소나노튜브 전체중량에 대하여 산소, 질소 및 황 중 어느 하나 이상의 원소를 0.1~10중량% 포함하고, 상기 표면 처리된 탄소나노튜브는 탄소나노튜브 분산액 전체 중량에 대하여 0.0001~10중량% 포함되고, 상기 분산제는 표면 처리된 탄소나노튜브 100중량부에 대하여 10~500중량부 포함되며, 상기 분산안정제는 표면 처리된 탄소나노튜브 100중량부에 대하여 5~15중량부 포함되며, 상기 아민계 화합물 또는 무기 알칼리 수용액은 표면 처리된 탄소나노튜브 100중량부에 대하여 1~150중량부 포함되는 것을 특징으로 하는 탄소나노튜브 분산액.Surface-treated carbon nanotubes, including surface-treated carbon nanotubes, dispersants, dispersion media, dispersion stabilizers and amine-based compounds or inorganic alkali aqueous solutions, the surface-treated carbon nanotubes are one or more of oxygen, nitrogen and sulfur based on the total weight of the surface-treated carbon nanotubes 0.1 to 10% by weight of the element, the surface-treated carbon nanotubes are contained from 0.0001 to 10% by weight based on the total weight of the carbon nanotube dispersion, the dispersant is 10 ~ 10 parts by weight based on 100 parts by weight of the surface-treated carbon nanotubes 500 parts by weight is included, and the dispersion stabilizer is included in an amount of 5 to 15 parts by weight based on 100 parts by weight of the surface-treated carbon nanotubes, and the amine-based compound or the inorganic alkali aqueous solution is included in about 1 part by weight of 100 parts by weight of the surface-treated carbon nanotubes. Carbon nanotube dispersion characterized in that it comprises ~ 150 parts by weight. 제 1항에 있어서,

상기 표면 처리된 탄소나노튜브는 표면처리에 의해 형성된 산소가 0.1~10중량%가 포함되도록 표면처리된 것을 특징으로 하는 탄소나노튜브 분산액.
The method of claim 1,

The surface-treated carbon nanotubes are carbon nanotube dispersions, characterized in that the surface treatment to include 0.1 to 10% by weight of oxygen formed by the surface treatment.
제 1항에 있어서,

상기 탄소나노튜브는 단일벽탄소나노튜브, 이중벽탄소나노튜브, 다중벽탄소나노튜브, 다발형탄소나노튜브 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 특징으로 하는 탄소나노튜브 분산액.
The method of claim 1,

The carbon nanotubes are selected from the group consisting of single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, multiple carbon nanotubes, and mixtures thereof.
제 1항에 있어서,
상기 표면 처리된 탄소나노튜브는 산소, 공기, 오존, 과산화수소수, 니트로화합물 및 이들의 혼합물에서 선택되는 산화제를 사용하여 50 내지 400atm의 아임계 또는 초임계 조건에서 탄소나노튜브를 표면 처리하여 생성된 것을 특징으로 하는 탄소나노튜브 분산액.
The method of claim 1,
The surface-treated carbon nanotubes are produced by surface-treating carbon nanotubes in subcritical or supercritical conditions of 50 to 400 atm using an oxidant selected from oxygen, air, ozone, hydrogen peroxide, nitro compounds, and mixtures thereof. Carbon nanotube dispersion, characterized in that.
제 4항에 있어서,
상기 표면 처리된 탄소나노튜브는 산소, 공기, 오존, 과산화수소수, 니트로화합물 및 이들의 혼합물에서 선택되는 산화제를 사용하여 50 내지 400atm의 압력과 100 내지 600℃온도의 아임계 또는 초임계 조건에서 탄소나노튜브 표면을 산화처리하고, 이어서 카르복실산, 카르복실염, 아민, 아민염, 4가-아민, 인산염, 황산염, 알코올, 티올, 에스테르, 아미드, 에폭사이드, 알데하이드, 케톤 및 이들의 혼합물로 이루어진 군에서 선택된 하나 이상의 관능기를 지닌 기능성화합물을 50 내지 400atm의 압력과 100내지 600℃ 온도로 표면처리반응조에 주입하여 표면 처리되어 얻어진 탄소나노튜브 분산액.
5. The method of claim 4,
The surface-treated carbon nanotubes are carbon in subcritical or supercritical conditions at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. using an oxidant selected from oxygen, air, ozone, hydrogen peroxide, nitro compounds and mixtures thereof. The nanotube surface is oxidized, followed by carboxylic acid, carboxyl salt, amine, amine salt, tetravalent-amine, phosphate, sulfate, alcohol, thiol, ester, amide, epoxide, aldehyde, ketone and mixtures thereof. Carbon nanotube dispersion obtained by injecting a functional compound having at least one functional group selected from the group consisting of a surface treatment reaction tank at a pressure of 50 to 400 atm and a temperature of 100 to 600 ℃.
제 1항에 있어서,
상기 표면 처리된 탄소나노튜브는 탄소나노튜브와 카르복실산, 질산, 인산, 황산, 불산, 염산, 과산화수소수 또는 이들의 혼합물을 혼합하여 탄소나노튜브 표면을 산화시켜 얻어진 것을 특징으로 하는 탄소나노튜브 분산액.
The method of claim 1,
The surface-treated carbon nanotubes are carbon nanotubes obtained by oxidizing the surface of carbon nanotubes by mixing carbon nanotubes with carboxylic acid, nitric acid, phosphoric acid, sulfuric acid, hydrofluoric acid, hydrochloric acid, hydrogen peroxide or a mixture thereof. Dispersion.
제 1항에 있어서,
상기 분산제는 폴리아세탈, 메틸메타아클릴레이트, 알킬(C1~C10)아크릴레이트, 2-에틸헥실아크릴레이트, 폴리카보네이트, 스티렌, 알파메틸스티렌, 비닐 아크릴레이트, 폴리에스테르, 폴리페닐렌에테르 수지, 폴리올레핀, 아크릴로니트릴-부타디엔-스티렌 공중합체, 폴리아릴레이트, 폴리아미드, 폴리아미드이미드, 폴리아릴설폰, 폴리에테르이미드, 폴리에테르설폰, 폴리페닐렌설피드, 폴리이미드, 폴리에테르케톤, 폴리벤족사졸, 폴리옥사디아졸, 폴리벤조티아졸, 폴리벤지미다졸, 폴리피리딘, 폴리트리아졸, 폴리피롤리딘, 폴리디벤조퓨란, 폴리설폰, 폴리우레아, 폴리우레탄, 폴리포스파젠 및 이들의 공중합체 군에서 하나 이상 선택된 것을 특징으로 하는 탄소나노튜브 분산액.
The method of claim 1,
The dispersant may be polyacetal, methyl methacrylate, alkyl (C1-C10) acrylate, 2-ethylhexyl acrylate, polycarbonate, styrene, alpha methyl styrene, vinyl acrylate, polyester, polyphenylene ether resin, Polyolefin, acrylonitrile-butadiene-styrene copolymer, polyarylate, polyamide, polyamideimide, polyarylsulfone, polyetherimide, polyethersulfone, polyphenylene sulfide, polyimide, polyetherketone, polybenzoxazole , Polyoxadiazole, polybenzothiazole, polybenzimidazole, polypyridine, polytriazole, polypyrrolidine, polydibenzofuran, polysulfone, polyurea, polyurethane, polyphosphazene and copolymers thereof Carbon nanotube dispersion, characterized in that at least one selected.
제 1항에 있어서,
상기 분산제는 디에틸렌글리콜모노에틸에테르 또는 디프로필렌글리콜메틸에테르와 물을 혼합시킨 혼합용매 하에서, 스티렌, 스티렌 및 알파메틸 스티렌의 혼합물,에서 선택되는 스티렌계 모노머와 아크릴계 모노머를 100 ~ 200℃의 반응온도에서 연속벌크 중합시킨 중합체를 사용하는 탄소나노튜브 분산액.
The method of claim 1,
The dispersing agent is a mixture of styrene, styrene and alphamethyl styrene under a mixed solvent of diethylene glycol monoethyl ether or dipropylene glycol methyl ether and water, and a styrene monomer and an acrylic monomer selected from 100 to 200 ° C. Carbon nanotube dispersion using a polymer subjected to continuous bulk polymerization at a temperature.
제 1항에 있어서,
상기 분산제는 디프로필렌글리콜메틸에테르와 물을 혼합한 혼합용매 존재 하에서, 중합체 전체중량에 대하여 스티렌은 25 ~ 45 중량%, 알파메틸스티렌은 25 ~ 45 중량% 아크릴산 25 ~ 35 중량%를 중합반응시켜 제조되며, 상기 제조된 중합체는 중량평균 분자량이 1,000~100,000인 탄소나노튜브 분산액.
The method of claim 1,
In the presence of a mixed solvent in which dipropylene glycol methyl ether and water are mixed, the dispersing agent polymerizes 25 to 45% by weight of styrene and 25 to 35% by weight of 25% to 45% by weight of acrylic acid based on the total weight of the polymer. The prepared polymer is a carbon nanotube dispersion having a weight average molecular weight of 1,000 ~ 100,000.
삭제delete 삭제delete 삭제delete 제1항에 있어서,

상기 분산안정제는 음이온성양이온성비이온성 계면활성제, 습윤제, 젖음성 향상제로 이루어진 군으로부터 하나이상 선택되는 것을 특징으로 하는 탄소나노튜브 분산액.
The method of claim 1,

The dispersion stabilizer is a carbon nanotube dispersion, characterized in that at least one selected from the group consisting of anionic cationic nonionic surfactant, wetting agent, wettability enhancer.
삭제delete 제1항에 있어서,
상기 아민계 화합물로는 모노에탄올아민, 디에탄올아민, 트리에탄올아민, 프로판올아민, 디프로판올아민 및 트리프로판올아민로부터 선택되어 사용하고, 상기 무기 알칼리용액은 KOH, NaOH, LiOH, K2CO3, Na2CO3 및 LiCO3로부터 선택되어 사용하는 것을 특징으로 하는 탄소나노튜브 분산액.
The method of claim 1,
The amine compound is selected from monoethanolamine, diethanolamine, triethanolamine, propanolamine, dipropanolamine and tripropanolamine, and the inorganic alkaline solution is KOH, NaOH, LiOH, K 2 CO 3 , Na Carbon nanotube dispersion, characterized in that selected from 2 CO 3 and LiCO 3 used.
제 1항에 있어서,
상기 분산매는 물, 알코올, 케톤, 아민, 에스테르, 아미드, 알킬 할로겐, 에테르, 및 퓨란으로 이루어진 군에서 하나 이상 선택된 용제인 것을 특징으로 하는 탄소나노튜브 분산액.
The method of claim 1,
The dispersion medium is carbon nanotube dispersion, characterized in that at least one solvent selected from the group consisting of water, alcohol, ketone, amine, ester, amide, alkyl halogen, ether, and furan.
제1항 내지 9항, 13항, 15항 및 16항에서 선택되는 어느 한 항에 있어서, 상기 탄소나노튜브 분산액은 대전방지 소재, 정전분산소재, 전도성 소재, 전자파 차폐재료, 전자파 흡수재, RF(Radio Frequency) 흡수재, 태양전지용 재료, 염료감응태양전지(DSSC)용 전극재료, 전기소자 재료, 전자소자 재료, 반도체소자 재료, 광전소자재료, 노트북 부품 재료, 컴퓨터 부품 재료, 핸드폰 부품 재료, PDA 부품재료, PSP 부품 재료, 게임기용 부품 재료, 하우징 재료, 투명전극 재료, 불투명전극 재료, 전계방출디스플레이 (FED;field emission display)재료, BLU(back light unit)재료, 액정표시장치(LCD;liquid crystal display) 재료, 플라즈마표시패널(PDP;plasma display panel ) 재료, 발광다이오드(LED;Light emitting diode) 재료, 터치패널 재료, 전광판 재료, 광고판 재료, 디스플레이 소재, 발열체, 방열체, 도금 재료, 촉매, 조촉매, 산화제, 환원제, 자동차 부품 재료, 선박 부품 재료, 항공기기 부품 재료, 보호테이프 재료, 접착제 재료, 트레이 재료, 클린룸 재료, 운송 기기 부품 재료, 난연 소재, 항균 소재, 금속 복합 재료, 비철 금속 복합재료, 의료 기기용 재료, 건축 재료, 바닥재 재료, 벽지 재료, 광원 부품 재료, 램프 재료, 광학기기 부품 재료, 섬유제조용 재료, 의류제조용 재료, 전기제품용 재료, 전자제품제조용 재료, 이차전지용 양극활물질, 이차전지용 음극활물질, 이차전지재료, 연료전지재료, 태양전지재료, 메모리 소자 및 캐패시터 재료로 이루어진 군에서 하나이상 선택된 재료에 사용되는 것을 특징으로 하는 탄소나노튜브 분산액.The method according to any one of claims 1 to 9, 13, 15 and 16, wherein the carbon nanotube dispersion is an antistatic material, an electrostatic dispersion material, a conductive material, an electromagnetic shielding material, an electromagnetic wave absorber, RF ( Radio Frequency) Absorber, Solar Cell Material, Electrode Material for Dye-Sensitized Solar Cell (DSSC), Electric Device Material, Electronic Device Material, Semiconductor Device Material, Optoelectronic Device Material, Notebook Component Material, Computer Component Material, Mobile Phone Component Material, PDA Component Materials, PSP parts materials, game machine parts materials, housing materials, transparent electrode materials, opaque electrode materials, field emission display (FED) materials, back light unit (BLU) materials, liquid crystal displays (LCD) display materials, plasma display panel (PDP) materials, light emitting diode (LED) materials, touch panel materials, electronic signboard materials, billboard materials, display materials, heating elements, radiators, plating materials Materials, catalysts, promoters, oxidizing agents, reducing agents, automotive parts materials, ship parts materials, aircraft parts materials, protective tape materials, adhesive materials, tray materials, clean room materials, transportation equipment parts materials, flame retardant materials, antibacterial materials, metals Composite materials, non-ferrous metal composite materials, medical device materials, building materials, flooring materials, wallpaper materials, light source parts materials, lamp materials, optical device parts materials, textile manufacturing materials, clothing manufacturing materials, electrical products materials, electronic products manufacturing Carbon nanotube dispersion, characterized in that used in at least one material selected from the group consisting of a material, a cathode active material for a secondary battery, a cathode active material for a secondary battery, a secondary battery material, a fuel cell material, a solar cell material, a memory device and a capacitor material.
KR1020100079625A 2010-08-18 2010-08-18 Preparation of Concentrated CNT Dispersion Solution Using the Treated CNT KR101264147B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100079625A KR101264147B1 (en) 2010-08-18 2010-08-18 Preparation of Concentrated CNT Dispersion Solution Using the Treated CNT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100079625A KR101264147B1 (en) 2010-08-18 2010-08-18 Preparation of Concentrated CNT Dispersion Solution Using the Treated CNT

Publications (2)

Publication Number Publication Date
KR20120021807A KR20120021807A (en) 2012-03-09
KR101264147B1 true KR101264147B1 (en) 2013-05-14

Family

ID=46130038

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100079625A KR101264147B1 (en) 2010-08-18 2010-08-18 Preparation of Concentrated CNT Dispersion Solution Using the Treated CNT

Country Status (1)

Country Link
KR (1) KR101264147B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076565A1 (en) * 2013-11-19 2015-05-28 한화케미칼 주식회사 Method and apparatus for preparing functionalized graphene, and functionalized graphene
WO2016195313A1 (en) * 2015-05-29 2016-12-08 코오롱인더스트리 주식회사 Cathode catalyst layer for fuel cell, preparation method therefor, and membrane-electrode assembly for fuel cell including cathode catalyst layer
KR20220003813A (en) 2020-07-02 2022-01-11 한국전기연구원 Method for producing single-walled carbon nanotube dispersion with controlled bundle size, and single-walled carbon nanotube dispersion produced therefrom

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102805103A (en) * 2012-08-13 2012-12-05 同济大学 Synthesis method of carbon nanotube based sterilizing material
CN103183327B (en) * 2013-03-18 2015-05-27 江苏苏美仑智能科技有限公司 Treating agent for carbon nano tube and preparation method of water-soluble carbon nano tube
KR101666053B1 (en) * 2014-11-12 2016-10-14 (주)노루페인트 Heat Radiant Paint and nanotubes and Method for forming Heat Radiant coating layer of using the same
KR101807798B1 (en) * 2017-03-29 2017-12-13 태양쓰리시 주식회사 Carbon nanotube dispersion solution and method of making same
KR102079080B1 (en) * 2018-01-29 2020-02-19 충남대학교산학협력단 Manufacturing method of thermally conductive coatings based on carbon materials with high-dispersion
US11824200B2 (en) 2019-05-17 2023-11-21 Lg Energy Solution, Ltd. Conductive material dispersion, and electrode and lithium secondary battery manufactured using the same
CN112694081B (en) * 2021-01-18 2024-02-06 陕西科技大学 High-concentration carbon nano tube slurry and preparation method thereof
KR102563300B1 (en) * 2021-07-29 2023-08-04 주식회사 엘지에너지솔루션 Conductive material dispersed solution, electrode and lithium secondary battery prepared by using the same
KR102579324B1 (en) * 2021-08-19 2023-09-15 단국대학교 산학협력단 Carbon nanotubes composition having liquid crystalline property and method for preparing the same
WO2023059067A1 (en) * 2021-10-05 2023-04-13 주식회사 엘지에너지솔루션 Positive electrode for secondary battery comprising novel dispersant, electrode assembly comprising same, and secondary battery
CN113912876B (en) * 2021-11-03 2023-07-04 江西铜业技术研究院有限公司 Carbon nanotube mother liquor for modified acrylic resin and preparation method thereof
KR102518381B1 (en) * 2022-10-27 2023-04-06 주식회사 베터리얼 Carbon nanotube despersion, manufacturing method for same, slurry composition for electrode comprising same, eletrode comprising same and lithum secondary battery comprising same
KR20240060345A (en) * 2022-10-28 2024-05-08 주식회사 엘지화학 Carbon Nanotubes and Dispersion Comprising the Same
CN115850773B (en) * 2022-12-09 2023-09-15 合肥乐凯科技产业有限公司 Antistatic film and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100811047B1 (en) 2007-07-11 2008-03-12 (주)클라스타 인스트루먼트 A high fever conductivity polyester film using the carbon nanotube and that manufacturing method, and duct

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100811047B1 (en) 2007-07-11 2008-03-12 (주)클라스타 인스트루먼트 A high fever conductivity polyester film using the carbon nanotube and that manufacturing method, and duct

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076565A1 (en) * 2013-11-19 2015-05-28 한화케미칼 주식회사 Method and apparatus for preparing functionalized graphene, and functionalized graphene
WO2016195313A1 (en) * 2015-05-29 2016-12-08 코오롱인더스트리 주식회사 Cathode catalyst layer for fuel cell, preparation method therefor, and membrane-electrode assembly for fuel cell including cathode catalyst layer
US10418655B2 (en) 2015-05-29 2019-09-17 Kolon Industries, Inc. Cathode catalyst layer for fuel cells, method of manufacturing the same and membrane-electrode assembly for fuel cells including the same
KR20220003813A (en) 2020-07-02 2022-01-11 한국전기연구원 Method for producing single-walled carbon nanotube dispersion with controlled bundle size, and single-walled carbon nanotube dispersion produced therefrom

Also Published As

Publication number Publication date
KR20120021807A (en) 2012-03-09

Similar Documents

Publication Publication Date Title
KR101264147B1 (en) Preparation of Concentrated CNT Dispersion Solution Using the Treated CNT
JP5727604B2 (en) Conductive coating composition and method for producing conductive film using the same
KR101470524B1 (en) Blending improvement carbon-composite having Carbon-nanotube and its continuous manufacturing method
Madni et al. Mixed surfactant system for stable suspension of multiwalled carbon nanotubes
JP3913208B2 (en) Carbon nanotube-containing composition, composite having coating film made thereof, and method for producing them
JP5155519B2 (en) Carbon nanotube-containing curable composition and composite having the cured coating film
US20160254070A1 (en) Hybrid pani/carbon nano-composites for production of thin, transparent and conductive films
TW201100505A (en) UV-curable, wear resistant and antistatic coating filled with carbon nanotubes
TW201035996A (en) Highly conductive resin composition having carbon composite
Kausar Fullerene nanofiller reinforced epoxy nanocomposites—Developments, progress and challenges
JP4398792B2 (en) Carbon nanotube-containing composition, composite having coating film made thereof, and method for producing them
Devaraju et al. Fabrication of durable and flexible single-walled carbon nanotube transparent conductive films
Kim et al. Electrospun poly (vinyl alcohol) nanofibers incorporating PEGylated multi-wall carbon nanotube
Wang et al. Synthesis of silver nanoparticles decorated MWCNTs and their application in antistatic polyetherimide matrix nanocomposite
JP4761436B2 (en) CARBON NANOTUBE-CONTAINING POLYMER, COMPOSITE HAVING COATING COMPRISING THE SAME, AND METHOD FOR PRODUCING THEM
JP2007237580A (en) Surface protective film, method for producing the film, and laminate comprising the film
Bohra et al. Specific functionalized graphene oxide-based vitrimer epoxy nanocomposites for self-healing applications
JP2005105510A (en) Carbon nanotube-containing fiber and method for producing the same
Prichard et al. Comparison of flocculated and dispersed single‐wall carbon nanotube‐based coatings using nonionic surfactants
JP2014063574A (en) Method for forming conductive pattern, and transparent conductive film
Branzoi et al. Nanocomposites based on conducting polymers and functionalized carbon nanotubes with different dopants obtained by electropolymerization
Rezazadeh et al. Effect of carbon nanotube and surfactant on processing, mechanical, electrical and EMI-shielding of epoxy composites
KR102420270B1 (en) Carbon nano material and antistatic composition including the same
KR102438411B1 (en) Conductive structure and antistatic composition including the same
Yue et al. RETRACTED: A transparent pressure-sensitive adhesive with high electrical conductivity based on water-soluble nano core-shell hollow composite

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160503

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170504

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180403

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190307

Year of fee payment: 7