KR101147227B1 - manufacturing mathod of conductive coatings with metal oxide-wrapped carbon nanotubes and the conductive coatings thereby - Google Patents

manufacturing mathod of conductive coatings with metal oxide-wrapped carbon nanotubes and the conductive coatings thereby Download PDF

Info

Publication number
KR101147227B1
KR101147227B1 KR1020090104181A KR20090104181A KR101147227B1 KR 101147227 B1 KR101147227 B1 KR 101147227B1 KR 1020090104181 A KR1020090104181 A KR 1020090104181A KR 20090104181 A KR20090104181 A KR 20090104181A KR 101147227 B1 KR101147227 B1 KR 101147227B1
Authority
KR
South Korea
Prior art keywords
metal oxide
carbon nanotubes
coating film
conductive coating
carbon nanotube
Prior art date
Application number
KR1020090104181A
Other languages
Korean (ko)
Other versions
KR20110047515A (en
Inventor
한중탁
이건웅
정희진
정승열
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020090104181A priority Critical patent/KR101147227B1/en
Publication of KR20110047515A publication Critical patent/KR20110047515A/en
Application granted granted Critical
Publication of KR101147227B1 publication Critical patent/KR101147227B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Abstract

본 발명은 탄소나노튜브 표면에 금속산화물을 코팅하기 위한 것으로, 탄소나노튜브(CNT) 분산액에 금속산화물 전구체와 안정제를 첨가하여 교반함으로써 탄소나노튜브 표면에 금속산화물을 균일하게 코팅하고 이를 기판에 코팅하여 형성된 금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 제조방법 및 그 전도성 코팅막을 기술적 요지로 한다. 이에 따라 금속산화물이 코팅된 탄소나노튜브 코팅액을 기판에 코팅하여 전도성 코팅막을 제조함으로써, 고온 내열 및 내습성을 향상시킬 뿐만 아니라 반도체성 금속화합물을 사용하여 탄소나노튜브 네트워크에서 접합저항을 최소화하며, 바인더가 첨가됨에 따른 저항증가를 최소화하여 전도성을 향상시키는 이점이 있다.The present invention is for coating a metal oxide on the surface of the carbon nanotubes, by uniformly coating the metal oxide on the surface of the carbon nanotubes by adding a metal oxide precursor and a stabilizer to the carbon nanotube (CNT) dispersion and agitated on the substrate The manufacturing method of the conductive coating film using the carbon nanotubes coated with the metal oxide formed thereon and the conductive coating film is a technical gist. Accordingly, by coating a carbon nanotube coating liquid coated with a metal oxide on a substrate to prepare a conductive coating film, not only improves high temperature heat and moisture resistance, but also minimizes bonding resistance in a carbon nanotube network using a semiconducting metal compound. There is an advantage of improving the conductivity by minimizing the increase in resistance as the binder is added.

탄소나노튜브 금속산화물 코팅막 기능화 티타늄옥사이드 Carbon Nanotube Metal Oxide Coating Film Functionalized Titanium Oxide

Description

금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 제조방법 및 그 전도성 코팅막{manufacturing mathod of conductive coatings with metal oxide-wrapped carbon nanotubes and the conductive coatings thereby}Manufacturing method of conductive coating film using carbon nanotubes coated with metal oxide and its conductive coating film {manufacturing mathod of conductive coatings with metal oxide-wrapped carbon nanotubes and the conductive coatings}

본 발명은 탄소나노튜브 표면에 금속산화물을 코팅하기 위한 것으로, 특히 용매에 분산된 탄소나노튜브(CNT) 표면을 간단한 용액공정으로 금속산화물로 코팅하고 이를 기판에 코팅하여 고온 내열 및 내습성을 향상시킬 뿐만 아니라 반도체성 금속화합물을 사용하여 탄소나노튜브 네트워크에서 접합저항을 최소화하여 바인더가 첨가됨에 따른 저항증가의 최소화가 가능한 금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 제조방법 및 그 전도성 코팅막에 관한 것이다.The present invention is to coat the metal oxide on the surface of the carbon nanotubes, in particular, the surface of the carbon nanotubes (CNT) dispersed in the solvent is coated with the metal oxide in a simple solution process and coated on the substrate to improve the high temperature heat and moisture resistance A method of manufacturing a conductive coating film using carbon nanotubes coated with a metal oxide capable of minimizing the resistance increase as a binder is added by minimizing the bonding resistance in a carbon nanotube network using a semiconducting metal compound and a conductive coating film thereof It is about.

투명전도성 필름은 높은 도전성(예를 들면, 1x103Ω/sq 이하의 면저항)과 가시영역에서 높은 투과율을 가지기 때문에 태양전지, 액정표시소자, 플라즈마 디스플레이 패널, 그 이외의 각종 수광소자와 발광소자의 전극으로 이용되는 것 이외에 자동차 창유리나 건축물의 창유리 등에 쓰이는 대전 방지막, 전자파 차폐막 등의 투명전자파 차폐체 및 열선 반사막, 냉동쇼케이스 등의 투명 발열체로 사용되고 있 다.Since the transparent conductive film has high conductivity (for example, sheet resistance of 1 × 10 3 Ω / sq or less) and high transmittance in the visible region, the transparent conductive film may be used for solar cells, liquid crystal display devices, plasma display panels, other light receiving elements In addition to being used as an electrode, it is used as a transparent electromagnetic shielding material such as an antistatic film and an electromagnetic shielding film used in a window glass of an automobile or a building, and a transparent heating element such as a heat ray reflecting film and a freezing showcase.

기존의 도핑된 금속산화물막은 유연성이 없고 진공증착법을 사용하는 고가의 공정을 사용하는 문제점이 있다. 이러한 문제점을 해결하기 위해 최근에는 여러 종류의 기질 상면에 탄소나노튜브를 코팅하는 기술이 널리 연구되고 있다. 상기 탄소나노튜브는 전기저항이 10-4Ωcm로 금속에 버금가는 전기전도도를 가지고 있으며, 표면적이 벌크 재료에 비해 1000배 이상 높고, 외경에 비해 길이가 수천배 정도로 길기 때문에 전도성 구현에 있어 이상적인 재료이며, 표면기능화를 통해 기질에의 결합력을 향상시킬 수 있는 장점이 있다. 특히, 플렉시블한 기질에의 사용이 가능하여 그 용도가 무한할 것으로 기대되고 있다. 이때 기질과의 접착력 향상 및 환경신뢰성 확보를 위해 바인더와 탄소나노튜브가 혼합된 일액형 코팅액을 사용하게 된다. 그러나 부도체인 바인더를 사용할 경우 탄소나노튜브 네트워크의 접합저항을 증가시켜 코팅막의 저항을 증가시킬 수 있다. 또한 적절한 바인더를 사용하지 않을 경우 고온과 고온고습의 환경에서 면저항이 상승할 수 있다.Existing doped metal oxide film has a problem of using an expensive process that is inflexible and uses a vacuum deposition method. Recently, techniques for coating carbon nanotubes on top of various substrates have been widely studied in order to solve these problems. The carbon nanotubes have electrical conductivity comparable to that of metals with an electrical resistance of 10 -4 Ωcm, and the surface area is more than 1000 times higher than that of the bulk material and is thousands of times longer than the outer diameter, which makes them an ideal material for implementing conductivity. And, there is an advantage that can improve the binding force to the substrate through the surface functionalization. In particular, it is expected that the use of the flexible substrate can be infinite. In this case, in order to improve adhesion to the substrate and secure environmental reliability, a one-component coating solution in which a binder and carbon nanotubes are mixed is used. However, in the case of using a non-conductive binder, the resistance of the coating film can be increased by increasing the bonding resistance of the carbon nanotube network. In addition, if the proper binder is not used, the sheet resistance may increase in an environment of high temperature and high temperature and high humidity.

따라서, 이러한 탄소나노튜브를 이용하여 전도성 코팅막을 제조할 시, 필연적으로 사용될 수 밖에 없는 바인더에 의한 분산성 문제 및 저항 증가를 최소화하기 위한 연구가 활발한 실정이다.Therefore, when manufacturing a conductive coating film using such carbon nanotubes, studies to minimize the dispersibility problem and the increase in resistance by a binder that can not be used inevitably is active.

이러한 탄소나노튜브를 이용하여 분산성 문제 및 저항 증가를 최소화하기 위한 종래기술로써, 탄소나노튜브의 분산성을 위해 고분자재료를 탄소나노튜브 표면에 성장시키거나, 전도성 향상을 위해 금속입자를 탄소나노튜브 표면에 성장시키는 등의 연구가 진행되어왔다.As a conventional technique for minimizing dispersibility problems and resistance increase by using such carbon nanotubes, a polymer material is grown on a surface of a carbon nanotube for dispersibility of carbon nanotubes, or metal particles are used to improve conductivity. Researches such as growing on the tube surface have been conducted.

그러나 탄소나노튜브 표면에 부도체인 고분자를 성장시킬 경우(대한민국특허청 공개특허 공보 공개번호 10-2004-0022939) 탄소나노튜브의 용액내 분산성은 증가시킬 수 있으나 전도도가 현저히 감소하게 되고, 전도성 고분자를 이용할 경우(대한민국특허청 공개특허 공보 공개번호 10-2009-0019303) 수분에 의해 저항이 증가할 수 있다. 또한, 탄소나노튜브 표면에 금속입자를 성장시킬 경우(대한민국특허청 공개특허 공보 공개번호 10-2003-0036265) 이를 이용한 코팅막의 투과도가 급격히 감소하게 되는 단점이 있다.However, if the nonconducting polymer is grown on the surface of the carbon nanotubes (Korea Patent Office Publication No. 10-2004-0022939), the dispersibility in the solution of the carbon nanotubes can be increased, but the conductivity is significantly reduced, and the conductive polymer is used. In the case of (Korean Patent Application Publication No. 10-2009-0019303), the resistance may increase due to moisture. In addition, when the metal particles are grown on the surface of the carbon nanotubes (Korean Patent Publication No. 10-2003-0036265), there is a disadvantage that the permeability of the coating film using the same rapidly decreases.

한편, TiO2, SnO2, ZnO, MgO, V2O5, ZrO2, B2O3, Al2O3, Fe2O3, BaTiO3, V2O5, WO3, NiO 등과 같은 금속산화물은 졸-겔 법에 의해 용액상에서 제조가 가능하며 도포 후 열처리를 통해 밴드갭을 지니는 반도성을 띄게 되어 탄소나노튜브 네트워크에서 바인더에 의해 발생하는 저항증가를 최소화할 수 있으며 그 구조가 치밀하여 외부 수분으로부터 전도성 코팅막을 보호할 수 있다. 따라서, 탄소나노튜브 네트워크에 이러한 금속산화물을 함께 사용한다면 저항증가를 최소화시킬 수 있고 전도성 코팅막을 보호할 수 있을 것이다.Meanwhile, metals such as TiO 2 , SnO 2 , ZnO, MgO, V 2 O 5 , ZrO 2 , B 2 O 3 , Al 2 O 3 , Fe 2 O 3 , BaTiO 3 , V 2 O 5 , WO 3 , NiO, etc. Oxide can be manufactured in solution by sol-gel method and exhibits semi-conductivity with band gap through heat treatment after application, minimizing the increase of resistance caused by binder in carbon nanotube network, and its structure is compact. The conductive coating film can be protected from external moisture. Therefore, the use of these metal oxides together in the carbon nanotube network can minimize the increase in resistance and protect the conductive coating layer.

이러한 금속산화물을 이용한 종래기술로써, 탄소나노튜브 표면에 화학작용기를 형성하고 화학작용기가 형성된 탄소나노튜브 상에 금속산화막을 형성하는 기술(대한민국특허청 공개번호 10-2009-0079427)이 있다. 그러나, 이는 탄소나노튜브 상에 별도의 화학작용기를 형성하고 소정의 두께를 얻기 위한 원자층 증착을 반복 적으로 실시하여야 하므로 제조방법이 복잡하며, 화학작용기가 형성된 탄소나노튜브에 금속산화막을 형성하는 경우에는 전도성이 떨어지는 문제점이 있으며, 고온, 고습의 환경에서 면저항이 저하되어 내구성이 떨어지는 문제점이 있다.As a conventional technique using such a metal oxide, there is a technique of forming a chemical functional group on the surface of the carbon nanotube and forming a metal oxide film on the carbon nanotube on which the chemical functional group is formed (Korean Patent Office Publication No. 10-2009-0079427). However, this requires a separate chemical functional group formed on the carbon nanotubes and repeated atomic layer deposition to obtain a predetermined thickness is complicated in the manufacturing method, and forming a metal oxide film on the carbon nanotubes on which the chemical functional groups are formed. In this case, there is a problem that the conductivity is lowered, there is a problem that the sheet resistance is lowered in the environment of high temperature, high humidity and durability is lowered.

따라서, 본 발명은 상기한 종래기술들의 문제점을 해결하기 위해 안출된 것으로, 단순공정에 의해 분산용액 상에서 탄소나노튜브(CNT) 표면을 금속산화물로 코팅하고 이를 기판에 코팅하여 제조된 전도도가 우수하고 고온 내열 및 내습특성이 향상된 금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 제조방법 및 그 전도성 코팅막을 제공하는 것을 그 목적으로 한다.Accordingly, the present invention has been made to solve the above problems of the prior art, by coating a carbon nanotube (CNT) surface with a metal oxide on a dispersion solution by a simple process and excellent conductivity prepared by coating it on a substrate and It is an object of the present invention to provide a method for producing a conductive coating film using carbon nanotubes coated with metal oxides having improved high temperature heat and moisture resistance and a conductive coating film.

상기한 목적을 달성하기 위한 본 발명은, 탄소나노튜브(CNT) 분산액에 금속산화물 전구체와 안정제를 첨가하여 교반함으로써 탄소나노튜브 표면에 금속산화물을 균일하게 코팅하고 이를 기판에 코팅하여 형성된 금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 제조방법 및 그 전도성 코팅막을 기술적 요지로 한다.The present invention for achieving the above object, by adding a metal oxide precursor and a stabilizer to the carbon nanotube (CNT) dispersion by stirring and uniformly coating the metal oxide on the surface of the carbon nanotubes and a metal oxide formed by coating it on a substrate Method for producing a conductive coating film using the coated carbon nanotubes and the conductive coating film is a technical gist.

여기서, 상기 탄소나노튜브 분산액은 탄소나노튜브(CNT)를 분산용매에 초음파를 이용해 분산하여 제조하고, 이에 금속산화물 전구체와 안정제를 첨가하여 교반하여 코팅액을 제조하는 것이 바람직하다.The carbon nanotube dispersion may be prepared by dispersing carbon nanotubes (CNT) in a dispersion solvent using ultrasonic waves, and adding a metal oxide precursor and a stabilizer to the carbon nanotube (CNT) to stir to prepare a coating solution.

그리고, 상기 금속산화물 전구체 물질은 사용되는 용매에 용해가 되는 것이면 어떤 종류라도 가능하며, 클로라이드 계열, 아세테이트 계열, 할로겐화물 등 특정 전구체에 제한을 두지 않으며 사용될 수 있다. 특히, 코팅막에 초친수성을 부여하기 위해서는 티타늄 테트라에톡사이드, 티타늄 테트라부톡사이드, 티타늄 테트라 이소프로폴사이드, 아연아세테이트 등을 사용하여 수행할 수 있다.In addition, the metal oxide precursor material may be any kind as long as it is dissolved in the solvent used, and may be used without limiting to a specific precursor such as chloride-based, acetate-based or halide. In particular, in order to impart superhydrophilicity to the coating film, it may be performed using titanium tetraethoxide, titanium tetrabutoxide, titanium tetra isopropoxide, zinc acetate, or the like.

그리고, 상기 안정제는 트리에탄올아민, 디에탄올아민, 아세틸아세톤, 이에틸렌글리콜, 아세트산, 트리플루오로아세트산의 1종 이상을 선택하여 사용할 수 있으며, 사용되는 안정제는 금속산화물 전구체와 화학결합을 하고 또한 탄소나노튜브와의 소수성 상호작용에 의해 전구체가 탄소나노튜브 표면에 균일하게 코팅되도록 하는 것이 바람직하다. 여기에서, 상기 탄소나노튜브 코팅액 제조시 첨가되는 안정제는, 탄소나노튜브 100 중량부에 대해 0.5 내지 50 중량부로 첨가되는 것이 바람직하다.In addition, the stabilizer may be used by selecting one or more of triethanolamine, diethanolamine, acetylacetone, diethylene glycol, acetic acid, trifluoroacetic acid, and the stabilizers used are chemically bonded to the metal oxide precursor and carbon It is desirable to have the precursor uniformly coated on the surface of the carbon nanotubes by hydrophobic interaction with the nanotubes. Herein, the stabilizer added during the preparation of the carbon nanotube coating solution is preferably added in an amount of 0.5 to 50 parts by weight based on 100 parts by weight of the carbon nanotubes.

그리고, 상기 기질은 유리, 수정, 글래스 웨이퍼, 실리콘 웨이퍼, 플라스틱으로 이루어진 군으로부터 선택된 1종으로 이루어지고, 상기 코팅막은 스프레이, 딥코팅, 스핀코팅, 스크린코팅, 잉크젯프린팅, 패드프린팅, 나이프코팅, 키스코팅 및 그라비아코팅 중에서 어느 하나의 방법에 의해 이루어지고, 고화는 열 경화 방법을 이용하여 고화되고, 필요에 따라 잔류 유기물을 제거하기 위해 가열하는 공정을 포함한다. 또한, 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 이들의 혼합물 중에서 선택한 1종으로 이루어지는 것이 바람직하다. The substrate is one selected from the group consisting of glass, quartz, glass wafers, silicon wafers, and plastics, and the coating layer is sprayed, dip coated, spin coated, screen coated, ink jet printed, pad printed, knife coated, It is made by the method of any one of the key coating and the gravure coating, the solidification is solidified using a heat curing method, and includes a step of heating to remove residual organic matter as necessary. In addition, the carbon nanotubes are preferably made of one selected from single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, and mixtures thereof.

또한, 상기 용매분산단계에서 사용된 탄소나노튜브 분산용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류수, 디클로로 벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드로 이루어진 군으로부터 선택된 1종 이상의 것이고, 상기 코팅액은, 코팅액의 농도 조절을 위해 희석용매가 첨가되고, 상기 희석용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드, 메틸렌클로라이드 및 이들의 혼합물 중에서 선택된 1종이고, 상기 분산용매 및 희석용매는 용해용매로 사용되는 것이 바람직하다. In addition, the carbon nanotube dispersion solvent used in the solvent dispersion step is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylform Amide, dimethylacetamide, N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, distilled water, dichloro benzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octa At least one selected from the group consisting of decylamine, aniline, and dimethyl sulfoxide, wherein the coating liquid is added with a diluting solvent for controlling the concentration of the coating liquid, and the diluting solvent is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, Isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide, dimethyl acet Amide, N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, distilled water, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, aniline , Dimethyl sulfoxide, methylene chloride, and mixtures thereof. The dispersion solvent and dilution solvent are preferably used as a dissolving solvent.

한편, 상기 금속산화물은 TiO2, SnO2, ZnO, MgO, ZrO2, B2O3, Al2O3, Fe2O3, BaTiO3, V2O5, WO3, NiO 중 선택된 1종 이상을 선택하여 사용하고, 탄소나노튜브와 금속산화물 100 중량부에 대해 30 내지 99 중량부로 첨가되는 것이 바람직하다.On the other hand, the metal oxide is one selected from TiO 2 , SnO 2 , ZnO, MgO, ZrO 2 , B 2 O 3 , Al 2 O 3 , Fe 2 O 3 , BaTiO 3 , V 2 O 5 , WO 3 , NiO It is preferable to select and use the above, and to add 30-99 weight part with respect to 100 weight part of carbon nanotubes and a metal oxide.

상기에서 설명한 바와 같은 본 발명은, 용매에 분산된 탄소나노튜브(CNT) 표면을 간단한 용액공정으로 금속산화물로 코팅하고 이를 기판에 코팅하여, 고온 내열 및 내습성을 향상시킬 뿐만 아니라 반도체성 금속화합물을 사용하여 탄소나노튜브 네트워크에서 접합저항을 최소화하며, 바인더가 첨가됨에 따른 저항증가를 최소화하여 전도성을 향상시키는 효과가 있다.The present invention as described above, the surface of the carbon nanotubes (CNT) dispersed in the solvent is coated with a metal oxide in a simple solution process and coated on the substrate, thereby improving the high temperature heat and moisture resistance as well as the semiconducting metal compound Minimize the bonding resistance in the carbon nanotube network by using, and the effect of improving the conductivity by minimizing the increase in resistance as the binder is added.

또한, 금속산화물 중 티타늄 옥사이드의 경우 자외선에 의해 초친수성을 유도할 수 있어 김서림 방지 및 자가세정 특성을 부여할 수 있어 그 활용도가 우수한 효과가 있다.In addition, the titanium oxide of the metal oxide can induce super-hydrophilicity by ultraviolet light can be given anti-fog and self-cleaning properties, it has an excellent effect of utilization.

이하 본 발명의 바람직한 실시예를 도면을 참조로 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

본 발명에 따른 금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 제조방법은, 탄소나노튜브와 분산용매를 혼합하여 분산제조된 탄소나노튜브 분산액에 금속산화물 전구체와 안정제를 첨가하여 교반하여, 안정화된 금속산화물 전구체와 탄소나노튜브 간의 소수성 상호인력에 의해 탄소나노튜브 표면에 균일하게 금속산화물이 코팅된 탄소나노튜브 코팅액을 제조하고, 이를 기판 상면에 코팅하여, 고화시킴에 의해 전도성 코팅막이 제조되게 된다.In the method of manufacturing a conductive coating film using a carbon nanotube coated with a metal oxide according to the present invention, the carbon nanotube dispersion is prepared by mixing a carbon nanotube and a dispersion solvent, and adding a metal oxide precursor and a stabilizer to the dispersed carbon nanotube dispersion to stabilize the mixture. A carbon nanotube coating liquid coated with a metal oxide uniformly on the surface of the carbon nanotubes by hydrophobic interaction between the prepared metal oxide precursor and the carbon nanotubes, coated on the upper surface of the substrate, and solidified to prepare a conductive coating film do.

그리고, 상기 금속산화물 전구체 물질은 사용되는 용매에 용해가 되는 것이면 어떤 종류라도 가능하며, 클로라이드 계열, 아세테이트 계열, 할로겐화물 등 특정 전구체에 제한을 두지 않으며 사용될 수 있다. 특히, 전도성 코팅막에 초친수성을 부여하기 위해서는 티타늄 테트라에톡사이드, 티타늄 테트라부톡사이드, 티타늄 테트라이소프로폴사이드 등을 사용하여 수행할 수 있고, 산화아연의 전구체로는 아연아세테이트 수화물 등을 사용하여 수행할 수 있다.In addition, the metal oxide precursor material may be any kind as long as it is dissolved in the solvent used, and may be used without limiting to a specific precursor such as chloride-based, acetate-based or halide. In particular, in order to impart superhydrophilicity to the conductive coating film, it may be performed using titanium tetraethoxide, titanium tetrabutoxide, titanium tetraisopropoxide, etc., and zinc acetate hydrate may be used as a precursor of zinc oxide. Can be done.

그리고, 상기 안정제는 트리에탄올아민, 디에탄올아민, 아세틸아세톤, 이에틸렌글리콜, 아세트산, 트리플루오로아세트산로 이루어진 군으로부터 선택된 1종 이상을 선택하여 사용할 수 있으며, 사용되는 안정제는 금속산화물 전구체와 화학 결합을 하고 또한 탄소나노튜브와의 소수성 상호작용에 의해 전구체가 탄소나노튜브 표면에 균일하게 코팅되도록 한다. 여기에서, 상기 탄소나노튜브 코팅액 제조시 첨가되는 안정제는, 탄소나노튜브 100 중량부에 대해 0.5 내지 50 중량부로 첨가되는 것이 바람직하다.In addition, the stabilizer may be used by selecting one or more selected from the group consisting of triethanolamine, diethanolamine, acetylacetone, diethylene glycol, acetic acid, trifluoroacetic acid, the stabilizer used is a chemical bond with the metal oxide precursor In addition, the precursor is uniformly coated on the surface of the carbon nanotubes by hydrophobic interaction with the carbon nanotubes. Herein, the stabilizer added during the preparation of the carbon nanotube coating solution is preferably added in an amount of 0.5 to 50 parts by weight based on 100 parts by weight of the carbon nanotubes.

그리고, 상기 기질은 유리, 수정, 글래스 웨이퍼, 실리콘 웨이퍼, 플라스틱으로 이루어진 군으로부터 선택된 1종으로 이루어지고, 상기 코팅막은 스프레이, 딥코팅, 스핀코팅, 스크린코팅, 잉크젯프린팅, 패드프린팅, 나이프코팅, 키스코팅 및 그라비아코팅 중에서 어느 하나의 방법에 의해 이루어지고, 고화는 열 경화 방법을 이용하여 고화되고, 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 이들의 혼합물 중에서 선택한 1종으로 이루어진다. The substrate is one selected from the group consisting of glass, quartz, glass wafers, silicon wafers, and plastics, and the coating layer is sprayed, dip coated, spin coated, screen coated, ink jet printed, pad printed, knife coated, It is made by any one of the key coating and gravure coating, and the solidification is solidified using a thermal curing method, the carbon nanotubes are single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes and their It consists of one selected from the mixture.

또한, 상기 탄소나노튜브 분산액 제조시 분산용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드로 이루어진 군으로부터 선택된 1종 이상의 것이고, 상기 코팅액은, 코팅액의 농도 조절을 위해 희석용매가 첨가되고, 상기 희석용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메 틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드, 메틸렌클로라이드 및 이들의 혼합물 중에서 선택된 1종이고, 상기 분산용매 및 희석용매는 용해용매로 사용한다. In addition, the dispersion solvent in preparing the carbon nanotube dispersion is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide, dimethyl Acetamide, N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, distilled water, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, At least one selected from the group consisting of aniline and dimethyl sulfoxide, wherein the coating liquid is added with a diluting solvent for controlling the concentration of the coating liquid, and the diluting solvent is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol. , Butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide, dimethylacetamide, N Methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, distilled water, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, aniline, dimethyl sulfoxide It is 1 type selected from the side, methylene chloride, and mixtures thereof, The said dispersion solvent and dilution solvent are used as a dissolving solvent.

한편, 상기 금속산화물은 TiO2, SnO2, ZnO, MgO, V2O5, ZrO2, B2O3, Al2O3, Fe2O3, BaTiO3, WO3, NiO 중 선택된 1종 이상을 선택하여 사용하고, 탄소나노튜브와 금속산화물 100 중량부에 대해 30 내지 99 중량부로 첨가되도록 한다.On the other hand, the metal oxide is one selected from TiO 2 , SnO 2 , ZnO, MgO, V 2 O 5 , ZrO 2 , B 2 O 3 , Al 2 O 3 , Fe 2 O 3 , BaTiO 3 , WO 3 , NiO It is selected to use the above, and added to 30 to 99 parts by weight based on 100 parts by weight of carbon nanotubes and metal oxides.

이하 본 발명의 실시예를 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail.

< 실시예 1 >&Lt; Example 1 >

본 발명의 실시예 1로써, 금속산화물이 코팅된 탄소나노튜브 용액을 기질에 코팅하여 전도성과 고온 내열 및 내습성이 향상된 전도성 코팅막을 형성하는 기술에 관한 것이다.As Example 1 of the present invention, the present invention relates to a technique of forming a conductive coating film having improved conductivity, high temperature heat resistance, and moisture resistance by coating a metal oxide coated carbon nanotube solution on a substrate.

산처리된 탄소나노튜브 50㎎과 에탄올(Ethanol) 용매 100㎖를 삼각플라스크에서 혼합한 후 초음파기로 2시간 동안 분산하여 탄소나노튜브 분산액을 제조하였다. 50 mg of the acid-treated carbon nanotubes and 100 ml of ethanol (Ethanol) solvent were mixed in an Erlenmeyer flask and dispersed for 2 hours by an ultrasonic wave to prepare a carbon nanotube dispersion.

상기 용액에 티타늄 이소프로폭사이드 50mg과 안정제로 아세틸아세톤 30mg을 첨가하여 1시간동안 교반하여 금속산화물, 여기에서는 티타늄옥사이드가 표면에 코 팅되어 형성된 탄소나노튜브 코팅액을 제조하였다. 50 mg of titanium isopropoxide and 30 mg of acetylacetone as a stabilizer were added to the solution, followed by stirring for 1 hour to prepare a carbon nanotube coating liquid formed by coating a metal oxide, in which titanium oxide was coated on the surface.

그리고, 티타늄옥사이드가 코팅된 탄소나노튜브 코팅액을 스프레이 코터를 이용하여 유리 또는 고분자 기판에 도포하였다.The carbon nanotube coating liquid coated with titanium oxide was applied to the glass or the polymer substrate using a spray coater.

도 1은 본 발명의 실시예 1에 따른 티타늄옥사이드가 탄소나노튜브 표면에 균일하게 코팅되는 메커니즘 개념도로, 도 1a에서는 안정제와 탄소나노튜브 표면의 소수성 상호작용에 의해 티타늄옥사이드 전구체가 표면에 코팅되는 것이고 도 1b는 가열함에 따라 안정제가 제거됨으로써 티타늄옥사이드가 탄소나노튜브 표면에 코팅되는 것을 나타낸다.1 is a conceptual view of a mechanism in which titanium oxide is uniformly coated on a surface of a carbon nanotube according to Example 1 of the present invention. In FIG. 1a, a titanium oxide precursor is coated on a surface by hydrophobic interaction between a stabilizer and a surface of a carbon nanotube. Figure 1b shows that the titanium oxide is coated on the carbon nanotube surface by removing the stabilizer as it is heated.

도 2a는 본 발명의 실시예 1에 따른 전도성 코팅막의 표면을 전자주사현미경으로 관찰한 사진을 나타낸 것으로 삽입된 사진에서 탄소나노튜브가 금속산화물로 코팅된 것을 볼 수 있다.Figure 2a shows a photograph of the surface of the conductive coating film according to Example 1 of the present invention observed with an electron scanning microscope, it can be seen that the carbon nanotubes are coated with a metal oxide in the inserted picture.

도 3은 본 발명의 실시예 1에 의한 티타늄옥사이드 함량과 열처리 온도에 따른 면저항 측정치를 나타낸 것으로 300℃에서 열처리 할 경우 안정제의 제거에 의해 저항이 감소하는 것을 볼 수 있으며 350℃에서는 탄소나노튜브의 산화에 의한 저항증가를 보여준다.Figure 3 shows the sheet resistance measurement according to the titanium oxide content and the heat treatment temperature according to Example 1 of the present invention, when the heat treatment at 300 ℃ can be seen that the resistance is reduced by the removal of the stabilizer, the carbon nanotube at 350 ℃ It shows the increase of resistance by oxidation.

도4는 본 발명의 실시예 1에 따른 섭씨 80℃, 90% 상대습도의 고온 내습에 노출된 전도성 코팅막의 시간에 따른 면저항 변화를 나타낸 도이다. 도시된 바와 같이, 본 발명의 실시예 1에서는 티타늄옥사이드를 균일하게 탄소나노튜브 표면에 코팅함으로써 바인더에 의한 면저항 감소를 최소화하였으며, 고온에서 탄소나노튜브의 열화를 방지하고 고온고습에서 물흡착에 의한 면저항 증가를 최소화되는 것으 로 나타났다.4 is a view showing the sheet resistance change with time of the conductive coating film exposed to high temperature and humidity of 80 ℃, 90% relative humidity according to Example 1 of the present invention. As shown, in Example 1 of the present invention, the titanium oxide is uniformly coated on the surface of the carbon nanotubes, thereby minimizing the reduction of sheet resistance caused by the binder, preventing deterioration of the carbon nanotubes at high temperatures, and water adsorption at high temperature and high humidity. The increase in sheet resistance was found to be minimal.

이러한 티타늄옥사이드가 코팅된 탄소나노튜브를 이용한 전도성 코팅막은 전도성 코팅막에 광촉매 특성 등을 부여하여 초친수 특성 및 유기물 분해 특성을 구현할 수 있어, 김서림 방지 및 자가세정 분야 등에 활용할 수 있게 된다.Such a conductive coating film using titanium oxide coated carbon nanotubes can provide supercatalyst properties and organic material decomposition properties by imparting photocatalytic properties to the conductive coating film, which can be utilized in antifogging and self-cleaning fields.

< 실시예 2 >&Lt; Example 2 >

본 발명의 실시예 2로써, 티타늄옥사이드가 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 실시예 1과 동일한 방법으로 제조하였으며, 산화물 전구체를 티타늄 부톡사이드로 치환하여 수행하였다.As Example 2 of the present invention, a titanium oxide was coated in the same manner as in Example 1 of the conductive coating film using a carbon nanotube, was carried out by replacing the oxide precursor with titanium butoxide.

< 비교예 > <Comparative Example>

본 발명의 비교예로써, 금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막 제조기술의 실시예 1과 동일한 방법으로 제조하였으며, 금속산화물 전구체 안정제로 사용된 아세틸아세톤을 사용하지 않고 수행하였다.As a comparative example of the present invention, it was prepared in the same manner as in Example 1 of the conductive coating film production technology using a metal oxide-coated carbon nanotube, it was performed without using acetylacetone used as a metal oxide precursor stabilizer.

도 2b는 아세틸아세톤을 사용하지 않고 코팅된 코팅막의 표면 모폴로지를 나타내는 도로 탄소나노튜브 표면이 티타늄옥사이드로 균일하게 코팅되지 않은 것을 보여준다. 도 3에서 아세틸아세톤을 사용하지 않은 경우 350℃에서 탄소나노튜브의 열화에 의해 면저항이 급격히 증가하는 것으로 나타났고, 도 4에서 안정제를 사용하지 않은 경우, 내습특성이 크게 향상되지 않은 것으로 나타났다.Figure 2b shows that the road carbon nanotube surface showing the surface morphology of the coating film coated without using acetylacetone is not uniformly coated with titanium oxide. When acetylacetone is not used in FIG. 3, the sheet resistance is rapidly increased by deterioration of carbon nanotubes at 350 ° C., and in the case of not using a stabilizer, moisture resistance is not significantly improved.

따라서, 본 발명은 별도의 바인더를 첨가하지 않은 상태에서 탄소나노튜브의 기능화 과정없이, 탄소나노튜브 분산액을 제조하여 간단한 용액공정으로 금속 산화물 전구체의 안정화제와 탄소나노튜브 표면과의 소수성 상호작용에 의해 금속산화물을 균일하게 탄소나노튜브 표면에 코팅하여 제조할 수 있으며, 이를 기판 상면에 코팅하여 전도성 코팅막을 제조할 수 있게 된다. 이러한 전도성 코팅막은 투명도, 고온 내열 및 내습성을 향상시키고, 바인더에 의한 저항증가를 최소화함으로써 전도성이 증가하게 된다.Therefore, the present invention is to prepare a carbon nanotube dispersion without the addition of a separate binder, carbon nanotube dispersion process in a simple solution process to the hydrophobic interaction between the stabilizer of the metal oxide precursor and the surface of the carbon nanotubes The metal oxide may be uniformly coated on the surface of the carbon nanotubes, and then coated on the upper surface of the substrate to prepare a conductive coating film. Such a conductive coating film improves transparency, high temperature heat resistance and moisture resistance, and increases conductivity by minimizing resistance increase by a binder.

도 1 - 본 발명에 따른 금속산화물 코팅 메커니즘 개념도.1-conceptual diagram of a metal oxide coating mechanism according to the present invention.

도 2 - 본 발명에 따른 (a) 금속산화물이 코팅된 탄소나노튜브를 이용해 제조된 전도성 코팅막과 (b) 금속산화물이 균일하지 않게 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 전자현미경 사진을 나타낸 도.Fig. 2 shows an electron micrograph of a conductive coating film prepared using (a) a metal oxide coated carbon nanotube according to the present invention, and (b) a conductive coating film using a carbon nanotube coated unevenly with a metal oxide. .

도 3 - 본 발명에 따른 온도와 금속산화물 함량에 따른 면저항 변화를 나타낸 도.3 is a view showing a sheet resistance change according to the temperature and the metal oxide content according to the present invention.

도 4 - 본 발명에 따른 고온 고습에서 면저항 변화를 나타낸 도.4-a view showing a sheet resistance change at high temperature and high humidity in accordance with the present invention.

Claims (15)

탄소나노튜브와 분산용매를 혼합하여 분산시켜 탄소나노튜브 분산액을 제조하는 제1단계와;A first step of preparing a carbon nanotube dispersion by mixing and dispersing carbon nanotubes and a dispersion solvent; 상기 탄소나노튜브 분산액에 금속산화물 전구체와 안정제를 첨가하여, 안정화된 금속산화물 전구체와 탄소나노튜브 간의 소수성 상호인력에 의해 탄소나노튜브 표면에 금속산화물이 코팅된 탄소나노튜브 코팅액을 제조하는 제2단계와;A second step of preparing a carbon nanotube coating liquid coated with a metal oxide on the surface of the carbon nanotubes by adding a metal oxide precursor and a stabilizer to the carbon nanotube dispersion by a hydrophobic mutual attraction between the stabilized metal oxide precursor and the carbon nanotubes Wow; 상기 탄소나노튜브 코팅액을 기판 상에 도포하여 전도성 코팅막을 형성하는 제3단계;를 포함하여 이루어지는 것을 특징으로 하는 금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 제조방법.And a third step of forming the conductive coating film by applying the carbon nanotube coating solution on a substrate. 2. A method of manufacturing a conductive coating film using carbon nanotubes coated with metal oxides, the method comprising: 제 1항에 있어서, 상기 탄소나노튜브 코팅액에 포함된 금속산화물은,According to claim 1, The metal oxide contained in the carbon nanotube coating liquid, 탄소나노튜브와 금속산화물 100 중량부에 대해 30 내지 99 중량부인 것을 특징으로 하는 금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 제조방법.Method of producing a conductive coating film using a metal oxide coated carbon nanotubes, characterized in that 30 to 99 parts by weight based on 100 parts by weight of carbon nanotubes and metal oxides. 제 1항에 있어서, 상기 금속산화물 전구체는 사용되는 용매에 용해가 되는 것으로, 클로라이드 계열, 아세테이트 계열 및 할로겐화물 중 어느 하나 또는 둘 이상을 혼합하여 사용하는 것을 특징으로 하는 금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 제조방법.According to claim 1, The metal oxide precursor is dissolved in the solvent used, metal oxide coated carbon nano, characterized in that any one or two or more of the chloride-based, acetate-based and halides are used in combination Method for producing a conductive coating film using a tube. 제 3항에 있어서, 상기 금속산화물 전구체는 티타늄 테트라에톡사이드, 티타늄 테트라부톡사이드, 티타늄 테트라이소프로폴사이드로 이루어진 군으로부터 선택된 1종 이상으로 이루어지는 것으로, 상기 전도성 코팅막에 초친수성을 부여하는 것을 특징으로 하는 금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 제조방법.The method of claim 3, wherein the metal oxide precursor is one or more selected from the group consisting of titanium tetraethoxide, titanium tetrabutoxide, and titanium tetraisopropoxide, to impart superhydrophilicity to the conductive coating film. Method for producing a conductive coating film using a metal oxide coated carbon nanotubes. 제 1항에 있어서, 상기 금속산화물은,The method of claim 1, wherein the metal oxide, TiO2, SnO2, ZnO, MgO, V2O5, ZrO2, B2O3, Al2O3, Fe2O3, BaTiO3, WO3 및 NiO 중 하나 이상인 것을 특징으로 하는 금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 제조방법.Metal oxide, characterized in that at least one of TiO 2 , SnO 2 , ZnO, MgO, V 2 O 5 , ZrO 2 , B 2 O 3 , Al 2 O 3 , Fe 2 O 3 , BaTiO 3 , WO 3 and NiO Method for producing a conductive coating film using the coated carbon nanotubes. 제 1항에 있어서, 상기 탄소나노튜브 코팅액 제조시 첨가되는 안정제는,The stabilizer of claim 1, wherein the stabilizer is added when the carbon nanotube coating solution is prepared. 탄소나노튜브 100 중량부에 대해 0.5 내지 50 중량부로 첨가됨을 특징으로 하는 금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 제조방법.Method for producing a conductive coating film using a metal oxide coated carbon nanotubes, characterized in that added to 0.5 to 50 parts by weight based on 100 parts by weight of carbon nanotubes. 제 1항에 있어서, 상기 안정제는,The method of claim 1, wherein the stabilizer, 트리에탄올아민, 디에탄올아민, 아세틸아세톤, 디에틸렌글리콜, 아세트산, 트리플루오로아세트산로 이루어진 군으로부터 선택된 1종 이상으로 이루어진 것을 특징으로 하는 금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 제조방법.Triethanolamine, diethanolamine, acetylacetone, diethylene glycol, acetic acid, trifluoroacetic acid is a method for producing a conductive coating film using a metal oxide coated carbon nanotubes, characterized in that made of one or more selected from the group consisting of. 제 1항에 있어서, 상기 분산용매는,The method of claim 1, wherein the dispersion solvent, 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린 및 디메틸설폭사이드로 이루어진 군으로부터 선택된 1종 이상의 것임을 특징으로 하는 금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 제조방법.Acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone , Hexane, cyclohexanone, toluene, chloroform, distilled water, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, aniline, and dimethyl sulfoxide Method of producing a conductive coating film using a metal oxide coated carbon nanotubes characterized in that the above. 제1항에 있어서, 상기 기판은 유리, 수정, 글래스 웨이퍼, 실리콘 웨이퍼, 플라스틱으로 이루어진 군으로부터 선택된 1종으로 이루어진 것을 특징으로 하는 금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 제조방법.The method of claim 1, wherein the substrate is one selected from the group consisting of glass, quartz, glass wafers, silicon wafers, and plastics. 제1항에 있어서, 상기 전도성 코팅막은, 스프레이, 딥코팅, 스핀코팅, 스크린코팅, 잉크젯프린팅, 패드프린팅, 나이프코팅, 키스코팅 및 그라비아코팅 중에서 어느 하나의 방법에 의해 이루어지는 것을 특징으로 하는 금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 제조방법.The metal oxide of claim 1, wherein the conductive coating layer is formed by any one of spraying, dip coating, spin coating, screen coating, inkjet printing, pad printing, knife coating, key coating, and gravure coating. Method for producing a conductive coating film using the coated carbon nanotubes. 제 1항에 있어서, 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 이들의 혼합물 중에서 선택한 1종으로 이루어짐을 특징으로 하는 금속산화물이 코팅된 탄소나노튜브를 이용한 전도성 코팅막의 제조방법.According to claim 1, wherein the carbon nanotube is a metal oxide coated carbon nanotubes, characterized in that consisting of one selected from single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, and mixtures thereof. Method for producing a conductive coating film used. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020090104181A 2009-10-30 2009-10-30 manufacturing mathod of conductive coatings with metal oxide-wrapped carbon nanotubes and the conductive coatings thereby KR101147227B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090104181A KR101147227B1 (en) 2009-10-30 2009-10-30 manufacturing mathod of conductive coatings with metal oxide-wrapped carbon nanotubes and the conductive coatings thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090104181A KR101147227B1 (en) 2009-10-30 2009-10-30 manufacturing mathod of conductive coatings with metal oxide-wrapped carbon nanotubes and the conductive coatings thereby

Publications (2)

Publication Number Publication Date
KR20110047515A KR20110047515A (en) 2011-05-09
KR101147227B1 true KR101147227B1 (en) 2012-05-18

Family

ID=44238812

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090104181A KR101147227B1 (en) 2009-10-30 2009-10-30 manufacturing mathod of conductive coatings with metal oxide-wrapped carbon nanotubes and the conductive coatings thereby

Country Status (1)

Country Link
KR (1) KR101147227B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101463910B1 (en) * 2013-03-20 2014-11-26 주식회사 동희홀딩스 System for coating nano-carbon with oxide

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101380911B1 (en) * 2012-07-11 2014-04-02 (주)탑나노시스 Method for manufacturing carbon nano tube film with pattern
DE102013004611B4 (en) * 2013-03-14 2014-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Coating, process for its preparation and its use
KR101511205B1 (en) * 2013-11-05 2015-04-10 한국과학기술원 Carbon nanotube/metal oxide composite and preparing method of the same
CN109423197A (en) * 2017-06-28 2019-03-05 洛阳尖端技术研究院 A kind of ice-covering-proof film and preparation method thereof
CN111019462B (en) * 2019-12-27 2022-03-22 常州纳欧新材料科技有限公司 Polypropylene-oriented conductive primer and preparation method thereof
KR102464038B1 (en) * 2021-01-20 2022-11-04 세명대학교 산학협력단 Portable house using a container frame with carbon fiber plane heating function
KR102641286B1 (en) * 2021-01-20 2024-02-27 세명대학교 산학협력단 Keeping warm clothes with carbon fiber plane heating function

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100551229B1 (en) 2003-06-26 2006-02-10 주식회사 디피아이 솔루션스 Method of making organic transparent electrode for display
KR20060030591A (en) * 2004-10-06 2006-04-11 한국과학기술원 Fabrication method of nanocomposite powders consisted of carbon nanotubes with metal, the nanocomposite powders by the method, their application as emitter for field emission display
KR20080006232A (en) * 2006-07-11 2008-01-16 한국화학연구원 Coating method of titanium dioxide of a lower order on carbon nanotube
KR20080085368A (en) * 2007-03-19 2008-09-24 한국전자통신연구원 Method of fabrication for carbon nanotubes uniformly coated with titanium dioxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100551229B1 (en) 2003-06-26 2006-02-10 주식회사 디피아이 솔루션스 Method of making organic transparent electrode for display
KR20060030591A (en) * 2004-10-06 2006-04-11 한국과학기술원 Fabrication method of nanocomposite powders consisted of carbon nanotubes with metal, the nanocomposite powders by the method, their application as emitter for field emission display
KR20080006232A (en) * 2006-07-11 2008-01-16 한국화학연구원 Coating method of titanium dioxide of a lower order on carbon nanotube
KR20080085368A (en) * 2007-03-19 2008-09-24 한국전자통신연구원 Method of fabrication for carbon nanotubes uniformly coated with titanium dioxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101463910B1 (en) * 2013-03-20 2014-11-26 주식회사 동희홀딩스 System for coating nano-carbon with oxide

Also Published As

Publication number Publication date
KR20110047515A (en) 2011-05-09

Similar Documents

Publication Publication Date Title
KR101147227B1 (en) manufacturing mathod of conductive coatings with metal oxide-wrapped carbon nanotubes and the conductive coatings thereby
EP2253001B1 (en) Carbon nanotube-transparent conductive inorganic nanoparticles hybrid thin films for transparent conductive applications
US9960293B2 (en) Method for manufacturing a transparent conductive electrode using carbon nanotube films
KR101685210B1 (en) Electrically conductive complex and process for production thereof
US9972742B2 (en) Method for forming a transparent conductive film with metal nanowires having high linearity
KR101307303B1 (en) Transparent electroconductive thin film and process for producing the transparent electroconductive thin film
US20120145431A1 (en) Carbon nanotube conductive film and method for manufacturing same
KR101042001B1 (en) Conductive and superhydrophobic coatings, and its fabrication method
JP2008288189A (en) Method of forming transparent conductive film containing carbon nanotube and binder, and transparent conductive film formed thereby
JP2013545222A (en) Electrode substrate manufacturing method
EP3294543B1 (en) Carbon nanotube based hybrid films for mechanical reinforcement of multilayered, transparent-conductive, laminar stacks
JP6007669B2 (en) Metal oxide fine particle dispersion and transparent conductive film using the same
JP2012160290A (en) Method for producing conductive complex
KR20080107688A (en) Preparation of transparent conductive film composed of carbon nanotubes for display
KR20110071539A (en) Transparent conductors and method of preparing same
JP2011018542A (en) Transparent conductive base material and manufacturing method thereof
KR101128291B1 (en) Carbon nanotube conductive layer and the method for manufacturing the same
KR101091869B1 (en) Carbon nanotube conductive layer and the method for manufacturing the same
KR101097417B1 (en) Carbon nanotube conductive layer and the method for manufacturing the same
JPH09198926A (en) Conductive polymer composition and its manufacture
KR101162354B1 (en) Method for manufacturing a conductive film including CNT
KR20140081675A (en) Production method of composition for coating-type transparent film formation
KR101130235B1 (en) Transparent Conductors and Method of Preparing Same
JP2010165499A (en) Conjugated polymer coated conductive particulate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150427

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160510

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180503

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190507

Year of fee payment: 8