KR101064423B1 - Semiconductor device using carbon nanotube and method of manufacturing therof - Google Patents

Semiconductor device using carbon nanotube and method of manufacturing therof Download PDF

Info

Publication number
KR101064423B1
KR101064423B1 KR1020090026548A KR20090026548A KR101064423B1 KR 101064423 B1 KR101064423 B1 KR 101064423B1 KR 1020090026548 A KR1020090026548 A KR 1020090026548A KR 20090026548 A KR20090026548 A KR 20090026548A KR 101064423 B1 KR101064423 B1 KR 101064423B1
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
semiconductor device
containing material
hydroxide
manufacturing
Prior art date
Application number
KR1020090026548A
Other languages
Korean (ko)
Other versions
KR20100108078A (en
Inventor
김현재
허건의
이근우
김경민
정태훈
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020090026548A priority Critical patent/KR101064423B1/en
Publication of KR20100108078A publication Critical patent/KR20100108078A/en
Application granted granted Critical
Publication of KR101064423B1 publication Critical patent/KR101064423B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02606Nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geometry (AREA)
  • Thin Film Transistor (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 탄소 나노 튜브를 이용한 반도체 소자 및 그 제조방법에 관한 것으로, 기판과, 게이트 전극과, 게이트 절연층과, 소오스 및 드레인 전극과, 상기 소오스 및 드레인 전극과 접속하여 형성된 활성층을 포함하되, 상기 활성층은 수산화이온 함유 물질에 의해 표면 처리된 탄소 나노 튜브로 이루어지도록 함으로서, 탄소 나노 튜브에 대한 반도체 성질을 증가시킬 수 있는 효과가 있다.The present invention relates to a semiconductor device using carbon nanotubes and a method for manufacturing the same, including a substrate, a gate electrode, a gate insulating layer, a source and a drain electrode, and an active layer formed by connecting with the source and drain electrode, The active layer is made of carbon nanotubes surface-treated with a hydroxide ion-containing material, thereby increasing the semiconductor properties for the carbon nanotubes.

탄소나노튜브, 수산화나트륨, 표면처리 Carbon nanotube, sodium hydroxide, surface treatment

Description

탄소 나노 튜브를 이용한 반도체 소자 및 그 제조방법{SEMICONDUCTOR DEVICE USING CARBON NANOTUBE AND METHOD OF MANUFACTURING THEROF}Semiconductor device using carbon nanotube and manufacturing method thereof {SEMICONDUCTOR DEVICE USING CARBON NANOTUBE AND METHOD OF MANUFACTURING THEROF}

탄소 나노 튜브를 이용한 반도체 소자 및 그 제조방법에 관한 것으로, 보다 상세하게는 수산화나트륨을 이용하여 표면 처리함으로서 탄소 나노 튜브의 반도체 성질을 증가시킬 수 있는 탄소 나노 튜브를 이용한 반도체 소자 및 그 제조방법에 관한 것이다.The present invention relates to a semiconductor device using carbon nanotubes and a method of manufacturing the same, and more particularly to a semiconductor device using carbon nanotubes and a method of manufacturing the same, which can increase the semiconductor properties of carbon nanotubes by surface treatment using sodium hydroxide. It is about.

일반적으로, 박막트랜지스터(Thin Film Transistor; TFT) 등의 실리콘 반도체 소자는 MOS Scaling 등의 한계를 극복하기 위한 방법으로서 탄소 나노 튜브(Carbon nanotube) 등의 탄소 동위원소 물질이 이용되고 있다.In general, silicon semiconductor devices such as thin film transistors (TFTs) use carbon isotope materials such as carbon nanotubes as a method for overcoming limitations such as MOS scaling.

통상적으로, 탄소 나노 튜브는 예컨대, 전기적 또는 기계적 성질이 우수할 뿐만 아니라 반도체와 도체 성질을 다 가지고 있기 때문에 그 응용 범위가 매우 광범위하며, 저 비용 및 플렉시블(flexible) 소자의 제조가 용이하다는 장점이 있어 최근 많은 연구소에서 활발하게 연구되고 있다.Typically, carbon nanotubes, for example, have excellent electrical or mechanical properties, have both semiconductor and conductor properties, and thus have a wide range of applications, and are easy to manufacture low cost and flexible devices. Recently, many research institutes are actively researched.

하지만, 탄소 나노 튜브가 제품으로서의 가치를 인정받기 위해서는 스위치로서의 역할이 중요한데, 기존의 탄소 나노 튜브는 반도체와 금속의 성질을 동시에 함유하고 있어 반도체적인 적용이 어렵다는 문제점이 있다.However, in order for carbon nanotubes to be recognized as a product, a role as a switch is important. Conventional carbon nanotubes contain properties of semiconductor and metal at the same time, which makes it difficult to apply semiconductors.

본 발명은 전술한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 탄소 나노 튜브에 대한 반도체 성질을 증가시킴으로서 고 효율의 반도체 소자를 제조할 수 있는 탄소 나노 튜브를 이용한 반도체 소자 및 그 제조방법을 제공하는데 있다.The present invention has been made to solve the above-mentioned problems, an object of the present invention is to increase the semiconductor properties of the carbon nanotubes by using a semiconductor device using a carbon nanotube and a method for manufacturing a semiconductor device of high efficiency can be produced To provide.

전술한 목적을 달성하기 위하여 본 발명의 제1 측면은, 기판; 게이트 전극; 게이트 절연층; 소오스 및 드레인 전극; 및 상기 소오스 및 드레인 전극과 접속하여 형성된 활성층을 포함하되, 상기 활성층은 수산화이온 함유 물질에 의해 표면 처리된 탄소 나노 튜브로 이루어지는 것을 특징으로 하는 탄소 나노 튜브를 이용한 반도체 소자를 제공하는 것이다.In order to achieve the above object, a first aspect of the present invention, a substrate; A gate electrode; A gate insulating layer; Source and drain electrodes; And an active layer formed in contact with the source and drain electrodes, wherein the active layer is formed of carbon nanotubes surface-treated with a hydroxide ion-containing material.

여기서. 상기 탄소 나노 튜브는 SWNT(Single-Walled carbon Nanotube) 또는 MWNT(Multi-Walled carbon Nanotube)로 이루어지는 것이 바람직하다.here. The carbon nanotubes are preferably made of Single-Walled Carbon Nanotube (SWNT) or Multi-Walled Carbon Nanotube (MWNT).

바람직하게는, 수산화이온 함유 물질은 수산화나트륨(NaOH), 수산화바륨(Ba(OH)2), 수산화철(Fe(OH)3) 또는 수산화칼륨(KOH) 중 선택된 어느 하나의 물질 또는 이들 물질의 혼합물일 수 있다.Preferably, the hydroxide ion-containing material is any one selected from sodium hydroxide (NaOH), barium hydroxide (Ba (OH) 2 ), iron hydroxide (Fe (OH) 3 ) or potassium hydroxide (KOH) or a mixture of these materials. Can be.

본 발명의 제2 측면은, (a) 기판 상에 게이트 전극, 게이트 절연층, 소오스 전극 및 드레인 전극을 형성하는 단계; 및 (b) 상기 소오스 및 드레인 전극과 접속하여 활성층을 형성하는 단계를 포함하되, 상기 활성층은 수산화이온 함유 물질에 의해 표면 처리된 탄소 나노 튜브로 이루어지는 것을 특징으로 하는 탄소 나노 튜브를 이용한 반도체 소자의 제조방법을 제공하는 것이다.A second aspect of the invention includes the steps of (a) forming a gate electrode, a gate insulating layer, a source electrode and a drain electrode on a substrate; And (b) contacting the source and drain electrodes to form an active layer, wherein the active layer is formed of carbon nanotubes surface-treated with a hydroxide ion-containing material. It is to provide a manufacturing method.

여기서, 상기 탄소 동위원소 물질의 표면처리는, (a') 수산화이온 함유 물질이 혼합된 용액을 이용하여 탄소 나노 튜브를 표면처리하는 단계; (b') 세정용액을 이용하여 상기 수산화이온 함유 물질이 함유된 용액을 제거하는 단계; 및 (c') 상기 표면 처리된 탄소 나노 튜브를 건조하여 상기 세정용액을 제거하는 단계를 포함하는 것이 바람직하다.The surface treatment of the carbon isotope material may include: (a ') surface treating the carbon nanotubes using a solution containing a hydroxide ion-containing material; (b ') removing the solution containing the hydroxide ion-containing material by using a cleaning solution; And (c ') removing the cleaning solution by drying the surface treated carbon nanotubes.

바람직하게는, 수산화이온 함유 물질이 혼합된 용액은 상기 수산화이온 함유 물질 및 에탄올 또는 탈이온수(D.I water)를 포함하는 극성용매를 혼합하여 형성할 수 있다.Preferably, the solution in which the hydroxide ion-containing material is mixed may be formed by mixing a polar solvent including the hydroxide-ion-containing material and ethanol or deionized water (D.I water).

바람직하게는, 상기 세정용액은 탈이온수(D.I water)일 수 있다.Preferably, the washing solution may be deionized water (D.I water).

바람직하게는, 상기 소오스 및 드레인 전극과 접속하여 상기 표면 처리된 탄소 나노 튜브로 이루어진 활성층을 형성하는 방법은, 스핀코팅, 나노 임프란트 또는 잉크젯 방법 중 선택된 어느 하나의 방법을 이용할 수 있다.Preferably, the method for forming an active layer made of the surface-treated carbon nanotubes by connecting to the source and drain electrodes may use any one selected from spin coating, nanoimplant, and inkjet methods.

이상에서 설명한 바와 같은 본 발명의 탄소 나노 튜브를 이용한 반도체 소자 및 그 제조방법에 따르면, 수산화이온 함유 물질을 이용하여 탄소 나노 튜브를 표면처리 함으로서 탄소 나노 튜브를 이용하여 제조된 반도체 소자의 효율을 향상시킬 수 있는 이점이 있다.According to the semiconductor device using the carbon nanotubes and the method of manufacturing the same as described above, the surface treatment of the carbon nanotubes using a hydroxide-containing material to improve the efficiency of the semiconductor device manufactured using the carbon nanotubes There is an advantage to this.

이하, 첨부 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. 그러나, 다음에 예시하는 본 발명의 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되어지는 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the following embodiments of the present invention may be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. The embodiments of the present invention are provided to enable those skilled in the art to more fully understand the present invention.

도 1은 본 발명의 일 실시예에 적용된 탄소 나노 튜브의 표면처리방법을 설명하기 위한 순서도이다.1 is a flowchart illustrating a surface treatment method of a carbon nanotube applied to an embodiment of the present invention.

도 1을 참조하면, 먼저, 수산화이온 함유 물질이 혼합된 용액을 이용하여 탄소 나노 튜브를 표면 처리한다(S110).Referring to FIG. 1, first, a surface of a carbon nanotube is surface treated using a solution containing a hydroxide ion-containing material (S110).

통상적으로 탄소 나노 튜브는 예컨대, 전기적 또는 기계적 성질이 우수할 뿐만 아니라 반도체와 도체 성질을 다 가지고 있기 때문에 그 응용 범위가 매우 광범위한데, 본 발명의 일 실시예에 적용할 수 있는 탄소 나노 튜브로는 예컨대, SWNT(Single-Walled carbon Nanotube), MWNT(Multi-Walled carbon Nanotube) 등을 이용할 수 있으며, 이에 국한하지는 않는다.In general, carbon nanotubes have a wide range of applications, for example, because they not only have excellent electrical or mechanical properties but also have both semiconductor and conductor properties, and can be applied to one embodiment of the present invention. For example, a single-walled carbon nanotube (SWNT), a multi-walled carbon nanotube (MWNT), or the like may be used, but is not limited thereto.

또한, 수산화이온 함유 물질은 예컨대, 수산화나트륨(NaOH), 수산화바륨(Ba(OH)2), 수산화철(Fe(OH)3) 또는 수산화칼륨(KOH) 등을 이용할 수 있는데, 탄소 나노 튜브를 표면처리하기 위해서, 예컨대, 에탄올 또는 탈이온수(Deionized water; D.I water) 등을 포함하는 극성용매와 혼합하여 수산화이온 함유 물질이 혼합된 용액을 형성할 수 있다.In addition, as the hydroxide ion-containing material, for example, sodium hydroxide (NaOH), barium hydroxide (Ba (OH) 2 ), iron hydroxide (Fe (OH) 3 ), or potassium hydroxide (KOH) may be used. For treatment, a solution containing a mixture of hydroxide ions may be formed by mixing with a polar solvent including, for example, ethanol or deionized water (DI water) or the like.

이후, 상기와 같이 형성된 수산화이온 함유 물질이 혼합된 용액에 상기 탄소 나노 튜브를 혼합(예컨대, 침지(浸漬))함으로서, 탄소 나노 튜브를 표면처리 할 수 있게 된다.Thereafter, the carbon nanotubes may be surface-treated by mixing (eg, immersing) the carbon nanotubes in a solution in which the hydroxide ion-containing material formed as described above is mixed.

이어서, 탄소 나노 튜브에 대한 표면처리가 완료되면(예컨대, 수산화이온 함유 물질이 혼합된 용액과 상기 탄소 나노 튜브의 혼합에 의한 기포의 발생이 더 이상 진행되지 않을 경우), 예컨대, 탈이온수(D.I water) 등의 세정용액을 이용하여 수산화이온 함유 물질을 제거한다(S120).Subsequently, when the surface treatment of the carbon nanotubes is completed (for example, the generation of air bubbles due to the mixing of the solution containing the hydroxide ion-containing material and the carbon nanotubes no longer proceeds), for example, deionized water (DI Using a cleaning solution such as water) to remove the hydroxide ion-containing material (S120).

이때, 탄소 나노 튜브에 잔존하는 수산화이온 함유 물질을 완전히 제거하기 위하여 세정용액을 통해 여러 회 반복적으로 씻어주는 것이 바람직하다. In this case, in order to completely remove the hydroxide ion-containing substance remaining in the carbon nanotubes, it is preferable to repeatedly wash the cleaning solution several times.

마지막으로, 탄소 나노 튜브로부터 수산화이온 함유 물질이 제거되면, 탄소 나노 튜브에 잔존하는 세정용액을 제거한다(S130).Finally, when the hydroxide ion-containing material is removed from the carbon nanotubes, the cleaning solution remaining in the carbon nanotubes is removed (S130).

이때, 탄소 나노 튜브를 예컨대, 약 50 내지 70 ℃의 온도로 약 24시간 이상 가열하게 되면 세정용액을 증발시켜 제거할 수 있게 된다.In this case, when the carbon nanotubes are heated to a temperature of, for example, about 50 to 70 ° C. or more for about 24 hours, the cleaning solution may be removed by evaporation.

한편, 탄소 나노 튜브에 잔존하는 세정용액을 완전히 제거하기 위하여, 예컨 대, 에탄올 등을 이용하는 것도 가능한데, 이에 국한하지는 않으며, 이외에도 다양한 건조방식을 이용하는 것도 가능하다.Meanwhile, in order to completely remove the cleaning solution remaining in the carbon nanotubes, for example, ethanol or the like may be used, but is not limited thereto. In addition, various drying methods may be used.

이러한 일련의 과정을 거처 탄소 나노 튜브를 표면처리 하게 되면, 예컨대, 탄소 나노 튜브를 이용하여 반도체 소자(예컨대, 박막트랜지스터 등)를 형성하는 경우, 예컨대, MOS Scaling의 한계를 극복할 수 있으며, 반도체로서의 성질을 강화시킴으로서 소형화 및 고 효율화를 구현하는 것이 가능하게 할 수 있다.When the surface of the carbon nanotubes is subjected to such a series of processes, for example, when forming a semiconductor device (eg, a thin film transistor) using the carbon nanotubes, for example, the limitation of MOS scaling can be overcome. It is possible to realize miniaturization and high efficiency by strengthening the properties.

도 2는 본 발명의 일 실시예에 따른 탄소 나노 튜브를 이용한 반도체 소자를 설명하기 위한 사시도로서, 바텀 게이트 구조를 적용하여 설명하였지만, 이에 국한되지는 않으며, 이외에도 탑 게이트 구조 등 다양한 형태로 적용되는 것도 가능하다. FIG. 2 is a perspective view illustrating a semiconductor device using carbon nanotubes according to an embodiment of the present invention. Although the bottom gate structure is applied to the semiconductor device, the present invention is not limited thereto. It is also possible.

도 2를 참조하면, 본 발명의 일 실시예에 따른 반도체 소자는 기판(200), 게이트 전극(210), 게이트 절연층(220), 소오스 전극(230), 드레인 전극(230') 및 활성층(240)을 포함한다.2, a semiconductor device according to an embodiment of the present invention may include a substrate 200, a gate electrode 210, a gate insulating layer 220, a source electrode 230, a drain electrode 230 ′, and an active layer ( 240).

기판(200)은 예컨대, 유리, 플라스틱, 실리콘 또는 합성수지와 같은 절연성을 띠는 재질로 형성될 수 있는데, 이에 국한되지는 않는다.The substrate 200 may be formed of an insulating material such as, for example, glass, plastic, silicon, or synthetic resin, but is not limited thereto.

게이트 전극(210)은 기판(200) 상에 형성되며, 투명성을 띠는 도전성 금속, 예컨대 ITO(indium tin oxide), IZO(indium zinc oxide), ITZO(indium tin zinc oxide), GZO(gallium zinc oxide) 또는 반투명 메탈 중 어느 하나의 금속을 통해 형성될 수 있다.The gate electrode 210 is formed on the substrate 200, and has a transparent conductive metal such as indium tin oxide (ITO), indium zinc oxide (IZO), indium tin zinc oxide (ITZO), and gallium zinc oxide (GZO). ) Or translucent metal.

게이트 절연층(220)은 게이트 전극(210)을 포함한 기판(200) 상에 형성되며, 예컨대, 산화막, 질화막 또는 투명 절연성 재료를 이용하여 형성될 수 있는데, 이에 국한되지는 않는다.The gate insulating layer 220 is formed on the substrate 200 including the gate electrode 210, and may be formed using, for example, an oxide film, a nitride film, or a transparent insulating material, but is not limited thereto.

소오스 및 드레인 전극(230 및 230')은 게이트 절연층(220) 상부의 일정영역에 형성되며, 활성층(240)은 소오스 및 드레인 전극(230 및 230')과 접속하여 형성된다.The source and drain electrodes 230 and 230 'are formed in a predetermined region above the gate insulating layer 220, and the active layer 240 is formed by connecting to the source and drain electrodes 230 and 230'.

이때, 활성층(240)은 예컨대, 수산화이온 함유 물질에 의해 표면 처리된 탄소 나노 튜브로 이루어지는 것이 바람직하다.In this case, the active layer 240 is preferably made of, for example, carbon nanotubes surface-treated with a hydroxide ion-containing material.

통상적으로 탄소 나노 튜브는 예컨대, 전기적 또는 기계적 성질이 우수할 뿐만 아니라 반도체와 도체 성질을 다 가지고 있기 때문에 그 응용 범위가 매우 광범위한데, 활성층으로서 수산화이온 함유 물질에 의해 표면 처리된 탄소 나노 튜브가 이용되는 경우, 전술한 바와 같이, MOS Scaling의 한계를 극복할 수 있으며, 반도체로서의 성질을 강화시킴으로서 소형화 및 고 효율화를 구현하는 것이 가능하게 된다.Typically, carbon nanotubes have a wide range of applications, for example, because they have excellent electrical or mechanical properties as well as semiconductor and conductor properties. Carbon nanotubes surface-treated with hydroxide ion-containing materials as active layers are used. In this case, as described above, it is possible to overcome the limitations of MOS scaling, and it is possible to realize miniaturization and high efficiency by enhancing properties as a semiconductor.

한편, 본 발명의 일 실시예에 적용될 수 있는 탄소 나노 튜브로는 예컨대, SWNT(Single-Walled carbon Nanotube), MWNT(Multi-Walled carbon Nanotube) 등이 있으며, 이에 국한되지는 않는다.On the other hand, carbon nanotubes that can be applied to one embodiment of the present invention, for example, Single-Walled carbon Nanotube (SWNT), Multi-Walled carbon Nanotube (MWNT) and the like, but is not limited thereto.

또한, 수산화이온 함유 물질은 예컨대, 수산화나트륨(NaOH), 수산화바륨(Ba(OH)2), 수산화철(Fe(OH)3) 또는 수산화칼륨(KOH) 등이 이용될 수 있다.In addition, for example, sodium hydroxide (NaOH), barium hydroxide (Ba (OH) 2 ), iron hydroxide (Fe (OH) 3 ), potassium hydroxide (KOH), or the like may be used.

이하, 도 2를 참조하여 본 발명의 일 실시예에 따른 탄소 나노 튜브를 이용한 반도체 소자의 제조방법을 바텀 게이트 구조를 일예로 하여 설명한다. 물론, 바텀 게이트 구조이외에도 탑 게이트 구조 등 다양한 형태로 적용하는 것도 가능하다. Hereinafter, a method of manufacturing a semiconductor device using carbon nanotubes according to an embodiment of the present invention will be described with reference to FIG. 2 as a bottom gate structure. Of course, in addition to the bottom gate structure, it is also possible to apply in various forms such as a top gate structure.

도 2를 참조하면, 기판(200) 상에 게이트 전극(210)을 형성한다.Referring to FIG. 2, a gate electrode 210 is formed on the substrate 200.

여기서, 게이트 전극(210)은 기판(200) 상에 투명성을 띠는 도전성 금속, 예컨대 ITO(indium tin oxide), IZO(indium zinc oxide), ITZO(indium tin zinc oxide), GZO(gallium zinc oxide) 또는 반투명 메탈 중 어느 하나의 금속을 예컨대, 스퍼텅링(Sputtering) 등에 의해 증착한 뒤, 이를 소정 형상으로 패터닝하여 형성할 수 있는데, 이에 국한하지는 않는다.Here, the gate electrode 210 is a conductive metal having transparency on the substrate 200, such as indium tin oxide (ITO), indium zinc oxide (IZO), indium tin zinc oxide (ITZO), and gallium zinc oxide (GZO). Alternatively, any one of the translucent metals may be formed by depositing a metal by, for example, sputtering or the like, and then patterning the metal into a predetermined shape, but is not limited thereto.

또한, 기판(200)은 예컨대, 유리, 플라스틱, 실리콘 또는 합성수지와 같은 절연성을 띠는 재질로 형성할 수 있는데, 이에 국한하지는 않는다.In addition, the substrate 200 may be formed of an insulating material such as, for example, glass, plastic, silicon, or synthetic resin, but is not limited thereto.

이어서, 게이트 전극(210)을 포함한 기판(200) 상에 게이트 절연층(220)을 형성한다.Subsequently, a gate insulating layer 220 is formed on the substrate 200 including the gate electrode 210.

게이트 절연층(220)은 예컨대, 산화막, 질화막 또는 투명 절연성 재료를 예컨대, PECVD(plasma Enhanced Chemical Vapor Deposition) 법 등으로 증착하여 형성할 수 있는데, 이에 국한하지는 않는다.The gate insulating layer 220 may be formed by, for example, depositing an oxide film, a nitride film, or a transparent insulating material by, for example, a plasma enhanced chemical vapor deposition (PECVD) method, but is not limited thereto.

이어서, 게이트 절연층(220) 상부의 일정영역에 소오스 전극 및 드레인 전극(230 및 230')을 형성한다.  Subsequently, source and drain electrodes 230 and 230 ′ are formed in a predetermined region above the gate insulating layer 220.

마지막으로, 소오스 및 드레인 전극(230 및 230')과 접속하도록 탄소 나노 튜브를 증착하여 활성층(240)을 형성한다.Finally, carbon nanotubes are deposited to contact the source and drain electrodes 230 and 230 'to form the active layer 240.

이때, 탄소 나노 튜브는 예컨대, 수산화이온 혼합 물질을 통해 표면 처리되는 것이 바람직한데, 탄소 나노 튜브에 대한 표면처리 방법은 전술한 도 1을 통해 상세하게 설명하였다.In this case, the carbon nanotubes are preferably surface-treated through, for example, a hydroxide ion mixed material. The surface treatment method for the carbon nanotubes has been described in detail with reference to FIG. 1.

여기서, 이용 가능한 탄소 나노 튜브는 예컨대, SWNT(Single-Walled carbon Nanotube), MWNT(Multi-Walled carbon Nanotube) 등을 이용할 수 있으며, 이에 국한하지는 않는다.Here, the available carbon nanotubes may include, for example, single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes (MWNTs), and the like, but is not limited thereto.

또한, 수산화이온 함유 물질은 예컨대, 수산화나트륨(NaOH), 수산화바륨(Ba(OH)2), 수산화철(Fe(OH)3) 또는 수산화칼륨(KOH) 등을 이용할 수 있다.In addition, for example, sodium hydroxide (NaOH), barium hydroxide (Ba (OH) 2 ), iron hydroxide (Fe (OH) 3 ), potassium hydroxide (KOH), and the like can be used.

한편, 탄소 나노 튜브를 증착하여 활성층(240)을 형성하는 방법으로는, 예컨대, 스핀코팅, 나노 임프란트 또는 잉크젯 방식 등을 이용하여 증착하는 것이 가능하다.Meanwhile, as a method of forming the active layer 240 by depositing carbon nanotubes, it is possible to deposit using, for example, spin coating, nano implant, or inkjet method.

예컨대, 스핀코팅을 이용하는 경우, 탄소 나노 튜브를 예컨대, N,N-Dimethylformamide(DMF)에 dipsersion을 시켜줄 수 있는데. 이때의 DMF를 가열하기 위한 온도는 약 200 내지 250 ℃로 하는 것이 바람직하다.For example, when spin coating is used, carbon nanotubes can be subjected to dipsersion in, for example, N, N-dimethylformamide (DMF). It is preferable to make temperature for heating DMF at this time about 200-250 degreeC.

또한, 예컨대, 소오스 및 드레인 전극(230 및 230')의 간격이 넓은 경우 예컨대, 약 10 ㎛ 이상일 경우에는 탄소 나노 튜브를 랜덤 네트워크를 이루어 형성하는 것도 가능한데, 이에 국한하지는 않는다.For example, when the gap between the source and drain electrodes 230 and 230 ′ is wide, for example, about 10 μm or more, carbon nanotubes may be formed in a random network, but is not limited thereto.

<실험 예><Experimental Example>

도 3 및 도 4는 본 발명의 일 실시예에 적용된 탄소 나노 튜브의 표면 처리 유무에 따른 반도체 소자의 특성을 나타내는 그래프로서, 이때, 사용된 탄소 나노 튜브는 SWNT를 사용하였으며, 탄소 나노 튜브는 수산화이온 함유 물질 중 수산화 나트륨(NaOH)을 이용하여 표면 처리하였다.3 and 4 are graphs showing the characteristics of the semiconductor device according to the surface treatment of the carbon nanotubes applied to an embodiment of the present invention, wherein the carbon nanotubes used were SWNTs, and the carbon nanotubes were hydroxylated. It was surface treated with sodium hydroxide (NaOH) in the ion containing material.

여기서, 도 3은 표면 처리를 하지 않은 탄소 나노 튜브를 이용한 반도체 소자의 특성을 나타내는 그래프이며, 도 4는 표면 처리된 탄소 나노 튜브를 이용한 반도체 소자의 특성을 타나내는 그래프이다.Here, FIG. 3 is a graph showing the characteristics of the semiconductor device using the carbon nanotubes without surface treatment, and FIG. 4 is a graph showing the properties of the semiconductor device using the carbon nanotubes treated with the surface.

도 3을 참조하면, 탄소 나노 튜브는 P형의 반도체 특성을 나타내는데, 양방향의 Bias에서는 높은 누설전류를 보이고 있으며, On current와 Off current의 비율이 예컨대, 약 5 정도로 스위치 소자로서의 역할을 수행하기가 어렵다는 것을 알 수 있다.Referring to FIG. 3, the carbon nanotubes exhibit P-type semiconductor characteristics, and show high leakage currents in bi-directional biases, and the ratio of on current and off current is about 5, for example, to serve as a switch element. It is difficult to see.

도 4를 참조하면, 전술한 도 3의 경우에서 보다 누설전류가 안정적이며, Transfer curve에서 드레인-소오스 전압이 예컨대, -1 V일 때, 약 103 정도의 높은 스위치 소자로서의 역할을 보여주고 있으며, 표면 처리를 했을 경우 보다 높은 효율을 나타내고 있음을 알 수 있다.Referring to FIG. 4, the leakage current is more stable than in the case of FIG. 3, and when the drain-source voltage is, for example, −1 V, a role of a high switching element of about 10 3 is shown in the transfer curve. When surface treatment is carried out, it turns out that higher efficiency is shown.

도 5 및 도 6은 본 발명의 일 실시 예에 적용된 탄소 나노 튜브의 표면 처리 유무에 따른 라만 피크(Raman peak)를 나타내는 그래프로서, 이때, 사용된 탄소 나노 튜브는 SWNT를 사용하였으며, 탄소 나노 튜브는 수산화이온 함유 물질 중 수산화나트륨(NaOH)을 이용하여 표면 처리하였다.5 and 6 are graphs showing a Raman peak according to the surface treatment of carbon nanotubes applied to an embodiment of the present invention. In this case, the carbon nanotubes used were SWNTs and the carbon nanotubes. Was surface treated with sodium hydroxide (NaOH) in the hydroxide ion-containing material.

여기서, 도 5는 100 내지 240Cm-1(R band) 범위에서의 라만 피크(Raman peak)를 나타내는 그래프이며, 도 6은 1400 내지 1700Cm-1(G band) 범위에서의 라만 피크(Raman peak)를 나타내는 그래프이다.5 is a graph showing a Raman peak in the range of 100 to 240 Cm-1 (R band), and FIG. 6 illustrates a Raman peak in the range of 1400 to 1700 Cm-1 (G band). It is a graph.

도 5를 참조하면, 탄소 나노 튜브에 대한 표면 처리를 하지 않았을 경우(그래프 상의 '(a)') 약 180Cm-1의 부근에서 피크(peak)가 관찰되었지만, 표면 처리를 하였을 경우(그래프 상의 '(b)')에는 이러한 피크(peak)가 관찰되지 않는다.Referring to FIG. 5, when no surface treatment was performed on the carbon nanotubes ('(a)' on the graph), a peak was observed around 180 cm −1, but when the surface treatment was performed (' This peak is not observed in (b) ').

이에 따라, 예컨대, 수산화나트륨(NaOH) 등으로 표면을 처리할 경우, 탄소 나노 튜브의 금속성이 감소함을 알 수 있다.Accordingly, when the surface is treated with, for example, sodium hydroxide (NaOH) or the like, it can be seen that the metallicity of the carbon nanotubes is reduced.

도 6을 참조하면, 탄소 나노 튜브에 대한 표면처리를 하였을 경우(그래프 상의 '(b')')가 표면 처리를 하지 않았을 경우(그래프 상의 '(a')')보다 피크(peak)의 폭이 더 좁은 것을 확인 할 수 있다.Referring to FIG. 6, the surface width of the carbon nanotube ('(b') 'on the graph) is greater than the width of the peak (' (a ')' on the graph). You can see that this is narrower.

이에 따라, 예컨대, 수산화나트륨(NaOH) 등으로 표면을 처리할 경우, 탄소 나노 튜브의 금속성이 감소함을 알 수 있다.Accordingly, when the surface is treated with, for example, sodium hydroxide (NaOH) or the like, it can be seen that the metallicity of the carbon nanotubes is reduced.

전술한 본 발명에 따른 탄소 나노 튜브를 이용한 반도체 소자 및 그 제조방법에 대한 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가 지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명에 속한다.Although a preferred embodiment of the semiconductor device using the carbon nanotube according to the present invention and a method of manufacturing the same have been described above, the present invention is not limited thereto, but the scope of the claims and the detailed description of the invention and the accompanying drawings. It is possible to carry out various modifications and this also belongs to the present invention.

도 1은 본 발명의 일 실시예에 적용된 탄소 나노 튜브의 표면처리방법을 설명하기 위한 순서도이다.1 is a flowchart illustrating a surface treatment method of a carbon nanotube applied to an embodiment of the present invention.

도 2는 본 발명의 일 실시예에 따른 탄소 나노 튜브를 이용한 반도체 소자를 설명하기 위한 사시도이다.2 is a perspective view illustrating a semiconductor device using carbon nanotubes according to an embodiment of the present invention.

도 3 및 도 4는 본 발명의 일 실시예에 적용된 탄소 나노 튜브의 표면 처리 유무에 따른 반도체 소자의 특성을 나타내는 그래프이다.3 and 4 are graphs showing the characteristics of the semiconductor device according to the presence or absence of the surface treatment of the carbon nanotubes applied to an embodiment of the present invention.

도 5 및 도 6은 본 발명의 일 실시 예에 적용된 탄소 나노 튜브의 표면 처리 유무에 따른 라만 피크(Raman peak)를 나타내는 그래프이다.5 and 6 are graphs showing Raman peaks depending on the presence or absence of surface treatment of carbon nanotubes applied to an embodiment of the present invention.

Claims (8)

삭제delete 삭제delete 삭제delete (a) 기판 상에 게이트 전극, 게이트 절연층, 소오스 전극 및 드레인 전극을 형성하는 단계; 및(a) forming a gate electrode, a gate insulating layer, a source electrode and a drain electrode on the substrate; And (b) 상기 소오스 및 드레인 전극과 접속하여 활성층을 형성하는 단계를 포함하되,(b) contacting the source and drain electrodes to form an active layer, 상기 활성층은 수산화이온 함유 물질에 의해 표면 처리된 탄소 나노 튜브로 이루어지되,The active layer is made of carbon nanotubes surface-treated with a hydroxide ion-containing material, 상기 탄소 나노 튜브의 표면처리는,Surface treatment of the carbon nanotubes, (a') 수산화이온 함유 물질이 혼합된 용액을 이용하여 탄소 나노 튜브를 표면처리하는 단계;(a ') surface treating the carbon nanotubes using a solution containing a hydroxide ion-containing material; (b') 세정용액을 이용하여 상기 수산화이온 함유 물질이 혼합된 용액을 제거하는 단계; 및(b ') removing the solution containing the hydroxide ion-containing material by using a cleaning solution; And (c') 상기 표면 처리된 탄소 나노 튜브를 건조하여 상기 세정용액을 제거하는 단계를 포함하는 것을 특징으로 하는 탄소 나노 튜브를 이용한 반도체 소자의 제조방법.(c ') manufacturing the semiconductor device using the carbon nanotubes, comprising drying the surface-treated carbon nanotubes to remove the cleaning solution. 삭제delete 제4 항에 있어서,5. The method of claim 4, 수산화이온 함유 물질이 혼합된 용액은 상기 수산화이온 함유 물질 및 에탄올 또는 탈이온수(D.I water)를 포함하는 극성용매를 혼합하여 형성하는 것을 특징으로 하는 탄소 나노 튜브를 이용한 반도체 소자의 제조방법.A solution in which a hydroxide ion-containing material is mixed is formed by mixing a polar solvent containing the hydroxide-ion-containing material and ethanol or deionized water (D.I water). 제4 항에 있어서,5. The method of claim 4, 상기 세정용액은 탈이온수(D.I water)인 것을 특징으로 하는 탄소 나노 튜브를 이용한 반도체 소자의 제조방법.The cleaning solution is a method of manufacturing a semiconductor device using carbon nanotubes, characterized in that the deionized water (D.I water). 제4 항에 있어서,5. The method of claim 4, 상기 소오스 및 드레인 전극과 접속하여 상기 표면 처리된 탄소 나노 튜브로 이루어진 활성층을 형성하는 방법은, 스핀코팅, 나노 임프란트 또는 잉크젯 방법 중 선택된 어느 하나의 방법을 이용하는 것을 특징으로 하는 탄소 나노 튜브를 이용한 반도체 소자의 제조방법.The method of forming an active layer made of the surface-treated carbon nanotubes by connecting to the source and drain electrodes may use any one selected from spin coating, nanoimplant, and inkjet methods. Method of manufacturing the device.
KR1020090026548A 2009-03-27 2009-03-27 Semiconductor device using carbon nanotube and method of manufacturing therof KR101064423B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090026548A KR101064423B1 (en) 2009-03-27 2009-03-27 Semiconductor device using carbon nanotube and method of manufacturing therof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090026548A KR101064423B1 (en) 2009-03-27 2009-03-27 Semiconductor device using carbon nanotube and method of manufacturing therof

Publications (2)

Publication Number Publication Date
KR20100108078A KR20100108078A (en) 2010-10-06
KR101064423B1 true KR101064423B1 (en) 2011-09-14

Family

ID=43129706

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090026548A KR101064423B1 (en) 2009-03-27 2009-03-27 Semiconductor device using carbon nanotube and method of manufacturing therof

Country Status (1)

Country Link
KR (1) KR101064423B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060025533A (en) * 2003-07-25 2006-03-21 후지제롯쿠스 가부시끼가이샤 Electronic element, integrated circuit and process for fabricating the same
US20060145194A1 (en) * 2002-11-19 2006-07-06 William Marsh Rice University Method for creating a functional interface between a nanoparticle, nanotube or nanowire, and a biological molecule or system
KR20080069897A (en) * 2007-01-24 2008-07-29 삼성에스디아이 주식회사 Carbon nanofiber for fuel cell, nanocomposite comprising the same, method for making the composite, and fuel cell using the composite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060145194A1 (en) * 2002-11-19 2006-07-06 William Marsh Rice University Method for creating a functional interface between a nanoparticle, nanotube or nanowire, and a biological molecule or system
KR20060025533A (en) * 2003-07-25 2006-03-21 후지제롯쿠스 가부시끼가이샤 Electronic element, integrated circuit and process for fabricating the same
KR20080069897A (en) * 2007-01-24 2008-07-29 삼성에스디아이 주식회사 Carbon nanofiber for fuel cell, nanocomposite comprising the same, method for making the composite, and fuel cell using the composite

Also Published As

Publication number Publication date
KR20100108078A (en) 2010-10-06

Similar Documents

Publication Publication Date Title
Si et al. Scalable preparation of high-density semiconducting carbon nanotube arrays for high-performance field-effect transistors
Jo et al. High-mobility and hysteresis-free flexible oxide thin-film transistors and circuits by using bilayer sol–gel gate dielectrics
Xu et al. Facile and environmentally friendly solution-processed aluminum oxide dielectric for low-temperature, high-performance oxide thin-film transistors
Ji et al. Flexible organic memory devices with multilayer graphene electrodes
Chae et al. Carbon nanotubes and graphene towards soft electronics
Kwon et al. Improvement in negative bias stress stability of solution-processed amorphous In–Ga–Zn–O thin-film transistors using hydrogen peroxide
Wang et al. Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors
Zhang et al. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits
Kim et al. Transparent and flexible graphene charge-trap memory
Lee et al. Modification of electronic properties of graphene with self-assembled monolayers
Han et al. Energy-band engineering for tunable memory characteristics through controlled doping of reduced graphene oxide
JP5132053B2 (en) Method for producing organic thin film transistor
Jang et al. Graphene–graphene oxide floating gate transistor memory
CN106816411A (en) The manufacture method of transistor
Rosales-Gallegos et al. Flexible rewritable organic memory devices using nitrogen-doped CNTs/PEDOT: PSS composites
JP2014143430A (en) Surface treated substrates for top gate organic thin film transistors
Yun et al. Contact resistance between pentacene and indium–tin oxide (ITO) electrode with surface treatment
JP4661065B2 (en) Complementary organic semiconductor device
KR20140081249A (en) Oxide Thin-Film Transistor Comprising Self-Assembly Monolayer and Method for Preparation thereof
US10418490B2 (en) Field effect transistor and manufacturing method thereof
CN108735820B (en) Carbon nanotube thin film transistor with photoresist as gate insulating layer and manufacturing and application thereof
JP2007158140A (en) Organic transistor
KR101064423B1 (en) Semiconductor device using carbon nanotube and method of manufacturing therof
US9275860B2 (en) Method of manufacturing a junction electronic device having a 2-dimensional material as a channel
Im et al. Self-Aligned Contact Doping of WSe2 Metal–Insulator–Semiconductor Field-Effect Transistors Using Hydrogen Silsesquioxane

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140725

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150922

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160901

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee