KR100819609B1 - Linear compressor - Google Patents

Linear compressor Download PDF

Info

Publication number
KR100819609B1
KR100819609B1 KR1020060124399A KR20060124399A KR100819609B1 KR 100819609 B1 KR100819609 B1 KR 100819609B1 KR 1020060124399 A KR1020060124399 A KR 1020060124399A KR 20060124399 A KR20060124399 A KR 20060124399A KR 100819609 B1 KR100819609 B1 KR 100819609B1
Authority
KR
South Korea
Prior art keywords
shell
linear compressor
elastic body
elastic
movable part
Prior art date
Application number
KR1020060124399A
Other languages
Korean (ko)
Inventor
강양준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020060124399A priority Critical patent/KR100819609B1/en
Priority to CN200780042846XA priority patent/CN101680439B/en
Priority to PCT/KR2007/006373 priority patent/WO2008069623A2/en
Priority to US12/312,976 priority patent/US20100098566A1/en
Application granted granted Critical
Publication of KR100819609B1 publication Critical patent/KR100819609B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0044Pulsation and noise damping means with vibration damping supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic
    • F16F3/02Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of steel or of other material having low internal friction
    • F16F3/04Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of steel or of other material having low internal friction composed only of wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/22Pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Abstract

A linear compressor is provided to compensate motion transferred to a shell from a moving part by elastic elements such as mechanical springs for reducing vibration and noise, thereby achieving stable operation of the linear compressor. A linear compressor includes a shell(11), a fixing part(13) mounted in the shell and having a mass(mb), a moving part(12) reciprocating in the fixing part to compress fluid and having a mass(ma), a first elastic element(14) connecting the moving part to the shell and having an elastic coefficient(ka), second elastic elements(15,16) connecting and supporting the fixing part to the shell and having an elastic coefficient(kb), and a third elastic element(17) connecting the fixing part to the moving part and having an elastic coefficient(kc). The first and second elastic elements satisfy a formula: kb/ka=mb/ma.

Description

리니어 압축기{LINEAR COMPRESSOR}Linear Compressor {LINEAR COMPRESSOR}

도 1은 종래의 종형 리니어 압축기의 일 예를 도시한 것이다.1 illustrates an example of a conventional vertical linear compressor.

도 2는 본 발명의 일 실시예에 따른 리니어 압축기를 도시한 것이다.2 illustrates a linear compressor according to an embodiment of the present invention.

도 3은 본 발명의 일 실시예에 따른 리니어 압축기의 진동 시스템을 개략적으로 도시한 다이어그램이다.3 is a diagram schematically illustrating a vibration system of a linear compressor according to an embodiment of the present invention.

도 4는 본 발명에 따른 리니어 압축기의 제1 및 제2 탄성체의 탄성 계수와 쉘의 전달력과의 상관관계를 도시한 그래프이다.4 is a graph showing the correlation between the elastic modulus of the first and second elastic bodies of the linear compressor according to the present invention and the transmission force of the shell.

본 발명은 리니어 압축기에 관한 것이다. 특히, 가동부의 가동에 의해 쉘이 진동하는 것을 방지하기 위해 탄성체를 구비하는 리니어 압축기에 관한 것이다. The present invention relates to a linear compressor. In particular, it is related with the linear compressor provided with an elastic body in order to prevent a shell from vibrating by the operation of a movable part.

일반적으로 압축기(Compressor)는 전기모터나 터빈 등의 동력발생장치로부터 동력을 전달받아 공기나 냉매 또는 그 밖의 다양한 작동가스를 압축시켜 압력을 높여주는 기계장치로써, 냉장고와 에어컨 등과 같은 가전기기 또는 산업전반에 걸쳐 널리 사용되고 있다.In general, a compressor is a mechanical device that increases pressure by receiving power from a power generator such as an electric motor or a turbine to compress air, refrigerant, or various other working gases. It is widely used throughout.

이러한 압축기를 크게 분류하면, 피스톤(Piston)과 실린더(Cylinder) 사이에 작동가스가 흡, 토출되는 압축공간이 형성되도록 하여 피스톤이 실린더 내부에서 직선 왕복 운동하면서 냉매를 압축시키는 왕복동식 압축기(Reciprocating compressor)와, 편심 회전되는 롤러(Roller)와 실린더(Cylinder) 사이에 작동가스가 흡, 토출되는 압축공간이 형성되도록 하여 롤러가 실린더 내벽을 따라 편심 회전되면서 냉매를 압축시키는 회전식 압축기(Rotary compressor)와, 선회 스크롤(Orbiting scroll)과 고정 스크롤(Fixed scroll) 사이에 작동가스가 흡, 토출되는 압축공간이 형성되도록 하여 선회 스크롤이 고정 스크롤을 따라 회전되면서 냉매를 압축시키는 스크롤식 압축기(Scroll compressor)로 나뉘어진다.These compressors can be classified into reciprocating compressors for compressing refrigerant while linearly reciprocating inside the cylinders by forming a compression space in which the working gas is absorbed and discharged between the piston and the cylinder. And a rotary compressor for compressing the refrigerant while the roller is eccentrically rotated along the inner wall of the cylinder so that a compression space for absorbing and discharging the working gas is formed between the eccentrically rotating roller and the cylinder. As a scroll compressor that compresses the refrigerant while the rotating scroll rotates along the fixed scroll to form a compressed space in which the working gas is absorbed and discharged between the orbiting scroll and the fixed scroll. Divided.

최근에는 왕복동식 압축기 중에서 특히 피스톤이 왕복 직선 운동하는 구동모터에 직접 연결되도록 하여 운동전환에 의한 기계적인 손실이 없어 압축효율을 향상시킬 뿐 아니라 구조가 간단한 리니어 압축기가 많이 개발되고 있다.Recently, among the reciprocating compressors, in particular, the piston is directly connected to the reciprocating linear motion drive motor, so that there is no mechanical loss due to the motion conversion to improve the compression efficiency as well as a simple linear compressor has been developed a lot.

보통, 리니어 압축기는 밀폐된 쉘 내부에서 피스톤이 리니어 모터에 의해 실린더 내부에서 왕복 직선 운동하도록 움직이면서 냉매를 흡입하여 압축시킨 다음, 토출시키도록 구성되되, 리니어 모터는 이너스테이터 및 아우터스테이터 사이에 영구자석이 위치되도록 하여 상호 전자기력에 의해 영구자석이 직선 왕복 운동하도록 구동되고, 이러한 영구자석이 피스톤과 연결된 상태에서 구동됨에 따라 피스톤이 실린더 내부에서 왕복 직선 운동하면서 냉매를 흡입하여 압축시킨 다음, 토출시키도록 한다.Normally, a linear compressor is configured to suck and compress a refrigerant and then discharge the refrigerant while the piston moves in a closed shell to reciprocate linearly inside the cylinder by a linear motor, where the linear motor is a permanent magnet between the inner and outer stators. The permanent magnets are driven to linearly reciprocate by mutual electromagnetic force, and as the permanent magnets are driven in a state connected to the pistons, the pistons reciprocate linearly inside the cylinders to inhale, compress, and discharge the refrigerant. do.

이때, 피스톤은 모터의 구동에 의해 의도적으로 직선왕복운동 하는데 반해, 쉘 내부의 다른 부품은 탄성체를 제외하고는 의도적인 운동을 하지 않는다. 따라서 이하에서, 피스톤 및 피스톤에 연결되어 피스톤과 함께 왕복운동하는 부분을 가동부(moving part), 가동부 외의 부품들을 고정부(stationary part)로 표현한다. 고정부 및 가동부는 쉘 내부에서 탄성체에 의해 쉘과 연결된다. 이하에서 리니어 압축기의 진동 시스템을 쉘, 가동부, 고정부, 탄성체로 간소화하여 표현한다. At this time, the piston is intentionally linear reciprocating movement by the drive of the motor, while the other parts inside the shell does not intentional movement except the elastic body. Therefore, in the following, the moving part, the part connected to the piston and reciprocating together with the piston, is expressed as a stationary part. The stationary part and the movable part are connected to the shell by an elastic body inside the shell. Hereinafter, the vibration system of the linear compressor is simplified and expressed as a shell, a movable part, a fixed part, and an elastic body.

종래 리니어 압축기는 가동부의 운동에 의해 고정부가 변위되고, 탄성체에 의해 고정부와 연결된 쉘에도 힘이 전달되어, 쉘에 진동이 발생한다. 쉘의 진동은 리니어 압축기의 안정성을 떨어뜨릴 뿐 아니라, 소음을 발생하므로 바람직하지 못하다. In the conventional linear compressor, the fixed part is displaced by the movement of the movable part, and a force is transmitted to the shell connected to the fixed part by the elastic body, and vibration is generated in the shell. Vibration of the shell is undesirable because it not only reduces the stability of the linear compressor, but also generates noise.

도 1은 종래의 종형 리니어 압축기의 일 예를 도시한 것이다. 가동부와 고정부, 고정부와 쉘, 가동부와 쉘이 모두 탄성체에 의해 쉘에 연결되어, 가동부가 모터에 의해 구동되면, 세 개의 탄성체가 동시에 변위된다. 이때, 제1 탄성체(20) 및 제2 탄성체(21)는 다음의 관계식을 만족한다.1 illustrates an example of a conventional vertical linear compressor. The movable portion and the fixed portion, the fixed portion and the shell, the movable portion and the shell are all connected to the shell by an elastic body, and when the movable portion is driven by a motor, the three elastic bodies are displaced simultaneously. At this time, the first elastic body 20 and the second elastic body 21 satisfy the following relational expression.

Figure 112007086226319-pat00040
식(1)
Figure 112007086226319-pat00040
Formula (1)

이때, Ma는 가동부의 질량이며, 가동부는 피스톤(1), 액추에이터(4) 및 자석 부재(5)를 포함한다. 또한 Mb는 고정부의 질량이며, 고정부는 실린더(2), 실린더 블록(2a) 및 실린더 헤드(3)를 포함한다. At this time, Ma is the mass of the movable part, and the movable part includes the piston 1, the actuator 4, and the magnet member 5. Mb is the mass of the fixed part, and the fixed part includes a cylinder 2, a cylinder block 2a, and a cylinder head 3.

또한 리니어 압축기가 포함하는 제3 탄성체(22)는 가동부와 고정부 연결하며, 가동부가 운전 시에 공진하도록 하여 리니어 압축기의 효율을 높이기 위한 부 재이다. 그러나 제1 탄성체(21)및 제2 탄성체(20)가 식(1)을 만족하는 압축기에서, 제3 탄성체(22)가 공진 조건을 만족하기 위해서 kc는 음수가 되어야 한다. 따라서 가장 널리 이용되며 제어하기 편리한 기계적 스프링을 이용할 수 없는 문제가 있었다. In addition, the third elastic body 22 included in the linear compressor is connected to the movable part and the fixed part, and is a part for increasing the efficiency of the linear compressor by causing the movable part to resonate during operation. However, in a compressor in which the first elastic body 21 and the second elastic body 20 satisfy Equation (1), k c must be negative for the third elastic body 22 to satisfy the resonance condition. Therefore, there is a problem that can not use the most widely used and convenient mechanical spring control.

본 발명은 상기한 문제점을 해결하기 위해 안출된 것으로, 가동부의 운동에 의해 쉘에 전달되는 진동을 저감하는 탄성체를 구비하는 리니어 압축기를 제공하는 것을 목적으로 한다. The present invention has been made to solve the above problems, an object of the present invention is to provide a linear compressor having an elastic body for reducing the vibration transmitted to the shell by the movement of the movable portion.

또한 본 발명은 진동을 저감하기 위한 탄성체가 모두 기계적인 탄성체에 의해 구현이 가능한 리니어 압축기를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a linear compressor in which all of the elastic body for reducing vibration can be implemented by a mechanical elastic body.

본 발명은 쉘, 쉘 내부에 설치되는 질량이 Mb인 고정부, 주파수 ω로 고정부 내부를 왕복 운동하며 유체를 압축하는 질량 Ma인 가동부, 가동부와 쉘을 연결하는 탄성 계수가 ka인 제1 탄성체, 쉘에 고정부를 연결 지지하는 탄성 계수가 kb인 제2 탄성체 및 고정부와 가동부를 연결하는 탄성 계수가 kc인 제3 탄성체를 포함하고,제1 및 제 2 탄성체는 식:The present invention provides a shell, a fixed portion having a mass M b installed inside the shell, a movable portion having a mass M a for reciprocating the inside of the fixed portion at a frequency ω and compressing a fluid, and an elastic modulus connecting the movable portion and the shell is k a . A first elastic body, a second elastic body having an elastic modulus of k b connected to and supported by the fixing part to the shell, and a third elastic body having an elastic modulus of k c connecting the fixed part and the movable part; :

Figure 112006091011260-pat00003
Figure 112006091011260-pat00003

를 만족하는 것을 특징으로 하는 리니어 압축기를 제공한다. 이러한 구성을 통해, 가동부의 운동에 의해 쉘에 전달되는 힘을 상쇄할 수 있어, 쉘의 진동을 저감시킬 수 있다.It provides a linear compressor characterized in that to satisfy. Through this structure, the force transmitted to the shell by the movement of the movable part can be canceled, and the vibration of the shell can be reduced.

또한 제3 탄성체의 탄성 계수가, 식:In addition, the elastic modulus of the third elastic body is

Figure 112006091011260-pat00004
Figure 112006091011260-pat00004

를 만족하는 것을 특징으로 하는 리니어 압축기를 제공하는 것을 목적으로 한다. 이러한 구성을 통해, 리니어 압축기를 공진 조건에서 운전할 수 있다.It is an object of the present invention to provide a linear compressor characterized by satisfying the following. Through this configuration, the linear compressor can be operated under resonance conditions.

또한 본 발명은 주파수 ω가, 식:In addition, the present invention has a frequency ω, where:

Figure 112006091011260-pat00005
Figure 112006091011260-pat00005

를 만족하는 것을 특징으로 하는 리니어 압축기를 제공한다. 이러한 구성을 통해, kc가 항상 양수인 리니어 압축기를 구현할 수 있다. 따라서 제3 탄성체를 가스 탄성체보다 제어하기 쉬운 기계적 탄성체로 할 수 있다.It provides a linear compressor characterized in that to satisfy. Through this configuration, it is possible to implement a linear compressor in which k c is always positive. Therefore, a 3rd elastic body can be made into the mechanical elastic body which is easier to control than a gas elastic body.

또한 본 발명은 주파수 ω가, 가동부의 공진 주파수 ωcr인 것을 특징으로 하는 리니어 압축기를 제공한다.Moreover, this invention provides the linear compressor characterized by the frequency ω being the resonant frequency ω cr of a movable part.

또한 본 발명은 제3 탄성체가 기계적인 탄성체인 것을 특징으로 하는 리니어 압축기를 제공한다. The present invention also provides a linear compressor, wherein the third elastic body is a mechanical elastic body.

이하 도면을 참조하여 본 발명을 더욱 상세히 설명한다. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

도 2는 본 발명의 일 실시예에 따른 리니어 압축기의 진동 시스템을 개략적으로 도시한 다이어그램이다. 2 is a diagram schematically showing a vibration system of a linear compressor according to an embodiment of the present invention.

리니어 압축기의 진동 시스템은 쉘(11), 가동부(12), 고정부(13), 제1 탄성체(14), 제2 탄성체(15, 16) 및 제3 탄성체(17)으로 이루어진다. 진동 시스템 해석에 사용된 변수는, 가동부의 변위 xa, 고정부의 변위xb, 가동부의 질량 Ma, 고정부의 질량Mb, 제1 탄성체(14)의 탄성계수 ka, 제2 탄성체(15, 16)의 탄성계수 0.5·kb, 제3 탄성체(17)의 탄성 계수 kc, 모터 파라미터 L, R, α, V, 모터 출력 Fm, 제1 탄성체(14)에 의해 가동부에 가해지는 힘 Fa, 각 제2 탄성체(15, 16)에 의해 고정부에 가해지는 힘 0.5·Fb, 절대 좌표계 N 및 각각의 단위 벡터

Figure 112006091011260-pat00006
,
Figure 112006091011260-pat00007
이다. 여기서 제3 탄성체의 탄성 계수는 가동부의 운동에 의한 유체의 압축시에 발생하는 유체의 탄성까지 고려한 값이다. 즉, 제3 탄성체의 탄성 계수와 유체의 압축에 의한 탄성 계수의 합을 편의상 탄성 계수 kc로 나타낸다. The vibration system of the linear compressor consists of a shell 11, a movable part 12, a fixing part 13, a first elastic body 14, a second elastic body 15 and 16 and a third elastic body 17. A variable, the displacement of the movable portion x a, and the displacement of the state x b, the elastic modulus of the mass of the mass of the movable portion M a, fixing M b, a first elastic member (14) k a, the second elastic member used in the vibration system analysis The force applied to the movable portion by the elastic modulus 0.5 · kb of the (15, 16), the elastic modulus kc of the third elastic body 17, the motor parameters L, R, α, V, the motor output Fm, and the first elastic body 14 Fa, the force applied to the fixed portion by each of the second elastic bodies 15 and 16, 0.5 · Fb, and the absolute coordinate system N And unit vector of each
Figure 112006091011260-pat00006
,
Figure 112006091011260-pat00007
to be. Herein, the elastic modulus of the third elastic body is a value considering the elasticity of the fluid generated when the fluid is compressed by the motion of the movable portion. That is, the sum of the elastic modulus of the third elastic body and the elastic modulus due to the compression of the fluid is represented by the elastic modulus k c for convenience.

쉘(11)은 운전 주파수에 비해서 공진 주파수가 상당히 높다. 따라서 쉘(11)을 강체로 가정하고 진동 시스템을 해석한다. 또한 가동부, 고정부 및 전류에 의한 시스템을 해석하기 위해서는, xa(t), xb(t) 및 q(t)의 일반화 좌표가 필요하다.The shell 11 has a considerably higher resonance frequency than the operating frequency. Therefore, the shell 11 is assumed to be a rigid body and the vibration system is analyzed. In addition, generalized coordinates of x a (t), x b (t), and q (t) are required to analyze the system by the movable part, the fixed part, and the current.

먼저 앞의 변수들을 사용하여 진동 시스템의 운동 에너지 T를 구하면,First, using the preceding variables to find the kinetic energy T of the vibration system,

Figure 112006091011260-pat00008
Figure 112006091011260-pat00008

이다.to be.

또한 탄성 에너지 V는,Also the elastic energy V,

Figure 112006091011260-pat00009
Figure 112006091011260-pat00009

이다.to be.

또한 감쇄 에너지 R은,In addition, the attenuation energy R,

Figure 112006091011260-pat00010
Figure 112006091011260-pat00010

이다.to be.

또한 가상일 δW를 구하면,Also, if we find the virtual δW,

Figure 112006091011260-pat00011
Figure 112006091011260-pat00011

이다.to be.

또한 진동 시스템에 대한 Lagrange 방정식은,Also the Lagrange equation for the vibration system,

Figure 112006091011260-pat00012
Figure 112006091011260-pat00012

Figure 112006091011260-pat00013
Figure 112006091011260-pat00013

이다.to be.

앞에서 유도된 각각의 에너지 식 T, V, R, δW를 Lagrange 방정식에 대입하면,Substituting each of the energy equations T, V, R, and δW derived above into the Lagrange equation,

Figure 112006091011260-pat00014
Figure 112006091011260-pat00014

식(2)Formula (2)

Figure 112006091011260-pat00015
Figure 112006091011260-pat00015

식(3)Formula (3)

Figure 112006091011260-pat00016
식(4)
Figure 112006091011260-pat00016
Formula (4)

로 나타낼 수 있다.It can be represented as.

상기 식(2) 및 식(3)을 행렬식으로 표현하면,When the above expressions (2) and (3) are expressed as determinants,

Figure 112006091011260-pat00017
Figure 112006091011260-pat00017

식(5)Formula (5)

으로 표현된다.It is expressed as

가진원 Fm은 Fm=F0ejwt로 조화 함수(Harmonic function)이므로, 가동부(12) 및 고정부(13)의 변위는 각각 xa=Xa0eiwt, xb=Xb0eiwt의 조화 함수로 표현된다. 이렇게 조화 함수로 표현한 변위를 다시 식(2) 및 식(3)에 대입하면,Since the excitation source F m is a harmonic function with F m = F 0 e jwt , the displacements of the movable part 12 and the fixed part 13 are x a = X a0 e iwt and x b = X b0 e iwt, respectively. Is expressed as the harmonic function of. Substituting the displacement represented by the harmonic function into equations (2) and (3) again,

Figure 112006091011260-pat00018
Figure 112006091011260-pat00018

식(6)Formula (6)

으로 나타낼 수 있다.It can be represented as

여기서, Xa0, Xb0를 계산하면, 다음과 같이 나타낼 수 있다.Here, when X a0 and X b0 are calculated, it can be expressed as follows.

Figure 112006091011260-pat00019
식(7)
Figure 112006091011260-pat00019
Formula (7)

여기서, D=(ka + kc - ma·ω2)·(kb + kc - mb·ω2)-kc 2 이다.Where D = (k a + k c - m a · ω 2) · (k b + k c - b · m ω 2) -k 2 c to be.

쉘(11)에 작용하는 총 전달력 Fs는, The total transmission force F s acting on the shell 11 is

Figure 112006091011260-pat00020
식(8)
Figure 112006091011260-pat00020
Formula (8)

이다.to be.

식(7)의 관계식을 식(8)에 대입하면,Substituting the relation in equation (7) into equation (8),

Figure 112006091011260-pat00021
Figure 112006091011260-pat00021

식(9)Formula (9)

가 된다.Becomes

이때, 쉘(11)에 전달되는 힘을 상쇄해 알짜힘이 0이 되게 하면, 쉘(11)에 진동 발생을 저감할 수 있다. 전달력의 총합을 0이 되게 하기 위해, 식(9)에서 분자를 0이 되게 하여야 하고, F0 및 ω는 리니어 압축기의 운전 중에는 항상 0 이상의 값이므로, (-ka·Mb + kb·Ma)가 0이 되어야 한다. 따라서 쉘(11)의 전달력을 상쇄하여 진동을 저감하기 위해서, 가동부(12)의 질량, 고정부(13)의 질량, 제1 탄성체(14)의 탄성 계수 및 제2 탄성체(15, 16)의 탄성 계수는 다음과 같은 조건,At this time, when the force transmitted to the shell 11 is canceled out so that the net force becomes 0, the occurrence of vibration in the shell 11 can be reduced. Required to be zero the sum of the transfer force, to zero the molecule in formula (9), and because F 0 and ω is always greater than or equal to zero during the operation of the linear compressor value, (-k · a M b k + b M a ) must be zero. Therefore, in order to cancel the transmission force of the shell 11 and reduce vibration, the mass of the movable part 12, the mass of the fixing | fixed part 13, the elastic modulus of the 1st elastic body 14, and the 2nd elastic bodies 15 and 16 are carried out. Modulus of elasticity of

Figure 112006091011260-pat00022
식(10)
Figure 112006091011260-pat00022
Formula (10)

를 만족하여야 한다.Must satisfy

또한, 본 발명의 일 실시예에 따른 리니어 압축기는, 제3 탄성체(17)가 가동부(12)를 공진시킬 수 있는 탄성 계수를 가져야 한다. 제3 탄성체(17)의 탄성 계수 kc는, 식(2) 및 식(3)에서 가진원 Fm을 0으로 두면, 다음과 같은 행렬식으로 표현할 수 있다.In addition, the linear compressor according to the embodiment of the present invention should have an elastic modulus in which the third elastic body 17 can resonate the movable part 12. The elastic modulus k c of the third elastic body 17 can be expressed by the following determinant when the excitation circle F m is 0 in the formulas (2) and (3).

Figure 112006091011260-pat00023
Figure 112006091011260-pat00023

즉,

Figure 112006091011260-pat00024
의 형태로,
Figure 112006091011260-pat00025
관계식을 이용하면, In other words,
Figure 112006091011260-pat00024
In the form of,
Figure 112006091011260-pat00025
Using relational expressions,

Figure 112006091011260-pat00026
Figure 112006091011260-pat00026

이 된다.Becomes

여기서, [A]{X}={0}의 방정식이 유용해(feasible solution)를 갖기 위해서는, 행렬 [A]의 행렬식(Determant)가 0이 되어야 한다.Here, in order for the equation of [A] {X} = {0} to have a feasible solution, the determinant of the matrix [A] must be zero.

따라서, [K]의 행렬식은, Therefore, the determinant of [K] is

Figure 112006091011260-pat00027
Figure 112006091011260-pat00027

이고, 따라서 kc는 다음과 같다.Therefore, k c is

Figure 112006091011260-pat00028
식(11)
Figure 112006091011260-pat00028
Formula (11)

이때, kc가 양수가 되어야 제3 탄성체(17)가 헬리컬 스프링 등 일반적인 기계적 탄성체로 구현될 수 있다. 따라서 kc > 0 인 조건을 대입하면,At this time, when c c is positive, the third elastic body 17 may be implemented as a general mechanical elastic body such as a helical spring. So if we substitute the condition k c > 0,

Figure 112006091011260-pat00029
Figure 112006091011260-pat00029

를 만족해야 한다. 또한, 가동부(12)의 공진 조건을 고려하면, 주파수 ω는 가동부의 공진 주파수인 ωcr이어야 한다.Must be satisfied. In addition, considering the resonance condition of the movable part 12, the frequency ω should be ω cr which is the resonance frequency of the movable part.

상기한 조건을 바탕으로, 리니어 압축기의 진동 시스템을 시뮬레이션하였다.리니어 압축기의 진동 시스템을, 가동부(12)의 질량 Ma가 0.6kg, 고정부(13)의 질량 Mb가 5.0kg으로 하였다. 이때, 제1 탄성체(14)의 탄성 계수 ka를 1440 N/m로 하면, 식(10)을 만족하는 제2 탄성체(15, 16)의 탄성 계수의 합 kb는 1440*(5.0/0.6)이며, 따라서 12000 N/m로 된다. Based on the above conditions, we simulated the vibration system of the linear compressor. The vibration system of the linear compressor, the mass M of a moving part (12), 0.6kg, and mass M b of the decision section 13 that was to 5.0kg. At this time, when the elastic modulus k a of the first elastic body 14 is 1440 N / m, the sum kb of the elastic modulus of the second elastic bodies 15 and 16 satisfying the formula (10) is 1440 * (5.0 / 0.6) Therefore, it becomes 12000 N / m.

상기한 조건으로 식(11)을 만족하는 kc를 구하면, kc가 양수이므로 제3 탄성체(17)는 제어 및 구현이 쉬운 기계적인 스프링으로 할 수 있다. 따라서 기존의 종형 리니어 압축기에서 공진 조건을 만족하는 제3 탄성체(17)의 탄성 계수가 음수이기 때문에 기계적인 스프링으로 구현할 수 없었던 것이 극복되었다.If k c satisfying Equation (11) is obtained under the above condition, k c is a positive number, and thus the third elastic body 17 may be a mechanical spring that is easy to control and implement. Therefore, since the elastic modulus of the third elastic body 17 that satisfies the resonance condition in the conventional vertical linear compressor is negative, it was overcome by the mechanical spring.

도 4는 식(7)을 만족하는, ka 및 kb를 시뮬레이션한 결과를 도시한 그래프이다. 쉘(11)에 전달되는 전달력 Fs가 0이 되는 ka 및 kb를 각각 구하면 다음 표와 같다.4 is a graph showing the results of simulating k a and k b , which satisfy equation (7). Obtaining ka and kb, where the transmission force F s delivered to the shell 11 becomes 0, is as follows.

casecase ka[N/m]ka [N / m] kb[N/m]kb [N / m] 1One 960960 8,0008,000 22 1,20001,2000 10,00010,000 33 1,4401,440 12,00012,000 44 1,5601,560 14,00014,000

이때, 운전 조건은 M-K 공진 조건으로, 가동부(12)의 작동 주파수는 50Hz였다. 이를 통해 kc를 계산할 수 있다. kc는 가동부(12)의 운동에 의해 유체가 압축될 때의 유체의 탄성도 함께 고려하여 계산할 수 있다. 또한 모터 파라미터 α에 의해 피크가 구속된다. At this time, the operating conditions were MK resonance conditions, and the operating frequency of the movable portion 12 was 50 Hz. This allows k c to be calculated. k c can be calculated by considering the elasticity of the fluid when the fluid is compressed by the movement of the movable part 12. The peak is also constrained by the motor parameter α.

본 발명이 제공하는 리니어 압축기는 쉘에 전달되는 전달력이 상쇄되어, 소 음 및 진동을 저감할 수 있다. The linear compressor provided by the present invention cancels the transmission force transmitted to the shell, thereby reducing noise and vibration.

또한 본 발명이 제공하는 리니어 압축기는 가동부가 공진 운전 조건에서 운전되도록 구비되는 탄성체의 탄성 계수가 양수이므로, 기계적인 스프링에 의해 구현될 수 있다는 장점이 있다.In addition, the linear compressor provided by the present invention has an advantage that the elastic modulus of the elastic body provided to operate in the resonant operation condition is a positive number, and thus may be implemented by a mechanical spring.

또한 본 발명이 제공하는 리니어 압축기는 쉘에 전달되는 전달력이 상쇄되어, 리니어 압축기를 안정적으로 운전할 수 있다는 장점이 있다. In addition, the linear compressor provided by the present invention has an advantage that the transmission force transmitted to the shell is canceled, so that the linear compressor can be stably operated.

Claims (5)

쉘;Shell; 쉘 내부에 설치되는 질량이 Mb인 고정부;A fixing part having a mass M b installed inside the shell; 주파수 ω로 고정부 내부를 왕복 운동하며 유체를 압축하는 질량 Ma인 가동부; A movable part having a mass M a for reciprocating the inside of the fixed part at a frequency ω and compressing the fluid; 가동부와 쉘을 연결하는 탄성 계수가 ka인 제1 탄성체; A first elastic body having an elastic modulus k a that connects the movable part to the shell; 쉘에 고정부를 연결하는 탄성 계수가 kb인 제2 탄성체; 및A second elastic body having an elastic modulus of k b connecting the fixing part to the shell; And 고정부와 가동부를 연결하는 탄성 계수가 kc인 제3 탄성체;를 포함하며,And a third elastic body having an elastic modulus of k c connecting the fixed part and the movable part. 주파수 ω는, 식:The frequency ω is
Figure 112007086226319-pat00037
Figure 112007086226319-pat00037
를 만족하는 것을 특징으로 하는 리니어 압축기.Linear compressor, characterized in that to satisfy.
쉘;Shell; 쉘 내부에 설치되는 질량이 Mb인 고정부;A fixing part having a mass M b installed inside the shell; 주파수 ω로 고정부 내부를 왕복 운동하며 유체를 압축하는 질량 Ma인 가동부; A movable part having a mass M a for reciprocating the inside of the fixed part at a frequency ω and compressing the fluid; 가동부와 쉘을 연결하는 탄성 계수가 ka인 제1 탄성체; A first elastic body having an elastic modulus k a that connects the movable part to the shell; 쉘에 고정부를 연결하는 탄성 계수가 kb인 제2 탄성체; 및A second elastic body having an elastic modulus of k b connecting the fixing part to the shell; And 고정부와 가동부를 연결하는 탄성 계수가 kc인 제3 탄성체;를 포함하며,And a third elastic body having an elastic modulus of k c connecting the fixed part and the movable part. 제3 탄성체의 탄성 계수가, 식The elastic modulus of the third elastic body is
Figure 112007086226319-pat00038
Figure 112007086226319-pat00038
를 만족하여, 가동부를 공진하도록 하는 것을 특징으로 하는 리니어 압축기.Satisfies the, and the linear compressor to resonate the movable portion.
제 1 항 및 제 2 항 중 어느 한 항에 있어서,The method according to any one of claims 1 and 2, 제1 및 제 2 탄성체는, 식:The first and second elastic bodies are
Figure 112007086226319-pat00039
Figure 112007086226319-pat00039
를 만족하는 것을 특징으로 하는 리니어 압축기.Linear compressor, characterized in that to satisfy.
제 1 항 및 제 2 항 중 어느 한 항에 있어서,The method according to any one of claims 1 and 2, 주파수 ω는, 가동부의 공진 주파수인 ωcr인 것을 특징으로 하는 리니어 압축기.The frequency ω is a linear compressor, characterized in that ω cr which is the resonance frequency of the movable part. 제 1 항 및 제 2항 중 어느 한 항에 있어서,The method according to any one of claims 1 and 2, 제3 탄성체는, 기계적인 탄성체인 것을 특징으로 하는 리니어 압축기.The third elastic body is a mechanical elastic body.
KR1020060124399A 2006-12-08 2006-12-08 Linear compressor KR100819609B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020060124399A KR100819609B1 (en) 2006-12-08 2006-12-08 Linear compressor
CN200780042846XA CN101680439B (en) 2006-12-08 2007-12-07 Linear compressor
PCT/KR2007/006373 WO2008069623A2 (en) 2006-12-08 2007-12-07 Linear compressor
US12/312,976 US20100098566A1 (en) 2006-12-08 2007-12-07 Linear compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060124399A KR100819609B1 (en) 2006-12-08 2006-12-08 Linear compressor

Publications (1)

Publication Number Publication Date
KR100819609B1 true KR100819609B1 (en) 2008-04-04

Family

ID=39492749

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060124399A KR100819609B1 (en) 2006-12-08 2006-12-08 Linear compressor

Country Status (4)

Country Link
US (1) US20100098566A1 (en)
KR (1) KR100819609B1 (en)
CN (1) CN101680439B (en)
WO (1) WO2008069623A2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0224986D0 (en) 2002-10-28 2002-12-04 Smith & Nephew Apparatus
GB0325129D0 (en) 2003-10-28 2003-12-03 Smith & Nephew Apparatus in situ
DE602007004546D1 (en) 2006-09-28 2010-03-18 Tyco Healthcare Portable wound therapy system
HUE043133T2 (en) 2007-11-21 2019-07-29 Smith & Nephew Wound dressing
CN101672265B (en) * 2009-10-12 2012-06-27 浙江鸿友压缩机制造有限公司 Linear-guidance restricting reciprocating piston compressor
GB201015656D0 (en) 2010-09-20 2010-10-27 Smith & Nephew Pressure control apparatus
US9084845B2 (en) 2011-11-02 2015-07-21 Smith & Nephew Plc Reduced pressure therapy apparatuses and methods of using same
KR101833045B1 (en) * 2011-11-03 2018-02-28 삼성전자주식회사 Rotary compressor
KR20130055407A (en) * 2011-11-18 2013-05-28 삼성전자주식회사 Rotary compressor and manufacturing method thereof
US9901664B2 (en) 2012-03-20 2018-02-27 Smith & Nephew Plc Controlling operation of a reduced pressure therapy system based on dynamic duty cycle threshold determination
US9427505B2 (en) 2012-05-15 2016-08-30 Smith & Nephew Plc Negative pressure wound therapy apparatus
JP6991067B2 (en) 2014-12-22 2022-01-12 スミス アンド ネフュー ピーエルシー Negative pressure closure therapy equipment and methods
CN108131272B (en) * 2017-11-01 2019-12-27 青岛海尔智能技术研发有限公司 Linear compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020047257A (en) * 1999-10-21 2002-06-21 윌리엄 린드세이 길랜더즈 Linear compressor

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3729691A (en) * 1972-06-16 1973-04-24 Verta Tronics Inc Electro-mechanical oscillator of electrodynamical and electromagnetic types
US3813192A (en) * 1972-12-07 1974-05-28 Gen Electric Centering spring arrangement for oscillatory compressors
US4179630A (en) * 1976-11-04 1979-12-18 Tecumseh Products Company Linear compressor
US4360087A (en) * 1980-05-27 1982-11-23 Mechanical Technology Incorporated Suspension and vibration isolation system for a linear reciprocating machine
US4400941A (en) * 1981-06-05 1983-08-30 Mechanical Technology Incorporated Vibration absorber for a free piston Stirling engine
JPH059508Y2 (en) * 1987-06-17 1993-03-09
KR100224186B1 (en) * 1996-01-16 1999-10-15 윤종용 Linear compressorr
NO20000470D0 (en) * 2000-01-28 2000-01-28 Magomet Sagov The energy transformation
BR0101879B1 (en) * 2001-04-23 2008-11-18 linear compressor.
JP4149147B2 (en) * 2001-07-19 2008-09-10 松下電器産業株式会社 Linear compressor
KR100438605B1 (en) * 2001-08-17 2004-07-02 엘지전자 주식회사 Apparatus for compressing gas in reciprocating compressor
NZ515578A (en) * 2001-11-20 2004-03-26 Fisher & Paykel Appliances Ltd Reduction of power to free piston linear motor to reduce piston overshoot
KR100451233B1 (en) * 2002-03-16 2004-10-02 엘지전자 주식회사 Driving control method for reciprocating compressor
BR0201189B1 (en) * 2002-03-22 2010-06-29 reciprocating compressor driven by linear motor.
BR0202830B1 (en) * 2002-07-10 2010-11-16 resonant arrangement for linear compressor.
KR100533041B1 (en) * 2004-02-20 2005-12-05 엘지전자 주식회사 Driving control apparatus and method for reciprocating compressor
KR100527176B1 (en) * 2004-03-09 2005-11-09 삼성광주전자 주식회사 Linear compressor
CN1766326A (en) * 2004-10-27 2006-05-03 乐金电子(天津)电器有限公司 Linear compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020047257A (en) * 1999-10-21 2002-06-21 윌리엄 린드세이 길랜더즈 Linear compressor

Also Published As

Publication number Publication date
CN101680439B (en) 2011-09-28
CN101680439A (en) 2010-03-24
WO2008069623A2 (en) 2008-06-12
US20100098566A1 (en) 2010-04-22
WO2008069623A3 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
KR100819609B1 (en) Linear compressor
US10753350B2 (en) Linear compressor
US20140234137A1 (en) Linear compressor
KR101681588B1 (en) Linear compressor
EP1176309A3 (en) Reciprocating compressor
WO2011071284A2 (en) Linear compressor
CN108457840A (en) A kind of Linearkompressor with fueller
KR101149641B1 (en) Piston's collision preventing structure for linear compressor
KR102184999B1 (en) Linear compressor
CN210949022U (en) Linear compressor
KR101495188B1 (en) Reciprocating compressor
KR101981098B1 (en) Linear compressor
CN101737300B (en) Direct-drive compressor with permanent magnet stored energy buffering device
KR101766245B1 (en) Type compressor
KR100406305B1 (en) Linear compressor
KR101484539B1 (en) Hermetic compressor and refrigerator having the same
KR100596581B1 (en) Compressor
KR20190031827A (en) Linear compressor
KR100764781B1 (en) Reciprocating compressor
CN111306038A (en) Linear moving-magnet compressor
KR101238202B1 (en) Reciprocating compressor
CN201621037U (en) Direct-drive compressor with permanent magnetic buffering energy storage device
KR100850593B1 (en) Linear compressor
KR100662570B1 (en) Compressor
KR20090041710A (en) Linear compressor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130226

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140224

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150224

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160224

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170214

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190214

Year of fee payment: 12