KR100675923B1 - Metal oxide incorporated activated carbon nanofibers by co-electrospinning, their applications of electrode for supercapacitors, and the producing method of the same - Google Patents

Metal oxide incorporated activated carbon nanofibers by co-electrospinning, their applications of electrode for supercapacitors, and the producing method of the same Download PDF

Info

Publication number
KR100675923B1
KR100675923B1 KR1020050116107A KR20050116107A KR100675923B1 KR 100675923 B1 KR100675923 B1 KR 100675923B1 KR 1020050116107 A KR1020050116107 A KR 1020050116107A KR 20050116107 A KR20050116107 A KR 20050116107A KR 100675923 B1 KR100675923 B1 KR 100675923B1
Authority
KR
South Korea
Prior art keywords
metal oxide
electrode
activated carbon
carbon fiber
fiber
Prior art date
Application number
KR1020050116107A
Other languages
Korean (ko)
Inventor
김찬
주용완
최경린
정홍련
양갑승
이완진
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020050116107A priority Critical patent/KR100675923B1/en
Application granted granted Critical
Publication of KR100675923B1 publication Critical patent/KR100675923B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • D10B2101/122Nanocarbons
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inorganic Fibers (AREA)

Abstract

A metal oxide incorporated activated carbon nano fiber, an electric double layer super-capacitor electrode and a manufacturing method thereof are provided to manufacture a high-performance electrode due to the Faraday reaction. The metal compound is added into the carbon fiber precursor polymer and dissolved by the respective precursor polymer solvent so that the spinning solution is manufactured. The spinning solution is spun by an electric spinning manner so that the ultra micro-fiber web is formed. The temperature of the fiber web is increased until 350 degrees in centigrade and stabilized at the oxidation gas atmosphere. The stabilized fiber is carbonated at 500 -1500 degrees in centigrade under the inert gas atmosphere so that the ultra micro-fiber containing the metal oxide is manufactured.

Description

금속산화물 복합 나노 활성탄소섬유와 이를 이용한 전기이중층 슈퍼캐퍼시터용 전극 및 그 제조 방법{Metal oxide incorporated activated carbon nanofibers by co-electrospinning, their applications of electrode for supercapacitors, and the producing method of the same} Metal oxide composite nano activated carbon fibers and electrodes for electric double layer supercapacitors using the same, and methods for manufacturing the same.Metal oxide incorporated activated carbon nanofibers by co-electrospinning, their applications of electrode for supercapacitors, and the producing method of the same}

도 1은 전기방사에 의한 루테늄 옥사이드함유 나노섬유 제조의 간단한 모식도.1 is a simplified schematic diagram of the production of ruthenium oxide-containing nanofibers by electrospinning.

도 2는 본 발명의 일실시 예에 따라 제조된 루테늄 옥사이드(10, 20 %)함유 초극세 폴리아크릴로 나이트릴 섬유의 주사전자 현미경 사진.Figure 2 is a scanning electron micrograph of a ruthenium oxide (10, 20%) containing ultra-fine polyacrylonitrile fiber prepared according to an embodiment of the present invention.

도 3은 본 발명의 일실시 예에 따라 제조된 루테늄 옥사이드/탄소섬유의 X-선 회절 분석 결과 .Figure 3 is an X-ray diffraction analysis of ruthenium oxide / carbon fiber prepared according to an embodiment of the present invention.

도 4는 EDX 분석에 의한 루테늄 옥사이드 함유 나노복합체 활성탄소섬유의 원소분석 결과에 관한 표.Figure 4 is a table of the results of elemental analysis of ruthenium oxide-containing nanocomposite activated carbon fibers by EDX analysis.

도 5는 본 발명의 다른 실시 예에 따라 제조된 루테늄 옥사이드 함유 복합섬유의 800 ℃에서 30분간 스팀활성화를 한 나노복합체 활성탄소섬유의 주사전자 현미경 사진.Figure 5 is a scanning electron micrograph of the nanocomposite activated carbon fiber 30 minutes steam activation at 800 ℃ of the ruthenium oxide-containing composite fiber prepared according to another embodiment of the present invention.

도 6은 본 발명의 또 다른 실시 예에 따라 제조된 20 wt.% 함유된 나노복합체 활성탄소섬유를 전극에 이용한 정전류 방전 그래프. FIG. 6 is a graph of a constant current discharge using 20 wt.% Of the nanocomposite activated carbon fiber prepared according to another embodiment of the present invention in an electrode. FIG.

도 7은 본 발명의 또 다른 실시 예에 따라 제조된 슈퍼캐퍼시터 전극의 CV(cyclic voltammogram) 그래프.7 is a CV (cyclic voltammogram) graph of a supercapacitor electrode manufactured according to another embodiment of the present invention.

본 발명은 금속산화물 복합 나노 활성탄소섬유와 이를 이용한 전기이중층 슈퍼캐퍼시터용 전극 및 그 제조 방법에 관한 것으로, 더욱 상세하게는 루테늄 옥사이드나 루테늄 전구용액 등의 금속 산화물을 탄소섬유 전구체 용액에 분산, 혼합한 후 복합 전기방사하여 섬유직경이 500 nm 미만인 루테늄 옥사이드 함유 초극세 섬유를 제조하고 이를 산화안정화한 후 탄소화 내지는 활성화하여 초고비표면적을 갖는 루테늄 옥사이드 함유 활성탄소섬유의 전극을 제조하는 것에 관한 것이다. The present invention relates to a metal oxide composite nano-activated carbon fiber, an electrode for an electric double layer supercapacitor using the same, and a method of manufacturing the same. More specifically, metal oxides such as ruthenium oxide or ruthenium precursor solution are dispersed and mixed in a carbon fiber precursor solution. After the composite electrospinning to produce a ruthenium oxide-containing ultra-fine fibers having a fiber diameter of less than 500 nm and to oxidatively stabilize them, and to carbonized or activated to produce electrodes of ruthenium oxide-containing activated carbon fibers having an ultra-high specific surface area.

일반적으로 에너지 저장시스템은 산화환원 반응이 동반된 전기화학 반응을 이용한 1차 및 2차 전지와 리튬 이온의 흔들의자 시스템(rocking chair system)을 이용한 리튬계 2차 전지로 구분되며, 서로 다른 상(phase)의 계면에서 형성되는 전기이중층(electric double layer) 원리를 이용한 전기화학 캐패시터(electrochemical supercapacitor)로 나눌 수 있다. 이러한 전기화학 캐패시터는 종래의 정전캐패시터(electrostatic capacitor)에 비해 비축전 용량(specific capacitance: F/g)이 크게는 100 ~ 1000배 이상 향상되어 슈퍼캐패시터(supercapacitor)나 울트라 캐패시터(ultra-capacitor)로 명명되고 있으며, 사용되는 전극소재에 따라 전기이중층 원리를 이용한 슈퍼캐퍼시터(electric double layer capacitor, EDLC)와 패러데이 반응(Faradaic reaction)에 의해 용량을 발현하는 의사캐퍼시터(pseudocapacitor)로 구분된다. 전기이중층 캐퍼시터는 고체전극과 전해질 사이에서 발생하는 전기이중층에 축적되는 전하를 이용하는 장치로서, 용도와 활용 면에서 여러 분야의 주목을 받고 있다. 특히 캐퍼시터는 전지와 비교해 에너지밀도는 낮지만 순간적으로 힘을 걸어주는 파워밀도 면에서 우수한 특성을 보이고 수십만 회를 웃도는 거의 반영구적인 수명 등으로 인해 여러 분야로의 응용이 기대된다. In general, energy storage systems are divided into primary and secondary batteries using an electrochemical reaction accompanied by a redox reaction and lithium-based secondary batteries using a rocking chair system of lithium ions. It can be divided into an electrochemical supercapacitor using the electric double layer principle formed at the interface of the phase. The electrochemical capacitor has a specific capacitance (F / g) of 100 to 1000 times higher than that of a conventional electrostatic capacitor, which is a supercapacitor or ultra-capacitor. According to the electrode material used, it is divided into a supercapacitor using an electric double layer principle (EDLC) and a pseudocapacitor expressing a capacity by a Faradaic reaction. An electric double layer capacitor is a device using electric charges accumulated in an electric double layer generated between a solid electrode and an electrolyte, and attracts attention from various fields in terms of use and application. In particular, capacitors have a lower energy density than batteries, but have excellent characteristics in terms of power density that exerts momentary power, and are expected to be applied to various fields due to almost semi-permanent lifespan exceeding several hundred thousand times.

EDLC용 전극 소재로는 비표면적이 크며, 전기화학적으로 안정하면서 전도성이 큰 활성탄계 탄소재료가 사용되며, 의사캐패시터용 전극 소재로는 금속산화물계와 폴리피놀, 폴리아닐린, 폴리아센 계통의 것이 주로 이용되는 전도성 고분자계로 나눌 수 있다. 금속산화물계 전극 소재로는 RuO2, IrO2, NiO, CoOx, MnO2, WO3 등이 개발되어 2차 전지에 버금가는 우수한 에너지 밀도를 보이나 낮은 사이클 수명과 전극 활물질의 높은 가격 및 제조 공정상 어려움으로 인해 개발이 지연되고 있는 실정이다. As the electrode material for EDLC, an activated carbon-based carbon material having a large specific surface area, electrochemically stable and high conductivity is used, and an electrode material for pseudocapacitors is mainly metal oxide, polypinol, polyaniline, and polyacene. It can be divided into conductive polymers. RuO 2 , IrO 2 , NiO, CoO x , MnO 2 , WO 3, etc. have been developed as metal oxide electrode materials, showing excellent energy density comparable to that of secondary batteries, but low cycle life and high price and manufacturing process of electrode active materials. Due to difficulties, development is delayed.

금속산화물계 전극 소재로는 주로 루테튬 옥사이드와 이리듐 옥사이드계가 사용되며, 루테늄 옥사이드는 크게 무수화물(anhydrous)과 수화물(hydrous)형태로 구분되며, 슈퍼캐퍼시터용 무수화물 루테늄 옥사이드 전극은 주로 열분해법을 이용하여 제조되며, 수화물의 경우는 sol-gel 법에 의해 제조하는 것이 일반적인 방법이다. 루테늄 옥사이드계 활물질을 사용한 슈퍼캐퍼시터의 비축전 용량은 대략 600 - 650 F/g 정도를 나타내는 것으로 알려져 있으나 제조공정이 복잡하고, 긴 시간을 요하며, 사이클 특성이 EDLC용 탄소재료에 비해 낮으며, 전극 소재가 고가라는 단점이 지적되고 있다. Ruthenium oxide and iridium oxide are mainly used as metal oxide electrode materials, and ruthenium oxide is mainly classified into anhydrous and hydrate type, and anhydrous ruthenium oxide electrode for supercapacitor is mainly used for pyrolysis. In the case of hydrate, it is a general method to manufacture by sol-gel method. Although the specific capacitance of a supercapacitor using ruthenium oxide-based active material is about 600-650 F / g, it is known that the manufacturing process is complicated, requires a long time, and the cycle characteristics are lower than that of an EDLC carbon material. It is pointed out that the electrode material is expensive.

현재, 각종 산업분야에서 메모리 백업(memory back-up)이나 순간 피크전력을 요하는 부분에 사용되는 전기화학 캐패시터는 2차 전지에 비해 출력밀도가 크며, 반영구적인 사이클 수명과 환경부하가 적은 소재가 사용되어 각종 산업분야에 응용이 기대되고 있지만, 2차 전지에 비해 에너지 밀도가 낮은 단점이 있어 사용되는 분야에는 한계가 있다. Currently, electrochemical capacitors used in memory back-up or parts requiring instantaneous peak power in various industries have higher output density than secondary batteries, and have semi-permanent cycle life and low environmental load. It is expected to be used in various industrial fields, but the energy density is lower than that of secondary batteries.

이러한 EDLC의 에너지 밀도 향상을 목적으로 다양한 연구가 진행되고 있으며, 탄소재료의 구조제어나 신규 탄소재료의 탐색과 함께 패러데이 반응을 이용한 의사캐패시터의 개발과 각종 2차 전지와의 병행 및 정극(+)과 부극(-)의 전극소재를 달리하는 하이브리드형(hybrid) 캐패시터의 연구도 활발히 진행되고 있다. 전기화학 캐패시터용 탄소재료는 주로 석탄이나 석유계 피치, 페놀레진, 목질계 및 탄소재료 전구체 고분자를 출발물질로 하여 산화성 가스나 무기염류를 사용하여 1200 ℃ 미만의 온도에서 활성화하여 높은 비표면적을 갖는 활성탄이나 활성탄소섬유가 이용되고 있다. 특히, 활성탄소섬유의 경우 활성탄에 비해 세공분포가 균일하며, 높은 비표면적 특성과 종이상, 펠트상, 부직포상으로 제조가 가능하여 보다 고성능의 전극 활물질을 만들 수 있는 장점이 있다. 그러나, 현재 생산 판매되고 있는 활성탄소섬유는 주로 고가의 용융방사(melt-spinning)나 용융분사방사(melt-blown spinning) 장치에 의해 폴리아크릴로나이트릴(polyacrylonitrile, PAN), 피치 (pitch), 페놀수지(phenolic-resin) 등을 사용하여 섬유화한 다음 산화안정화, 탄소화 내지는 활성화하여 제조되고 있으나, 이와 같은 종래의 방사 방법에 의해서 제조되는 섬유는 직경이 대략 10㎛ 내외의 것이 만들어져 체적대비 비표면적을 효과적으로 증진시키는 데에는 한계가 있다. In order to improve the energy density of the EDLC, various researches are being conducted. The development of pseudocapacitors using Faraday reactions together with the structural control of carbon materials and the search for new carbon materials, parallel with various secondary batteries, and the positive electrode (+) Research into hybrid capacitors having different electrode materials of negative and negative electrodes has been actively conducted. Carbon materials for electrochemical capacitors mainly use coal, petroleum pitch, phenol resin, wood and carbon precursor precursor polymers as starting materials and activate at a temperature of less than 1200 ℃ using oxidizing gas or inorganic salts and have high specific surface area. Activated carbon and activated carbon fibers are used. In particular, in the case of activated carbon fibers, the pore distribution is more uniform than that of activated carbon, and high specific surface area characteristics can be produced in paper, felt, and non-woven fabrics, thereby making it possible to make higher-performance electrode active materials. However, active carbon fibers currently produced and sold are mainly polyacrylonitrile (PAN), pitch (Pitch), by expensive melt-spinning or melt-blown spinning equipment. Fiber is manufactured by phenolic resin (phenolic-resin) and then oxidative stabilization, carbonization or activation, but the fiber produced by the conventional spinning method is made of about 10㎛ diameter of about 10㎛ in diameter There is a limit to effectively improving the surface area.

또한, 전극 활물질로 이용되는 경우, 섬유를 분쇄하여 바인더나 도전재를 첨가하는 공정을 거쳐 집전체 위에 도포하는 공정을 거쳐 사용되며, 직물상의 경우는 제조된 섬유를 직조한 후 활성화하여 사용되나 섬유경이 상대적으로 커 전극의 밀도가 낮아 고속 충방전이나 고출력 특성이 저하되는 단점을 가지고 있다. In addition, when used as an electrode active material, the fiber is crushed to add a binder or a conductive material, and then applied to a current collector. In the case of a fabric, the fabric is used after weaving the manufactured fiber and then activating the fiber. Due to its relatively large diameter, the electrode has a low density and thus has a disadvantage in that high-speed charging and discharging or high output characteristics are degraded.

따라서, 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 전기방사법에 의해 루테늄 옥사이드와 같은 금속산화물 복합 초극세 활성탄소섬유를 제조하고 이를 이용하여 도전제나 바인더 등의 첨가 및 분쇄, 직조 공정 없이 바로 전기이중층 슈퍼캐퍼시터용 전극으로 이용하는 금속산화물 복합 나노 활성탄소섬유와 이를 이용한 전기이중층 슈퍼캐퍼시터용 전극 및 그 제조 방법을 제공하는 것이다.Accordingly, the present invention has been made to solve the problems of the prior art as described above, the object of the present invention is to produce a metal oxide composite ultra-fine activated carbon fiber, such as ruthenium oxide by electrospinning method and using it as a conductive agent or binder It is to provide a metal oxide composite nano-active carbon fiber used as an electrode for an electric double layer supercapacitor, an electrode for an electric double layer supercapacitor using the same, and a method of manufacturing the same, without the addition, grinding, and weaving process.

본 발명의 또 다른 목적은 금속산화물계 전극 소재들이 사이클 수명이 낮고 전극 활물질의 가격이 높으며 제조공정이 어렵고, EDLC 캐패시터는 2차 전지에 비해 에너지 밀도가 낮은 단점을 극복하기 위해 탄소섬유를 제조하는 방사용액에 금속산화물을 첨가하여 에너지밀도를 높이고, 이를 전기방사를 통한 초극세 섬유 웹으로 제조함으로써 전극제조 공정 단축은 물론 높은 전극 밀도 및 전기이중층과 의 사용량(패러데이 반응)에 의한 고에너지 밀도의 고성능 전극을 손쉽고, 저렴하게 제조할 수 있는 방법을 제공하는 것이다.It is still another object of the present invention to manufacture carbon fiber to overcome the disadvantages of metal oxide electrode materials having low cycle life, high electrode active material price, and difficult manufacturing process, and EDLC capacitors have low energy density compared to secondary batteries. By adding a metal oxide to the spinning solution to increase the energy density, it is made of ultra-fine fibrous web through electrospinning to shorten the electrode manufacturing process and high energy density due to high electrode density and high energy density due to the amount of use (Faraday reaction) with the electric double layer. It is to provide a method for producing an electrode easily and inexpensively.

전술한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은 금속산화물 함유 초극세 활성탄소섬유의 제조에 있어서, 제1단계는 탄소섬유 전구체 고분자에 금속산화물을 첨가하여 각 전구체 고분자의 용매에 용해하여 방사용액을 제조하는 단계, 제2단계는 상기 방사용액을 전기방사하여 초극세 섬유 웹을 형성하는 단계, 제3단계는 상기 섬유 웹을 350℃까지 승온하여 산화성 가스분위기하에서 불융화하여 안정화하는 단계, 제4단계는 상기 안정화된 섬유를 불활성 가스 분위기 또는 진공하에서 500℃ ~ 1500℃로 탄소화하여 금속산화물함유 초극세 탄소섬유를 형성하는 단계, 제5단계는 상기 금속산화물 함유 초극세 탄소 섬유를 수증기, 이산화탄소와 같은 산화성 가스 또는 KOH, ZnCl2, H3PO4 및 NaOH와 같은 무기염류를 이용하여 600℃ ~ 1200 ℃ 온도 범위에서 활성화하여 금속산화물 함유 초극세 활성탄소섬유를 제조하는 단계를 포함한다.According to a feature of the present invention for achieving the above object, the present invention in the production of ultrafine activated carbon fibers containing metal oxide, the first step is to add a metal oxide to the carbon fiber precursor polymer solvent of each precursor polymer Preparing a spinning solution by dissolving in a second step, and electrospinning the spinning solution to form an ultrafine fibrous web. In a third step, the fibrous web is heated to 350 ° C. to be stabilized by incompatibility under an oxidizing gas atmosphere. In the step, the fourth step is carbonizing the stabilized fibers at 500 ℃ to 1500 ℃ in an inert gas atmosphere or vacuum to form a metal oxide-containing ultra-fine carbon fiber, the fifth step is the metal oxide-containing ultra-fine carbon fiber 600 ℃ ~ 1200 using oxidizing gas such as water vapor, carbon dioxide or inorganic salts such as KOH, ZnCl 2 , H 3 PO 4 and NaOH Activating in the temperature range of ℃ includes the step of producing a metal oxide-containing ultra-fine activated carbon fiber.

바람직하게는, 제1단계의 금속산화물은 RuO2, IrO2, NiO, CoOx, MnO2, WO3 과 같은 금속산화물로 구성된 집단 중에서 선택된 하나로써 탄소섬유 전구체 물질 대비 1- 50 중량%를 함유하며, 탄소섬유 전구체를 폴리아크릴로 니트릴(PAN)로 하면 용매를 디메틸포름아마이드(DMF)나 디메틸아세트아마이드(DMAc)로 하고 PAN을 DMF나 DMAc에 5 ~ 30중량% 용해시켜 방사용액을 제조한다.Preferably, the metal oxide of the first step is RuO 2 , IrO 2 , NiO, CoO x , MnO 2 , WO 3 One selected from the group consisting of metal oxides such as 1 to 50% by weight compared to the carbon fiber precursor material, when the carbon fiber precursor is polyacrylonitrile (PAN) solvent is dimethylformamide (DMF) or dimethylacetamide (DMAc) and PAN was dissolved in DMF or DMAc 5-30% by weight to prepare a spinning solution.

더 바람직하게는, 제2단계의 전기 방사장치의 노즐 및 집속체 롤러에는 각각 (+), (-) 5kV~60kV의 전압을 인가하고 노즐과 집속체 롤러간의 거리는 5 ~ 35cm를 유지하여 토출속도는 1 ~ 5 ml/hr, 권취속도는 5 ~ 1500 m/min 로 하여 전기방사한다.More preferably, a voltage of (+) and (-) 5 kV to 60 kV is applied to the nozzle and the focusing roller of the electrospinning apparatus of the second stage, respectively, and the distance between the nozzle and the focusing roller is 5 to 35 cm to maintain the discharge speed. Is electrospun at 1 to 5 ml / hr and winding speed at 5 to 1500 m / min.

더욱 바람직하게는, 제3단계에서 방사된 금속산화물 함유 초극세 섬유 웹을 1 ~ 5℃/min의 승온속도로 350℃까지 승온하여 1시간 유지시켜 압축공기를 분당 0.5 ~ 20 ml로 공급하는 것과 같은 산화성 가스분위기하에서 불융화하여 안정화하고, 제4단계에서는 상기 안정화된 섬유를 질소, 아르곤 가스와 같은 불활성 분위기하에서 5 ℃/min으로 700-1000 ℃까지 승온한 후 1시간 유지하면서 탄소화시킨다.More preferably, the metal oxide-containing ultrafine fiber web spun in the third step is heated to 350 ° C. at a temperature increase rate of 1 to 5 ° C./min and maintained for 1 hour to supply compressed air at 0.5 to 20 ml per minute. In the fourth step, the stabilized fiber is carbonized while maintaining the temperature for 1 hour after heating up to 700-1000 ° C. at 5 ° C./min under an inert atmosphere such as nitrogen and argon gas.

더욱더 바람직하게는, 제5단계에서는 상기 안정화된 섬유 또는 탄소화된 섬유를 질소 가스와 스팀의 비율 0.5 ~ 99 부피%로 한 질소가스와 스팀을 사용하여 700 ~ 1200 ℃ 온도범위에서 활성화시켜 금속산화물 함유 초극세 활성탄소섬유를 얻는다.Even more preferably, in the fifth step, the stabilized fiber or carbonized fiber is activated in a temperature range of 700 to 1200 ° C. using nitrogen gas and steam having a ratio of nitrogen gas and steam of 0.5 to 99% by volume. Containing ultrafine activated carbon fibers.

본 발명의 바람직한 실시예에 의하면, 상기와 같은 제조방법에 의해 제조된 금속산화물 함유 초극세 활성 탄소섬유의 부직포를 집전체 위에 올려놓고 정극과 부극 사이에 셀룰로오스계 분리막을 끼워 넣고, 수용성 전해질 용액을 사용하여 전기 이중층 슈퍼캐퍼시터용 전극을 제조할 수 있다. According to a preferred embodiment of the present invention, the nonwoven fabric of the metal oxide-containing ultrafine activated carbon fiber prepared by the above manufacturing method is placed on the current collector, a cellulose separator is sandwiched between the positive electrode and the negative electrode, and a water-soluble electrolyte solution is used. The electrode for the electric double layer supercapacitor can be manufactured.

상기의 제조방법에 의해 제조된 금속산화물 함유 초극세 활성 탄소섬유의 부직포를 절단하여 니클호일(Ni foil) 집전체 위에 올려놓고 정극과 부극 사이에 셀룰로오스계 분리막을 끼워 넣고, 6M KOH 수용성 전해질 용액을 함침하여 알루미늄 라이네이트 처리된 파우치를 사용, 밀봉하여 전기 이중층 슈퍼캐퍼시터용 전극을 제작할 수 있다.The nonwoven fabric of the metal oxide-containing ultrafine activated carbon fiber prepared by the above manufacturing method was cut and placed on a nickel foil current collector, sandwiched with a cellulose separator between the positive electrode and the negative electrode, and impregnated with a 6M KOH aqueous electrolyte solution. By using a pouch treated with aluminum lining, the electrode for the electric double layer supercapacitor can be manufactured.

상기의 제조방법에 의해 제조된 금속산화물 함유 초극세 활성 탄소섬유의 부직포를 집전체 위해 올려놓고 정극과 부극 사이에 셀룰로오스계 분리막을 끼워 넣고, 유기계 전해질 용액을 사용하여 전기 이중층 슈퍼캐퍼시터용 전극을 제조할 수 있다.The nonwoven fabric of the metal oxide-containing ultrafine activated carbon fiber prepared by the above manufacturing method is placed on the current collector, and a cellulose separator is sandwiched between the positive electrode and the negative electrode, and an electrode for an electric double layer supercapacitor is prepared by using an organic electrolyte solution. Can be.

또한 상기의 제조방법에 의해 제조된 금속산화물 함유 초극세 활성 탄소섬유를 연료전지의 전극, 산업용 필터 등에 이용될 수 있다.In addition, the metal oxide-containing ultra-fine activated carbon fiber produced by the above production method may be used for electrodes of fuel cells, industrial filters, and the like.

이와 같은 구성을 가지는 본 발명에 의한 금속산화물 복합 나노 활성탄소섬유와 이를 이용한 전기이중층 슈퍼캐퍼시터용 전극 및 그 제조 방법에 의하면, 체적대비 비표면적 특성이 우수한 초극세 활성 탄소섬유의 전구체 내부에 금속산화물을 분산시켜 방사함으로써 전기이중층 및 의사용량에 기인한 고에너지 밀도가 가능하고 전기방사를 이용하여 웹상태로 제조하므로써 이후 직조과정을 생략할 수 있으며, 바인더나 도전제를 첨가하는 공정을 거치지 않아도 되므로 제조공정을 단축시킬 수 있어 비표면적 특성이 우수하면서 고에너지 밀도를 구현할 수 있느 전기이중층 슈퍼캐퍼시터용 전극을 저렴하게 생산할 수 있다.According to the metal oxide composite nano active carbon fiber and the electrode for electric double layer supercapacitor using the same according to the present invention and a method for manufacturing the same, the metal oxide is contained in the precursor of the ultrafine active carbon fiber having excellent specific surface area to volume ratio. By dispersing and spinning, high energy density due to electric double layer and pseudocapacity is possible, and weaving process can be omitted after manufacturing in web state by electrospinning, and it does not need to go through the process of adding binder or conductive agent. Since the process can be shortened, an electrode for an electric double layer supercapacitor capable of achieving high energy density with excellent specific surface area characteristics can be produced at low cost.

이하, 상기한 바와 같은 구성을 가지는 본 발명에 의한 금속산화물 복합 나노 활성탄소섬유와 이를 이용한 전기이중층 슈퍼캐퍼시터용 전극 및 그 제조 방법의 바람직한 실시예를 도면을 참고하여 상세하게 설명한다.Hereinafter, a preferred embodiment of the metal oxide composite nano active carbon fiber according to the present invention having the configuration as described above, an electrode for an electric double layer supercapacitor using the same, and a manufacturing method thereof will be described in detail with reference to the accompanying drawings.

먼저, 본 발명에 의한 금속산화물 복합 나노 활성탄소섬유의 일반적인 제조 공정을 설명하면, 탄소섬유 전구체 고분자에 금속산화물을 첨가한 후 사용된 전구체 고분자에 상용성이 있는 용매에 용해하여 방사용액을 만들고 이를 전기방사법으로 방사한다. 전기방사 방법에 의한 단섬유 제조공정은 고분자 용액을 고전압의 전계 내로 도입하여 단섬유를 제조하는 방법으로 구체적으로 +(-) 전극을 갖는 방사노즐을 통해 고분자 용액을 방사(분사)한 다음, 이를 -(+) 전극을 갖는 석션 컬렉터(suction collector)로 포집하여 초극세 단섬유를 제조하는 방법이다. 이와 같은 방법에 의해 제조되는 섬유의 직경은 ~1㎛ 미만의 초극세사로써 의료용 봉합 부직포, 산업용 필터 등에 사용되고 있다. 전기 방사법에 의해 제조된 웹상의 섬유는 안정화, 탄소화, 활성화 과정을 거쳐 나노미터 사이즈의 카본 나노파이버와 활성화 카본나노파이버 웹을 제조할 수 있다. 이와 같이 제조된 웹상의 탄소섬유 및 활성탄소섬유는 높은 전기전도성과 초고비표면적을 지니고 있어 전극 제조 시 2차 가공 및 바인더 등이 불필요하며 대용량 전기이중층 캐퍼시터용 전극 등에 응용이 가능하다. First, the general manufacturing process of the metal oxide composite nano activated carbon fiber according to the present invention will be described. After adding a metal oxide to the carbon fiber precursor polymer, it is dissolved in a solvent compatible with the precursor polymer used to form a spinning solution. Emission by electrospinning In the short fiber manufacturing process by the electrospinning method, a short fiber is prepared by introducing a polymer solution into a high-voltage electric field. Specifically, the polymer solution is spun (sprayed) through a spinning nozzle having a + (-) electrode. It is a method for producing ultra-fine short fibers by collecting with a suction collector having a-(+) electrode. The diameter of the fiber produced by such a method is used in medical suture nonwoven fabrics, industrial filters and the like as ultra-fine fibers of less than ~ 1㎛. The fiber on the web produced by the electrospinning method may be stabilized, carbonized, and activated to produce nanometer-sized carbon nanofibers and activated carbon nanofiber webs. The carbon fiber and activated carbon fiber on the web prepared in this way have high electrical conductivity and ultra-high specific surface area, so that secondary processing and binders are unnecessary when manufacturing the electrode, and can be applied to an electrode for a large-capacity electric double layer capacitor.

본 발명의 일실시예를 도 1을 참고하여 살펴 보면, 먼저 루테늄 옥사이드 수화물을 탄소섬유 전구체 고분자인 폴리아크릴로 나이트릴(polyacrylonitrile)에 1 ~ 50 중량%로 혼합하여 디메칠포름아마이드 (N,N-dimethylformaide, DMF) 용매에 5 ~ 30 중량%로 용해시켜 방사용액을 제조한다(a). 상기 제조된 방사용액은 고전압 발생장치가 부착된 전기방사방법을 통하여 500 nm 미만의 섬유경을 갖는 루테늄 옥사이드 함유 폴리아크릴로 나이트릴 복합섬유 부직포를 제조한다(b). 이때 사용된 전기 방사장치의 노즐 및 집속체 롤러에 각각 (+), (-) 5kV~60kV, 바람직하게는 30kV의 전압을 인가하고(c), 노즐과 집속체 롤러간의 거리는 5 ~ 35cm(d), 토출속도는 1 ~ 5 ml/hr, 권취속도는 5 ~ 1500 m/min 로 한다. Looking at an embodiment of the present invention with reference to Figure 1, first, ruthenium oxide hydrate is mixed with 1 to 50% by weight of polyacrylonitrile (polyacrylonitrile), a carbon fiber precursor polymer dimethylformamide (N, N -dimethylformaide, DMF) dissolved in 5 to 30% by weight of the solvent to prepare a spinning solution (a). The prepared spinning solution prepares a ruthenium oxide-containing polyacrylonitrile composite fiber nonwoven fabric having a fiber diameter of less than 500 nm through an electrospinning method with a high voltage generator (b). At this time, a voltage of (+) and (-) 5 kV to 60 kV, preferably 30 kV is applied to the nozzle and the focusing roller of the electrospinning apparatus, respectively (c), and the distance between the nozzle and the focusing roller is 5 to 35 cm (d ), The discharge speed is 1 ~ 5 ml / hr, the winding speed is 5 ~ 1500 m / min.

상기 전기방사에 의해 제조된 루테늄 옥사이드 함유 폴리아크릴로 나이트릴 복합 섬유는 무질서한 부직포상으로 집전체에 포집되며, 집속롤러의 속도를 증가시키면 포집된 섬유의 밀도가 증가하는데, 이때 루테늄이 함유된 부분이 방울(bead) 상으로 분산된 형태를 취하며, 도 2의 (a)는 루테늄 함량이 10%인 경우의 주사현미경 사진이고, (b)는 루테늄 함량이 20%인 경우의 주사현미경 사진으로서 루테늄 함량이 증가할 수 록 방울상이 증가하는 것을 확인할 수 있다. The ruthenium oxide-containing polyacrylonitrile composite fiber produced by the electrospinning is trapped in the current collector in a disordered nonwoven fabric and the density of the collected fibers increases when the speed of the focusing roller is increased, wherein the portion containing ruthenium It takes the form dispersed in this bead (bead), Figure 2 (a) is a scanning microscope picture when the ruthenium content is 10%, (b) is a scanning microscope picture when the ruthenium content is 20% As the ruthenium content increases, the droplet phase increases.

도 3에 도시된 바와 같이, 루테늄 옥사이드 함유 나노복합체 활성탄소섬유의 X-선 회절 분석결과 루테늄 함량이 증가할수록 루테늄 옥사이드에 기인한 회절패턴이 강하게 나타남을 알 수 있다.((a)는 RuO2 0중량%, (b)는 RuO2 10 중량%, (c)는 RuO2 15 중량%, (d)는 RuO2 20 중량%인 경우를 각각 나타낸다.)As shown in FIG. 3, X-ray diffraction analysis of the ruthenium oxide-containing nanocomposite activated carbon fiber shows that as the ruthenium content increases, the diffraction pattern due to the ruthenium oxide appears to be stronger. ((A) is RuO 2 0% by weight, (b) shows 10% by weight of RuO 2 , (c) shows 15% by weight of RuO 2 , and (d) shows 20% by weight of RuO 2. )

또한 도 4를 통해 알 수 있는 바와 같이, EDX 분석결과도 X-선 회절과 같이 루테늄 옥사이드 함량이 증가할 수록 루테늄(Ru) 및 산소(O)의 함량이 점진적으로 증가하는 것을 보인다. (도 4에서 나타내는 중량%는 탄소섬유 전구체 재료인 폴리아크릴로 니트릴 대비 RuO2 함량을 표시한다.)In addition, as can be seen through Figure 4, EDX analysis results, such as X-ray diffraction shows that the content of ruthenium (Ru) and oxygen (O) gradually increases as the ruthenium oxide content increases. (The weight percent shown in Figure 4 represents the RuO 2 content relative to polyacrylonitrile, the carbon fiber precursor material.)

이렇게 제조된 복합섬유는 전기로를 이용하여 분당 1 ~ 5℃의 승온속도로 350℃까지 승온하여 1시간 유지시켜 불융화 및 산화안정화 시킨다. The composite fiber thus prepared is heated to 350 ° C. at an elevated rate of 1 to 5 ° C. per minute using an electric furnace and maintained for 1 hour to infusibilize and oxidatively stabilize.

도 5를 통해 볼 수 있는 주사현미경 사진은 금속산화물 함유 활성탄소섬유에 관한 것으로 도 5a는 전구체 상태의 RuO2 함유 초극세 섬유를 도 5b는 탄소화된 RuO2 함유 초극세 섬유를 각 나타낸다. 이때 산화성 가스로는 압축공기를 분당 0.5 ~ 20 ml로 공급하며, 상기 안정화된 섬유는 불활성 분위기(질소, 아르곤 가스)하에서 5 ℃/min으로 700-1000 ℃까지 승온한 후 1시간 유지하면서 탄소화시켜 초극세 루테늄 옥사이드 함유 탄소섬유 웹을 제조한 것이다. 이때 탄소섬유 제조시의 수율은 탄소화 온도에 따라 30 ~ 70% 로써 높은 값을 보이며, 만들어진 초극세 탄소섬유 웹을 구성하는 섬유의 직경은 500 nm 미만이 대부분이다. 또한, 상기 안정화된 섬유를 질소가스와 스팀을 사용하여 700 ~ 1200 ℃ 온도범위에서 활성화 시키며, 이때 사용된 질소 가스와 스팀의 비율은 0.5 ~ 99 부피% 이며, 제조된 복합섬유의 77K 질소등온 흡착방법을 통한 BET 비표면적은 활성화 온도와 스팀의 비율에 따라 대략 800 ~ 2000 ㎡/g 정도를 나타내며, 평균 세공의 크기는 약 0.2 nm 이하의 마이크로 세공 영역에 집중되어 있는 것을 알 수 있다. The scanning micrograph shown in FIG. 5 relates to a metal oxide-containing activated carbon fiber. FIG. 5A shows a RuO 2 in a precursor state. 5B shows the carbonized RuO 2 containing ultrafine fibers, respectively. At this time, as the oxidizing gas, compressed air is supplied at 0.5 to 20 ml per minute, and the stabilized fiber is carbonized while maintaining the temperature for 1 hour after raising the temperature to 700-1000 ° C. at 5 ° C./min under an inert atmosphere (nitrogen, argon gas). The ultrafine ruthenium oxide-containing carbon fiber web was prepared. At this time, the yield of the carbon fiber production is high as 30 ~ 70% depending on the carbonization temperature, the diameter of the fiber constituting the ultra-fine carbon fiber web made is mostly less than 500 nm. In addition, the stabilized fiber is activated in the temperature range of 700 ~ 1200 ℃ using nitrogen gas and steam, wherein the ratio of the nitrogen gas and steam used is 0.5 ~ 99% by volume, 77K nitrogen isothermal adsorption of the prepared composite fiber The BET specific surface area is about 800 to 2000 m 2 / g depending on the activation temperature and the ratio of steam, and the average pore size is concentrated in the micropore region of about 0.2 nm or less.

본 발명의 또 다른 실시예에 의하면, 상기 실시예 1의 방법에 의해 전기방사된 루테늄 옥사이드 함유 활성화 나노탄소섬유 부직포를 1.5 cm × 1.5 cm 크기로 절단하여 니클호일(Ni foil) 집전체 위해 올려놓고 정극과 부극 사이에 셀룰로오스계 분리막을 끼워 넣고, 6M KOH 수용성 전해질 용액을 함침하여 알루미늄 라이네이트 처리된 파우치를 사용, 밀봉하여 슈퍼캐퍼시터를 제작한다. 전해질 용액은 유기계 용액으로 사용하는 것도 가능하다. According to another embodiment of the present invention, the ruthenium oxide-containing activated nanocarbon fiber nonwoven fabric electrospun by the method of Example 1 was cut to a size of 1.5 cm × 1.5 cm and placed on a nickel foil current collector. A cellulose separator is sandwiched between the positive electrode and the negative electrode, impregnated with 6M KOH aqueous electrolyte solution, and sealed using an aluminum-lized pouch to prepare a supercapacitor. The electrolyte solution can also be used as an organic solution.

도 6에 도시된 바와 같이, 상기 방법에 의해 제작된 슈퍼캐퍼시터는 정전류 충방전 방법을 사용하여 충전전압 0.0 - 0. 9V, 충방전 전류 1 - 20 mA/㎠의 범위에서 측정하며, 시간-전압 방전곡선으로부터 하기의 식(1)을 이용하여 비축전 용량 C를 계산한다. As shown in FIG. 6, the supercapacitor manufactured by the above method is measured in the range of charge voltage 0.0-0.9 V, charge and discharge current 1-20 mA / cm 2 using a constant current charge / discharge method, and time-voltage The specific capacitance C is calculated from the discharge curve using the following equation (1).

Figure 112005070192817-pat00001
.....................................................(1)
Figure 112005070192817-pat00001
........................................ ...(One)

상기 식 (1)로부터 계산된 비축전 용량은 루테늄 옥사이드 함량과 활성화 조건에 의한 비표면적에 크게 의존하며, 대략 250 - 600 F/g 정도를 나타내고, 이것은 루테늄이 첨가되지 않은 전기방사된 폴리아크릴로 나이트릴계 활성탄소섬유의 동일한 실험조건에 비해 약 100 - 500 % 의 용량 증가를 나타낸다. The specific storage capacity calculated from Equation (1) is highly dependent on the ruthenium oxide content and the specific surface area by activation conditions, and represents about 250-600 F / g, which is an electrospun polyacryl with no ruthenium added. A capacity increase of about 100-500% is shown compared to the same experimental conditions of nitrile activated carbon fibers.

루테늄 옥사이드 함유 활성탄소섬유 부직포 전극의 루테늄 옥사이드 산화환원 반응을 검토하기 위하여 상기 제작된 슈퍼캐퍼시터를 순환 전류방법(cyclic Voltammogram, CV)을 통해 전압범위 0.0 - 0.9 V, 주사속도(scan rate) 1mV/S - 500 mV/S의 범위로 측정하여 루테늄 함량에 대한 산화환원 반응을 평가하였을 때, 상기 도 7에서 나타난 바와 같이 루테늄 옥사이드의 함량이 증가할수록 산화환원 반응에 의한 용량은 증가하나 루테늄 옥사이드의 함량이 50 %를 넘으면 상대적으로 복합섬유의 비표면적이 감소, 전기이중층에 의한 용량이 감소하여 전체적인 용량은 15 - 30 % 에서 최대값을 나타낸다. 또한, 루테늄옥사이드의 함량이 50%를 넘으면, 방사시 용액의 점도가 급격히 증가하여 방사성이 현저히 저하되는 단점을 나타내며, 슈퍼캐퍼시터 전극의 사이클 특성도 저하되는 특징을 나타낸다. In order to examine the ruthenium oxide redox reaction of the ruthenium oxide-containing activated carbon fiber nonwoven electrode, the supercapacitor prepared above was subjected to a cyclic voltammogram (CV) voltage range of 0.0-0.9 V and a scan rate of 1 mV / When the redox reaction to the ruthenium content was measured by measuring in the range of S-500 mV / S, as shown in FIG. 7, as the ruthenium oxide content increased, the capacity of the redox reaction increased but the ruthenium oxide content was increased. If the amount exceeds 50%, the specific surface area of the composite fiber is relatively decreased, and the capacity of the electric double layer decreases, so that the total capacity is 15 to 30%. In addition, if the content of ruthenium oxide is more than 50%, the viscosity of the solution during the spinning is sharply increased, which shows a disadvantage that the radioactivity is significantly reduced, the cycle characteristics of the supercapacitor electrode is also reduced.

이상에서 살펴본 바와 같이, 본 발명은 탄소섬유의 전구체 방사용액에 패러데이 반응에 의한 의사용량을 향상시킬 수 있도록 루테늄 옥사이드와 같은 금속산화물을 첨가하였으며 이를 전기방사법으로 나노단위의 초극세 섬유를 방사한 후 안정화, 탄소화, 활성화 등의 과정을 거침으로써 체적대비 비표면적 특성이 우수하고 고에너지밀도를 구현할 수 있는 금속산화물 함유 초극세 활성탄소섬유를 저렴하게 생산하는 구성을 기술적 사상으로 하고 있음을 알 수 있다. 이와 같은 본 발명의 기본적인 기술적 사상의 범주 내에서, 당업계의 통상의 지식을 가진 자에게 있어서는 다른 많은 변형이 가능할 것이다.As described above, in the present invention, a metal oxide such as ruthenium oxide was added to the precursor spinning solution of carbon fiber to improve pseudocapacity by Faraday reaction, and then stabilized after spinning the ultrafine fibers of nano units by electrospinning method. It can be seen that the technical idea is to inexpensively produce ultrafine activated carbon fibers containing metal oxides, which have excellent specific surface area characteristics and high energy density by undergoing carbonization and activation. Within the scope of the basic technical idea of the present invention, many other modifications will be possible to those skilled in the art.

위에서 설명한 바와 같이, 본 발명의 구성에 의하면 다음과 같은 효과를 기대할 수 있다.As described above, according to the configuration of the present invention, the following effects can be expected.

첫째, 본 발명은 기존의 전기화학 캐퍼시터의 전극소재에 사용된 활성탄소섬유들이 용융방사나 용융분사방사에 의해 제조되어 섬유직경이 10㎛ 내외에 머물러 체적대비 비표면적을 효과적으로 증진시키는데 한계가 있었으나 탄소섬유의 전구체에 금속산화물을 첨가한 후 전기방사법을 이용한 방사를 통해 나노단위의 섬유를 제조하여 체적대비 비표면적 특성이 우수한 섬유를 제공할 수 있다.First, in the present invention, the activated carbon fibers used in the electrode material of the conventional electrochemical capacitors are manufactured by melt spinning or melt spraying, so that the fiber diameter stays within about 10 μm, which effectively limits the specific surface area to volume. After adding a metal oxide to the precursor of the fiber, nanofibers may be manufactured by spinning using electrospinning to provide a fiber having excellent specific surface area to volume characteristics.

둘째, 본 발명은 탄소섬유의 전구체 내부에 금속산화물을 분산시켜 방사함으로써 전기이중층 및 의사용량에 기인한 고에너지 밀도가 가능하다.Secondly, the present invention enables high energy density due to the electric double layer and pseudocapacity by dispersing metal oxide inside the precursor of carbon fiber.

셋째, 탄소섬유 전구체를 전기방사를 이용하여 웹상태로 제조하므로써 이후 직조과정을 생략할 수 있고, 전극활물질로 사용되는 경우 섬유를 분쇄하여 바인더 나 도전제를 첨가하는 공정을 거치지 않아도 되므로 제조공정을 단축시킬 수 있는 이점이 있다. Third, since the carbon fiber precursor is manufactured in a web state using electrospinning, the weaving process can be omitted afterwards, and when used as an electrode active material, it is not necessary to grind the fiber and add a binder or a conductive agent. There is an advantage that can be shortened.

넷재, 본 발명은 상기와 같이 단축된 제조공정을 통해 비표면적 특성이 우수하면서 고에너지 밀도를 구현할 수 있어 전기이중층 슈퍼캐퍼시터용 전극을 저렴하게 생산할 수 있다.Net material, the present invention can realize a high energy density and excellent specific surface area through the shortened manufacturing process as described above it is possible to produce an electrode for an electric double layer supercapacitor at low cost.

Claims (12)

금속산화물 함유 초극세 활성탄소섬유의 제조에 있어서, 다음의 각 단계를 거쳐 제조된 것을 특징으로 하는 금속산화물 함유 초극세 활성탄소 섬유;In the production of metal oxide-containing ultra-fine activated carbon fibers, the metal oxide-containing ultra-fine activated carbon fibers, characterized in that produced through the following steps; 제1단계는 탄소섬유 전구체 고분자에 금속산화물을 첨가하여 각 전구체 고분자의 용매에 용해하여 방사용액을 제조하는 단계The first step is to prepare a spinning solution by adding a metal oxide to the carbon fiber precursor polymer dissolved in a solvent of each precursor polymer 제2단계는 상기 방사용액을 전기방사하여 초극세 섬유 웹을 형성하는 단계The second step is to electrospin the spinning solution to form an ultrafine fiber web 제3단계는 상기 섬유 웹을 350℃까지 승온하여 산화성 가스분위기하에서 불융화하여 안정화하는 단계 In the third step, the fiber web is heated up to 350 ° C. to stabilize the fiber web in an oxidizing gas atmosphere to stabilize it. 제4단계는 상기 안정화된 섬유를 불활성 가스 분위기 또는 진공하에서 500℃ ~ 1500℃로 탄소화하여 금속산화물함유 초극세 탄소섬유를 형성하는 단계The fourth step is to carbonize the stabilized fibers at 500 ℃ to 1500 ℃ in an inert gas atmosphere or vacuum to form a metal oxide-containing ultra-fine carbon fibers 제5단계는 상기 금속산화물 함유 초극세 탄소 섬유를 수증기, 이산화탄소와 같은 산화성 가스 또는 KOH, ZnCl2, H3PO4 및 NaOH와 같은 무기염류를 이용하여 600℃ ~ 1200 ℃ 온도 범위에서 활성화하여 금속산화물 함유 초극세 활성탄소섬유를 제조하는 단계.In the fifth step, the metal oxide-containing ultrafine carbon fiber is activated using an oxidizing gas such as water vapor, carbon dioxide, or an inorganic salt such as KOH, ZnCl 2 , H 3 PO 4, and NaOH in a temperature range of 600 ° C. to 1200 ° C. Preparing ultrafine activated carbon fibers containing. 제1항에 있어서, The method of claim 1, 제1단계에서 상기 금속산화물은 RuO2, IrO2, NiO, CoOx, MnO2, WO3 과 같은 금속산화물로 구성된 집단 중에서 선택된 하나로써 탄소섬유 전구체 물질 대비 1- 50 중량%를 함유한 것을 특징으로 하는 금속산화물 함유 초극세 활성탄소 섬유. In the first step, the metal oxide is RuO 2 , IrO 2 , NiO, CoO x , MnO 2 , WO 3 Metal oxide-containing ultra-fine activated carbon fiber, characterized in that containing 1 to 50% by weight relative to the carbon fiber precursor material as one selected from the group consisting of metal oxides. 제1항에 있어서,The method of claim 1, 제1단계에서 상기 탄소섬유 전구체를 폴리아크릴로 니트릴(PAN)로 하여 용매 디메틸포름아마이드(DMF) 또는 디메틸아세트아마이드(DMAc)에 5 ~ 30중량% 용해시켜 제조한 방사용액인 것을 특징으로 하는 금속산화물 함유 초극세 활성탄소섬유.In the first step, the carbon fiber precursor is a polyacrylonitrile (PAN), a metal spinning solution prepared by dissolving 5-30% by weight in solvent dimethylformamide (DMF) or dimethylacetamide (DMAc) Oxide containing ultrafine activated carbon fiber. 제1항에 있어서,The method of claim 1, 제2단계의 전기 방사장치의 노즐 및 집속체 롤러에 각각 (+), (-) 5kV~60kV의 전압을 인가하고 노즐과 집속체 롤러간의 거리는 5 ~ 35cm를 유지하여 토출속도는 1 ~ 5 ml/hr, 권취속도는 5 ~ 1500 m/min 로 하여 전기방사한 것을 특징으로 하는 금속산화물 함유 초극세 활성탄소섬유.A voltage of (+) and (-) 5kV ~ 60kV is applied to the nozzle and the focusing roller of the electrospinning device of the second stage, respectively, and the distance between the nozzle and the focusing roller is 5 ~ 35cm, and the discharge speed is 1-5ml / hr, the winding speed is 5 ~ 1500 m / min, the metal oxide-containing ultra-fine activated carbon fiber, characterized in that the electrospun. 제1항에 있어서,The method of claim 1, 제3단계는 방사된 금속산화물 함유 초극세 섬유 웹을 1 ~ 5℃/min의 승온속도로 350℃까지 승온하여 1시간 유지시켜 압축공기를 분당 0.5 ~ 20 ml로 공급하는 것과 같은 산화성 가스분위기하에서 불융화하여 안정화한 것을 특징으로 하는 금속산화물 함유 초극세 활성탄소섬유. In the third stage, the spun metal oxide-containing ultrafine fiber web is heated to 350 ° C at a temperature increase rate of 1 to 5 ° C / min, maintained for 1 hour, and is fired under an oxidizing gas atmosphere such as supplying compressed air at 0.5 to 20 ml per minute. Metal oxide-containing ultra-fine activated carbon fibers characterized in that stabilized by fusion. 제1항에 있어서,The method of claim 1, 제4단계는 상기 안정화된 섬유를 질소, 아르곤 가스와 같은 불활성 분위기하에서 5 ℃/min으로 700-1000 ℃까지 승온한 후 1시간 유지하면서 탄소화시킨 것을 특징으로 하는 금속산화물 함유 초극세 활성탄소섬유. The fourth step is a carbon oxide containing ultrafine activated carbon fiber, characterized in that the stabilized fiber is carbonized while maintaining the temperature for 1 hour after heating up to 700-1000 ℃ at 5 ℃ / min in an inert atmosphere such as nitrogen, argon gas. 제1항에 있어서,The method of claim 1, 제5단계는 상기 안정화된 섬유 또는 탄소화된 섬유를 질소 가스와 스팀의 비율 0.5 ~ 99 부피%로 한 질소가스와 스팀을 사용하여 700 ~ 1200 ℃ 온도범위에서 활성화시킨 것을 특징으로 하는 금속산화물 함유 초극세 활성탄소섬유.The fifth step is a metal oxide containing characterized in that the stabilized fiber or carbonized fiber is activated in the temperature range of 700 ~ 1200 ℃ using nitrogen gas and steam with a nitrogen gas and steam ratio of 0.5 to 99% by volume Ultrafine activated carbon fiber. 전기 이중층 슈퍼캐패시터용 전극에 있어서,In the electrode for electric double layer supercapacitor, 제1항의 제조방법에 의해 제조된 금속산화물 함유 초극세 활성 탄소섬유의 부직포를 집전체 위해 올려놓고 정극과 부극 사이에 셀룰로오스계 분리막을 끼워 넣고, 수용성 전해질 용액을 사용하여 제작한 것을 특징으로 하는 전기 이중층 슈퍼캐퍼시터용 전극. The nonwoven fabric of the metal oxide-containing ultrafine activated carbon fiber prepared by the method of claim 1 is placed on a current collector, a cellulose-based separator is sandwiched between the positive electrode and the negative electrode, and an electric double layer is produced using a water-soluble electrolyte solution. Supercapacitor electrode. 전기 이중층 슈퍼캐패시터용 전극에 있어서,In the electrode for electric double layer supercapacitor, 제1항의 제조방법에 의해 제조된 금속산화물 함유 초극세 활성 탄소섬유의 부직포를 절단하여 니클호일(Ni foil) 집전체 위해 올려놓고 정극과 부극 사이에 셀룰로오스계 분리막을 끼워 넣고, 6M KOH 수용성 전해질 용액을 함침하여 알루미늄 라이네이트 처리된 파우치를 사용, 밀봉하여 슈퍼캐퍼시터를 제작한 것을 특징 으로 하는 전기 이중층 슈퍼캐퍼시터용 전극. The nonwoven fabric of the ultrafine activated carbon fiber containing the metal oxide prepared by the method of claim 1 is cut and placed on a nickel foil current collector, a cellulose separator is sandwiched between the positive electrode and the negative electrode, and a 6M KOH aqueous electrolyte solution is prepared. An electrode for an electric double layer supercapacitor, comprising: a supercapacitor produced by impregnating and sealing a pouch treated with aluminum lining. 전기 이중층 슈퍼캐패시터용 전극에 있어서,In the electrode for electric double layer supercapacitor, 제1항의 제조방법에 의해 제조된 금속산화물 함유 초극세 활성 탄소섬유의 부직포를 집전체 위에 올려놓고 정극과 부극 사이에 셀룰로오스계 분리막을 끼워 넣고, 유기계 전해질 용액을 사용하여 제작한 것을 특징으로 하는 전기 이중층 슈퍼캐퍼시터용 전극. The nonwoven fabric of the metal oxide-containing ultrafine activated carbon fiber prepared by the method of claim 1 is placed on a current collector, a cellulose separator is sandwiched between a positive electrode and a negative electrode, and an electric double layer is produced using an organic electrolyte solution. Supercapacitor electrode. 연료전지의 전극에 있어서,In the electrode of the fuel cell, 제1항의 제조방법에 의해 제조된 금속산화물 함유 초극세 활성 탄소섬유를 전극 제조에 이용한 것을 특징으로 하는 연료전지의 전극. An electrode of a fuel cell, wherein the metal oxide-containing ultrafine activated carbon fiber prepared by the method of claim 1 is used for electrode production. 산업용 필터에 있어서,In the industrial filter, 제1항의 제조방법에 의해 제조된 금속산화물 함유 초극세 활성 탄소섬유를 소재로 이용한 것을 특징으로 하는 산업용 필터.An industrial filter comprising a metal oxide-containing ultra-fine activated carbon fiber prepared by the method of claim 1 as a material.
KR1020050116107A 2005-12-01 2005-12-01 Metal oxide incorporated activated carbon nanofibers by co-electrospinning, their applications of electrode for supercapacitors, and the producing method of the same KR100675923B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050116107A KR100675923B1 (en) 2005-12-01 2005-12-01 Metal oxide incorporated activated carbon nanofibers by co-electrospinning, their applications of electrode for supercapacitors, and the producing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050116107A KR100675923B1 (en) 2005-12-01 2005-12-01 Metal oxide incorporated activated carbon nanofibers by co-electrospinning, their applications of electrode for supercapacitors, and the producing method of the same

Publications (1)

Publication Number Publication Date
KR100675923B1 true KR100675923B1 (en) 2007-01-30

Family

ID=38015178

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050116107A KR100675923B1 (en) 2005-12-01 2005-12-01 Metal oxide incorporated activated carbon nanofibers by co-electrospinning, their applications of electrode for supercapacitors, and the producing method of the same

Country Status (1)

Country Link
KR (1) KR100675923B1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803716B1 (en) 2006-12-06 2008-02-18 (재)대구경북과학기술연구원 Metal hydroxide containing complex fiber, metal oxide nanofiber and manufacturing method for the same
WO2008100573A1 (en) * 2007-02-14 2008-08-21 University Of Kentucky Research Foundation Inc. Methods of forming activated carbons
KR100917840B1 (en) 2009-07-13 2009-09-21 (주)디알씨엔씨 Nano-structure carbon composite and manufacturing method of the same
KR100926177B1 (en) 2007-12-13 2009-11-10 한국과학기술연구원 Electrochemical capacitor and electrode for use therein
KR100949177B1 (en) 2008-05-02 2010-03-23 성균관대학교산학협력단 Method for fabricating pseudo-capacitor electrode using copper-oxide nanobelt
WO2010053259A2 (en) * 2008-11-05 2010-05-14 Korea Institute Of Science And Technology Electrode for supercapacitor having manganese oxide-conductive metal oxide composite layer, fabrication method thereof, and supercapacitor comprising same
KR100985388B1 (en) 2008-04-14 2010-10-05 금오공과대학교 산학협력단 A method for preparing composites using PAN?based carbon nanofiber web
KR100995154B1 (en) 2010-02-11 2010-11-18 전남대학교산학협력단 Method of preparing porous carbon nanofibers, porous carbon nanofibers thereby and applications including the same
KR101028382B1 (en) 2009-03-03 2011-04-13 전북대학교산학협력단 Core-sheath typed gallium arsenide/PVA composite nanofiber and method of manufacturing the same
WO2012005556A2 (en) * 2010-07-08 2012-01-12 전남대학교산학협력단 Carbon nanofiber containing metal oxide or intermetallic compound, preparation method thereof, and lithium secondary battery using same
KR101126784B1 (en) 2009-09-25 2012-04-12 전남대학교산학협력단 Method for producing complex of Manganese dioxide and carbon nanofiber and pseudo capacitor including the complex
KR101139326B1 (en) * 2009-05-13 2012-04-26 주식회사 아모그린텍 Method for manufacturing of nano-size manganese oxide catalyst for zinc-air battery and Method for manufacturing air electrode for zinc-air battery using the same
KR101146263B1 (en) 2010-02-16 2012-05-15 고려대학교 산학협력단 The specific binding molecules-nanofibers complex and method for preparing the same
WO2012074160A1 (en) * 2010-11-29 2012-06-07 Gwangju Institute Of Science And Technology Carbon nanofiber catalysts using nanofiber including low cost transition metal for fuel cells and manufacturing method thereof
KR101156673B1 (en) 2009-12-16 2012-06-15 충남대학교산학협력단 Gas sensor using porous nano-fiber containing metal oxide and manufacturing method thereof
US8313723B2 (en) 2005-08-25 2012-11-20 Nanocarbons Llc Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
WO2013033367A1 (en) * 2011-08-30 2013-03-07 Cornell University Metal and ceramic nanofibers
KR101308739B1 (en) 2010-06-30 2013-09-16 전남대학교산학협력단 Copper oxide embedded carbon nanofiber and method of manufacturing the same, and lithium secondary battery using the same
KR101308736B1 (en) 2010-06-30 2013-09-16 전남대학교산학협력단 Tin oxide embedded carbon nanofiber and method of manufacturing the same, and lithium secondary battery using the same
US8580418B2 (en) 2006-01-31 2013-11-12 Nanocarbons Llc Non-woven fibrous materials and electrodes therefrom
CN103811737A (en) * 2014-03-03 2014-05-21 杭州师范大学 Preparation method of high-performance flexible lithium ion battery electrode material
CN104357925A (en) * 2014-10-16 2015-02-18 南京林业大学 Method for preparing super micro fiber
KR101524610B1 (en) * 2013-05-16 2015-06-02 비나텍주식회사 The method for manufacturing the high conductive carbon nano fiber and the carbon nano fiber made thereby
US9102570B2 (en) 2011-04-22 2015-08-11 Cornell University Process of making metal and ceramic nanofibers
US9607771B2 (en) 2010-03-24 2017-03-28 Samsung Electronics Co., Ltd. Flexible supercapacitor, method of manufacturing the same, and device including the flexible supercapacitor
KR101735651B1 (en) * 2016-02-17 2017-05-16 울산과학기술원 Method of manufacturing electrode material having metal captured nitrogen containing carbon polymer material
KR20200085467A (en) * 2019-01-07 2020-07-15 경상대학교산학협력단 Composite sulfide/sulfur electrodes and manufacturing method thereof
KR102264667B1 (en) * 2020-02-10 2021-06-14 대구대학교 산학협력단 Method for Preparing Metal Oxide/Carbon Nanofiber Composite, Metal Oxide/Carbon Nanofiber Composite Produced by the Method, and Use of the Composite
US11923140B2 (en) 2020-04-08 2024-03-05 The Board Of Trustees Of The University Of Illinois Carbon-metal oxide composite electrode for a supercapacitor and method of making a carbon-metal oxide composite electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040095804A (en) * 2003-04-28 2004-11-16 김찬 Preparation of nanotubular carbon nanofiber by using electrospinning
KR100485603B1 (en) * 2002-06-14 2005-04-27 한국화학연구원 Preparation of activated carbon fibers using nano fibers
KR100605006B1 (en) * 2005-01-18 2006-07-28 (주) 아모센스 Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers
KR100607370B1 (en) * 2003-01-15 2006-08-07 전남대학교산학협력단 Preparation of pitch-based nano carbon fiber web and nano activated carbon fiber web by electrostatic spinning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485603B1 (en) * 2002-06-14 2005-04-27 한국화학연구원 Preparation of activated carbon fibers using nano fibers
KR100607370B1 (en) * 2003-01-15 2006-08-07 전남대학교산학협력단 Preparation of pitch-based nano carbon fiber web and nano activated carbon fiber web by electrostatic spinning
KR20040095804A (en) * 2003-04-28 2004-11-16 김찬 Preparation of nanotubular carbon nanofiber by using electrospinning
KR100605006B1 (en) * 2005-01-18 2006-07-28 (주) 아모센스 Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313723B2 (en) 2005-08-25 2012-11-20 Nanocarbons Llc Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
US8580418B2 (en) 2006-01-31 2013-11-12 Nanocarbons Llc Non-woven fibrous materials and electrodes therefrom
KR100803716B1 (en) 2006-12-06 2008-02-18 (재)대구경북과학기술연구원 Metal hydroxide containing complex fiber, metal oxide nanofiber and manufacturing method for the same
WO2008100573A1 (en) * 2007-02-14 2008-08-21 University Of Kentucky Research Foundation Inc. Methods of forming activated carbons
US8709972B2 (en) 2007-02-14 2014-04-29 Nanocarbons Llc Methods of forming activated carbons
RU2472702C2 (en) * 2007-02-14 2013-01-20 Университи оф Кентукки Ресеарч Фоундатион Инк. Methods of forming activated carbon
KR100926177B1 (en) 2007-12-13 2009-11-10 한국과학기술연구원 Electrochemical capacitor and electrode for use therein
KR100985388B1 (en) 2008-04-14 2010-10-05 금오공과대학교 산학협력단 A method for preparing composites using PAN?based carbon nanofiber web
KR100949177B1 (en) 2008-05-02 2010-03-23 성균관대학교산학협력단 Method for fabricating pseudo-capacitor electrode using copper-oxide nanobelt
WO2010053259A2 (en) * 2008-11-05 2010-05-14 Korea Institute Of Science And Technology Electrode for supercapacitor having manganese oxide-conductive metal oxide composite layer, fabrication method thereof, and supercapacitor comprising same
WO2010053259A3 (en) * 2008-11-05 2010-07-22 Korea Institute Of Science And Technology Electrode for supercapacitor having manganese oxide-conductive metal oxide composite layer, fabrication method thereof, and supercapacitor comprising same
KR101028382B1 (en) 2009-03-03 2011-04-13 전북대학교산학협력단 Core-sheath typed gallium arsenide/PVA composite nanofiber and method of manufacturing the same
KR101139326B1 (en) * 2009-05-13 2012-04-26 주식회사 아모그린텍 Method for manufacturing of nano-size manganese oxide catalyst for zinc-air battery and Method for manufacturing air electrode for zinc-air battery using the same
KR100917840B1 (en) 2009-07-13 2009-09-21 (주)디알씨엔씨 Nano-structure carbon composite and manufacturing method of the same
KR101126784B1 (en) 2009-09-25 2012-04-12 전남대학교산학협력단 Method for producing complex of Manganese dioxide and carbon nanofiber and pseudo capacitor including the complex
KR101156673B1 (en) 2009-12-16 2012-06-15 충남대학교산학협력단 Gas sensor using porous nano-fiber containing metal oxide and manufacturing method thereof
KR100995154B1 (en) 2010-02-11 2010-11-18 전남대학교산학협력단 Method of preparing porous carbon nanofibers, porous carbon nanofibers thereby and applications including the same
WO2011099677A1 (en) * 2010-02-11 2011-08-18 전남대학교산학협력단 Method for preparing porous carbon nanofibers containing a metal oxide, porous carbon nanofibers prepared using the method, and carbon nanofiber products including same
US9546091B2 (en) 2010-02-11 2017-01-17 Industry Foundation Of Chonnam National University Method for preparing porous carbon nanofibers containing a metal oxide, porous carbon nanofibers prepared using the method, and carbon nanofiber products including same
KR101146263B1 (en) 2010-02-16 2012-05-15 고려대학교 산학협력단 The specific binding molecules-nanofibers complex and method for preparing the same
US9607771B2 (en) 2010-03-24 2017-03-28 Samsung Electronics Co., Ltd. Flexible supercapacitor, method of manufacturing the same, and device including the flexible supercapacitor
KR101308739B1 (en) 2010-06-30 2013-09-16 전남대학교산학협력단 Copper oxide embedded carbon nanofiber and method of manufacturing the same, and lithium secondary battery using the same
KR101308736B1 (en) 2010-06-30 2013-09-16 전남대학교산학협력단 Tin oxide embedded carbon nanofiber and method of manufacturing the same, and lithium secondary battery using the same
KR101308740B1 (en) 2010-07-08 2013-09-16 전남대학교산학협력단 Intermetallic compound embedded carbon nanofiber and method of manufacturing the same
WO2012005556A2 (en) * 2010-07-08 2012-01-12 전남대학교산학협력단 Carbon nanofiber containing metal oxide or intermetallic compound, preparation method thereof, and lithium secondary battery using same
WO2012005556A3 (en) * 2010-07-08 2012-05-03 전남대학교산학협력단 Carbon nanofiber containing metal oxide or intermetallic compound, preparation method thereof, and lithium secondary battery using same
KR101314578B1 (en) * 2010-11-29 2013-10-10 광주과학기술원 Carbon nanofiber catalysts using nanofiber including low cost trasition metal for fuel cells and its Manufacturing Method Thereof
WO2012074160A1 (en) * 2010-11-29 2012-06-07 Gwangju Institute Of Science And Technology Carbon nanofiber catalysts using nanofiber including low cost transition metal for fuel cells and manufacturing method thereof
US9102570B2 (en) 2011-04-22 2015-08-11 Cornell University Process of making metal and ceramic nanofibers
WO2013033367A1 (en) * 2011-08-30 2013-03-07 Cornell University Metal and ceramic nanofibers
KR101524610B1 (en) * 2013-05-16 2015-06-02 비나텍주식회사 The method for manufacturing the high conductive carbon nano fiber and the carbon nano fiber made thereby
CN103811737A (en) * 2014-03-03 2014-05-21 杭州师范大学 Preparation method of high-performance flexible lithium ion battery electrode material
CN104357925A (en) * 2014-10-16 2015-02-18 南京林业大学 Method for preparing super micro fiber
KR101735651B1 (en) * 2016-02-17 2017-05-16 울산과학기술원 Method of manufacturing electrode material having metal captured nitrogen containing carbon polymer material
KR20200085467A (en) * 2019-01-07 2020-07-15 경상대학교산학협력단 Composite sulfide/sulfur electrodes and manufacturing method thereof
WO2020145504A1 (en) * 2019-01-07 2020-07-16 경상대학교 산학협력단 Composite sulfide electrode and manufacturing method therefor
KR102150615B1 (en) * 2019-01-07 2020-09-01 경상대학교산학협력단 Composite sulfide/sulfur electrodes and manufacturing method thereof
KR102264667B1 (en) * 2020-02-10 2021-06-14 대구대학교 산학협력단 Method for Preparing Metal Oxide/Carbon Nanofiber Composite, Metal Oxide/Carbon Nanofiber Composite Produced by the Method, and Use of the Composite
US11923140B2 (en) 2020-04-08 2024-03-05 The Board Of Trustees Of The University Of Illinois Carbon-metal oxide composite electrode for a supercapacitor and method of making a carbon-metal oxide composite electrode

Similar Documents

Publication Publication Date Title
KR100675923B1 (en) Metal oxide incorporated activated carbon nanofibers by co-electrospinning, their applications of electrode for supercapacitors, and the producing method of the same
Ma et al. Electrospun lignin-derived carbon nanofiber mats surface-decorated with MnO2 nanowhiskers as binder-free supercapacitor electrodes with high performance
KR100995154B1 (en) Method of preparing porous carbon nanofibers, porous carbon nanofibers thereby and applications including the same
KR101126784B1 (en) Method for producing complex of Manganese dioxide and carbon nanofiber and pseudo capacitor including the complex
Kim et al. Characteristics of supercapaitor electrodes of PBI-based carbon nanofiber web prepared by electrospinning
Inagaki et al. Carbon nanofibers prepared via electrospinning
KR100701627B1 (en) Manufacturing method of nano sized activated carbon fiber comprising metal oxide and electrode for super capacitor using the same nano sized activated carbon fiber manufactured thereby
KR101348202B1 (en) Metaloxide-carbonparticle-carbon nanofiber composites, preparation method for the same, and their application products from the same
Singh et al. Kraft lignin-derived free-standing carbon nanofibers mat for high-performance all-solid-state supercapacitor
Yang et al. Highly conductive, porous RuO2/activated carbon nanofiber composites containing graphene for electrochemical capacitor electrodes
Zhao et al. Solution blown silicon carbide porous nanofiber membrane as electrode materials for supercapacitors
Tan et al. Effect of structural orientation on the performance of supercapacitor electrodes from electrospun coal-derived carbon nanofibers (CCNFs)
Chen et al. Electrospinning technology for applications in supercapacitors
Kurniawan et al. Easy approach to synthesize N/P/K co-doped porous carbon microfibers from cane molasses as a high performance supercapacitor electrode material
CN112726192B (en) Preparation method of electrospun carbon nanofiber/reduced graphene oxide/polyaniline/basic nickel carbonate composite electrode material
KR100819900B1 (en) Super capacitor using graphite type material comprising nano sized activated carbon fiber
Wang et al. Porous carbon nanofibers: Preparation and potential applications
KR101118186B1 (en) Electrode Material for Supercapacitor, Electrode for Supercapacitor using the Electrode Material and Method for Manufacturing the Same
Dubal et al. Electrospun polyacrylonitrile carbon nanofiber for supercapacitor application: a review
CN109686574B (en) MnO-Mn (OH) 2/carbon nanofiber composite material and preparation method thereof
KR100517021B1 (en) Preparation of Carbonnanofibers by electrospinning methods and their EDLC applications
Tang et al. Integrated electrospun carbon nanofibers with vanadium and single-walled carbon nanotubes through covalent bonds for high-performance supercapacitors
KR101147923B1 (en) Method of preparing porous carbon nanofibers containing metaloxide, porous carbon nanofibers thereby and their applications including the same
KR20140044965A (en) Carbon nanoplates using silk proteins and the manufacturing method
Wu et al. Research and application of carbon nanofiber and nanocomposites via electrospinning technique in energy conversion systems

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121210

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131108

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151218

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161228

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee