KR100641694B1 - Titania manufacturing method for denitrification catalyst extrusion - Google Patents

Titania manufacturing method for denitrification catalyst extrusion Download PDF

Info

Publication number
KR100641694B1
KR100641694B1 KR20050007895A KR20050007895A KR100641694B1 KR 100641694 B1 KR100641694 B1 KR 100641694B1 KR 20050007895 A KR20050007895 A KR 20050007895A KR 20050007895 A KR20050007895 A KR 20050007895A KR 100641694 B1 KR100641694 B1 KR 100641694B1
Authority
KR
South Korea
Prior art keywords
titania
catalyst
tungsten oxide
metatitanic acid
extrusion
Prior art date
Application number
KR20050007895A
Other languages
Korean (ko)
Other versions
KR20060087084A (en
Inventor
신동우
윤대현
유상희
Original Assignee
주식회사 나노
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노 filed Critical 주식회사 나노
Priority to KR20050007895A priority Critical patent/KR100641694B1/en
Publication of KR20060087084A publication Critical patent/KR20060087084A/en
Application granted granted Critical
Publication of KR100641694B1 publication Critical patent/KR100641694B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

배기가스 중의 질소산화물을 저감하기 위하여 선택적환원촉매(Selective Catalytic Reduction, SCR)법이 사용되고 있으며, 촉매는 담체원료 및 촉매원료를 혼합하여 하니컴 형태로 압출성형하여 건조, 소성한 제품이 사용되고 있는데 담체원료로는 티타니아가 주로 사용되고 있다. 본 발명은 압출성형성이 우수하며, 촉매로써의 성능이 우수한 텅스텐산화물이 담지된 티타니아를 제조하는 방법 및 그의 구성이다. 티타니아의 1차, 2차 입자크기 조절이 가능하고, 비표면적 조절이 가능하며, 입자 평균 기공크기가 100Å 이상이 되는, 탈질촉매 압출성형에 적합한 텅스텐산화물이 담지된 티타니아 분말을 제조하는 방법 및 그 조성이 개시되어 있다. 상기 분말은 공업용 티타니아 제조공정의 하나인 황산법으로 수행되는 제조공정 중에서 생성되는 황산티타늄을 촉매능과 압출성형에 적합하도록 가수분해 공정을 조절하여 메타티탄산을 얻고, 수득된 메타티탄산을 염기성 용액으로 중화하고 텅스텐산화물을 형성할 수 있는 전구체를 용해하여 첨가한 다음, 건조하고, 소성하여 티타니아 분말을 제조한 경우로, 티타니아에 대하여 텅스텐산화물이 0.1∼15 중량% 담지 될 수 있다. 이는 화력발전소, 소각로, 각종화학플랜트 등에서 배출되는 질소산화물(NOx)를 효과적으로 제거하는 선택적환원촉매(SCR)의 압출성형용 담체원료로 적용할 수 있다.         Selective Catalytic Reduction (SCR) is used to reduce nitrogen oxides in the exhaust gas.The catalyst is a product that is dried and calcined by extrusion molding in the form of honeycomb by mixing a carrier material and a catalyst material. The furnace is mainly Titania. The present invention is a method for producing titania loaded with tungsten oxide excellent in extrusion property and excellent in performance as a catalyst, and a configuration thereof. Method for preparing titania powder loaded with tungsten oxide suitable for denitrification catalyst extrusion which can control the primary and secondary particle size of titania, the specific surface area can be controlled, and the average particle pore size is over 100Å. The composition is disclosed. The powder is obtained by adjusting the hydrolysis process of titanium sulfate produced in the manufacturing process performed by the sulfuric acid method, which is one of the industrial titania manufacturing processes, to be suitable for catalytic performance and extrusion molding, to obtain metatitanic acid, and neutralize the obtained metatitanic acid with a basic solution. In the case where a precursor capable of forming tungsten oxide is dissolved and added, followed by drying and firing to prepare titania powder, tungsten oxide may be loaded in an amount of 0.1 to 15 wt% based on titania. This can be applied as a carrier material for extrusion molding of selective reduction catalyst (SCR) that effectively removes nitrogen oxides (NOx) discharged from thermal power plants, incinerators, various chemical plants, and the like.

질소화합물(NOx), SCR(선택적촉매환원),티타니아, 텅스텐산화물, 압출성형         Nitrogen compounds (NOx), SCR (Selective Catalytic Reduction), Titania, Tungsten Oxide, Extrusion                                                                                                                                                                                                                                                                                                

Description

탈질촉매 압출성형용 티타니아 제조방법 {Manufacturing Method of Titania for Extrusion Forming of De-NOx Catalyst} Manufacturing Method of Titania for Extrusion Forming of De-NOx Catalyst

도 1은 텅스텐산화물 담지 티타니아의 제조 공정도이다.1 is a manufacturing process diagram of a titania supported on tungsten oxide.

도 2는 실시예 2를 통하여 제조한 텅스텐산화물 담지 티타니아 분말의 X-선 회절분석(XRD) 결과 선도이다.2 is an X-ray diffraction analysis (XRD) result diagram of the tungsten oxide-supported titania powder prepared in Example 2. FIG.

도 3a는 실시예 2를 통하여 제조한 텅스텐산화물 담지 티타니아 분말의 EDS를 활용한 텅스텐 분산도 측정 결과이다.Figure 3a is a tungsten dispersion measurement results using the EDS of the tungsten oxide loaded titania powder prepared in Example 2.

도 3b는 실시예 4를 통하여 제조한 텅스텐산화물 담지 티타니아 분말의 EDS를 활용한 텅스텐 분산도 측정 결과이다.3b is a result of measuring tungsten dispersion using EDS of the tungsten oxide-supported titania powder prepared in Example 4. FIG.

도 4a는 NH3/NOx가 0.8일 경우, 실시예 2, 3, 4, 상용 A에 대한 질소산화물 제거효율을 나타낸 결과이다.Figure 4a is a result showing the nitrogen oxide removal efficiency for Example 2, 3, 4, commercial A when NH 3 / NOx is 0.8.

도 4b는 NH3/NOx가 0.8일 경우, 실시예 2, 3, 4, 상용 A에 대한 질소산화물 제거효율을 나타낸 결과이다.Figure 4b is a result showing the nitrogen oxide removal efficiency for Example 2, 3, 4, commercial A when NH 3 / NOx is 0.8.

본 발명은 배연 탈질(De-NOx) 촉매담체 압출성형용 티타니아 분말의 제조방법 및 그 조성에 관한 것으로서, 더욱 상세하게는 비표면적이 크고 입자내 평균 기공 크기가 100Å 이상을 갖는 미립 티타니아의 제조방법에 관한 것이다.The present invention relates to a method for preparing titania powder for flue gas denitrification (De-NOx) catalyst carrier extrusion molding and its composition, and more particularly, to a method for producing particulate titania having a specific surface area and an average pore size in a particle of 100 mm 3 or more. It is about.

특히, 압출성형하여 촉매로 사용될 경우에는 압출성형 공정에 적당한 티타니아가 공급되어야 하는데, 2차 입자크기, 세공구조가 최종촉매의 강도와 수축율 및 압출공정에서의 배토특성을 좌우하여 생산효율을 좌우하므로 메타티탄의 입자크기 및 세공구조를 조절하는 가수분해 공정이 매우 중요하다. 또한 티타니아에 포함된 황화합물(SO3)이 압출공정에서의 배토간의 결합력에 관여하며, 촉매성능에 관여하므로 함량조절은 필수적이다. In particular, when used as a catalyst by extrusion molding, a suitable titania should be supplied to the extrusion process, since the secondary particle size and pore structure influence the production efficiency by controlling the strength and shrinkage rate of the final catalyst and the topdressing characteristics in the extrusion process. Hydrolysis processes that control the particle size and pore structure of metatitanium are very important. In addition, since the sulfur compound (SO 3 ) contained in titania is involved in the binding force between the clay in the extrusion process and the catalytic performance, the content control is essential.

황산법 티타니아 제조공정에서 가수분해 조건을 조절하여 안료용, 고무용, 세라믹충진용, 의료용 등 다양한 용도로 조절하여 사용하고 있다. 가수분해 조건은 입자를 성장시키는데 필요한 seed의 투입량, 가수분해 농도, 가수분해 온도, 교반조건, 반응시간에 따라 물성이 조절되므로 압출성형에 적합한 물성을 갖는 메타티탄산을 얻기 위해서는 가수분해 공정 조절이 필수적이다. Sulfuric acid method In the titania manufacturing process, hydrolysis conditions are controlled and used for various purposes such as pigments, rubbers, ceramic fillings, and medical use. Hydrolysis conditions are controlled by the amount of seed required to grow the particles, hydrolysis concentration, hydrolysis temperature, stirring conditions, reaction time, so that the hydrolysis process control is essential to obtain metatitanic acid suitable for extrusion molding to be.

SCR 공정은 화력발전소, 대형소각로, 각종 화학플랜트 등의 배출가스 중에 발생하는 유해한 질소산화물(NOx)을 적합한 촉매의 존재 하에서 암모니아(NH3)와 반응시켜 무해한 질소(N2)와 수분(H2O)으로 분해하는 방법으로써 NOx와 NH3의 반응이외에 NH3와 SO2 등의 반응이 발생하지 않는 것을 특징으로 하며, 탈질촉매로 주로 바나듐(V), 텅스텐(W), 몰리브덴(Mo), 니켈(Ni), 철(Fe), 구리(Cu) 등의 산화물이 사용되고 있으며, 촉매담체로는 티타니아(Titania), 알루미나(Alumina), 실리카(Silica), 지르코니아(Zirconia)등이 주로 사용된다. The SCR process reacts harmful nitrogen oxides (NOx) generated in exhaust gases such as thermal power plants, large-scale incinerators, and various chemical plants with ammonia (NH 3 ) in the presence of a suitable catalyst to produce harmless nitrogen (N 2 ) and water (H 2). O) is a method of decomposing into a reaction, characterized in that the reaction of NH 3 and SO 2 does not occur in addition to the reaction of NOx and NH 3 , denitrification catalyst mainly vanadium (V), tungsten (W), molybdenum (Mo), Oxides such as nickel (Ni), iron (Fe), and copper (Cu) are used, and as the catalyst carrier, titania, alumina, silica, zirconia, and the like are mainly used.

배연탈질 선택적촉매환원용 촉매는 주로 탈질효과를 나타내는 촉매성분인 바나듐, 몰리브덴, 니켈, 텅스텐 산화물 등을 비표면적이 큰 티타니아(Titania), 알루미나(Alumina), 실리카(Silica), 지르코니아(Zirconia) 등의 담체표면에 혼합, 담지시켜 열처리하여 제조하고 있으며(미국특허, 5,827,489), 이러한 방법은 촉매 및 담체를 각각 제조, 담지시킨 후 하소하는 공정에 의해 제조하므로 공정이 복잡하고 제조원가가 높은 단점이 있다. The catalyst for reducing flue gas denitrification mainly contains vanadium, molybdenum, nickel, and tungsten oxide, which are catalyst components exhibiting a denitrification effect, such as titania, alumina, silica, zirconia, and the like having a large specific surface area. It is manufactured by heat treatment by mixing and supporting the surface of the carrier (US Pat. No. 5,827,489), and this method is manufactured by a process of preparing, supporting and calcining the catalyst and the carrier, respectively, which has a disadvantage of complicated process and high manufacturing cost. .

상기한 원료중에서 티타니아는 루틸상(Rutile)과 아타타제(Anatase)상으로 구분되며, 루틸(Rutile)상의 경우 주로 백색 안료용으로 사용되며, 아나타제(anatase)상을 갖는 경우 산화력이 루틸상보다 높고 광에 대한 활성도가 높아 대한민국 특허등록 제0430405호에 개시되어 있는 바와 같이 빛을 받고 표면활성화가 되어 유기물 분해하는 광촉매로도 널리 사용되고 있다. 이외에 아나타제상의 결정상을 갖는 미립 티타니아는 황화합물과 쉽게 반응하지 않는 화학적 안정성을 갖고, 비표면적이 넓어 촉매 효능을 나타내는 금속산화물을 담지시켜 질소화합물을 제거하는 탈질촉매용 담체원료로 사용되고 있다. Among the raw materials, titania is divided into rutile phase and anatase phase, and the rutile phase is mainly used for white pigment, and when the anatase phase has higher oxidation power than rutile phase As the activity of light is high, as disclosed in Korean Patent Registration No. 0430405, it is widely used as a photocatalyst for decomposing organic matter by receiving light and surface activation. In addition, fine titania having a anatase phase has a chemical stability that does not easily react with sulfur compounds, and is used as a carrier material for the denitration catalyst to remove nitrogen compounds by supporting a metal oxide having a large specific surface area and exhibiting catalytic efficacy.

탈질 촉매용 SCR 담체제조에 있어서, 운전조건에 따라 배가스의 SOx 농도가 높아 NH3와 SOx의 반응이 진행될 경우 NOx 제거효율의 감소 및 촉매 사용기간의 단축이 야기되므로 촉매담체는 황화합물과 반응하지 않는 황피독성이 있어야 하며, 촉매 성분의 균일한 담지 및 충분한 촉매반응 활성 사이트(site) 제공을 위하여 비표면적이 커야하고, 암모니아와 접촉하여 NOx 제거효율을 높일 수 있는 산점이 충분하게 존재해야 하며, 황화물 및 기타 반응물의 이동에 제한이 없도록 원료 입자내의 기공이 충분히 커야하며, 또한 압출성형에 있어서 배토의 특성이 매우 중요하므로 흡습도(wet-ability), 점력(Plasticity), 입도분포, 수축률 등의 최적화된 물성이 요구된다. In the manufacture of SCR carriers for denitrification catalysts, the SOx concentration of the flue gas is high depending on the operating conditions, and when the reaction of NH 3 and SOx proceeds, the NOx removal efficiency is reduced and the catalyst life is shortened. Therefore, the catalyst carrier does not react with the sulfur compound. It must be suspiciously toxic, have a large specific surface area for uniform loading of catalyst components and sufficient catalytic activity sites, and sufficient acid spots to increase NOx removal efficiency in contact with ammonia, and And the pores in the raw material particles should be large enough so that there is no restriction on the movement of the reactants, and also because the characteristics of the clay are very important in extrusion molding, optimization of wettability, plasticity, particle size distribution, shrinkage rate, etc. Required physical properties are required.

본 발명은 상기한 문제를 해결하기 위하여 안출된 것으로, 촉매 압출성형 생산성이 높고 탈질촉매능이 우수하면서 비표면적과 평균 입자기공이 크고, 용이하게 물성 조절이 가능하며 촉매성분을 균일하게 담지한 배연탈질 촉매담체 압출성형용 티타니아 분말을 제공하고자 하는 것이다. The present invention has been made to solve the above problems, high catalyst extrusion molding productivity, excellent denitrification catalyst ability, large specific surface area and average particle pore size, easy to control the physical properties and uniformly carrying the catalyst component flue denitrification It is to provide a titania powder for catalyst carrier extrusion.

즉, 본 발명의 목적은 탈질촉매 압출성형에 적합한 메타티탄을 가수분해 공정을 통하여 획득하고, 처리공정 중에 텅스텐산화물 전구체를 용해하여 첨가한 후 열처리공정에 의해 1차 입자의 크기가 10~50nm의 범위이며, 비표면적이 50㎡/g 이상이고, 입자 평균 기공크기가 100 Å 이상의 물성을 가지며, 화학적으로 안정한 아나타제 결정상의 티타니아를 주원료로 하여 텅스텐산화물이 균일하게 담지, 분포된 조성물을 제공하는데 있다. That is, an object of the present invention is to obtain a meta-titanium suitable for denitrification catalyst extrusion through a hydrolysis process, and to dissolve and add the tungsten oxide precursor during the treatment process, the primary particle size of 10 ~ 50nm by the heat treatment process It provides a composition having a specific surface area of 50 m 2 / g or more, a particle average pore size of 100 GPa or more, and uniformly supported and distributed tungsten oxide with a titania of chemically stable anatase crystals as a main raw material. .

티타니아에 담지된 텅스텐산화물의 경우 촉매반응에 있어서 반응가스로 주입된 암모니아가 NOx로 재산화되는 것을 방지하며, 그에 따른 효과로 촉매효율을 높이고, 넓은 온도범위에서 SCR시스템을 운전할 수 있는 운전조건을 제공하는 장점이 있다.In the case of tungsten oxide supported on titania, the ammonia injected into the reaction gas is prevented from reoxidation to NOx in the catalytic reaction, thereby improving the catalyst efficiency and operating conditions for operating the SCR system in a wide temperature range. There is an advantage to providing.

상기와 같은 목적을 실현하기 위해서, 본 발명에서는In order to realize the above object, in the present invention

요구되는 메타티탄산을 얻기 위하여 황산티타늄을 가수분해 조건, 즉 아나타제 seed 투입농도, 가수분해온도, 가수분해시 교반속도, 반응시간을 조절하여 10nm이하의 1차 입자를 가지며, 0.5~2.5㎛의 2차 응집입자를 형성하고, SO3가 TiO2 대비 4~5중량%를 차지하는 메타티탄 슬러리를 얻는 공정기술을 제공하고, 0.1∼15 중량%의 텅스텐산화물이 담지되어 이루어지는 텅스텐산화물 담지 티타니아 조성물을 제공한다. In order to obtain the required metatitanic acid, titanium sulfate has primary particles of 10 nm or less by controlling the hydrolysis conditions, that is, the concentration of anatase seed, the hydrolysis temperature, the stirring speed during the hydrolysis, and the reaction time, It provides a process technology for forming secondary aggregated particles, obtaining a metatitanium slurry in which SO 3 accounts for 4 to 5% by weight relative to TiO 2 , and provides a tungsten oxide-supported titania composition comprising 0.1 to 15% by weight of tungsten oxide. do.

특히, 상기한 티타니아는 아나타제 결정상인 것이 바람직하며, 황산티타늄 농축액을 90~120℃ 가수분해 반응온도, 0.2~0.4중량%의 seed 투입량, 4~8시간의 반응시간, 30~60rpm의 교반속도 범위를 조절하여 여러 종류의 메타티탄을 얻고, 메타티탄산을 수세공정으로 불순물 제거, 염기성 용액을 이용한 분산, 중화, 전구체 첨가, 건조, 소성하여 아나타제 결정상 티타니아를 제조하는 공정을 사용할 수 있다. 상기 공정에서 텅스텐산화물을 형성하기 위하여, 전구물질로서 Ammonium Meta Tungstate ((NH4)6W12O39·XH2O), Ammonium Para Tungstate ((NH4)10W12O41), Ammonium Tungstate (H8N2O4W) 중에서 선택되는 가용성 암모늄염, WXa(X=Ci, Br 등, a=4∼6), WOa'Xb'(X=Cl, Br 등, a'=1∼2, b'=2∼4) 중에서 선택되는 할로겐화 텅스텐 또는 산화텅스텐(WO3), 텅스텐산(H2WO4), 산화텅스텐 인산 수화물(H3O40PW12), 산화텅스텐 수산화규화물(H4O40SiW12), 황화물(H8N2S4W) 산 형태가 바람직하게 적용될 수 있다. 이러한 텅스텐산화물은 최종 열처리 티타니아에 대하여 0.1∼15 중량% 첨가하도록 한다. 첨가에 있어 텅스텐 전구체를 용매에 용해하지 않을 경우, 티타니아에 담지되는 것이 아니라 단순히 혼합되는 것이기 때문에 이는 촉매반응에 있어서 텅스텐의 촉매역할을 올바르게 수행하지 못하고 촉매효율이나 촉매내구성을 저하시키므로, 텅스텐 전구체는 반드시 용해하고 수용액화하여 티타니아의 입자, 세공, 표면에 균일하게 담지되도록 해야 한다.In particular, the titania is preferably in the anatase crystal phase, the titanium sulfate concentrate is 90 ~ 120 ℃ hydrolysis reaction temperature, 0.2 ~ 0.4 wt% seed dose, 4 ~ 8 hours reaction time, 30 ~ 60rpm stirring range Various kinds of metatitanium can be obtained by using the method, and metatitanic acid can be used to remove impurities by washing with water, disperse using a basic solution, neutralize, add precursors, dry, and calcinate to produce anatase crystalline titania. Ammonium Meta Tungstate ((NH 4 ) 6 W 12 O 39 · X H 2 O), Ammonium Para Tungstate ((NH 4 ) 10 W 12 O 41 ), Ammonium Tungstate to form tungsten oxide in the process Soluble ammonium salt selected from (H 8 N 2 O 4 W), WX a (X = Ci, Br, etc., a = 4-6), WO a ' X b' (X = Cl, Br, etc., a '= 1 Tungsten halide or tungsten oxide (WO 3 ), tungstic acid (H 2 WO 4 ), tungsten oxide phosphate hydrate (H 3 O 40 PW 12 ), tungsten hydroxide silicide ( H 4 O 40 SiW 12 ), sulfide (H 8 N 2 S 4 W) acid form may be preferably applied. This tungsten oxide is to be added 0.1 to 15% by weight based on the final heat treatment titania. If the tungsten precursor is not dissolved in the solvent in the addition, it is not supported on titania but is simply mixed, so that the tungsten precursor may not perform the catalytic role of tungsten correctly in the catalytic reaction and degrade the catalyst efficiency or catalyst durability. It must be dissolved and aqueous so that it can be uniformly supported on the particles, pores and surfaces of titania.

또한 티타니아의 비표면적은 50∼120 ㎡/g 되도록 하는 것이 바람직하다. 이는 비표면적이 50㎡/g보다 작으면 촉매성분의 담지 및 반응 사이트(site)가 충분하지 못하여 바람직하지 못하며, 120㎡/g보다 크면 세공사이즈가 매우 작아지고, 결정크기가 작아 결정화도가 떨어져 티타니아의 기능을 100% 발휘하지 못하며, 담체 압출성형 후 건조시 문제가 발생하여 충분한 강도 및 내구성을 갖지 못하여 지지체로써의 역할을 충분히 할 수 없게 될 수 있다. 아울러 입자 평균 기공크기는 100Å 이상이 바람직한데, 이는 기공크기가 너무 작으면 모세관력에 의해 황화합물 및 반응 후 물질이 포획되어 황피독이 발생할 수 있으며 촉매활성 사이트가 감소하여 바람직하지 못하다. In addition, it is preferable that the specific surface area of titania is 50-120 m <2> / g. It is not preferable that the specific surface area is smaller than 50 m 2 / g because of insufficient support and reaction site of the catalyst component, and larger than 120 m 2 / g, the pore size is very small and the crystal size is small, so that the crystallinity is poor. It may not exhibit 100% of the function, and may cause problems during drying after extrusion of the carrier, and may not have sufficient strength and durability, and thus may not sufficiently serve as a support. In addition, the average pore size of the particles is preferably 100 kPa or more. If the pore size is too small, the sulfur compound and the material after the reaction may be trapped by capillary force, and thus sulfur poisoning may occur and the catalytic activity site decreases, which is not preferable.

이하, 구체적인 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. Hereinafter, the present invention will be described in more detail with reference to specific examples.

2004년 4월 23일자로 등록된 대한민국 특허등록 제0430405호에 개시된 공정을 따르되 첨가제 첨가 단계에서 열처리 후, 텅스텐 산화물을 형성하는 AMT(Ammonium Meta Tungstate((NH4)6W12O39·XH2O)), APT(Ammonium Para Tungstate((NH4)10W12O41)) 를 첨가하여 제조하였다. AMT (Ammonium Meta Tungstate ((NH 4 ) 6 W 12 O 39 · X H), which forms a tungsten oxide after heat treatment in the additive addition step, following the process disclosed in Korean Patent Registration No. 0430405, issued April 23, 2004. 2 O)) and APT (Ammonium Para Tungstate ((NH 4 ) 10 W 12 O 41 )) was added.

<실시예 1><Example 1>

농축된 150~250g/L(TiO2기준)의 황산티타늄 용액을 가열순환이 가능한 오일배관이 장착된 스테인레스 반응기에 1L를 넣고, 아나타제 seed를 0.25% 가한다. 이때의 반응기 용액의 온도는 가열장치에 의한 오일순환을 통하여 반응기 온도를 90~120℃로 사용하였다. 아나타제 seed를 투입한 후 1차 가수하여 농도가 140~150g/L가 되도록한 후 최대 60rpm으로 교반을 최대 4시간 하고, TiO2 기준 농도가 100-120g/L 되도록 2차 가수한 후 최대 60rpm으로 최대 4시간 교반하고 냉각하여 종료한다. 종료된 용액은 2회 수세/여과를 통하여 메타티탄 슬러리로 수득하였다. 상기의 조건을 변화시켜가며 2.5㎛이하의 메타티탄 입자를 조절하여 수득하였다. 가수분해 조건중에 교반속도, 온도, 반응시간을 조절하여 2차 입자 크기를 1~2.5㎛까지 조절할 수 있으며, 조건은 표 1과 같다.1 L of concentrated titanium sulfate solution of 150-250 g / L (based on TiO 2 ) was added to a stainless reactor equipped with an oil pipe capable of heating circulation, and anatase seed was added 0.25%. The temperature of the reactor solution at this time was used as the reactor temperature 90 ~ 120 ℃ through the oil circulation by the heating device. After adding the anatase seed, the primary water is added to make the concentration 140 ~ 150g / L, followed by agitation at a maximum of 60rpm for up to 4 hours, and the secondary water is added to the TiO 2 reference concentration of 100-120g / L, and then up to 60rpm. Stir up to 4 hours, cool and end. The finished solution was obtained as a metatitanium slurry through two washes / filtrations. It was obtained by adjusting the metatitanium particles of 2.5㎛ or less while changing the above conditions. The secondary particle size can be adjusted to 1 ~ 2.5㎛ by controlling the stirring speed, temperature, reaction time during the hydrolysis conditions, the conditions are shown in Table 1.

실시예 1의 가수분해 조건 비교Comparison of Hydrolysis Conditions of Example 1 반응온도(℃)Reaction temperature (℃) 교반속도(rpm)Stirring Speed (rpm) 총 반응시간Total reaction time 기타Etc 실시예 1-1Example 1-1 9595 3030 44 seed 투입동일 가수농도 동일seed Input same mantissa concentration 실시예 1-2Example 1-2 9595 3030 88 실시예 1-3Example 1-3 9595 6060 44 실시예 1-4Example 1-4 9595 6060 88 실시예 1-5Example 1-5 110110 3030 44 실시예 1-6Example 1-6 110110 3030 88 실시예 1-7Example 1-7 110110 6060 44 실시예 1-8Example 1-8 110110 6060 88

<실시예 2><Example 2>

메타티탄산의 조건은 1차입자 10nm이하, 비표면적 300m2/g이상, 2차 평균입경 1∼1.5㎛의 메타티탄산(TiO(OH)2)으로 제조된 것을 활용한다. 메타티탄산(TiO2기준) 300g에 메타티탄산 내에 존재하는 불순물과 황산 성분을 감소시키기 위해 물을 2리터 첨가하여 세척한 다음, 여과하여 불순물 등이 수세되어 여액으로 제거되도록 한다. 여액과 분리된 메타티탄산에 물을 1.5리터 가하고, 암모니아수를 첨가하여 pH가 7∼9 되도록 중화한 후 다시 여과하였다. 다시 여과된 메타티탄산 함수케익에 대하여 물을 1리터 가한 후 교반한다. 텅스텐 전구체인 Ammonium Meta Tungstate((NH4)6W12O39·XH2O)는 물에 용해되므로 티타니아에 대해 10중량% 내외가 되도록 물 0.3리터에 용해한 후 메타티탄산이 교반되고 있는 반응기에 텅스텐용해액을 넣어 2시간 이상 반응시킨다. 이를 150℃에서 20시간 이상 건조한 후, 500∼700℃에서 1∼4 시간 열처리하여 분쇄한 후 분말을 수득하였다.The conditions of metatitanic acid are those prepared with metatitanic acid (TiO (OH) 2 ) having a primary particle of 10 nm or less, a specific surface area of 300 m 2 / g or more, and a secondary average particle diameter of 1 to 1.5 μm. To reduce impurities and sulfuric acid components in 300 g of metatitanic acid (based on TiO 2 ), 2 liters of water is added to the water to reduce impurities and sulfuric acid, which is then filtered and washed with impurities to remove the filtrate. 1.5 liters of water was added to the metatitanic acid separated from the filtrate, neutralized to pH 7-9 by addition of aqueous ammonia, and filtered again. 1 liter of water was added to the filtered metatitanic acid hydrous cake and stirred. Since tungsten precursor Ammonium Meta Tungstate ((NH 4 ) 6 W 12 O 39 · X H 2 O) is dissolved in water, it is dissolved in 0.3 liter of water so that it is about 10% by weight with respect to titania, and then in a reactor in which metatitanic acid is stirred. Add tungsten solution and react for 2 hours or more. It was dried at 150 ° C. for at least 20 hours, and then pulverized by heat treatment at 500 to 700 ° C. for 1 to 4 hours to obtain a powder.

<실시예 3><Example 3>

실시예 2와 같은 공정이되, 텅스텐 전구체를 Ammonium Para Tungstate((NH4)10W12O41, 이하 APT)로 하여 제조하는데, 이는 일반적인 물에 잘 녹지 않는 무기화학제품이다. 물 0.3리터에 질산을 첨가하여 pH 1이하로 맞추고 APT를 티타니아에 대해 10중량% 내외가 되도록 첨가한 후 90℃의 중탕으로 1시간 이상 반응하여 용해하였다. 이하 공정은 실시예 2와 동일하였다.In the same process as in Example 2, a tungsten precursor is prepared using Ammonium Para Tungstate ((NH 4 ) 10 W 12 O 41 , hereinafter APT), which is an inorganic chemical product that is insoluble in general water. Nitric acid was added to 0.3 liters of water to adjust the pH to 1 or less, and APT was added so as to be about 10% by weight with respect to titania. The following steps were the same as in Example 2.

<실시예 4><Example 4>

실시예 2와 같은 공정이되, 텅스텐 전구체를 삼산화텅스텐(WO3, 99%순도)을 첨가하였으며, 이는 물 0.3리터에 삼산화텅스텐을 티타니아에 대해 10중량% 혼합하여 반응조에 첨가하였다. 이하 공정은 실시예 2와 동일하였다.In the same process as in Example 2, the tungsten precursor was added to tungsten trioxide (WO 3 , 99% purity), which was added to the reaction tank by mixing 10% by weight of tungsten trioxide to titania in 0.3 liter of water. The following steps were the same as in Example 2.

<시험예1-물성비교><Test Example 1-Property Comparison>

실시예 1에서 제조된 메타티탄산 분말 및 실시예 2~4에서 제조된 텅스텐이 담지된 티타니아와 유사한 상용 A사의 티타니아 분말의 물성을 비교 조사하였다. 실시예 1의 메타티탄산 분말은 비표면적 및 2차 입자 크기를 분석하였으며, 실시예 2~4 및 상용 A사 분말은 결정상, 조성, 비표면적, 세공크기, 입도를 분석하였다. 조성은 분말 6g을 결합제와 균일하게 혼합분쇄하여 40mm 원형몰드에 충진하여, 가압 성형하여 펠렛을 얻어 X-선 형광분석기(Venes200, Philips Co.)를 활용하여 산화물 조성을 분석하였다. 분말의 결정상 분석을 위하여, CuKα X-ray를 이용하여 scan rate을 4˚/분으로 분말 X-선회절분석을 하였다. 또한 비표면적 및 기공분포를 조사하기 위하여 기공분석장치(ASAP2010, Micromeritics Co.)로 비표면적 및 세공크기를 측정하였다. 또한, 2차 평균입도를 레이저분산 방식인 입도분석기(Accusizer, PSS Co)로 측정하였다. 텅스텐의 담지정도를 비교하기 위하여 실시예 2와 실시예 4의 분말을 SEM-EDS 텅스텐 Mapping을 통하여 텅스텐의 분산정도를 평가하였다.The physical properties of the metatitanic acid powder prepared in Example 1 and the commercially available titania powders of commercial A company similar to the titania loaded with tungsten prepared in Examples 2 to 4 were investigated. The metatitanic acid powder of Example 1 was analyzed for specific surface area and secondary particle size, and Examples 2 to 4 and commercial A company powder were analyzed for crystal phase, composition, specific surface area, pore size, and particle size. The composition of the powder was uniformly mixed and ground with a binder and filled into a 40 mm round mold, and press-molded to obtain pellets. The oxide composition was analyzed using an X-ray fluorescence analyzer (Venes200, Philips Co.). For powder phase analysis, powder X-ray diffraction analysis was performed at 4 ° / min using CuKα X-ray. In addition, the specific surface area and pore size were measured by a pore analyzer (ASAP2010, Micromeritics Co.) to investigate the specific surface area and pore distribution. In addition, the second average particle size was measured by a particle size analyzer (Accusizer, PSS Co) that is a laser dispersion method. In order to compare the degree of loading of tungsten, the dispersion of tungsten was evaluated by SEM-EDS tungsten mapping for the powders of Examples 2 and 4.

실시예 1을 통해 수득한 메타티탄산의 물성Physical Properties of Metatitanic Acid Obtained through Example 1 비표면적(BET, ㎡/g)Specific surface area (BET, ㎡ / g) 입경(D50, ㎛)Particle diameter (D50, μm) 실시예 1-1Example 1-1 358358 1.091.09 실시예 1-2Example 1-2 310310 1.451.45 실시예 1-3Example 1-3 320320 1.211.21 실시예 1-4Example 1-4 320320 1.251.25 실시예 1-5Example 1-5 297297 1.761.76 실시예 1-6Example 1-6 266266 2.352.35 실시예 1-7Example 1-7 300300 1.541.54 실시예 1-8Example 1-8 277277 1.951.95

실시예 1을 통하여 메타티탄산을 얻기 위한 조건으로 반응시간, 반응온도, 교반속도를 조절하여 여러 가지의 메타티탄산을 수득하였으며, 압출성형에 적당한 물성과 촉매능이 우수한 메타티탄산을 제조하였다. 일반적으로 압출성형에서 사용하는 입경은 실시예 1-3, 1-4의 조건으로 수득된 입경이며, 메타티탄의 2차 평균입경이 최종 티타니아 제조시의 입경으로 제조되고, 1차입경은 열처리의 조건에 따라 성장되어 조절된다. 상기조건을 활용하면 필요에 따라 압출성형에서 적당한 입경의 크기를 제어할 수 있다.Various metatitanic acids were obtained by adjusting the reaction time, reaction temperature, and stirring speed as conditions for obtaining metatitanic acid through Example 1, and prepared metatitanic acid having excellent physical properties and catalytic performance suitable for extrusion molding. In general, the particle size used in extrusion molding is the particle size obtained under the conditions of Examples 1-3 and 1-4, and the secondary average particle diameter of metatitanium is prepared as the particle size at the time of final titania production, and the primary particle diameter is a condition of heat treatment. It grows and regulates accordingly. By utilizing the above conditions, it is possible to control the size of the appropriate particle size in extrusion molding as needed.

실시예를 통해 제조된 이산화티타늄 조성물에 대한 물성분석 결과Physical property analysis results for the titanium dioxide composition prepared through the Example 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 상용 ACommercial A 결정상Crystal phase 아나타제Anatase 아나타제Anatase 아나타제Anatase 아나타제Anatase 비표면적(m2/g)Specific surface area (m2 / g) 9595 9393 9292 9494 세공크기(Å)Pore size 121121 120120 130130 122122 평균입도(㎛)Average particle size (㎛) 1.211.21 1.231.23 1.221.22 1.311.31 주요조성 (중량%)Main composition (% by weight) WO3WO3 9.879.87 9.759.75 9.719.71 9.889.88 TiO2TiO2 88.5188.51 88.6288.62 88.6188.61 88.7188.71 SO3SO3 0.910.91 0.870.87 0.890.89 1.331.33

표 3에서와 같이 실시예를 통하여 제조한 물성은 대부분 유사하게 제조되었고, 특히 실시예 4의 세공크기는 130Å으로 실시예 2, 3 보다 세공크기가 약간 크게 제조되었다. 이는 텅스텐 전구체를 용해하여 세공과 표면에 균일 담지 시킨 것이 아니고 삼산화텅스텐을 분말입자 형태로 혼합하였기 때문에 조성은 유사하지만 표면에 균일담지 되지 않았다는 것을 세공크기를 통해 간접적으로 알 수 있다. 또한 도3의 EDS 텅스텐 스캐닝 결과를 보면 삼산화텅스텐을 혼합한 경우 보다 실시예 2의 텅스텐 수용액을 담지시킨 경우, EDS 스캐닝 결과가 매우 균일하게 잘 담지되었음을 알 수 있다. As shown in Table 3, most of the physical properties prepared through the examples were prepared in a similar manner, in particular, the pore size of Example 4 was 130 Å, which was slightly larger than those of Examples 2 and 3. This is indirectly seen from the pore size that the composition is similar but not uniformly supported on the surface because tungsten trioxide was mixed in the form of powder particles rather than uniformly supported on the pores and the surface by dissolving the tungsten precursor. In addition, the EDS tungsten scanning result of FIG. 3 shows that when the tungsten aqueous solution of Example 2 was supported rather than when tungsten trioxide was mixed, the EDS scanning result was well and uniformly supported.

<시험예 2-촉매성능비교><Test Example 2-Comparison of Catalyst Performance>

실시예 2~4의 분말과 상용 A사의 티타니아 분말에 바나듐을 1중량%를 추가로 담지하여 촉매성능을 비교하였다. 암모늄바나데이트를 옥살산과의 비율 1:2과 함께 충분한 물에 넣어 용해한 후 티타니아 분말혼합/건조/500℃에서 1시간동안 가소하였다. 혼합된 분말을 촉매측정장치 반응기에 적재한 후 NOx 제거효율을 비교하였다. NOx 제거효율의 조건은 NH3/NO 비율 0.8~0.9, NO농도 500ppm, O2 15%, 온도 200~500℃, 공간속도 10,000hr-1의 조건으로 평가하였다.The catalytic performance was compared by further loading 1 wt% of vanadium on the powders of Examples 2 to 4 and titania powder of the commercial A company. Ammonium vanadate was dissolved in sufficient water with a ratio of 1: 2 to oxalic acid and dissolved, followed by calcining at titania powder mixture / drying / 500 ° C. for 1 hour. The mixed powder was loaded into the catalytic measuring device reactor and the NOx removal efficiency was compared. The NOx removal efficiency was evaluated under conditions of NH 3 / NO ratio 0.8 ~ 0.9, NO concentration 500ppm, O 2 15%, temperature 200 ~ 500 ℃, space velocity 10,000hr -1 .

도 4는 촉매성능을 비교한 결과인데, 실시예 4보다 실시예 2, 3의 NOx 제거효율이 우수한 것으로 보아 텅스텐 담지 방법은 매우 중요하다고 할 수 있다. 특징적인 것은 NH3/NO 비율이 0.8 및 0.9의 범위에서도 넓은 온도범위에 걸쳐 높은 질소산화물의 제거효율을 보이는 것으로 보아 폭넓은 운전조건에서 촉매반응기를 운용가능한 것으로 사료된다. 또한 상용 A사보다 NOx 제거효율이 3% 이상 효율이 높고, 온도영역도 골고루 넓게 촉매효율을 나타내는 것으로 보아, 실시예 2, 3을 통하여 제조한 분말의 제조방법이 우수하며, 이는 높은 비표면적과 세공크기, 적합한 결정화도, 균일한 텅스텐 담지 등 종합적인 요인으로 사료된다.Figure 4 is a result of comparing the catalytic performance, it can be said that the tungsten supporting method is very important because the NOx removal efficiency of Examples 2 and 3 is superior to Example 4. It is considered that the catalytic reactor can be operated under a wide range of operating conditions because it shows high nitrogen oxide removal efficiency over a wide temperature range even when the NH 3 / NO ratio is 0.8 and 0.9. In addition, the NOx removal efficiency is more than 3% higher than that of commercial A company, and the temperature range is evenly shown to show catalytic efficiency. The method of preparing the powders prepared in Examples 2 and 3 is excellent, which has a high specific surface area and It is considered as a comprehensive factor such as pore size, suitable crystallinity and uniform tungsten support.

상기한 바와 같이 본 발명에 의하면, 촉매 압출성형용 티타니아 제조에 적합한 메타티탄산을 가수분해 조건을 조절하여 얻고 이를 염기성 용액으로 중화하여 텅스텐 산화물을 형성할 수 있는 전구체를 첨가한 다음, 건조하고, 소성하여 티타니아 분말을 제조할 경우, 공정의 간소화에 따른 염가의 탈질촉매조성이 담지된 미립 티타니아 분말을 제조할 수 있게 되고, 분말의 촉매효율이 우수하여 배연탈질시설에 적용되었을 경우 높은 제거효율과 장기간의 내구성 등을 제공하여 경제적인 효과를 나타낼 수 있다. 또한 본 발명에서 얻은 미립 티타니아는 압출성형에 유리한 구조적, 형태적인 장점을 갖도록 제조할 수 있으며, 또한 화력발전소, 소각로, 각종화학플랜트 등에서 배출되는 질소산화물(NOx)를 효과적으로 제거하기 위한 선택적환원촉매(SCR)의 담체원료로 적용할 수 있다.As described above, according to the present invention, a metatitanic acid suitable for preparing titania for catalytic extrusion molding is obtained by controlling hydrolysis conditions, and a precursor capable of neutralizing it with a basic solution to form tungsten oxide is added, followed by drying and calcining. In the case of producing titania powder, it is possible to produce fine titania powder loaded with inexpensive denitrification catalyst composition according to the simplification of the process. By providing durability and the like can exhibit an economic effect. In addition, the fine particle titania obtained in the present invention can be manufactured to have a structural and morphological advantage that is advantageous for extrusion molding, and also a selective reduction catalyst for effectively removing nitrogen oxides (NOx) emitted from thermal power plants, incinerators, various chemical plants, etc. It can be applied as a carrier material of SCR).

Claims (6)

TiO2 기준으로 150~250g/L의 황산티타늄 농축액에 90~120℃의 온도에서 아나타제 시드(seed)를 0.2~0.4중량% 투입하는 단계;Adding 0.2-0.4% by weight of an anatase seed to a titanium sulfate concentrate of 150-250 g / L based on TiO 2 at a temperature of 90-120 ° C .; 농도가 100~120g/L로 되도록 2~3회 나누어 가수하는 단계;Hydrolyzing two to three times so that the concentration is 100-120 g / L; 30~60rpm으로 교반하면서 4~8시간 반응시켜 입성장시키는 단계; 및Reacting for 4 to 8 hours while stirring at 30 to 60 rpm to grow the particles; And 냉각하여 2회에 걸쳐 수세와 여과를 반복하는 단계를 포함하는 메타티탄산의 제조방법.Method of producing metatitanic acid comprising the step of cooling and rinsing with water and filtration twice. 제1항에 있어서, 상기 메타티탄산은 아나타제형을 가지며, 1차 입자크기가 10nm 이하이고, 2차 입자크기가 1~2.5㎛인 것을 특징으로 하는 메타티탄산의 제조방법.The method of claim 1, wherein the metatitanic acid has an anatase type, the primary particle size is 10 nm or less, and the secondary particle size is 1 to 2.5 μm. 메타티탄산(TiO(OH)2) 및 물을 1:5의 중량비로 포함하는 슬러리에 염기성 용액을 첨가하여 pH 7~9의 범위로 중화하는 단계;Adding a basic solution to a slurry containing metatitanic acid (TiO (OH) 2 ) and water in a weight ratio of 1: 5 to neutralize it in the range of pH 7-9; 상기 중화된 용액을 여과하여 메타티탄산 함수케익을 제조하는 단계;Filtering the neutralized solution to prepare a metatitanic acid hydrous cake; 텅스텐 전구체가 용해된 수용액과 상기 메타티탄산 함수케익을 혼합 및 반응시키는 단계; 및Mixing and reacting the aqueous solution containing tungsten precursor and the metatitanic acid hydrous cake; And 상기 용액을 건조한 후, 500~700℃에서 1~4시간 동안 소성하여 텅스텐 산화물이 0.1~15중량%로 담지된 티타니아를 제조하는 단계를 포함하는 탈질촉매 압출성형용 티타니아의 제조방법.After drying the solution, and calcined for 1 to 4 hours at 500 ~ 700 ℃ to produce a titania in which tungsten oxide is supported by 0.1 to 15% by weight. 삭제delete 제3항에 있어서, 상기 텅스텐 전구체는 암모늄메타텅스테이트((NH4)6W12O39·XH2O), 암모늄파라텅스테이트((NH4)10W12O41), 암모늄텅스테이트(H8N2O4W), 암모늄황화텅스테이트(H8N2S4W) 및 산화텅스텐(WO3) 중에서 선택되는 1종 또는 그 이상의 화합물을 포함하는 것을 특징으로 하는 탈질촉매 압출성형용 티타니아의 제조방법.The method of claim 3, wherein the tungsten precursor is ammonium metatungstate ((NH 4 ) 6 W 12 O 39 · X H 2 O), ammonium paratungstate ((NH 4 ) 10 W 12 O 41 ), ammonium tungstate Denitrification catalyst extrusion molding comprising one or more compounds selected from (H 8 N 2 O 4 W), ammonium sulfide tungstate (H 8 N 2 S 4 W), and tungsten oxide (WO 3 ) Method for producing titania. 제3항에 있어서, 상기 티타니아는 비표면적이 50~120㎡/g이고, 1차 입자크기가 10~50nm인 것을 특징으로 하는 탈질촉매 압출성형용 티타니아의 제조방법.The method of claim 3, wherein the titania has a specific surface area of 50 to 120 m 2 / g, and has a primary particle size of 10 to 50 nm.
KR20050007895A 2005-01-28 2005-01-28 Titania manufacturing method for denitrification catalyst extrusion KR100641694B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20050007895A KR100641694B1 (en) 2005-01-28 2005-01-28 Titania manufacturing method for denitrification catalyst extrusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20050007895A KR100641694B1 (en) 2005-01-28 2005-01-28 Titania manufacturing method for denitrification catalyst extrusion

Publications (2)

Publication Number Publication Date
KR20060087084A KR20060087084A (en) 2006-08-02
KR100641694B1 true KR100641694B1 (en) 2006-11-03

Family

ID=37176070

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20050007895A KR100641694B1 (en) 2005-01-28 2005-01-28 Titania manufacturing method for denitrification catalyst extrusion

Country Status (1)

Country Link
KR (1) KR100641694B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758065B1 (en) * 2006-03-22 2007-09-11 한국전력기술 주식회사 Preparation method of rutile titania-based catalyst showing excellent removal performance of nitrogen oxide emitted from stationary sources and mobile sources in ultra high temperature, and use thereof
CN100395018C (en) * 2006-08-25 2008-06-18 清华大学 Method for preparing visible light excited TiO2 photocatalyst utilizing industrial metatitanic acid
KR101042018B1 (en) * 2008-08-13 2011-06-16 주식회사 나노 Manufacturing Method of High Density Titanium Dioxide Powder for De-NOx Catalyst
KR102090726B1 (en) * 2017-12-14 2020-04-28 한국생산기술연구원 Metal Structure based NOx Removal Catalyst for Selective Catalyst Reduction using Coating Slurry and Method for Manufacturing Same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796185A (en) * 1993-06-29 1995-04-11 Bayer Ag Preparation of mixed oxide powder for use on catalyst for removing nitrogen oxides
JPH08164335A (en) * 1991-02-14 1996-06-25 Sekiyu Sangyo Kasseika Center Nitrogen oxides catalystic reduction catalyst
KR20030006598A (en) * 2001-07-13 2003-01-23 주식회사 나노 Titanium Dioxide Powder For Selective Catalytic Reduction Support For Removing NOx Compounds And Method Of Preparing Thereof
KR20030018809A (en) * 2001-08-31 2003-03-06 재단법인 포항산업과학연구원 Fabrication method of nanoscale-porous body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08164335A (en) * 1991-02-14 1996-06-25 Sekiyu Sangyo Kasseika Center Nitrogen oxides catalystic reduction catalyst
JPH0796185A (en) * 1993-06-29 1995-04-11 Bayer Ag Preparation of mixed oxide powder for use on catalyst for removing nitrogen oxides
KR20030006598A (en) * 2001-07-13 2003-01-23 주식회사 나노 Titanium Dioxide Powder For Selective Catalytic Reduction Support For Removing NOx Compounds And Method Of Preparing Thereof
KR20030018809A (en) * 2001-08-31 2003-03-06 재단법인 포항산업과학연구원 Fabrication method of nanoscale-porous body

Also Published As

Publication number Publication date
KR20060087084A (en) 2006-08-02

Similar Documents

Publication Publication Date Title
US9446385B2 (en) Surface deposition-type honeycomb catalyst for flue gas denitrification and preparation method thereof
KR101654875B1 (en) Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof
JP3694537B2 (en) Method for producing mixed oxide powder used as catalyst for removing nitrogen oxides
US9248433B2 (en) Raw materials for vanadium-free or vanadium-reduced denox catalysts, and method for producing same
JP6595088B2 (en) SCR catalyst for removing nitrogen oxides and method for producing the same
JPH08196B2 (en) Catalyst for reducing nitrogen oxide content in flue gas
KR101629483B1 (en) Vanadium-based denitration catalyst and preparing method of the same
KR101308496B1 (en) Methods of manufacturing a honeycomb catalyst
KR101700433B1 (en) Titanium dioxide nanocomposites for Plate-type Selective Catalytic Reduction
KR102014365B1 (en) SCR Catalyst Added Carbon Supported Active Catalytic Materials and Preparation Method Thereof
US20170320043A1 (en) Low-Alkali Catalyst Material and Process for Preparation Thereof
JPH0242536B2 (en)
KR100641694B1 (en) Titania manufacturing method for denitrification catalyst extrusion
KR101667863B1 (en) Titanium-containing granular powder and method for production thereof, and exhaust gas treatment catalyst using same and method for production thereof
JPH1099684A (en) Catalyst composition for reduction of nox, its production and reducing method for nox in exhaust combustion gas containing oxygen
CN103097020B (en) Catalyst material and preparation method thereof
KR101631487B1 (en) Catalyst for Removal of Nitrogen Oxides by Selective Catalytic reduction
JP7146890B2 (en) Rare earth metal vanadate catalyst for nitrogen oxide reduction
KR100629574B1 (en) Catalyst for nitrogen oxides reduction using activated carbon and method for preparing the same
JPS6245340A (en) Catalyst for reducing content of nitrogen oxide in combustion exhaust gas
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
KR100979031B1 (en) Catalyst for Nitrogen Oxide Removal and method for Manufacturing the same
KR20030006598A (en) Titanium Dioxide Powder For Selective Catalytic Reduction Support For Removing NOx Compounds And Method Of Preparing Thereof
JPH01317545A (en) Preparation of denitrification catalyst
KR102474055B1 (en) Metal Oxides Synthesized via Supercritical Carbon Dioxide Extraction

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120926

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130809

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151013

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161017

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171011

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20181024

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190828

Year of fee payment: 14