KR100332932B1 - A Biofuel Cell Using Wastewater and Activated Sludge for Wastewater Treatment - Google Patents

A Biofuel Cell Using Wastewater and Activated Sludge for Wastewater Treatment Download PDF

Info

Publication number
KR100332932B1
KR100332932B1 KR1019990027168A KR19990027168A KR100332932B1 KR 100332932 B1 KR100332932 B1 KR 100332932B1 KR 1019990027168 A KR1019990027168 A KR 1019990027168A KR 19990027168 A KR19990027168 A KR 19990027168A KR 100332932 B1 KR100332932 B1 KR 100332932B1
Authority
KR
South Korea
Prior art keywords
wastewater
biofuel cell
activated sludge
present
sludge
Prior art date
Application number
KR1019990027168A
Other languages
Korean (ko)
Other versions
KR20010009031A (en
Inventor
김병홍
장인섭
현문식
김형주
박형수
Original Assignee
박호군
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박호군, 한국과학기술연구원 filed Critical 박호군
Priority to KR1019990027168A priority Critical patent/KR100332932B1/en
Priority to PCT/KR2000/000228 priority patent/WO2001004061A1/en
Priority to CA 2378558 priority patent/CA2378558A1/en
Priority to AU33335/00A priority patent/AU3333500A/en
Priority to JP2001509681A priority patent/JP2004517437A/en
Priority to EP20000911467 priority patent/EP1232123A1/en
Priority to CNB008108056A priority patent/CN1164509C/en
Publication of KR20010009031A publication Critical patent/KR20010009031A/en
Application granted granted Critical
Publication of KR100332932B1 publication Critical patent/KR100332932B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

본 발명은 폐수를 연료로 한 생물 연료전지를 제공한다. 본 발명에 사용되는 폐수와 활성 슬러지내의 전기화학적 활성 미생물은 폐수내의 유기물을 산화하여 발생하는 전자를 세포 외부로 방출하여 직접적으로 전극에 전달하여 전류를 발생시키며, 폐수를 정화시킬 수 있다. 본 발명에 따른 전기화학적 활성을 지닌 세균을 이용한 생물연료전지에서 발생하는 전류는 최대 0.22 mA의 전기 에너지를 발생하였고, 연료로 사용한 폐수의 CODcr을 최대 1900 ppm에서 55 ppm까지 감소시켰다. 연료전지의 효율은 폐수 종류와 폐수 농도에 따라 차이가 있었다.The present invention provides a biofuel cell using wastewater as a fuel. The electrochemically active microorganisms in the wastewater and activated sludge used in the present invention emit electrons generated by oxidizing organic matter in the wastewater to the outside of the cell and directly transfer them to the electrode to generate an electric current, thereby purifying the wastewater. The electric current generated in the biofuel cell using the electrochemically active bacterium according to the present invention generated electrical energy up to 0.22 mA, and reduced the CODcr of the wastewater used as fuel from 1900 ppm up to 55 ppm. The efficiency of the fuel cell differed according to the wastewater type and the wastewater concentration.

Description

폐수 및 폐수처리용 활성슬러지를 사용한 생물연료전지 {A Biofuel Cell Using Wastewater and Activated Sludge for Wastewater Treatment}Biofuel Cell Using Wastewater and Activated Sludge for Wastewater Treatment

본 발명은 폐수를 이용한 생물 연료전지에 관한 것이다. 더욱 구체적으로는, 본 발명은 유기물을 함유하는 폐수를 처리하면서 전기를 생산할 수 있는 유기물을 연료로 이용하는 생물연료전지에 관한 것으로서, 폐수 내의 유기물이 미생물에 의해 대사될 때 발생하는 환원력을 전기 에너지로 직접 전환시킬 수 있는 생물 연료전지에 관한 것이다.The present invention relates to a biofuel cell using wastewater. More specifically, the present invention relates to a biofuel cell that uses organic matter that can generate electricity while treating wastewater containing organic matter as a fuel, wherein the reducing power generated when the organic matter in the wastewater is metabolized by microorganisms is converted into electrical energy. A biofuel cell that can be converted directly.

생물 연료전지는 생물 또는 그의 일부를 사용하여 생물의 에너지 대사에서 발생하는 환원력을 전기에너지로 전환시키는 장치로서, 미생물 연료전지에서는 촉매로서 작용하는 미생물이 기질을 산화시킬 때 발생되는 환원력을 전기 에너지로 전환시키기 위해서는 에너지 대사에서 발생하는 전자가 미생물로부터 전극으로 전달되어야 한다. 그러나, 미생물을 포함하는 대부분의 생물 세포는 비전도체인 지질막으로 싸여 있어 미생물과 전극간의 직접적인 전자 교환이 이루어질 수 없다. 따라서, 미생물 균체를 촉매로 사용할 때에는 적당한 전자 전달 매개체를 사용함으로써 생물과 전극간의 전자 전달이 쉽게 이루어지도록 하여야 한다. 따라서, 산화형과 환원형이 모두 친유성이 강해 쉽게 막을 통과할 수 있는 전자전달체를 매개체로 사용하였다.A biofuel cell is a device that converts the reducing power generated in the energy metabolism of the organism into electrical energy by using a living organism or a part thereof. In the microbial fuel cell, the reducing power generated when the microorganism acting as a catalyst oxidizes a substrate to electrical energy. To convert, electrons from energy metabolism must be transferred from the microorganism to the electrode. However, most biological cells, including microorganisms, are wrapped in lipid membranes, which are non-conductors, so that direct electron exchange between microorganisms and electrodes cannot be achieved. Therefore, when using microbial cells as a catalyst, an appropriate electron transfer medium should be used to facilitate electron transfer between the organism and the electrode. Therefore, both the oxidized type and the reduced type used an electron transporter having a high lipophilic property that can easily pass through the membrane.

특히, 롤러(Roller)등이프로테우스 불가리스(Proteus vulgaris), 대장균 (Escherichia coli),알칼리제네스 유트로퍼스(Alcaligenes eutrophus),아조토박터 크로오코쿰(Azotobacter chroococum),바실러스 서브틸러스(Bacillus subtilis) 등을 사용하고, 전자 전달 매개체로서 티오닌(thionine), 메틸렌 블루 (methylene blue), 브릴리언트 크레실 블루 (briliant cresyl blue), 벤질 비올로겐 (benzyl viologen)등을 생물 연료전지에 사용한 예를 들 수 있다. 생물 연료전지에서, 산소 소비량으로 비교한 생물 연료전지의 효율은 세균과 전자 전달 매개체의 종류에 따라 큰 차이가 있었다 [참조: Roller 등., 1984, Journal of Chemical Technology and Biotechnology 34B: 3-12].In particular, the roller (Roller) such as the Proteus vulgaris (Proteus vulgaris), E. coli (Escherichia coli), alkali jeneseu oil Trojan Perth (Alcaligenes eutrophus), azo Sat bakteo croissant OKO glutamicum (Azotobacter chroococum), Bacillus sub-blocks bus (Bacillus subtilis) And thionine, methylene blue, brilliant cresyl blue, benzyl viologen, etc., as an electron transporting medium. Can be. In biofuel cells, the efficiency of biofuel cells compared with oxygen consumption differed significantly depending on the type of bacterial and electron transfer mediators (Roller et al., 1984, Journal of Chemical Technology and Biotechnology 34B: 3-12). .

베네토 (Bennetto) 등은 설탕을 연료로 사용하고, 프로테우스 (Proteus) 속 세균을 촉매로, 티오닌을 전자 전달 매개체로 사용한 연료전지를 구성하여 최고 44 C (Coulomb)의 전류를 생산하였다 [참조: Bennetto 등., 1985, Biotechnology letters, 7:699-704]. 로빈(Robin) 등은 생물 촉매로서 프로테우스 불가리스 (Proteus vulgaris), 전자 전달 매개체로서 하이드록시-1,4-나프토퀴논 (2-hydroxy-1,4-naphthoquinone: HNQ), 연료로 포도당을 사용하여 0.5 mA, 0.7V의 기전력을 갖는 생물 연료전지를 구성하였다 [참조: Robin 등., 1993, Applied Biochemistry and Biotechnology 30/40:27-40]. 또한, 하버만과 포머(Harberman and Pommer)도 산화코발트, 몰리브덴/바나듐 합금 등을 전극으로 사용하고, 폐수 중 황산염 환원 세균이 생산하는 황화수소를 연료로 이용하는 연료전지를 구성하여 ㎠ 당 150 mA (150 mA/㎠)의 전류를 생산하였다고 보고하였다 [참조: Harbermann and Pommer, 1991, Applied Microbiology and Biotechnology 33: 128-133].Beneto et al. Produced up to 44 C (Coulomb) of current by constructing a fuel cell using sugar as fuel, bacteria from Proteus as catalyst, and thionine as electron transfer medium. Bennetto et al., 1985, Biotechnology letters, 7: 699-704. Robin (Robin) and the like as the biological catalyst Proteus vulgaris (Proteus vulgaris), as the electron transfer mediator-hydroxy-1,4-naphthoquinone (2-hydroxy-1,4-naphthoquinone : HNQ) using glucose as a fuel A biofuel cell with an electromotive force of 0.5 mA, 0.7 V was constructed (Robin et al., 1993, Applied Biochemistry and Biotechnology 30/40: 27-40). In addition, Harberman and Pommer also use a cobalt oxide, molybdenum / vanadium alloy, etc. as electrodes, and construct a fuel cell that uses hydrogen sulfide produced by sulfate-reducing bacteria in wastewater as fuel. mA / cm 2) was produced (Harbermann and Pommer, 1991, Applied Microbiology and Biotechnology 33: 128-133).

최근에 금속염인 제2철 이온, 4가 망간, 6가 우라늄, 6가 몰리브덴 등을 전자수용체로 이용하는 혐기성 세균이 분리되고 있다. 이러한 금속염 환원 세균이 기질로 이용할 수 있는 물질은 젖산, 피루브산, 아세트산, 프로피온산, 발레르산, 알코올등의 지방족 화합물과 톨루엔, 페놀, 크레졸, 벤조산, 벤질알코올, 벤지알데히드 등의 방향족 화합물 등이다 [참조: Lovley and Klug, 1990, Appilied and Environmental Microbiology 556: 1858-1864]. 혐기성 세균은 에너지 대사의 특성에 따라 발효 세균과 호흡 세균으로 분류된다. 발효 세균은 당, 단백질 등을 유기산으로 분해하고, 호흡세균은 적당한 전자 수용체의 환원반응을 이용하여 발효 산물을 완전히 산화한다. 혐기성 호홉 세균이 유기물을 산화시킬 때 이용할 수 있는 전자 수용체는 산화제이철 [Fe(III)], 질산염, 이산화망간, 황산염, 탄산염 등이 있으며, 동일한 전자공여체의 산화 반응에서 발생된 환원력에 의해 가장 많은 에너지가 생산되는 경우는 산화제이철이 환원될 때로서 질산염, 황산염, 탄산염의 순으로 낮아진다고 알려져있다 [참조: 김병홍, 미생물생리학, 아카데미서적, 1995].Recently, anaerobic bacteria using metal salts of ferric ions, tetravalent manganese, hexavalent uranium, hexavalent molybdenum and the like as electron acceptors have been isolated. Substances which can be used as substrates by these metal salt reducing bacteria include aliphatic compounds such as lactic acid, pyruvic acid, acetic acid, propionic acid, valeric acid and alcohol, and aromatic compounds such as toluene, phenol, cresol, benzoic acid, benzyl alcohol, and benzaldehyde. Lovley and Klug, 1990, Appilied and Environmental Microbiology 556: 1858-1864. Anaerobic bacteria are classified as fermenting bacteria and respiratory bacteria according to the characteristics of energy metabolism. Fermented bacteria break down sugars, proteins, and the like into organic acids, and respiratory bacteria completely oxidize fermentation products using reduction reactions of appropriate electron acceptors. The electron acceptors available for anaerobic hob bacteria to oxidize organic materials include ferric oxide [Fe (III)], nitrates, manganese dioxide, sulfates, and carbonates, and the most energy is due to the reducing power generated by the oxidation reaction of the same electron donor. Is produced when ferric oxide is reduced, which is known to be lowered in the order of nitrates, sulfates, and carbonates [Byeong Hong Kim, Microbiological Physiology, Academy Books, 1995].

철환원 세균은 전자수용체로 이용하는 제이철 화합물이 물에 대한 용해도가 매우 낮아 혐기성 상태에서 배양하면 세포 외막에 사이토크롬의 65% 정도가 배치되어 세포 안에서 유기물의 산화로 발생된 환원력을 세포 밖으로 운반하여 제이철 이온을 세포 밖에서 환원하는 것으로 알려져 있다 [참조: Myers and Myers, 1992, Jounrnal of Bacteriology 174: 3429-3438]. 또한, 철환원세균인시와넬라 푸트레파시엔스(Shewanella putrefaciens) IR-1은 전자 공여체로 젖산 또는 수소를 공급하여 전자 전달 매개체없이 전류를 발생할 수 있다는 것도 보고되었다 [참조: Park 등., 1996, Abstract, IEC Special Symp., Sept.: 16-19].Iron-reducing bacteria are fermented by the ferric compound used as an electron acceptor, so that the solubility in water is so low that when cultured in anaerobic conditions, about 65% of the cytochrome is placed in the outer membrane of the cell to transport the reducing power generated by the oxidation of organic matter inside the cell. It is known to reduce ions extracellularly (Myers and Myers, 1992, Jounrnal of Bacteriology 174: 3429-3438). Further, cheolhwan wonsegyun the city and Nella Fu tray Pacific Enschede (Shewanella putrefaciens) IR-1 has been reported that there may occur an electric current without an electron transfer mediator by supplying lactic acid or hydrogen as an electron donor [see: Park et al., 1996,. Abstract, IEC Special Symp., Sept .: 16-19].

한편, 폐수 처리장으로 유입되는 폐수는 높은 농도의 철을 함유할 수 있으며, 더욱이, 인 (phosphorus) 제거제로 수산화제이철 (Ferric hydroxide)이 사용되기 때문에 폐수처리장치에는 철이 비교적 높은 농도로 존재하게 된다 [참조:Ledecke 등., 1989, Water Sceience and Technology 21: 325-337]. 따라서, 제이철 환원 세균은 폐수처리시설의 대부분의 활성 슬러지에 존재하며 [참조: Nielsen 등., 1996, Water Science and Technology 34: 129-136], 활성슬러지의 미생물에 의한 제이철 환원은 슬러지의 혐기적 저장 상태에서 발생하고, 철환원 세균이 많이 존재한다고 보고한 바 있다 [참조. Rasmussen 등., 1994, Water Research 28: 417-425].On the other hand, the wastewater flowing into the wastewater treatment plant may contain a high concentration of iron, and because ferric hydroxide is used as a phosphorus remover, iron is present in the wastewater treatment apparatus at a relatively high concentration [ See Ledecke et al., 1989, Water Sceience and Technology 21: 325-337. Thus, ferric reducing bacteria are present in most activated sludges in wastewater treatment plants (Nielsen et al., 1996, Water Science and Technology 34: 129-136), and the reduction of ferric iron by microorganisms in activated sludge is anaerobic of sludge. It has been reported that it occurs in storage and that many iron-reducing bacteria are present. Rasmussen et al., 1994, Water Research 28: 417-425].

위의 사실을 근거로, 활성 슬러지나 폐수 등에 존재하는 다양한 미생물을 음극부위에서 혐기적으로 배양하면 배지 성분의 전자수용체 대신 일정한 전위를 갖는 전극을 전자수용체로 사용할 수 있는 미생물만이 최종적으로 생존 할 수 있게된다. 따라서, 이러한 방법에 의하여 폐수나 활성 슬러지등에 존재하는 여러종의 미생물 중 전기화학적 활성을 지닌 균을 선택적으로 농화 배양 할 수 있으며, 여러 종류의 폐수 속에 존재하는 고유의 전기화학적으로 활성을 갖는 각각의 미생물 종을 분리할 수 있다.Based on the above facts, if anaerobic culture of various microorganisms in activated sludge or wastewater is carried out anaerobically, only microorganisms capable of using electrodes with constant potential as electron acceptors instead of the electron acceptors of the medium components will survive. Will be. Therefore, by this method, it is possible to selectively enrich and culture the electrochemically active bacteria among the various microorganisms present in the wastewater or activated sludge, and to have the unique electrochemically active activities in the various kinds of wastewater. Microbial species can be isolated.

본 발명의 목적은 전자 전달 매개체를 사용하지 않고 다양한 폐수와 슬러지를 이용하여 효율적인 전극 반응을 수행함으로써 폐수를 정화하면서 동시에 전기를 생산할 수 있는 생물연료전지를 제공하는 것이다.It is an object of the present invention to provide a biofuel cell capable of producing electricity while purifying wastewater by performing an efficient electrode reaction using various wastewater and sludge without using an electron transfer medium.

또한, 본 발명의 목적은 폐수와 활성 슬러지내의 전기화학적 활성을 가진 미생물을 이용하여 전류를 발생시키고, 이를 이용하여 폐수를 처리하는 방법을 제공하는 것이다.It is also an object of the present invention to provide a method for generating an electric current using microorganisms having electrochemical activity in wastewater and activated sludge, and treating the wastewater using the same.

상기 본 발명의 목적은 양극과 음극, 이들 양극 및 음극의 전도 매체, 이들 두 극 사이의 이온 교환막으로 이루어지는 생물 연료전지에서, 음극 부위에 폐수 및 활성슬러지가 포함되는 것을 특징으로 하는 생물연료전지에 의하여 달성될 수 있다.An object of the present invention is a biofuel cell comprising a positive electrode and a negative electrode, a conductive medium of these positive electrodes and a negative electrode, and an ion exchange membrane between these two poles, wherein the negative electrode includes wastewater and activated sludge in the biofuel cell. Can be achieved.

도 1은 흑연 부직포를 전극으로 사용하고, 양극과 음극 및 이들을 분리하는 양이온 교환막으로 이루어지는 본 발명에 따른 생물연료전지의 개략도.1 is a schematic diagram of a biofuel cell according to the present invention using a graphite nonwoven fabric as an electrode and comprising a positive and negative electrodes and a cation exchange membrane separating them.

도 2는 본 발명에 따른 생물연료전지에서 전분 폐수와 호기성 슬러지를 이용한 결과 발생되는 전류, 쿨룸 및 COD의 감소를 나타내는 그래프.Figure 2 is a graph showing the reduction in current, cool room and COD generated as a result of using starch wastewater and aerobic sludge in the biofuel cell according to the present invention.

도 3은 본 발명에 따른 생물연료전지에서 전분 폐수와 혐기성 슬러지를 이용한 결과 발생되는 전류, 쿨룸 및 COD의 감소를 나타내는 그래프.Figure 3 is a graph showing the reduction of current, cool room and COD generated as a result of using starch wastewater and anaerobic sludge in the biofuel cell according to the present invention.

도 4는 본 발명에 따른 생물연료전지에서 축산 폐수와 혐기성 슬러지를 이용한 결과 발생되는 전류, 쿨룸 및 COD의 감소를 나타내는 그래프.Figure 4 is a graph showing the reduction of current, cool room and COD generated as a result of using livestock wastewater and anaerobic sludge in a biofuel cell according to the present invention.

도 5는 본 발명에 따른 생물연료전지에서 정화조 폐수와 혐기성 슬러지를 이용한 결과 발생되는 전류, 쿨룸 및 COD의 감소를 나타내는 그래프.Figure 5 is a graph showing the reduction of current, cool room and COD generated as a result of using septic tank wastewater and anaerobic sludge in the biofuel cell according to the present invention.

도 6은 본 발명에 따른 생물연료 전지에 사용하기 전의 전극표면과 사용후에 부착된 전기 화학적 활성을 지닌 미생물의 주사 전자현미경 사진.Figure 6 is a scanning electron micrograph of the microorganisms having the electrochemical activity attached to the electrode surface and after use before use in the biofuel cell according to the present invention.

본 발명에 따른 생물 연료전지는 양극과 음극, 이들 양극 및 음극의 전도 매체, 이들 두 극 사이의 이온 교환막으로 이루어지며, 상기 음극 부위에는 폐수 및 활성 슬러지가 포함된다.The biofuel cell according to the present invention comprises an anode and a cathode, a conductive medium of these anodes and a cathode, and an ion exchange membrane between these two poles, and the cathode portion includes wastewater and activated sludge.

상기 설명한 것처럼, 본 발명에 따른 생물 연료전지의 폐수 및 활성 슬러지에 포함된 미생물 중에서 전기화학적으로 활성을 갖는 미생물 종이 일정한 전위를 갖는 전극을 전자수용체로 사용하여 생장하게 됨으로써 농화 배양되게 된다. 따라서, 본 발명에 따른 생물 연료전지는 상기 농화 배양된 미생물을 촉매로 하고, 폐수 속에 존재하는 유기물을 연료로 하여 작동하게 된다.As described above, the microbial species having electrochemical activity among the microorganisms contained in the wastewater and activated sludge of the biofuel cell according to the present invention are grown by using an electrode having a constant potential as an electron acceptor to grow and culture. Therefore, the biofuel cell according to the present invention operates by using the enriched cultured microorganism as a catalyst and organic matter present in the wastewater as the fuel.

도 1은 본 발명에 따른 생물 연료전지의 구조를 나타내는 개략도이다.1 is a schematic view showing the structure of a biofuel cell according to the present invention.

생물 연료전지의 양극 및 음극으로는 흑연전극의 일종인 흑연 부직포 (graphite felt)가 사용될 수 있으며, 또한, 연료전지 자체의 저항을 극소화시키기 위해 양이온 교환막을 사용할 수 있다. 양극의 전도 매체로는 완충액이 사용되는데 pH 7.0으로 조정된 50 mM 인산염 완충액을 사용하는 것이 바람직하다. 또한, 양극은 공기를 연속적으로 주입하여 포화상태로 유지하고, 음극은 가스오븐을 통과시켜서 산소를 완전히 제거한 질소를 주입함으로써 혐기성 상태를 유지하였다.Graphite felt, a kind of graphite electrode, may be used as the anode and cathode of the biofuel cell, and a cation exchange membrane may be used to minimize the resistance of the fuel cell itself. Buffer is used as the conductive medium of the positive electrode, and it is preferable to use 50 mM phosphate buffer adjusted to pH 7.0. In addition, the anode maintained the anaerobic state by continuously injecting air to maintain a saturation state, the cathode by injecting nitrogen through the gas oven to remove oxygen completely.

상기와 같은 혐기적 조건에 의해 폐수 및 활성 슬러지에 존재하는 세균중 전극을 전자수용체로 사용할 수 있는 미생물만이 최종적으로 생존할 수 있게 되므로써 전기화학적으로 활성인 세균만을 선택적으로 농화 배양할 수 있고, 농화 배양된 미생물 종을 생물 연료전지의 미생물 촉매로 사용함으로써, 폐수 속에 존재하는 각종의 유기물들을 상기 미생물들이 대사하고, 이로인해 발생되는 환원력을 전극과의 반응에 이용하여 전력을 발생시킬 수 있다. 또한, 이러한 폐수 속의 유기물들이 농화배양된 미생물들에 의하여 대사됨으로써, 폐수 중의 유기물 농도가 감소하게되어 폐수 처리 효과를 달성할 수 있다.By anaerobic conditions as described above, only the microorganisms that can use the electrode among the bacteria present in the wastewater and the activated sludge as the electron acceptor can finally survive, thereby selectively enriching and culturing only the electrochemically active bacteria, By using the concentrated cultured microbial species as a microbial catalyst of a biofuel cell, the microorganisms can metabolize various organic substances present in the wastewater, and generate power by using the reducing power generated in the reaction with the electrode. In addition, the organic matter in the wastewater is metabolized by the enriched microorganisms, thereby reducing the concentration of organic matter in the wastewater can achieve the wastewater treatment effect.

바람직하게는, 본 발명에 따른 생물연료 전지에서 음극 부위에 전분폐수와 혐기성 슬러지를 사용하고, 양극 부위에 전분 폐수와 호기성 슬러지를 구성할 수 있다. 혐기 상태를 유지하는 음극 부위에서는 농화배양된 전기화학 활성 세균이 폐수 내의 유기물을 연료로 이용하면서 전류를 생성하고, 발생한 양이온은 음극과 양극을 구분하는 양이온 교환막을 통과하여, 양극으로 이동하여 산소로 포화된 양극부위에서 물로 전환되어 계속적인 전류 생성이 가능하게 된다. 이때, 양극의 폐수 성분은 호기성 미생물들에 의하여 유기물들을 대사됨으로써 COD가 감소될 수 있다. 따라서, 이러한 방법에 의하여 음극과 양극 모든 부위의 폐수를 동시에 처리할 수 있다.Preferably, in the biofuel cell according to the present invention, starch wastewater and anaerobic sludge may be used at the negative electrode portion, and starch wastewater and aerobic sludge may be formed at the positive electrode portion. At the negative electrode site, which is maintained in anaerobic state, the enriched electrochemically active bacteria generate electric current by using organic matter in the waste water as fuel, and the generated cations pass through the cation exchange membrane separating the negative electrode and the positive electrode, and move to the positive electrode to oxygen. It is converted to water at the saturated anode, allowing for continuous current generation. At this time, the wastewater component of the positive electrode can be reduced COD by metabolizing organic matter by aerobic microorganisms. Therefore, by this method, the wastewater of all parts of the cathode and the anode can be treated simultaneously.

이하, 본 발명은 하기 실시예에 의하여 더욱 자세하게 설명되나, 이에 제한되는 것은 아니다.Hereinafter, the present invention is described in more detail by the following examples, but is not limited thereto.

<실시예 1><Example 1>

본 실시예에서는 본 발명에 따른 생물 연료 전지에서, 폐수 중에 존재하는 미생물 중, 철을 전자수용체로 이용하는 미생물의 군체수의 변화를 측정하였다. 배지는 인산염 완충액 기본배지 (PBBM)를 사용하였으며, 배지성분은 효모 추출물 1 g/L, 염화암모늄 1 g/L, Macro-mineral (II) 25 ㎖/L (1 L 당 6 g KH2PO4, 12 g NaCl, 2.4 g MgSO4·7H2O, 1.6 g CaCl2·2H2O 포함), 미량원소 2 ㎖/L (12.8 g 니트로아세트산, 0.1 g FeSO4·7H2O, 0.1 g MnCl2·4H2O, 0.17 g CoCl2·6H2O, 0.1 g CaCl2·2H2O, 0.1 g ZnCl2, 0.02 g CuCl2·H2O, 0.01 g H3BO3, 0.01 g 몰리브덴염, 1.0 g NaCl, 0.017 g Na2SeO30.026 g NiSO4·6H2O), 비타민액 0.1 ㎖/L (0.002 g 비오틴, 0.002 g 엽산, 0.010 g B6(피리독신) HCl, 0.005 g B1(티아민) HCl, 0.005 g B2(리보플라빈), 0.005 g 니코틴산(니아신), 0.005 g 판토텐산, 0.0001 g B12(시아노콥알라민) 결정, 0.005 g PABA, 0.005 g 리폰산 (티옥트산), 레사주린 (0.2 %) 1 ㎖/L와 한천을 1.8 % 첨가하여 평판 배지를 제조하였다.In this embodiment, in the biofuel cell according to the present invention, the change in the number of colonies of microorganisms using iron as an electron acceptor among the microorganisms present in the wastewater was measured. The medium used was phosphate buffer basal medium (PBBM), and the medium components were yeast extract 1 g / L, ammonium chloride 1 g / L, Macro-mineral (II) 25 ml / L (6 g KH 2 PO 4 per 1 L). , 12 g NaCl, 2.4 g MgSO 4 · 7H 2 O, 1.6 g CaCl 2 · 2H 2 O), trace elements 2 ml / L (12.8 g nitroacetic acid, 0.1 g FeSO 4 · 7H 2 O, 0.1 g MnCl 2 4H 2 O, 0.17 g CoCl 2 6H 2 O, 0.1 g CaCl 2 2H 2 O, 0.1 g ZnCl 2 , 0.02 g CuCl 2 H 2 O, 0.01 g H 3 BO 3 , 0.01 g molybdenum salt, 1.0 g NaCl, 0.017 g Na 2 SeO 3 0.026 g NiSO 4 · 6H 2 O), 0.1 ml / L of vitamin liquid (0.002 g biotin, 0.002 g folic acid, 0.010 g B 6 (pyridoxine) HCl, 0.005 g B 1 (thiamine) HCl, 0.005 g B 2 (riboflavin), 0.005 g nicotinic acid (niacin), 0.005 g pantothenic acid, 0.0001 g B 12 (cyanocorpalamine) crystals, 0.005 g PABA, 0.005 g riphonic acid (thioctic acid), resazurin (0.2 %) 1 ml / L and 1.8% of agar was added to prepare a flat medium.

전자공여체로 아세트산 20 mM, 젖산 30 mM, 포도당 20 mM을 사용하였으며, 전자수용체로 수용성 철인 페릭 피로포스페이트 (Ferric pyrophosphate) 20 mM을 사용하였다. 1차 시기는 반응 초기 연료전지의 호기성 슬러지와 혐기성 슬러지의 시료를 생리식염수 (0.8 % 소금물)로 희석하여 CFU (Colony Forming Unit/ml)를 측정하였고, 2차와 3차시기는 반응후 각각 1개월후 동일한 배지와 방법으로 측정하여 그 결과를 하기 표 1에 나타내었다.20 mM of acetic acid, 30 mM of lactic acid, and 20 mM of glucose were used as electron donors, and 20 mM of ferric pyrophosphate, which is a water-soluble iron, was used as an electron acceptor. In the first stage, samples of aerobic sludge and anaerobic sludge of the fuel cell were diluted with physiological saline (0.8% brine) to measure CFU (Colony Forming Unit / ml). After months, the same media and methods were used for measuring the results.

연료전지의 균체수 변화Cell count changes in fuel cells 시료sample 전자공여체 (mM)Electron donor (mM) 전자수용체(mM)Electron Receptor (mM) 1차Primary 2차Secondary 3차3rd 호기성슬러지Aerobic sludge 아세트산(20)Acetic acid (20) 페릭 피로포스페이트(20)Ferric Pyrophosphate (20) 2.8×107 2.8 × 10 7 0.9×104 0.9 × 10 4 5.1×103 5.1 × 10 3 포도당(20)Glucose (20) 페릭 피로포스페이트(20)Ferric Pyrophosphate (20) 8.0×107 8.0 × 10 7 1.3×105 1.3 × 10 5 4.2×104 4.2 × 10 4 젖산(30)Lactic Acid (30) 페릭 피로포스페이트(30)Ferric Pyrophosphate (30) 6.4×107 6.4 × 10 7 1.1×105 1.1 × 10 5 4.1×104 4.1 × 10 4 혐기성 슬러지Anaerobic sludge 아세트산(20)Acetic acid (20) 페릭 피로포스페이트(20)Ferric Pyrophosphate (20) 3.6×105 3.6 × 10 5 5.4×105 5.4 × 10 5 1.5×105 1.5 × 10 5 포도당(20)Glucose (20) 페릭 피로포스페이트(20)Ferric Pyrophosphate (20) 2.1×105 2.1 × 10 5 8.4×105 8.4 × 10 5 1.4×105 1.4 × 10 5 젖산(30)Lactic Acid (30) 페릭 피로포스페이트(20)Ferric Pyrophosphate (20) 1.7×105 1.7 × 10 5 1.5×105 1.5 × 10 5 2.3×105 2.3 × 10 5

상기 표 1에서 알 수 있는 바와 같이, 호기성 슬러지 시료는 연료전지의 음극 부위를 혐기성 상태로 만들어주므로 통성 혐기성 균주외에는 선별되면서 계속 감소하여 전기화학적 활성을 가진 미생물만 농화배양되는 것으로 판단되며, 혐기성 슬러지 시료는 2차 시기에서 혐기성세균이 증가하다가 3차 시기에는 감소하여 전기화학적 활성을 가진 특정 미생물만 농화배양 되었다.As can be seen in Table 1, the aerobic sludge sample is made to anaerobic state of the negative electrode portion of the fuel cell is selected as the only non-ferrous anaerobic strain, and continues to decrease, it is judged that only the microorganisms with electrochemical activity thickening culture, anaerobic sludge The sample increased anaerobic bacteria in the second phase and decreased in the third phase, so that only certain microorganisms with electrochemical activity were enriched.

<실시예 2><Example 2>

본 실시예는 본 발명에 사용한 전분폐수 (출처: 삼양제넥스, 대한민국 인천 소재)와 호기성 슬러지 (출처: 삼양제넥스공장의 전분폐수처리용 슬러지, 대한민국 인천 소재)을 이용한 생물연료전지의 특성을 살펴보기 위한 것이다. 양극과 음극의 전극으로서 350 ㎎의 흑연부직포를 사용하였다. 양극의 전도 매체로는 50 mM 인산염 완충액을 사용하였고, 양극과 음극은 양이온 교환막을 사용하여 연결하였다. 양극의 전도 매체에는 공기를 연속적으로 주입하여 산소 포화 상태를 유지하였으며, 음극은 가스 정제 오븐을 통과시켜 산소를 완전히 제거시킨 질소를 주입하여 용존산소를 제거함으로써 혐기적 환경을 유지하였다. 시험에 사용된 모든 완충액의 pH는 7.0으로 조정하였다. 연료전지의 저항은 반응초기에 무한대로 두었고, 전압이 최대치에 이르러서는 1 ㏀에서 생산되는 전류를 측정하였다. 생물 연료전지는 호기성 슬러지와 전분 폐수를 1:4 비율로 혼합하여 사용하였으며, 총 반응량은 25 ㎖로 하였다. 폐수 공급은 미생물의 폐수내 유기물을 이용하여 전류발생이 감소된 후 5 ㎖를 치환하였다. 전압 발생량은 포텐셜스타트미터 (2000 multimeter, keithley Instrument, Inc, USA)를 사용하여 120초 간격으로 측정하였다. 전류 생성량은 측정된 전압을 저항 (1kΩ)으로 나누어 환산하였다. 폐수의 화학적 산소 요구량 (COD)은 표준방법 (참조: Standard Method for the Examination of Water and Wastewater, Closed Reflux Method, 19판, 1995)을 사용하여 분석하였다. 도 2에서 보는 바와 같이, 전류가 0.21 mA까지 발생하였고, 쿨룸량은 26.5 C (coulumb)까지 증가하였으며, 화학적 산소 요구량이 1100 ppm에서 58 ppm으로 감소하였다. 이 실험을 통해 폐수의 기질이 산화될 때 발생하는 환원력이 전자수용체 대신 직접 전극을 통해 소비되어 전류를 발생시키며, 전분 폐수를 정화시킬 수 있다는 사실을 확인하였다.This embodiment looks at the characteristics of biofuel cells using starch wastewater (source: Samyang Genex, Incheon, Korea) and aerobic sludge (source: starch wastewater treatment sludge of Samyang Genex Plant, Incheon, Korea). It is for. 350 mg of graphite nonwoven fabric was used as an anode and a cathode. 50 mM phosphate buffer was used as the conductive medium of the positive electrode, and the positive electrode and the negative electrode were connected using a cation exchange membrane. Air was continuously injected into the conductive medium of the positive electrode to maintain the oxygen saturation state, and the negative electrode maintained the anaerobic environment by removing nitrogen dissolved by injecting nitrogen completely removed through the gas purification oven. The pH of all buffers used for the test was adjusted to 7.0. The resistance of the fuel cell was set to infinity at the beginning of the reaction, and when the voltage reached its maximum value, the current produced at 1 mA was measured. The biofuel cell was used by mixing aerobic sludge and starch wastewater in a 1: 4 ratio, and the total reaction amount was 25 ml. Wastewater supply was replaced by 5 ml after the current generation was reduced by using organic matter in the wastewater of the microorganism. Voltage generation was measured at 120 second intervals using a potential start meter (2000 multimeter, keithley Instrument, Inc, USA). The current generation amount was converted by dividing the measured voltage by the resistance (1kΩ). The chemical oxygen demand (COD) of wastewater was analyzed using standard methods (see Standard Method for the Examination of Water and Wastewater, Closed Reflux Method, 19th edition, 1995). As shown in FIG. 2, the current was generated up to 0.21 mA, the coolum amount increased to 26.5 C (coulumb), and the chemical oxygen demand decreased from 1100 ppm to 58 ppm. This experiment confirmed that the reducing power generated when the substrate of the wastewater is oxidized is consumed through the direct electrode instead of the electron acceptor to generate a current and to purify the starch wastewater.

<실시예 3><Example 3>

본 실시예에서는 전분 폐수와 혐기성 슬러지(출처: 삼양제넥스, 대한민국 인천 소재)를 이용한 생물연료전지에서 전류 생산성과 폐수처리를 시험하였다. 연료전지의 조건과 분석은 실시예 1과 동일하였다.In this example, current productivity and wastewater treatment were tested in biofuel cells using starch wastewater and anaerobic sludge (Source: Samyang Genex, Incheon, Korea). The conditions and analysis of the fuel cell were the same as in Example 1.

생물연료전지는 혐기성 슬러지와 전분폐수를 1:4 비율로 혼합하여 사용하였으며, 총 반응량은 25 ㎖로 하였다. 도 3에서 보는 바와 같이, 전류가 0.22 mA까지 발생하였고, 쿨룸량은 26.7 C (Coulumb)까지 증가하였으며, 화학적 산소 요구량이 1,940 ppm에서 55 ppm으로 감소하였다. 따라서, 이 실험을 통해 전분폐수내의 기질이 산화될 때 발생하는 환원력이 직접 전극을 통해 소비되어 전류를 발생시키며, 전분폐수를 정화시킬 수 있다는 사실을 확인하였다.The biofuel cell was used by mixing anaerobic sludge and starch wastewater in a 1: 4 ratio, and the total reaction amount was 25 ml. As shown in FIG. 3, the current was generated up to 0.22 mA, the coolum amount increased to 26.7 C (Coulumb), and the chemical oxygen demand decreased from 1,940 ppm to 55 ppm. Therefore, this experiment confirmed that the reducing power generated when the substrate in the starch wastewater is oxidized is consumed through the direct electrode to generate a current and to purify the starch wastewater.

한편, 본 발명에 따른 생물연료 전지에서 사용 후 전극에서의 미생물 배양 정도를 알아보기 위하여 사용하기 전의 전극표면과 사용 후에 부착된 전기 화학적 활성을 지닌 미생물을 전자 현미경 (S-4100, FE-SEM, Hitachi, Japan)을 사용하여 촬영하여 그 결과를 도 6에 나타내었다. 도 6 에 나타낸 바와 같이, 전기화학적 활성을 지닌 미생물이 전극 표면에 부착되어 있음을 확인할 수 있었다.On the other hand, in order to determine the degree of microbial cultivation on the electrode after use in the biofuel cell according to the present invention, the microorganisms having the electrode surface before use and the electrochemical activity attached after use were examined by electron microscopy (S-4100, FE-SEM, Hitachi, Japan) and the results are shown in FIG. As shown in Figure 6, it was confirmed that the microorganisms having electrochemical activity is attached to the electrode surface.

<실시예 4><Example 4>

본 실시예에서는 폐수를 축산폐수 (출처: 안산축산, 대한민국 안산소재)로 대체하여 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 생물 연료 전지에서의 전류 생산성과 폐수처리를 시험하였다. 연료전지의 조건과 분석은 실시예 1과 동일하였다. 도 4에서 보는 바와 같이, 전류발생량은 0.21 mA까지 발생하였고, 쿨룸량은 12 C (Coulumb)까지 증가하였으며, 화학적 산소요구량은 1,030 ppm에서 350 ppm으로 감소하였다. 이 실험을 통해 축산폐수내의 기질이 산화될 때 발생하는 환원력이 직접 전극에 전달되어 전류를 발생시키고, 축산폐수를 정화시킬 수 있다는 사실을 확인하였다.In this example, the current productivity and wastewater treatment in the biofuel cell were tested in the same manner as in Example 2 except that the wastewater was replaced with livestock wastewater (source: Ansan Livestock, Ansan, Korea). The conditions and analysis of the fuel cell were the same as in Example 1. As shown in FIG. 4, the current generation amount was generated up to 0.21 mA, the coolum amount was increased to 12 C (Coulumb), and the chemical oxygen demand was decreased from 1,030 ppm to 350 ppm. Through this experiment, it was confirmed that the reducing power generated when the substrate in the livestock wastewater is oxidized can be directly transmitted to the electrode to generate an electric current and purify the livestock wastewater.

<실시예 5>Example 5

본 실시예에서는 정화조 폐수 (출처: 한국과학기술연구원 원내 아파트)를 사용한 생물연료전지에서 전류발생량과 폐수처리를 시험하였다. 연료전지의 작동 조건과 분석 방법은 실시예 1과 동일하였다. 도 5에서 보는 바와 같이, 전류발생량은 0.05 mA까지 발생하였고, 쿨룸량은 2.3 C (Coulumb)까지 증가하였으며, 화학적 산소요구량은 680 ppm에서 250 ppm으로 감소하였다. 이 실험을 통해 정화조 폐수내의 기질이 산화될때 발생하는 환원력이 직접 전극에 전달되어 전류를 발생시키고, 정화조 폐수를 정화시킬 수 있다는 사실을 확인하였다.In this example, current generation and wastewater treatment were tested in a biofuel cell using a septic tank wastewater (source: Korea Institute of Science and Technology). The operating conditions and analysis method of the fuel cell were the same as in Example 1. As shown in FIG. 5, the current generation amount was generated up to 0.05 mA, the coolum amount was increased to 2.3 C (Coulumb), and the chemical oxygen demand was reduced from 680 ppm to 250 ppm. Through this experiment, it was confirmed that the reducing power generated when the substrate was oxidized in the septic tank wastewater was directly transmitted to the electrode to generate an electric current and to purify the septic tank wastewater.

본 발명에 따른 생물 연료전지는 폐수와 슬러지를 이용함으로써 슬러지내의 전기화학적 활성을 지닌 미생물이 폐수내의 기질을 사용하여 에너지 대사에서 발생하는 환원력의 일부는 균체 생산에 이용하고, 나머지는 전극을 전자 수용체로 이용하여 전류를 발생하여 폐수를 정화시킬 수 있다. 따라서, 생물 연료전지의 연료로 다양한 폐수를 이용할 경우, 전기 에너지 생산 및 폐수 처리의 효과를 동시에 얻을 수 있다.In the biofuel cell according to the present invention, by using wastewater and sludge, the microorganisms having electrochemical activity in the sludge use substrates in the wastewater, and part of the reducing power generated in energy metabolism is used for cell production, and the rest is used as electron acceptors. The wastewater can be purified by generating a current. Therefore, when various wastewaters are used as fuels of the biofuel cell, effects of electric energy production and wastewater treatment can be simultaneously obtained.

Claims (4)

양극과 음극, 이들 양극 및 음극의 전도 매체 및 이들 두 극 사이의 이온 교환막으로 이루어지며, 음극 부위에 활성 슬러지와 폐수가 함유되어 있는 것을 특징으로 하는 생물 연료전지.A biofuel cell comprising an anode and a cathode, a conductive medium of these anodes and a cathode, and an ion exchange membrane between these two poles, wherein the cathode portion contains activated sludge and wastewater. 제1항에 있어서, 상기 활성 슬러지 및 폐수는 전분폐수, 축산폐수 및 정화조폐수로 이루어진 군으로 부터 선택되는 것인 생물연료전지.The biofuel cell of claim 1, wherein the activated sludge and the wastewater are selected from the group consisting of starch wastewater, livestock wastewater, and clarification wastewater. 제1항에 있어서, 양극 부위에도 슬러지와 폐수가 함유되는 것을 특징으로하는 생물 연료전지.The biofuel cell according to claim 1, wherein sludge and waste water are also contained in the anode portion. 제1항에 따른 생물 연료전지에서, 음극에는 질소를 주입하여 용존산소를 제거함으로써 혐기적 조건을 만들고, 양극에는 공기를 연속적으로 주입하여 산소 포화상태를 만들어 폐수 및 활성 슬러지에 존재하는 전기화학적 활성 세균을 농화 배양하고, 배양된 활성 세균을 미생물 촉매로 사용하고, 연료로서 폐수 중의 유기물을 이용함으로써 전력을 생산함과 동시에 폐수를 처리하는 방법.In the biofuel cell according to claim 1, the anaerobic conditions are created by injecting nitrogen into the cathode to remove dissolved oxygen, and the oxygen is saturated by continuously injecting air into the anode to create an electrochemical activity present in wastewater and activated sludge. A method of enriching and culturing bacteria, using the cultured active bacteria as a microbial catalyst, and using organic matter in the wastewater as a fuel to produce electricity and simultaneously treat wastewater.
KR1019990027168A 1999-07-07 1999-07-07 A Biofuel Cell Using Wastewater and Activated Sludge for Wastewater Treatment KR100332932B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1019990027168A KR100332932B1 (en) 1999-07-07 1999-07-07 A Biofuel Cell Using Wastewater and Activated Sludge for Wastewater Treatment
PCT/KR2000/000228 WO2001004061A1 (en) 1999-07-07 2000-03-17 A biofuel cell using wastewater and active sludge for wastewater treatment
CA 2378558 CA2378558A1 (en) 1999-07-07 2000-03-17 A biofuel cell using wastewater and active sludge for wastewater treatment
AU33335/00A AU3333500A (en) 1999-07-07 2000-03-17 A biofuel cell using wastewater and active sludge for wastewater treatment
JP2001509681A JP2004517437A (en) 1999-07-07 2000-03-17 Biofuel cells using activated sludge for wastewater and wastewater treatment
EP20000911467 EP1232123A1 (en) 1999-07-07 2000-03-17 A biofuel cell using wastewater and active sludge for wastewater treatment
CNB008108056A CN1164509C (en) 1999-07-07 2000-03-17 Biofuel cell using wastewater and active sludge for wastewater treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990027168A KR100332932B1 (en) 1999-07-07 1999-07-07 A Biofuel Cell Using Wastewater and Activated Sludge for Wastewater Treatment

Publications (2)

Publication Number Publication Date
KR20010009031A KR20010009031A (en) 2001-02-05
KR100332932B1 true KR100332932B1 (en) 2002-04-20

Family

ID=19599798

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990027168A KR100332932B1 (en) 1999-07-07 1999-07-07 A Biofuel Cell Using Wastewater and Activated Sludge for Wastewater Treatment

Country Status (7)

Country Link
EP (1) EP1232123A1 (en)
JP (1) JP2004517437A (en)
KR (1) KR100332932B1 (en)
CN (1) CN1164509C (en)
AU (1) AU3333500A (en)
CA (1) CA2378558A1 (en)
WO (1) WO2001004061A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435817B1 (en) * 2001-11-10 2004-06-12 한국과학기술연구원 Method for Measuring Low BOD Using Fuel Cell-Type Sensor to Measure Low BOD Value Using Electrochemically Active Oligotrophic Anaerobes
KR100502885B1 (en) * 2002-05-15 2005-07-25 한국과학기술연구원 Method for Monitoring BOD of Waste Water Continuously Using Microbial Fuel Cell
KR100657868B1 (en) 2005-12-12 2006-12-15 건국대학교 산학협력단 Biofuel cell using photosynthetic microorganisms and sediment sludge
KR20200070636A (en) 2018-12-10 2020-06-18 대한민국(농촌진흥청장) Microbial Fuel Cell system integrated substrate cycle and electricity interface structure

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100303611B1 (en) * 1999-07-07 2001-09-24 박호군 An Electrochemical Method for Enrichment of Microorganism, and a Biosensor for Analyzing Organic Substance and BOD
KR100473087B1 (en) * 2001-12-21 2005-03-08 주식회사 이바이오텍 Biofuel cell of single reaction cell employing electrode, transition elements being attached thereon
KR20030061230A (en) * 2002-01-11 2003-07-18 김병화 System for treating wastewater contained nitrogen
KR100446406B1 (en) * 2002-05-14 2004-09-01 한국과학기술연구원 A Membraneless And Mediatorless Microbial Fuel Cell
NL1020965C2 (en) 2002-06-28 2004-01-13 Tno Biofuel cell.
FR2843490B1 (en) * 2002-08-06 2004-09-03 Centre Nat Rech Scient FUEL CELL USING BIOFILMS AS A CATALYTIC REACTION CATALYST AND / OR ANODIC REACTION
JP2004342412A (en) * 2003-05-14 2004-12-02 Ebara Corp Power generation method and device using organic substance
US8455144B2 (en) 2003-06-27 2013-06-04 The University Of Western Ontario Bio-fuel cell system
CN1860637B (en) * 2003-06-27 2010-08-11 西安大略大学 Biofuel cell
CA2531682C (en) * 2003-07-10 2013-07-02 Stichting Wetsus Centre For Sustainable Water Technology Bio-electrochemical process for producing hydrogen
JP4610977B2 (en) * 2004-09-14 2011-01-12 株式会社日立プラントテクノロジー Method and apparatus for treating sludge return water
CN100405655C (en) * 2005-06-03 2008-07-23 清华大学 Single pond type microbiological cell by using organic wastewater as fuel
NL1029544C2 (en) * 2005-07-15 2007-01-16 Magneto Special Anodes B V Biological fuel cell.
US20090142627A1 (en) * 2005-09-28 2009-06-04 Tatsuo Shimomura Biological Power Generator, and Method of Treating Organic Solid Pollutant-Containing Waste, a Method of Treating Organic Polymeric Substance-Containing Wastewater, a Method of Treating Organic Substance-Containing Wastewater, as Well as Apparatuses for Implementing These Treatment Methods
CN100380724C (en) * 2005-11-30 2008-04-09 哈尔滨工业大学 Air cathode biological fuel cell for electric generation from organic waste water
CA2531942A1 (en) * 2005-12-27 2007-06-27 The University Of Western Ontario Fuel cell bioreactor
KR100710911B1 (en) * 2005-12-27 2007-04-27 류지순 A electric-power generation equipment use of waste water
NL1031147C2 (en) * 2006-02-14 2007-08-16 Magneto Special Anodes B V Device comprising a new cathode system and method for generating electrical energy with the aid of this.
KR100723424B1 (en) * 2006-04-07 2007-05-30 삼성전자주식회사 Microfluidic device and method for concentrate and lyse cells or viruses, and method for manufacturing the microfluidic device
KR100848331B1 (en) * 2006-08-30 2008-07-25 서울산업대학교 산학협력단 Denitrification Method Using A Bio-Electro-Chemical System
CN100428554C (en) * 2006-10-20 2008-10-22 清华大学 Double-drum microbial fuel cell
WO2008109911A1 (en) * 2007-03-15 2008-09-18 The University Of Queensland Microbial fuel cell
KR100879113B1 (en) * 2007-10-26 2009-01-19 건국대학교 산학협력단 Microbial fuel cell with magnet
JP5458489B2 (en) * 2007-12-21 2014-04-02 栗田工業株式会社 Microbial power generator
CN101267045B (en) * 2008-05-08 2011-12-28 广东省生态环境与土壤研究所 A microbe fuel battery and its application
MX2011003070A (en) * 2008-09-22 2011-07-28 Phycosystems Inc Device for efficient, cost-effective conversion of aquatic biomass to fuels and electricity.
US20110315561A1 (en) * 2008-10-15 2011-12-29 The University Of Queensland Treatment of solutions or wastewater
US20110281139A1 (en) * 2009-01-23 2011-11-17 Tsinghua University Wastewater Treatment Process and Device for Electricity Generation and Desalination Simultaneously
CN101841053B (en) * 2009-05-12 2012-07-04 中国科学院南京地理与湖泊研究所 Microbiological fuel cell (MFC) and application thereof in removing organisms from natural sediments
CN101615685B (en) 2009-07-17 2011-10-19 广东省生态环境与土壤研究所 Method and device for simultaneously achieving in-situ reduction of sediment and microbial electrogenesis
JP2011049068A (en) * 2009-08-27 2011-03-10 Mitsui Eng & Shipbuild Co Ltd Bio-fuel cell
CN101710625B (en) * 2009-10-30 2012-07-25 北京大学深圳研究生院 Fuel cell system and method of generating electricity and reducing heavy metal through sewage treatment
CA2783256C (en) * 2009-12-08 2018-06-12 Justin Buck Microbially-based sensors for environmental monitoring
CN103098283B (en) * 2010-01-14 2016-04-06 J·克雷格·文特尔研究所 Modular energy recycle-water processing unit
CN101908633B (en) * 2010-07-08 2012-07-18 中国科学院广州能源研究所 Plant-soil microbial fuel cell system
WO2012012647A2 (en) * 2010-07-21 2012-01-26 Cambrian Innovation Llc Denitrification and ph control using bio-electrochemical systems
US10851003B2 (en) 2010-07-21 2020-12-01 Matthew Silver Denitrification and pH control using bio-electrochemical systems
US10099950B2 (en) 2010-07-21 2018-10-16 Cambrian Innovation Llc Bio-electrochemical system for treating wastewater
CN101924227B (en) * 2010-08-18 2013-04-17 江南大学 Microbial fuel cell and application thereof
EP2630088B1 (en) 2010-10-19 2017-04-12 Cambrian Innovation, Inc. Bio-electrochemical system
CN102208671A (en) * 2011-05-13 2011-10-05 合肥学院 Microbiological fuel cell
CN103843184B (en) 2011-06-14 2016-09-14 凯博瑞创新公司 Biological aerobic quantity sensor
WO2013017901A1 (en) 2011-08-02 2013-02-07 Imk Greenpower Kft. System and method for producing electrical energy
JP6037269B2 (en) * 2011-10-01 2016-12-07 国立大学法人岐阜大学 Microbial fuel cell
CN102603039A (en) * 2012-01-19 2012-07-25 清华大学 Coupling desalination method and device
CN104870378A (en) * 2012-08-08 2015-08-26 凯博瑞创新公司 Biological treatment systems utilizing selectively permeable barriers
CN102935444A (en) * 2012-12-10 2013-02-20 邸园园 Kitchen waste disposal device
CN103131856A (en) * 2013-02-28 2013-06-05 中国科学院城市环境研究所 Bio-electrochemical system used for copper sulfide ore leaching
CN103145240B (en) * 2013-03-22 2015-01-07 湖南大学 Synchronous electricity generating method and device for anaerobic biological treatment of high concentrated organic wastewater
CN103337653A (en) * 2013-06-27 2013-10-02 南京工业大学 Device for synthesizing bio-fuels and application of device
KR101478169B1 (en) * 2013-06-28 2014-12-31 이호철 Low electric power generating apparatus using soil material
CN104150994B (en) * 2014-08-11 2017-12-29 青岛农业大学 A kind of device and method that electric energy and natural pond fertilizer are obtained using feces of livestock and poultry and agricultural crop straw
JP6441066B2 (en) * 2014-12-22 2018-12-19 国立大学法人 東京大学 Apparatus for treating nitrogen-containing compound-containing water containing organic nitrogen compound, and method for treating nitrogen-containing compound-containing water containing organic nitrogen compound
CN104671863B (en) * 2015-02-04 2017-07-18 哈尔滨工业大学 A kind of bioelectrochemistry auxiliary anaerobic composting device for improving dewatered sludge rotten degree and its startup optimization method
CN105070937B (en) * 2015-07-15 2017-12-12 江南大学 The method of Containing Sulfur iron tailings recycling
CN105280940B (en) * 2015-09-16 2017-03-22 太原理工大学 Method for coking wastewater degradation and synchronous power generation by taking coking active bacterium as biocatalyst
JP6653934B2 (en) * 2015-09-30 2020-02-26 国立大学法人 宮崎大学 Power generation method using microbial fuel cell
CN105449252B (en) * 2015-12-31 2018-01-26 长春工程学院 Tiny ecosystem cycle suitching type microbiological fuel cell pile and its electrification technique
WO2018167333A1 (en) * 2017-03-17 2018-09-20 Nanoelectra S.L Method and system for purifying wastewater in a reactor
CN107140752B (en) * 2017-06-30 2020-11-10 太原理工大学 Device and method for treating coking wastewater and synchronously producing hydrogen
CN108821507A (en) * 2018-06-25 2018-11-16 中电环保股份有限公司 For electrolytic oxidation-Aerobic biological process reaction unit and its processing method
JP7178085B2 (en) * 2018-11-19 2022-11-25 国立大学法人広島大学 Microbial fuel cell and sludge decomposition treatment method
CN110304733B (en) * 2019-05-09 2021-07-09 南华大学 Method for in-situ remediation of uranium-polluted underground water by adopting riboflavin-mediated extracellular polymer sphingomonas
CN112093994B (en) * 2020-09-23 2021-08-24 四川农业大学 CW-MFC device and method for reducing methane and ammonia nitrogen pollution
CN113621667B (en) * 2021-09-14 2023-06-27 陕西麦可罗生物科技有限公司 Electromagnetic coupling fermentation streptomyces glaucescens Hainan variety microorganism cell
CN114392747B (en) * 2022-01-20 2023-11-03 合肥工业大学 Preparation method and application of nickel-doped sludge substrate block electrode anode
CN114551903A (en) * 2022-02-25 2022-05-27 广州大学 Microbial fuel cell cathode, preparation method and application thereof
CN116355791A (en) * 2022-12-30 2023-06-30 杭州洛奇亚环保科技有限公司 Higher-order flora for wastewater multi-biocatalysis degradation treatment and construction method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042058A (en) * 1990-04-18 1992-01-07 Kubota Corp Waste fuel cell
US5702835A (en) * 1994-05-16 1997-12-30 Larue; Ross Carson Sewage sludge compost battery
KR19980016777U (en) * 1996-09-19 1998-06-25 박병재 Independent suspension control arm structure for automobiles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435817B1 (en) * 2001-11-10 2004-06-12 한국과학기술연구원 Method for Measuring Low BOD Using Fuel Cell-Type Sensor to Measure Low BOD Value Using Electrochemically Active Oligotrophic Anaerobes
KR100502885B1 (en) * 2002-05-15 2005-07-25 한국과학기술연구원 Method for Monitoring BOD of Waste Water Continuously Using Microbial Fuel Cell
KR100657868B1 (en) 2005-12-12 2006-12-15 건국대학교 산학협력단 Biofuel cell using photosynthetic microorganisms and sediment sludge
KR20200070636A (en) 2018-12-10 2020-06-18 대한민국(농촌진흥청장) Microbial Fuel Cell system integrated substrate cycle and electricity interface structure

Also Published As

Publication number Publication date
EP1232123A1 (en) 2002-08-21
CN1164509C (en) 2004-09-01
WO2001004061A1 (en) 2001-01-18
KR20010009031A (en) 2001-02-05
JP2004517437A (en) 2004-06-10
AU3333500A (en) 2001-01-30
CN1364146A (en) 2002-08-14
CA2378558A1 (en) 2001-01-18

Similar Documents

Publication Publication Date Title
KR100332932B1 (en) A Biofuel Cell Using Wastewater and Activated Sludge for Wastewater Treatment
Yang et al. Complete nitrogen removal and electricity production in Thauera-dominated air-cathode single chambered microbial fuel cell
EP0827229B1 (en) Biofuel cell without electron transfer mediator
Ghangrekar et al. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production
Liu et al. Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon-and protein-rich substrates
Kim et al. Evaluation of procedures to acclimate a microbial fuel cell for electricity production
US7544429B2 (en) Membraneless and mediatorless microbial fuel cell
KR100303611B1 (en) An Electrochemical Method for Enrichment of Microorganism, and a Biosensor for Analyzing Organic Substance and BOD
US7838282B2 (en) Electrode compositions and configurations for electrochemical bioreactor systems
Nandy et al. Utilization of proteinaceous materials for power generation in a mediatorless microbial fuel cell by a new electrogenic bacteria Lysinibacillus sphaericus VA5
Ismail et al. Sustainable power generation in continuous flow microbial fuel cell treating actual wastewater: influence of biocatalyst type on electricity production
Zhang et al. Effect of dissolved oxygen concentration on nitrogen removal and electricity generation in self pH-buffer microbial fuel cell
Gunaseelan et al. Blending of microbial inocula: An effective strategy for performance enhancement of clayware Biophotovoltaics microbial fuel cells
CN102315469B (en) Microbial fuel cell and application thereof to degradation of azo dye pollutant
Xu et al. Simultaneous bioelectricity generation and pollutants removal of sediment microbial fuel cell combined with submerged macrophyte
Mokhtarian et al. Effect of different substrate on performance of microbial fuel cell
Ghangrekar et al. Wastewater treatment in microbial fuel cell and electricity generation: A sustainable approach
Scott An introduction to microbial fuel cells
Sharma et al. Extraction of clean energy from industrial wastewater using bioelectrochemical process
Tanikkul et al. Bioelectricity recovery and pollution reduction of distillery wastewater in air-cathode SCMFC
Ghangrekar et al. Microbial fuel cell: a new approach of wastewater treatment with power generation
Bagheri et al. Phenol-acclimated activated sludge and Ralstonia eutropha in a microbial fuel Cell for removal of olive oil from mill wastewater
Syed et al. Electroactive biofilm and electron transfer in microbial electrochemical systems
Zhao et al. Employing conductive carrier for establishing spontaneous microbial galvanic cell and accelerating denitrification
Teli et al. Microbial fuel cell: a source of sustainable energy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090331

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee