JPS636000B2 - - Google Patents

Info

Publication number
JPS636000B2
JPS636000B2 JP57100611A JP10061182A JPS636000B2 JP S636000 B2 JPS636000 B2 JP S636000B2 JP 57100611 A JP57100611 A JP 57100611A JP 10061182 A JP10061182 A JP 10061182A JP S636000 B2 JPS636000 B2 JP S636000B2
Authority
JP
Japan
Prior art keywords
power
input
motor
inverter
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57100611A
Other languages
Japanese (ja)
Other versions
JPS58218895A (en
Inventor
Akio Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57100611A priority Critical patent/JPS58218895A/en
Publication of JPS58218895A publication Critical patent/JPS58218895A/en
Publication of JPS636000B2 publication Critical patent/JPS636000B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/06Controlling the motor in four quadrants

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Stopping Of Electric Motors (AREA)
  • Control Of Multiple Motors (AREA)
  • Inverter Devices (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は交流電力を直流電力に変換し、この直
流電力を直流―直流変換、あるいは直流―交流変
換して電動機を制御するシステムにおいて、入力
力率を改善した電動機の制御装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a system for converting alternating current power into direct current power, and converting this direct current power into direct current to direct current or direct current to alternating current to control a motor. This invention relates to an electric motor control device with improved efficiency.

〔発明の背景技術〕[Background technology of the invention]

本発明が適用される電動機の制御装置には例え
ば交流―直流―直流変換を行なつて直流電動機を
制御する方式や、交流―直流―直流―交流変換や
交流―直流―交流変換を行なつて交流電動機を制
御する方式のものがある。従来技術を説明するた
め、ここでは交流―直流―交流変換方式の電動機
制御装置を第1図に示して説明する。この図で1
1は入力交流電源、12は交流―直流変換を行な
う順変換器、13は大容量のフイルタコンデン
サ、14は直流―交流変換を行ない可変周波数の
交流電力を出力するインバータ、15は交流電動
機、16は直流―交流変換を行なう逆変換器、1
7は直流リアクトルである。第1図で入力交流電
源11の交流電力は順変換器12で直流電力に変
換され、フイルタコンデンサ13でこの電力を平
滑化し、インバータ14で再び異なる周波数の交
流電力に変換して交流電動機15を可変速運転す
る。交流電動機15に入力交流電源11より電力
が供給される時は、以上の説明のルートで電力が
供給されるが、交流電動機15より入力交流電源
11へ電力が回生される場合には、帰還電力は一
度フイルタコンデンサ13に蓄わえられ、この電
力を直流リアクトル17で平滑化しながら逆変換
器16を介して入力交流電源11に電力回生を行
なつていた。
The motor control device to which the present invention is applied includes, for example, a system that performs AC-DC-DC conversion to control a DC motor, an AC-DC-DC-AC conversion, or an AC-DC-AC conversion. There is a method that controls an AC motor. In order to explain the prior art, an AC-DC-AC conversion type electric motor control device will be described with reference to FIG. In this diagram 1
1 is an input AC power supply, 12 is a forward converter that performs AC-DC conversion, 13 is a large-capacity filter capacitor, 14 is an inverter that performs DC-AC conversion and outputs variable frequency AC power, 15 is an AC motor, 16 is an inverse converter that performs DC-AC conversion, 1
7 is a DC reactor. In FIG. 1, AC power from an input AC power supply 11 is converted to DC power by a forward converter 12, smoothed by a filter capacitor 13, and converted again to AC power of a different frequency by an inverter 14 to drive an AC motor 15. Operates at variable speed. When power is supplied to the AC motor 15 from the input AC power supply 11, the power is supplied through the route explained above, but when power is regenerated from the AC motor 15 to the input AC power supply 11, the feedback power is once stored in the filter capacitor 13, and while smoothed by the DC reactor 17, the power is regenerated to the input AC power source 11 via the inverter 16.

〔背景技術の問題点〕[Problems with background technology]

以上説明するように従来の電動機の制御装置で
は、入力交流電源11より電力が供給される場合
には順変換器12が運転され、入力交流電源11
へ電力が回生される場合には逆変換器16が運転
される。又、順変換器12はダイオードブリツジ
で構成して無制御にするか(制御角α≒0)、サ
イリスタブリツジで構成して制御角α=0゜〜90゜
の範囲で運転する場合が多く、制御角α≒0の近
傍の運転領域では進み力率、又制御角が或る程度
遅れ負荷が重くなると遅れ力率で運転される。更
に、逆変換器16はサイリスタブリツジで構成
し、制御角α=90゜〜180゜の範囲で運転させるた
め、遅れ力率となつていた。このように運転され
る従来の電動機の制御装置においては、その運転
状態によつて入力交流電源11側の無効電力が大
幅に変化し、入力交流電源11の皮相電力は電動
機の制御装置より供給可能な有効電力に比較して
非常に大きくしなければならない欠点があつた。
As explained above, in the conventional electric motor control device, when power is supplied from the input AC power source 11, the forward converter 12 is operated;
The inverter 16 is operated when power is regenerated to. Further, the forward converter 12 may be configured with a diode bridge and not controlled (control angle α≒0), or may be configured with a thyristor bridge and operated within the range of control angle α = 0° to 90°. In most cases, in the operating range near the control angle α≈0, the engine operates with a leading power factor, and when the control angle lags to a certain extent and the load becomes heavy, the engine operates with a lagging power factor. Further, since the inverter 16 is constructed of a thyristor bridge and is operated within a control angle α of 90° to 180°, it has a lagging power factor. In the conventional motor control device operated in this manner, the reactive power on the input AC power source 11 side changes significantly depending on the operating state, and the apparent power of the input AC power source 11 can be supplied from the motor control device. The disadvantage was that the active power had to be very large compared to the average effective power.

また最近のエネルギー事情の悪化より、入力交
流電源11側の皮相電力を低減できると、入力交
流電源11側での効率の向上と、設備投資費の減
少が期待できるため、無効電力を低減出来る電動
機の制御装置の実用化が要望されている。
In addition, due to the recent deterioration of the energy situation, if the apparent power on the input AC power source 11 side can be reduced, it is expected that efficiency will improve on the input AC power source 11 side and equipment investment costs will be reduced. There is a demand for the practical application of control devices.

〔発明の目的〕[Purpose of the invention]

本発明は前述の点に鑑みてなされたもので、入
力電源側の無効電力を低減出来る電動機の制御装
置を提供することを目的としている。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a motor control device that can reduce reactive power on the input power source side.

〔発明の概要〕[Summary of the invention]

本発明は、この目的を達成するために、順変換
器と逆変換器を同時に運転出来るようにして、か
つ順変換器運転で発生する無効電力を逆変換器運
転で発生する無効電力で打消すようにしたことを
特徴とするものである。
In order to achieve this object, the present invention enables the forward converter and the inverse converter to be operated simultaneously, and cancels the reactive power generated in the forward converter operation with the reactive power generated in the inverse converter operation. It is characterized by the following.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第2図に示す。この図にお
いて第1図と同一番号を付した回路構成素子は、
第1図と同一機能の回路素子であり、説明を省
く。この図で18は直流―直流変換を行なうチヨ
ツパ、19は変圧器、20は力率制御回路、13
はフイルタコンデンサ、181はゲートターンオ
フサイリスタなどの半導体スイツチ、182はダ
イオード、183は直流リアクトルである。
An embodiment of the present invention is shown in FIG. In this figure, the circuit components labeled with the same numbers as in Figure 1 are as follows:
This circuit element has the same function as that in FIG. 1, and its explanation will be omitted. In this figure, 18 is a chopper that performs DC-DC conversion, 19 is a transformer, 20 is a power factor control circuit, and 13
1 is a filter capacitor, 18 1 is a semiconductor switch such as a gate turn-off thyristor, 18 2 is a diode, and 18 3 is a DC reactor.

第2図の動作を説明する。入力交流電源11よ
り電力を供給して交流電動機15を運転する方法
及び交流電動機15よりの帰還電力を入力電流電
源11へ回生する方法は第1図と同様である。こ
の図で順変換器12はダイオードブリツジで構成
しているため制御角α≒0であるから、通常の運
転では進みの無効電力を発生している。チヨツパ
18は半導体スイツチ181の導通と非導通の期
間を制御することによつて、その出力電圧を任意
の値に制御できる。即ち半導体スイツチ181
導通中はフイルタコンデンサ13より半導体スイ
ツチ181―直流リアクトル183―フイルタコン
デンサ131―フイルタコンデンサ13のループ
で電流が流れ、半導体スイツチ181が非導通に
なればダイオード182―直流リアクトル183
フイルタコンデンサ131―ダイオード182のル
ープで直流リアクトル183のエネルギーを放出
させる。その出力電力制御は半導体スイツチ18
の導通周期に対する導通期間の割合いで決るこ
とが良く知られている。変換器16はこの図では
制御角α=90゜〜180゜の範囲で運転される自然転
流の整流器であつて、遅れ無効電力を発生する
が、制御角α=180゜側よりα=90゜側で大きが遅
れ無効電力を発生することができる。力率制御回
路20は入力交流電源11の電圧と電流信号より
入力交流電源11の電源力率に対応した電気信号
を得て逆変換器16とチヨツパ18を制御する。
The operation shown in FIG. 2 will be explained. The method of operating the AC motor 15 by supplying power from the input AC power source 11 and the method of regenerating the feedback power from the AC motor 15 to the input current power source 11 are the same as those shown in FIG. In this figure, since the forward converter 12 is constituted by a diode bridge, the control angle α≈0, and therefore, in normal operation, leading reactive power is generated. The chopper 18 can control its output voltage to an arbitrary value by controlling the conduction and non-conduction periods of the semiconductor switch 181 . That is, when the semiconductor switch 18 1 is conductive, current flows from the filter capacitor 13 in the loop of the semiconductor switch 18 1 -DC reactor 18 3 -filter capacitor 13 1 -filter capacitor 13, and when the semiconductor switch 18 1 becomes non-conductive, the current flows through the diode 18. 2 - DC reactor 18 3 -
The energy of the DC reactor 18 3 is released through the filter capacitor 13 1 -diode 18 2 loop. Its output power is controlled by a semiconductor switch 18.
It is well known that it is determined by the ratio of the conduction period to one conduction period. In this figure, the converter 16 is a natural commutation rectifier that is operated in the range of control angle α = 90° to 180°, and generates delayed reactive power. On the ° side, reactive power can be generated with a large delay. The power factor control circuit 20 obtains an electric signal corresponding to the power factor of the input AC power source 11 from the voltage and current signals of the input AC power source 11, and controls the inverter 16 and chopper 18.

入力交流電源11より順変換器12―フイルタ
コンデンサ13―インバータ14―交流電動機1
5のルートで電力が供給される時、順変換器12
の発生する進み無効電力の大きさに対応して、力
率制御回路20はチヨツパ18の出力電圧と逆変
換器16の制御角αを制御する。即ち順変換器1
2が軽負荷なら発生する進み無効電力が大きいた
めチヨツパ18の出力電圧が高く、逆変換器16
の制御角αが90゜側より180゜側に近づくように、
逆に順変換器12が重負荷ならばチヨツパ18の
出力電圧を低くして逆変換器16の制御角αを
90゜側に近づけ逆変換器16で発生する遅れ無効
電力を少なくする。
From input AC power supply 11, forward converter 12 - filter capacitor 13 - inverter 14 - AC motor 1
When power is supplied through route 5, forward converter 12
The power factor control circuit 20 controls the output voltage of the chopper 18 and the control angle α of the inverter 16 in accordance with the magnitude of the leading reactive power generated. That is, forward converter 1
2 is a light load, the leading reactive power generated is large, so the output voltage of the chopper 18 is high, and the inverter 16
so that the control angle α is closer to the 180° side than the 90° side.
Conversely, if the forward converter 12 is heavily loaded, the output voltage of the chopper 18 is lowered to adjust the control angle α of the inverse converter 16.
By approaching the 90° side, the delayed reactive power generated in the inverse converter 16 is reduced.

他方、交流電動機15よりの帰還電力を入力交
流電源へ回生する場合には、力率制御回路20の
出力信号によつて順変換器12にも進み無効電力
を発生させるようにチヨツパ18と逆変換器16
を制御することにより、入力交流電源11の無効
電力を低減できる。即ち交流電動機15よりの帰
還電力の大きさにより、順変換器12―フイルタ
コンデンサ13―チヨツパ18―フイルタコンデ
ンサ131―直流リアクトル17―逆変換器16
―変圧器19のルートで流れる電流の大きさを制
御することによつて入力交流電源11の無効電力
を低減させる。
On the other hand, when the feedback power from the AC motor 15 is regenerated to the input AC power source, the output signal of the power factor control circuit 20 is used to pass the feedback power to the forward converter 12 and perform inverse conversion with the chopper 18 to generate reactive power. vessel 16
By controlling this, the reactive power of the input AC power supply 11 can be reduced. That is, depending on the magnitude of the feedback power from the AC motor 15, the forward converter 12 - filter capacitor 13 - chopper 18 - filter capacitor 13 1 - DC reactor 17 - inverse converter 16
- Reducing the reactive power of the input AC power supply 11 by controlling the magnitude of the current flowing in the route of the transformer 19.

以上説明するように本発明に依れば入力交流電
源11より電力が供給される過程か、電力が回生
される過程であるかにかかわらず、入力交流電源
11の無効電力を低減できる。
As described above, according to the present invention, the reactive power of the input AC power source 11 can be reduced regardless of whether the power is being supplied from the input AC power source 11 or the power is being regenerated.

第3図に本発明の他の実施例を示す。この図で
第1図及び第2図と同一番号を付した回路素子は
第1図及び第2図と同一機能の回路素子であり説
明を省く。121と122は順変換器132と133
はフイルタコンデンサ、161は逆変換器、171
と172は直流リアクトルである。この図の動作
は基本的には第2図と同一であり、順変換器12
と122が2組設けられており、この出力側はそ
れぞれ分離されている。また順変換器121,1
2はサイリスタブリツジで構成され、発生する
無効電力の大きさと極性が制御角αによつて変化
する。直流リアクトル171と172はフイルタコ
ンデンサ132と132を充電する電流を平滑化す
る。他方逆変換器161はゲートターンオフサイ
リスタや大容量パワートランジスタあるいは強制
転流方式の変換器であつて、制御角αが90゜から
270゜の範囲で運転可能な変換器である。第3図で
はフイルタコンデンサ132及び133にそれぞれ
対応してチヨツパ18が設けられており、チヨツ
パ18の出力側は、第2図の如くフイルタコンデ
ンサ131と直流リアクトル17を設けずに、直
接逆変換器161に接続することもできる。逆変
換器161は制御角αが90゜〜180゜の範囲で運転す
ると遅れ無効電力を、制御角αを180゜〜270゜の範
囲で制御すると進み無効電力を発生させることが
できる。従つて順変換器121又は122の発生す
る無効電力が進み無効電力或は遅れ無効電力であ
つてもこの無効電力を打消すように逆変換器16
を制御することが出来るので、入力交流電源1
1の無効電力を低減できることが明らかである。
FIG. 3 shows another embodiment of the invention. In this figure, circuit elements given the same numbers as in FIGS. 1 and 2 are circuit elements having the same functions as in FIGS. 1 and 2, and their explanation will be omitted. 12 1 and 12 2 are forward converters 13 2 and 13 3
is the filter capacitor, 16 1 is the inverter, 17 1
and 17 2 is a DC reactor. The operation in this figure is basically the same as in Figure 2, and the forward converter 12
Two sets of 1 and 12 2 are provided, and their output sides are separated from each other. Also, the forward converter 12 1 , 1
2 2 is composed of a thyristor bridge, and the magnitude and polarity of the generated reactive power change depending on the control angle α. The DC reactors 17 1 and 17 2 smooth the current that charges the filter capacitors 13 2 and 13 2 . On the other hand, the inverse converter 161 is a gate turn-off thyristor, a large-capacity power transistor, or a forced commutation type converter, and the control angle α is from 90°.
This is a converter that can operate within a range of 270°. In FIG. 3, a chopper 18 is provided corresponding to each of the filter capacitors 13 2 and 13 3 , and the output side of the chopper 18 is connected directly to the filter capacitor 13 1 and the DC reactor 17 as shown in FIG. It can also be connected to the inverter 16 1 . The inverse converter 161 can generate delayed reactive power when the control angle α is controlled within the range of 90° to 180°, and can generate advanced reactive power when the control angle α is controlled within the range of 180° to 270°. Therefore, even if the reactive power generated by the forward converter 12 1 or 12 2 is leading reactive power or lagging reactive power, the inverter 16 is configured to cancel this reactive power.
1 can be controlled, so the input AC power supply 1
It is clear that the reactive power of 1 can be reduced.

尚、本発明は、変圧器19の挿入箇所を限定す
るものではなく、順変換器12,121,122
逆変換器16,161の交流端子側が絶縁されて
いれば良い。また順変換器の個数や、チヨツパの
個数を特に限定するものではなく、またチヨツパ
の回路構成を特に限定するものではない。その他
本発明の要旨を変更しない範囲において種々の変
形回路を構成できる。
Note that the present invention does not limit the insertion location of the transformer 19, as long as the AC terminal sides of the forward converters 12, 12 1 , 12 2 and the inverse converters 16, 16 1 are insulated. Further, the number of forward converters and the number of choppers are not particularly limited, and the circuit configuration of the choppers is not particularly limited. Various other modified circuits can be constructed without changing the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば順変換器の直流出力端子と逆変
換器の直流入力端子間にチヨツパを設けて、順変
換器の発生する無効電力と反射極性の無効電力を
逆側整流器に発生させ、その無効電力量を調整す
ることによつて入力交流電源の無効電力量を低減
させることができる電動機の制御装置を実現でき
ることが明らかである。
According to the present invention, a chopper is provided between the DC output terminal of the forward converter and the DC input terminal of the inverse converter, and the reactive power generated by the forward converter and the reactive power of reflected polarity are generated in the reverse rectifier. It is clear that it is possible to realize a motor control device that can reduce the amount of reactive power of the input AC power source by adjusting the amount of reactive power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電動機の制御装置の回路図、第
2図は本発明の一実施例を示す電動機の制御装置
の回路図、第3図は本発明の他の実施例を示す電
動機の制御装置の回路図である。 11…入力交流電源、12,121,122…順
変換器、13,131,132,133…フイルタ
コンデンサ、14…インバータ、15…交流電動
機、16,161…逆変換器、17,171,17
…直流リアクトル、18…チヨツパ、181…半
導体スイツチ、182…ダイオード、183…直流
リアクトル、19…変圧器、20…力率制御回
路。
Fig. 1 is a circuit diagram of a conventional motor control device, Fig. 2 is a circuit diagram of a motor control device showing an embodiment of the present invention, and Fig. 3 is a circuit diagram of a motor control device showing another embodiment of the present invention. FIG. 3 is a circuit diagram of the device. 11... Input AC power supply, 12, 12 1 , 12 2 ... Forward converter, 13, 13 1 , 13 2 , 13 3 ... Filter capacitor, 14... Inverter, 15... AC motor, 16, 16 1 ... Inverse converter, 17,17 1,17
2 ...DC reactor, 18...Chopper, 181 ...Semiconductor switch, 182 ...Diode, 183 ...DC reactor, 19...Transformer, 20...Power factor control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 入力交流電源の交流電力を順変換器で直流電
力に変換して、この直流電力で直流電動機を駆
動、あるいは前記直流電力をインバータで交流電
力に変換して交流電動機を駆動し、前記直流電動
機あるいは交流電動機より電力が帰還される場合
には逆変換器で前記入力交流電源へ電力回生を行
なう電動機の制御装置において、前記逆変換器の
入力側にチヨツパを設け、かつ前記入力交流電源
の電圧と電流を入力とし前記逆変換器とチヨツパ
を制御する力率制御回路を設けて、前記順変換器
が発生する無効電力を打消す方向の無効電力の制
御を可能とした電動機の制御装置。
1 Convert the AC power of the input AC power supply into DC power with a forward converter and drive a DC motor with this DC power, or convert the DC power into AC power with an inverter to drive an AC motor, and drive the DC motor with the DC power. Alternatively, when power is fed back from an AC motor, in a motor control device that regenerates power to the input AC power source using an inverter, a chopper is provided on the input side of the inverter, and the voltage of the input AC power source is A control device for an electric motor, which is provided with a power factor control circuit that receives current as input and controls the inverse converter and chopper, thereby making it possible to control reactive power in the direction of canceling the reactive power generated by the forward converter.
JP57100611A 1982-06-14 1982-06-14 Controller for electric motor Granted JPS58218895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57100611A JPS58218895A (en) 1982-06-14 1982-06-14 Controller for electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57100611A JPS58218895A (en) 1982-06-14 1982-06-14 Controller for electric motor

Publications (2)

Publication Number Publication Date
JPS58218895A JPS58218895A (en) 1983-12-20
JPS636000B2 true JPS636000B2 (en) 1988-02-06

Family

ID=14278635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57100611A Granted JPS58218895A (en) 1982-06-14 1982-06-14 Controller for electric motor

Country Status (1)

Country Link
JP (1) JPS58218895A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354717Y2 (en) * 1989-04-07 1991-12-03

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240083A (en) * 1985-08-14 1987-02-21 Fanuc Ltd Control method of three-phase induction motor
DE19546000A1 (en) * 1995-12-09 1997-06-12 Gegelec Aeg Anlagen Und Antriebssysteme Gmbh 4-quadrant feed converter for pulse inverters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354717Y2 (en) * 1989-04-07 1991-12-03

Also Published As

Publication number Publication date
JPS58218895A (en) 1983-12-20

Similar Documents

Publication Publication Date Title
JP2760666B2 (en) Method and apparatus for controlling PWM converter
US4489371A (en) Synthesized sine-wave static generator
JPS636000B2 (en)
KR910008549B1 (en) A.c. power supply
JPH0965657A (en) Power converter for solar power generation
JPH1028378A (en) Method for controlling power converter and method for controlling power converting system
JPH04334977A (en) Power converter
JP2573229B2 (en) Variable voltage and variable frequency power supply
US5652699A (en) High-voltage and high-power stabilized DC power supply using modified sine wave output 3-phase inverter
JPH09252581A (en) Operation of uninterruptive power supply
JPS6117231B2 (en)
JPH0669316B2 (en) Power regeneration control circuit for power converter
JPS6166573A (en) Power converter
JPH09163751A (en) Pwm controlled self-excited rectifier
JPH0667200B2 (en) Control method of current source PWM converter
KR20040040530A (en) Parallel control system of single-phase inverter
JPH01202157A (en) Dc power supply for coil
JPH06343271A (en) Constant voltage step-up type dc/ac power converter and battery generator system using same
JPH0156636B2 (en)
SU771826A1 (en) Frequency converter
JP2549101B2 (en) Power converter
JP2001354053A (en) Feed system
JPS63253832A (en) Non-interrupted electric source
JPH077808A (en) Inverter driving system for ac-dc dual current electric railcar
JPH06276613A (en) Controller for ac electric railcar