JPS6345765A - Fuel cell power source system - Google Patents

Fuel cell power source system

Info

Publication number
JPS6345765A
JPS6345765A JP61189852A JP18985286A JPS6345765A JP S6345765 A JPS6345765 A JP S6345765A JP 61189852 A JP61189852 A JP 61189852A JP 18985286 A JP18985286 A JP 18985286A JP S6345765 A JPS6345765 A JP S6345765A
Authority
JP
Japan
Prior art keywords
signal
fuel cell
battery
current
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61189852A
Other languages
Japanese (ja)
Inventor
Tetsuo Kawasaki
川崎 哲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61189852A priority Critical patent/JPS6345765A/en
Publication of JPS6345765A publication Critical patent/JPS6345765A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04626Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04947Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent the overdischarge and overcharge of a secondary battery by installing a fuel cell current detector, in which a measured signal is outputted according to output current, and a controller, in which a setting signal and the measured signal are inputted and a control signal is outputted and the output current of a fuel cell is feedbackcontrolled by a power converter. CONSTITUTION:When a secondary battery 3 is discharged and the quantity of electricity Q of the battery is decreased, a setting signal 12a and output voltage V2 are increased to retard decrease in the Q, or adequate charge current flows to the battery 3 to recover the Q. When output current If of a fuel cell 1 is increased than a value corresponding to the signal 12, a controller 14 outputs a control signal 14a to decrease the voltage V2 and the current If to the value corresponding to the signal 12 and the overdischarge of the battery 3 can be prevented. When the battery 3 is charged and the quantity of electricity Q is increased, the setting signal 12a and the output voltage V2 are decreased to retard increase in the Q or charge current of the battery 3 to recover the Q to an adequate value. Therefore, the overcharge of the battery can be prevented. Even when the load 4 is increased, the overdischarge of the battery and sharp voltage drop in the load 4 can be prevented.

Description

【発明の詳細な説明】 〔発明グ〕属する技術分野〕 本発明は、燃料電池に鉛蓄電池グ】ような二次電池を並
列接続し、燃料電池によつ℃二次電池を浮動光電しなが
ら負荷vc電力を供給し、燃料電池り起動時やピーク負
荷時のような燃料電池の出力電力が不足している時にこ
の不足電力を二次電池に低下することF】ない装!構成
に関する。
[Detailed description of the invention] [Technical field to which the invention belongs] The present invention connects a secondary battery such as a lead-acid battery to a fuel cell in parallel, and uses a floating photovoltaic battery to connect the secondary battery to the fuel cell. It is possible to supply load VC power and reduce this insufficient power to the secondary battery when the output power of the fuel cell is insufficient, such as when starting up the fuel cell or at peak load. Concerning configuration.

〔従来技術とその問題点〕[Prior art and its problems]

燃料電池においては、たとえば負荷としての電動機を起
動させた場合、電動機の起動電流とし1大きい負荷電流
が必要となるので燃料電池の電極では燃料消費が急増す
るが、水素に富んだガスや空気などの燃料を前記電極に
供給するには時間がかかるので、燃料電池としては燃料
不足となっ工出力電圧が低下する。また水素に富んだガ
スをメタノールと水とから得るようにした燃料改質器を
用いた水素酸素燃料電池システムでは、該改質器で生成
されて燃料電池電極に導かれた燃料水素のうちの未反応
余剰分、いわゆるオフガスを、再び改質器に戻して該改
質器における気化管加熱用バーナに使用する燃料の一部
として用いているので。
In a fuel cell, for example, when starting an electric motor as a load, a large load current is required as the starting current of the motor, so fuel consumption at the electrodes of the fuel cell increases rapidly, but hydrogen-rich gas or air etc. Since it takes time to supply this amount of fuel to the electrodes, the fuel cell will run out of fuel and its output voltage will drop. Furthermore, in a hydrogen-oxygen fuel cell system using a fuel reformer that obtains hydrogen-rich gas from methanol and water, the fuel hydrogen generated in the reformer and guided to the fuel cell electrode is The unreacted surplus, so-called off-gas, is returned to the reformer and used as part of the fuel used in the vaporizer tube heating burner in the reformer.

燃料電池の電極で前述のような燃料水素の急増が生じる
とオフガスの不足による前記バーナの失火現象が発生す
る。このため燃料電池を用いた電源装置では燃料電池に
鉛#電池のような二次電池を並列接続し、燃料電池の起
動時には二次電池から所望り〕電力を取り出し、また燃
料電池起動後の定常運転においては燃料電池によって二
次電池を浮動充電しながら大弁荷時に発生する燃料電池
出力電力り)不足分を二次電池で補うようにしている。
When a sudden increase in hydrogen fuel occurs at the electrodes of a fuel cell, the burner misfires due to a lack of off-gas. For this reason, in a power supply device using a fuel cell, a secondary battery such as a lead-acid battery is connected in parallel to the fuel cell, and when the fuel cell is started, the desired amount of power is extracted from the secondary battery, and the steady state after the fuel cell is started. During operation, the secondary battery is floatingly charged by the fuel cell, and the secondary battery compensates for the shortfall in fuel cell output power that occurs during heavy loads.

ところが、このような燃料電池電源装置では、たとえば
燃料電池の平均出力電力よりも負荷での平均消費電力が
多いと、時間の経過と共に二次電池’7)IA存電電気
量少な(なつ℃燃料電池電源装置の出力電圧が低下し、
遂には二次W1池が過放電状態になって損傷することが
あるという問題がある。
However, in such a fuel cell power supply device, if the average power consumption at the load is higher than the average output power of the fuel cell, the amount of electricity remaining in the secondary battery will decrease over time (Natsu The output voltage of the fuel cell power supply decreases,
There is a problem that the secondary W1 battery may eventually become over-discharged and be damaged.

また負荷での平均消費電力が燃料電池の平均出力電力よ
りも少ないと、二次電池が過充電状態になってit 済
g中の水が電解され、こ0結果二次電池0電極板が損傷
することがあるという問題もある。
Also, if the average power consumption in the load is less than the average output power of the fuel cell, the secondary battery will become overcharged and the water in the battery will be electrolyzed, resulting in damage to the secondary battery's electrode plate. There is also the problem of having something to do.

〔発明の目的〕[Purpose of the invention]

本発明は、上述したような従来電源装置における問題を
解消して、二次電池が過放電状態や過充電状態になるこ
とがなくかつ出力電圧が極度に低下することのない燃料
電池電源装置を提供することを目的とする。
The present invention solves the problems of conventional power supply devices as described above, and provides a fuel cell power supply device in which the secondary battery does not become over-discharged or overcharged, and the output voltage does not drop extremely. The purpose is to provide.

〔発明の要点〕[Key points of the invention]

本発明は、上記目的達成のため、二次電池の残存電気量
を検出してこの残存電気量に応じて燃料電池の出力電流
を制御することにより、二次電池が過放電状態や過充電
状態になることがなくかつ出力型EEが極度に低下する
ととのない燃料電池電源装置が得られるようにしたもの
である。
In order to achieve the above object, the present invention detects the amount of remaining electricity in the secondary battery and controls the output current of the fuel cell according to this amount of remaining electricity, thereby preventing the secondary battery from being in an over-discharged state or an overcharged state. This is to provide a fuel cell power supply device that does not suffer from excessive drop in output type EE.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例の構成図である。第1図にお
いて、1は燃料電池% 2は燃料電池!が出力する一次
電力P、と制御信号14aとが入力され、一次電力P、
を制御信号14aに応じた電圧V、を有する直流二次電
力P、VC変換する電力変換部で、3は二次電力P、に
よって浮動充電される、燃料電池lに対するバックアッ
プ用の二次電池、4は二次電池3に対して並列に接続さ
れた。
FIG. 1 is a block diagram of an embodiment of the present invention. In Figure 1, 1 is fuel cell% and 2 is fuel cell! The primary power P outputted by the controller and the control signal 14a are input, and the primary power P,
3 is a power conversion unit that converts DC secondary power P and VC having a voltage V according to a control signal 14a, and 3 is a secondary battery for backup for the fuel cell I, which is floatingly charged by the secondary power P. 4 was connected in parallel to the secondary battery 3.

部 電動機り)よ5な負荷である。Rは変換弁20出力端子
2aから二次電池3の端子3aK至る導電路に存在する
抵抗である。5は二次電池3 f)電圧V。
(Electric motor). R is the resistance existing in the conductive path from the output terminal 2a of the conversion valve 20 to the terminal 3aK of the secondary battery 3. 5 is a secondary battery 3 f) Voltage V.

を検出してこの電圧に応じた電圧信号5aを出力する二
次電池1!王検出部、6は二次電池3の放電電流工sd
を検出し工この電流に応じた電流信号6aを出力する二
次電池電流検出部で、信号5aと6aとは演算部7に入
力され、ここで以下に説明するような演算が行われて二
次電池3における残存電気量に応じた電量信号7aが出
力されるように構成されている。
A secondary battery 1 that detects the voltage and outputs a voltage signal 5a corresponding to this voltage! 6 is the discharge current sd of the secondary battery 3.
The signals 5a and 6a are input to the calculation part 7, where the calculations described below are performed and the two are output. It is configured such that a charge signal 7a corresponding to the remaining charge in the next battery 3 is output.

第2図は前述した二次電池31F)残存電気量を説明す
る説明図で1本図は実験結果にもとづくものである。図
から明らかなよ5に1本図は二次電池3f1電圧vs 
とこの電池を流れる電流工、と残存電気量Qとの関係を
示している。電気tQは優で表されていて、Q÷100
C%)は電池3が定格状態に充電されていることを示し
ている。本図から電圧Vsと電流工s とがわかると残
存電気量Qがわかることb″−明らかである。第1図り
演算部7には第2図に示した電気量Qをパラメータとす
る特性線群が記憶させられており、さらに演算部7は、
信号5aと信号6aとが入力されると1両入力信号と前
記時性線群とによって決定される電気量Qに応じた電量
信号7aを出力するように構成されている。
FIG. 2 is an explanatory diagram illustrating the amount of remaining electricity in the secondary battery 31F described above, and this figure is based on experimental results. It is clear from the diagram that the one in five diagram is the secondary battery 3f1 voltage vs.
It shows the relationship between the electric current flowing through this battery and the amount of remaining electricity Q. Electricity tQ is expressed in yen, and is Q÷100.
C%) indicates that the battery 3 is charged to the rated state. It is clear from this figure that if the voltage Vs and the current s are known, the remaining electricity quantity Q can be determined. The group is stored, and furthermore, the calculation unit 7
When the signal 5a and the signal 6a are inputted, it is configured to output a charge signal 7a corresponding to the charge Q determined by the two input signals and the group of temporal lines.

再び第1図について説明する。図において、8は二次電
池電圧検出部5と二次電池電流検出部6と演算部7とか
らなる残存電気量検出部で、この検出部では各部が上記
のように動作するので、結局検出部8は二次電池3の残
存電気量−Qを検出して該電気量Qvc応じた電量信号
7aを出力するものであるということになる。9は電流
信号6aが入力されると、この信号が表わす放電電流I
sdが所定f】上限電流値Ih と所定の下限電流値I
tとの間の電流であるかどうかを判別して、It<工5
d(Ihであると二値出力信号9aをHレベルとするよ
うにした電流判定部で、10は信号9mが入力され、こ
の信号がHレベルである状態がたとえば3秒間というよ
うな所定時間を経過すると第1信号tOaを出力する時
間判定部である。電流判定部9と時間判定部lOと電流
検出部6とは電流状態検出部11を構成している。第1
信号10aは時間判定部10から出力される二値信号の
Hレベル状態で表される信号である。電流状態検出部1
1は上記のように構成されているので、結局この検出部
!lは、二次電池3の放電電流ISdを検出し、電流I
sdが所定の電流値範囲内にありかつこQ〕ような電流
値範囲内にある状態が所定時間以上継続しているという
ような電流Isdの所定状態が出現すると、第1信号1
0Bを出力する検出部である。
FIG. 1 will be explained again. In the figure, reference numeral 8 denotes a remaining electricity amount detection unit consisting of a secondary battery voltage detection unit 5, a secondary battery current detection unit 6, and a calculation unit 7. Since each part of this detection unit operates as described above, it is ultimately detected. This means that the section 8 detects the remaining amount of electricity -Q of the secondary battery 3 and outputs the amount of electricity signal 7a corresponding to the amount of electricity Qvc. 9 indicates the discharge current I represented by this signal when the current signal 6a is input.
sd is a predetermined value f] Upper limit current value Ih and predetermined lower limit current value I
It is determined whether the current is between It<t5.
d(Ih) is a current determination unit that sets the binary output signal 9a to H level; 10 is a current determination unit to which a signal 9m is input, and this signal remains at H level for a predetermined period of time, for example, 3 seconds; This is a time determination section that outputs a first signal tOa when the time has elapsed.The current determination section 9, the time determination section IO, and the current detection section 6 constitute a current state detection section 11.
The signal 10a is a binary signal output from the time determining section 10 and is expressed as an H level state. Current state detection section 1
1 is configured as described above, so in the end it is this detection section! l detects the discharge current ISd of the secondary battery 3, and detects the current I
When a predetermined state of the current Isd appears, in which the current Isd is within a predetermined current value range and the current value Q is within the current value range for a predetermined period or longer, the first signal 1
This is a detection unit that outputs 0B.

12は電量信号7aと時間判定部10の出力信号とが入
力され1時間判定部lOから第1信号10aが出力され
ると、電量信号7aを第3図に示した特性線入によって
決定される値の設定信号12arc変換して出力する信
号変換部で% 13は燃料電池lの出力電流Ifを検出
してこの電流に応じた測定信号13aを出力する燃料電
池電流検出部である。設定信号12aと測定信号13a
とは制御部14Vc入力され、この制御部14は、信号
12aと信号13aとの偏差にもとづいて所定の調節動
作を行ってその結果に応じた制御信号14aを出力し2
この信号14aで変換部2の出力電圧V!を加減するこ
とにより燃料電池出力電流Ifを変化させて前記偏差を
零にするようにする機能を有している。つまり、14は
、設定信号12aと測定信号13aとが入力され、制御
信号14aを出力して電力変換部2Vcより燃料電池l
の出力電流Ifを帰還制御する゛制御部である。   
 ′第1図においては各部が上記のように構成されてい
るが、さらに、演算部7は、放電電流” sdがI t
< I sd <I hen条件を満たす場合のみ精度
の高い電量信号7aを出力するように構成されている。
12, when the coulometric signal 7a and the output signal of the time determining section 10 are input and the first signal 10a is output from the one hour determining section 10, the coulometric signal 7a is determined by the characteristic line input shown in FIG. 13 is a fuel cell current detection section that detects the output current If of the fuel cell l and outputs a measurement signal 13a corresponding to this current. Setting signal 12a and measurement signal 13a
is inputted to the control unit 14Vc, and the control unit 14 performs a predetermined adjustment operation based on the deviation between the signal 12a and the signal 13a, and outputs a control signal 14a according to the result.
With this signal 14a, the output voltage of the converter 2 is V! It has a function of changing the fuel cell output current If by adjusting or subtracting the deviation from the fuel cell to zero. In other words, 14 receives the setting signal 12a and the measurement signal 13a, outputs the control signal 14a, and connects the fuel cell l to the power converter 2Vc.
This is a control section that performs feedback control of the output current If.
' In FIG. 1, each part is configured as described above, but furthermore, the calculation part 7 calculates the discharge current "sd is I t
It is configured to output a highly accurate coulometric signal 7a only when the condition <I sd <I hen is satisfied.

これは電気量QをパラメータとしたVs−I、  特性
綜詳に対する演算部7の記憶容量に限界があ゛るからで
ある。さて演算部7は上記r)ように構成されているの
で、電流状態検出部11から第1信号10aが出力され
た時の電量信号7aは、この時の二次電池3&fおける
残存電気量Qを正確に表わしている。また燃料電池出力
電流I(は制御部14と変換部2との動作によって設定
信号128に応じた電流値になる。ところがこの場合、
信号変換部12が信号変換を行う第3図の特性線Aは、
二次電池3Vcおける残存電気量Qが信号7aで表され
る状態にある時に電池3に過度の放電電流を生じさせな
いようにするかまたは適当な充電電流を流入させること
になる変換器2F)出力電圧V、を、こg′1電圧に対
応する電流I、で表わしたものである。したがって第1
図においては、負荷47F’)ために二次電池3が放電
して残存電気tQが少なくなると設定信号12aが大き
くなってこの結果出力電圧V、が大きくなり、これによ
ってQの減少が抑制されるかまたは電池3に適当な充電
電流が流入し1電気量Qが回復させられる。こσ)時当
然二次電力P!は大きくなるのでこれに応じて一次電力
P、も大きくなり、この結果燃料電池出力電流Ifも大
きくなる。Ifが信号128に対応した値よりも大きく
なると、制御1!B14は制御信号141によって電圧
V、を小さくするので、If も小さくなって遂に信号
1zavc対応した値に一致する。この結果電池3の過
放電が防止される。第1図において上記とは逆に二次電
池3が充電されて電気量Qが多くなると、今度は設定信
号12aが小さくなるので出力電圧V、が小さくなり、
この結果電池3におけるQの増大が抑制されるかまたは
電池3の放電電流が増大して電気量Qが適正値の方向に
回復させられる。したがうてこの場合電池3に過充電状
態が生じることはない。第1図では6部が上記0よ5に
動作するので、負荷4が大きくなった場合二次電池3が
過放電状!IKなって負荷4に加えられる電圧が著しく
低下するということはない。
This is because there is a limit to the storage capacity of the calculation unit 7 for Vs-I and characteristic details using the electrical quantity Q as a parameter. Now, since the calculation section 7 is configured as described in r) above, the amount of electricity signal 7a when the first signal 10a is output from the current state detection section 11 is the amount of electricity Q remaining in the secondary battery 3&f at this time. accurately represented. Further, the fuel cell output current I (is a current value according to the setting signal 128 due to the operation of the control unit 14 and the conversion unit 2. However, in this case,
The characteristic line A in FIG. 3 where the signal conversion unit 12 performs signal conversion is as follows:
Converter 2F) Output that prevents excessive discharge current from being generated in the battery 3 or allows an appropriate charging current to flow in when the remaining electricity Q in the secondary battery 3Vc is in the state represented by the signal 7a. The voltage V is expressed by the current I corresponding to the g'1 voltage. Therefore, the first
In the figure, when the secondary battery 3 is discharged due to the load 47F') and the remaining electricity tQ decreases, the setting signal 12a increases, and as a result, the output voltage V increases, thereby suppressing the decrease in Q. Alternatively, an appropriate charging current flows into the battery 3, and one quantity of electricity Q is recovered. σ) Naturally, the secondary power P! Since P becomes larger, the primary power P also becomes larger, and as a result, the fuel cell output current If also becomes larger. If If becomes greater than the value corresponding to signal 128, control 1! Since B14 reduces the voltage V by the control signal 141, If also becomes smaller and finally matches the value corresponding to the signal 1zavc. As a result, over-discharge of the battery 3 is prevented. In FIG. 1, contrary to the above, when the secondary battery 3 is charged and the amount of electricity Q increases, the setting signal 12a becomes smaller, so the output voltage V becomes smaller.
As a result, the increase in Q in the battery 3 is suppressed, or the discharge current of the battery 3 increases, and the quantity of electricity Q is restored to its proper value. Therefore, in this case, the battery 3 will not be overcharged. In Fig. 1, the 6th section operates as above 0 to 5, so when the load 4 becomes large, the secondary battery 3 becomes over-discharged! The voltage applied to the load 4 does not drop significantly due to IK.

第1図においては、演算部7は信号5aと6aとを用い
′C残存電気tQに応じた信号7aを出力するように構
成されたが、図示の各部のほかにさらに電池3における
電解液の温度を検出する温度検出部な設け、演算部7が
信号5aおよび6aのほかに@度検出部り】出力信号も
入力されて前記の場合よりもさら[ff[の高いtt信
号7aを出力するようvc構成され工も差し支えない。
In FIG. 1, the calculation section 7 is configured to use the signals 5a and 6a to output the signal 7a according to the remaining electricity tQ, but in addition to the illustrated sections, there is also a A temperature detection section for detecting the temperature is provided, and the calculation section 7 receives the output signal in addition to the signals 5a and 6a, and outputs the tt signal 7a with a higher [ff] than in the above case. If the VC is configured like this, there is no problem.

第1図において、 IEi−信号7aが入力されて電気
量tQを表示する表示部を設けろと1本電源装置σ)取
り扱い上便利である。なお上述した電流状態検出部11
は必ずしも必要でなく、この検出部j 1が省略された
場合、信号変換部12は常時twit信号7aK対して
信号変換動作を行うようVC構成されろことになる。
In FIG. 1, it is convenient to use a single power supply unit σ) by providing a display section to which the IEi-signal 7a is input and to display the quantity of electricity tQ. Note that the current state detection section 11 described above
is not necessarily necessary, and if this detection section j1 is omitted, the signal conversion section 12 will be configured as a VC so that it always performs a signal conversion operation on the twit signal 7aK.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明においては、燃料電池によって
浮動充電される燃料電池バックアップ用二次電池の残存
電気量を検出し、この電気量に応じて燃料電池の出力電
流を制御するようにしたので、二次電池が過放電状態や
過充電状態になることがなくかつ燃料電池電源装置グ)
出力電圧が極度に低下することがないという効果がある
As described above, in the present invention, the amount of remaining electricity of the fuel cell backup secondary battery that is floatingly charged by the fuel cell is detected, and the output current of the fuel cell is controlled according to this amount of electricity. , the secondary battery does not become over-discharged or over-charged, and the fuel cell power supply device (G)
This has the effect that the output voltage does not drop extremely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は第1図に
おける二次電池の残存電気量説明図、第3図は第1図に
おける信号変換部の信号変換特性説明図である。 1・・・・・・燃料電池、2・・・・・・電力変換部、
3・・・・・・二次電池、 7a・・・・・・電量信号
、8・・・・・・残存電気量検出部、12・・・・・・
信号変換部、12a・・・・・・設定信号、13・・・
・・・燃料電池電流検出部、13a・・・・・・測定信
号、14・・・・・・制御部、14a・・・・・・制御
信号、P、・・・・・・一次電力、Pt・・・・・・二
次電力、  If・・・・・・燃料電池出力電流。 0          ニニ欠It3で’、ffL(I
s)箋  2  囚 箋  3  j
FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of the amount of remaining electricity of the secondary battery in FIG. 1, and FIG. 3 is an explanatory diagram of the signal conversion characteristics of the signal converter in FIG. 1. be. 1...fuel cell, 2...power conversion section,
3... Secondary battery, 7a... Electricity signal, 8... Residual electricity amount detection unit, 12...
Signal converter, 12a...Setting signal, 13...
... fuel cell current detection section, 13a ... measurement signal, 14 ... control section, 14a ... control signal, P ... primary power, Pt...Secondary power, If...Fuel cell output current. 0 Nini missing It3', ffL(I
s) Note 2 Prison note 3 j

Claims (1)

【特許請求の範囲】[Claims] 燃料電池と、制御信号と前記燃料電池の出力する一次電
力とが入力され前記一次電力を前記制御信号に応じた電
圧を有する直流二次電力に変換する電力変換部と、前記
二次電力によつて浮動充電される二次電池と、前記二次
電池の残存電気量を検出して前記残存電気量に応じた電
量信号を出力する残存電気量検出部と、前記電量信号に
ついて所定の信号変換を行つてその結果に応じた設定信
号を出力する信号変換部と、前記燃料電池の出力電流を
検出して該出力電流に応じた測定信号を出力する燃料電
池電流検出部と、前記設定信号と前記測定信号とが入力
され前記制御信号を出力して前記電力変換部により前記
燃料電池の出力電流を帰還制御する制御部とを備えたこ
とを特徴とする燃料電池電源装置。
a fuel cell, a power converter that receives a control signal and primary power output from the fuel cell and converts the primary power into DC secondary power having a voltage according to the control signal; a secondary battery that is float-charged, a residual electricity detection unit that detects the remaining electricity of the secondary battery and outputs a electricity signal corresponding to the remaining electricity; a signal conversion unit that detects the output current of the fuel cell and outputs a measurement signal corresponding to the output current; A fuel cell power supply device comprising: a control section that receives a measurement signal, outputs the control signal, and performs feedback control of the output current of the fuel cell by the power conversion section.
JP61189852A 1986-08-13 1986-08-13 Fuel cell power source system Pending JPS6345765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61189852A JPS6345765A (en) 1986-08-13 1986-08-13 Fuel cell power source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61189852A JPS6345765A (en) 1986-08-13 1986-08-13 Fuel cell power source system

Publications (1)

Publication Number Publication Date
JPS6345765A true JPS6345765A (en) 1988-02-26

Family

ID=16248263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189852A Pending JPS6345765A (en) 1986-08-13 1986-08-13 Fuel cell power source system

Country Status (1)

Country Link
JP (1) JPS6345765A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334463A (en) * 1991-11-29 1994-08-02 Sanyo Electric Co., Ltd. Hybrid fuel battery system and the operation method thereof
JP2008022650A (en) * 2006-07-13 2008-01-31 Univ Of Tsukuba Self-sustained operation assist device and power supply system
US8071245B2 (en) 2003-12-05 2011-12-06 Toyota Jidosha Kabushiki Kaisha Hybrid fuel cell system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109728A (en) * 1983-09-29 1985-06-15 エンゲルハ−ド・コ−ポレ−シヨン Fuel battery/battery hybrid system with battery charging level control

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109728A (en) * 1983-09-29 1985-06-15 エンゲルハ−ド・コ−ポレ−シヨン Fuel battery/battery hybrid system with battery charging level control

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334463A (en) * 1991-11-29 1994-08-02 Sanyo Electric Co., Ltd. Hybrid fuel battery system and the operation method thereof
US8071245B2 (en) 2003-12-05 2011-12-06 Toyota Jidosha Kabushiki Kaisha Hybrid fuel cell system
JP2008022650A (en) * 2006-07-13 2008-01-31 Univ Of Tsukuba Self-sustained operation assist device and power supply system

Similar Documents

Publication Publication Date Title
JP2989353B2 (en) Hybrid fuel cell system
US6781343B1 (en) Hybrid power supply device
CN100349356C (en) Independent electric power supply
US7884567B2 (en) Fuel cell system and method for controlling operation of the fuel cell system
US20020171397A1 (en) Hybrid energy storage device charge equalization system and method
US9331512B2 (en) Power control device and power control method for measuring open-circuit voltage of battery
US6498462B2 (en) Generator control system to accommodate a decrease in a power grid voltage
US20030113594A1 (en) Method and apparatus for controlling voltage from a fuel cell system
US11791501B2 (en) Direct current power supplying system
US11594883B2 (en) Direct current power supplying system
US20070269692A1 (en) Fuel Cell Apparatus and a Charging/Discharging Management System and Method Using Such Apparatus
KR20180014957A (en) battery pack and energy storage system including the same
JP2002164068A (en) Fuel cell system
US6504339B2 (en) Technique and apparatus to control the charging of a battery using a fuel cell
WO2019155507A1 (en) Dc power supply system
US20070077467A1 (en) Fuel cell system and method of correcting fuel cell current
JP5534688B2 (en) Fuel cell power supply system and control method thereof
CN117220384B (en) Current distribution method for parallel operation of batteries and battery parallel system
JP2001231176A (en) Fuel cell power supply
KR102403951B1 (en) Hybrid power system, apparatus and control method performing power distribution between fuel cell and battery
JPH02291668A (en) Control device of fuel cell power generation system
JPS6345765A (en) Fuel cell power source system
WO2019163008A1 (en) Dc feeding system
JPH0451466A (en) Output control device for fuel cell power generation system
CN112366769B (en) NiH battery charging control system and method in purging stage