JPS633177B2 - - Google Patents

Info

Publication number
JPS633177B2
JPS633177B2 JP14205680A JP14205680A JPS633177B2 JP S633177 B2 JPS633177 B2 JP S633177B2 JP 14205680 A JP14205680 A JP 14205680A JP 14205680 A JP14205680 A JP 14205680A JP S633177 B2 JPS633177 B2 JP S633177B2
Authority
JP
Japan
Prior art keywords
energy absorption
absorbing element
energy absorbing
load
cell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14205680A
Other languages
Japanese (ja)
Other versions
JPS5769129A (en
Inventor
Koryo Miura
Kensaku Yamawaki
Toshuki Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Mitsui Polychemicals Co Ltd
Original Assignee
Du Pont Mitsui Polychemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Polychemicals Co Ltd filed Critical Du Pont Mitsui Polychemicals Co Ltd
Priority to JP14205680A priority Critical patent/JPS5769129A/en
Publication of JPS5769129A publication Critical patent/JPS5769129A/en
Publication of JPS633177B2 publication Critical patent/JPS633177B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact

Description

【発明の詳細な説明】 本発明は自動車のバンパー等に利用されるエネ
ルギー吸収要素に関し更に詳しくは、エネルギー
の吸収効率に特に優れた吸収要素に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an energy absorbing element used in automobile bumpers and the like, and more particularly to an absorbing element particularly excellent in energy absorption efficiency.

自動車の衝突等によつて発生する力の方向に対
して平行な柱面とその柱面に囲まれた空間を持つ
セル構造体がエネルギー吸収要素として利用し得
ることは公知であり、例えば、特開昭51−31426
号公報、米国特許第3995901号明細書、米国特許
第3926462号明細書に記載されている。弾性体よ
り成るこのようなセル構造体は復元性が良好であ
ること、軽量であること、複雑な形状を一体成形
することが可能であり、製造コストが安いこと等
多くの利点を持つている。しかしながら種々実験
の結果、かかる公知のエネルギー吸収要素はその
エネルギー吸収効率が必ずしも良くないという欠
点があつた。なおここでエネルギー吸収効率とは
エネルギー吸収時に発生する平均荷重を最大荷重
で除した値であり、またエネルギー吸収量とは平
均荷重と変位量の積で与えられるものである。
It is well known that a cell structure having a cylindrical surface parallel to the direction of force generated by a car collision or the like and a space surrounded by the cylindrical surface can be used as an energy absorbing element. Kaisho 51-31426
No. 3,995,901, and US Pat. No. 3,926,462. This type of cell structure made of elastic material has many advantages such as good resilience, light weight, ability to integrally mold complex shapes, and low manufacturing costs. . However, as a result of various experiments, such known energy absorbing elements have the disadvantage that their energy absorbing efficiency is not necessarily good. Note that the energy absorption efficiency is the value obtained by dividing the average load generated during energy absorption by the maximum load, and the energy absorption amount is given by the product of the average load and the amount of displacement.

したがつてエネルギー吸収要素が吸収すべきエ
ネルギー量が定められた場合には、エネルギー吸
収効率が悪い程発生する最大荷重が増大し、この
ためにエネルギー吸収要素を支える部分により大
きな強度が要求されるようになる。セル構造体の
エネルギー吸収効率が必ずしも良好でないのは、
セル構造体の圧縮に際してしばしば最初の座屈現
象が生じる時に、その後の座屈荷重に比べてかな
り大きな荷重が発生するためである。
Therefore, when the amount of energy to be absorbed by an energy absorbing element is determined, the lower the energy absorption efficiency, the greater the maximum load that will occur, and for this reason, greater strength is required in the part that supports the energy absorbing element. It becomes like this. The energy absorption efficiency of the cell structure is not necessarily good because
This is because when the first buckling phenomenon often occurs when the cell structure is compressed, a load that is considerably larger than the subsequent buckling load is generated.

したがつて本発明の目的は初期座屈荷重を低減
させ以つてエネルギー吸収効率を向上することの
できるエネルギー吸収要素を提供させることであ
る。
It is therefore an object of the present invention to provide an energy absorbing element that can reduce the initial buckling load and improve the energy absorption efficiency.

本発明者らはセル構造体の初期座屈荷重を低減
させ、エネルギー吸収効率を向上させる技術を鋭
意検討した結果、セル構造体を特定の範囲に予備
圧縮させることがこの目的に顕著な効果を与える
ことを見出し、本発明を完成させるに到つた。
The inventors of the present invention have intensively studied techniques to reduce the initial buckling load of the cell structure and improve energy absorption efficiency. As a result, pre-compressing the cell structure within a specific range has a remarkable effect on this purpose. The present inventors have discovered that the present invention can be provided, and have completed the present invention.

本発明で言う弾性体とは荷重をかけて圧縮した
後に力を除くとほぼ圧縮前の寸法に復元するもの
であれば良く、各種ゴム、プラスチツク、熱可塑
性エラストマーが利用できる。その中では特にポ
リエチレン、エチレン酢酸ビニル共重合樹脂等の
エチレン系ポリマーが好適である。エネルギー吸
収要素に使用する構造体としては、衝突等の力の
方向に平行もしくは平行に近い柱面とその柱面に
囲まれた空間を持つことが重要である。柱面の形
状は平面でも円筒でもその他任意の曲面あるいは
それらの組み合わせであつてもよい。その中では
複数の円筒を平面のリブで連絡した形状が座屈の
安定性に特に優れている。
The elastic body referred to in the present invention may be any material that, after being compressed under a load, returns to its original size when the force is removed, and various rubbers, plastics, and thermoplastic elastomers can be used. Among them, ethylene-based polymers such as polyethylene and ethylene-vinyl acetate copolymer resin are particularly suitable. It is important for a structure used as an energy absorbing element to have a cylindrical surface that is parallel or nearly parallel to the direction of force such as a collision, and a space surrounded by the cylindrical surface. The shape of the cylindrical surface may be a plane, a cylinder, any other curved surface, or a combination thereof. Among them, a shape in which a plurality of cylinders are connected by planar ribs is particularly excellent in buckling stability.

力の方向に対して垂直な面が存在しても本発明
の効果を妨げるものではないが、そのような面は
エネルギー吸収には何ら寄与しない。
Although the presence of a plane perpendicular to the direction of the force does not impede the effectiveness of the present invention, such a plane does not contribute to energy absorption in any way.

柱面の肉厚をt、柱面に囲まれた空間の直径
(空間が円以外の場合には空間と周長の等しい円
の直径)をDとするとt/Dは0.05以上0.15以下
が望まれる。また柱面の高さをHとするとH/D
は1.5以上5以下が望まれる。このような構造体
を弾性体で成形する場合には、金型からの製品の
取出を容易にするために、一般に柱面の肉厚を変
化させるか、あるいは柱面自体を傾ける必要があ
る。柱面の肉厚を変化させる場合にはセル構造体
の圧縮の進行に伴なつて発生荷重が変化し、した
がつてエネルギー吸収効率が低下し易いので、そ
の抜き勾配(柱面の長さlに対する肉厚の差を
Δtとした時のΔt/l)は0.02以下であることが
好ましい。柱面自体を傾ける場合には、その角度
は力の方向より10度以下、更に好ましくは5度以
下にすべきである。
If the wall thickness of the columnar surface is t, and the diameter of the space surrounded by the columnar surface is D (if the space is other than a circle, then the diameter of a circle with the same circumference as the space), t/D is preferably 0.05 or more and 0.15 or less. It can be done. Also, if the height of the column surface is H, then H/D
is preferably 1.5 or more and 5 or less. When molding such a structure using an elastic body, it is generally necessary to change the wall thickness of the columnar surface or to tilt the columnar surface itself in order to facilitate the removal of the product from the mold. When changing the wall thickness of the column surface, the generated load changes as the cell structure progresses in compression, and the energy absorption efficiency is therefore likely to decrease. (Δt/l) is preferably 0.02 or less, where Δt is the difference in wall thickness. If the column itself is tilted, the angle should be less than 10 degrees, more preferably less than 5 degrees, from the direction of the force.

柱面で囲まれた空間は通常は複数個より成るが
1個の空間を持つ構造体を複数個用いてもよい。
本発明によれば、上述のセル構造体をエネルギー
吸収要素として、使用するに先立つて、柱面の高
さHの5〜30%予備圧縮しておくことである。こ
の操作によつて、セル構造体の構造に特別な制限
を加えることなく、初期座屈荷重を低下させ、エ
ネルギー吸収効率を著しく向上させることが可能
である。
Although the space surrounded by the pillar surface usually consists of a plurality of spaces, a plurality of structures each having one space may be used.
According to the invention, the cell structure described above is pre-compressed by 5 to 30% of the height H of the cylindrical surface before being used as an energy absorbing element. By this operation, it is possible to reduce the initial buckling load and significantly improve the energy absorption efficiency without imposing any special restrictions on the structure of the cell structure.

予備圧縮率としては特に10〜20%が好ましく、
5%未満ではその効果が十分得られない。また30
%を超えるとエネルギー吸収効率が低下するとと
もにエネルギー吸収量自体が減少する欠点が生じ
る。
The preliminary compression ratio is particularly preferably 10 to 20%.
If it is less than 5%, the effect cannot be sufficiently obtained. 30 again
%, the energy absorption efficiency decreases and the energy absorption amount itself decreases.

一度5〜30%予備圧縮させた後は直ちに荷重を
除いて形状を復元させればよい。この予備圧縮に
よる復元率は多くの場合98%以上であり、セル構
造体としての寸法変化は極めてわずかである。
Once pre-compressed by 5 to 30%, the load may be immediately removed to restore the shape. The recovery rate due to this preliminary compression is 98% or more in most cases, and the dimensional change as a cell structure is extremely small.

以下図面に従つて本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図によつて説明する。 This will be explained with reference to FIGS. 1 and 2.

第1図および第2図において本発明を実施した
エネルギー吸収要素Aは内部に空間Sを有する複
数の(図示の実施例では6つの)柱面体1を備
え、その柱面は断面円形に作られている。これら
の柱面体1は行列状に配置され、隣接する柱面体
1は互いにリブ板2で連結されている。この柱面
体1は第2図に示すように厚みtはほぼ一定であ
るが抜き勾配を考えて一端部の内径D1が他端部
の内径D2より大きく作られている。一例として
内径D1は29mmであり、内径D2は26mmそして厚み
tは3mmである。なお柱面体の長さLは107mmで
ある。
In FIGS. 1 and 2, an energy absorbing element A embodying the present invention includes a plurality of (six in the illustrated embodiment) cylindrical bodies 1 each having a space S therein, and each cylindrical surface has a circular cross section. ing. These cylindrical bodies 1 are arranged in a matrix, and adjacent cylindrical bodies 1 are connected to each other by rib plates 2. As shown in FIG. 2, this cylindrical body 1 has a substantially constant thickness t, but in consideration of the draft angle, the inner diameter D 1 at one end is made larger than the inner diameter D 2 at the other end. As an example, the inner diameter D 1 is 29 mm, the inner diameter D 2 is 26 mm and the thickness t is 3 mm. Note that the length L of the cylindrical body is 107 mm.

次ぎに第3図に示す別の実施例においては全体
をAで示すエネルギー吸収要素は全体的に立方体
状をしており、その側部は壁Wにより囲まれてお
り、内部は縦横の区画部材Cにより複数(図示の
実施例で9つ)の空間Sが区画されている。この
実施例では壁Wおよび区画部材Cの上部の厚みt1
は下部の厚みt2より小さく形成し、抜き勾配が与
えられている。一例としてt1=2.0mm、t2=3.0mm
である。なおエネルギー吸収要素Aの高さは80
mm、巾および奥行はそれぞれ100mmである。
Next, in another embodiment shown in FIG. 3, the energy absorbing element, indicated by A as a whole, has a cubic shape, its sides are surrounded by walls W, and its interior is divided into vertical and horizontal partitions. A plurality of spaces S (nine in the illustrated embodiment) are defined by C. In this embodiment, the thickness of the upper part of the wall W and the partition member C is t 1
is formed to be smaller than the lower thickness t 2 and is given a draft angle. As an example, t 1 = 2.0 mm, t 2 = 3.0 mm
It is. The height of energy absorption element A is 80
mm, width and depth are each 100mm.

次ぎに本発明の実施の態様を具体的に説明す
る。
Next, embodiments of the present invention will be specifically described.

実施の態様 1 高圧法ポリエチレン(メルトインデツクス1.9、
密度0.920g/cm3)を用いて、第1図および第2図
で示されるような6本の円筒をリブで結合したセ
ル構造体を射出成形した。この構造体をその高さ
(107mm)の15%だけ予備圧縮し、直ちに力を除い
て復元させた。この時の復元率は99.3%であつ
た。
Embodiment 1 High pressure polyethylene (melt index 1.9,
A cell structure consisting of six cylinders connected by ribs as shown in FIGS. 1 and 2 was injection molded using a cell structure having a density of 0.920 g/cm 3 ). The structure was precompressed by 15% of its height (107 mm) and immediately unloaded and allowed to recover. The recovery rate at this time was 99.3%.

次いで50mm/minの速度でその高さの60%まで
圧縮すると第4図に示すように圧縮特性曲線が得
られた。
Then, when it was compressed to 60% of its height at a speed of 50 mm/min, a compression characteristic curve as shown in FIG. 4 was obtained.

この時の平均荷重は0.99ton、最大荷重は
1.25tonであり、エネルギー吸収効率は0.79と良
い値を示した。エネルギー吸収量0.62kJであつ
た。
The average load at this time is 0.99ton, and the maximum load is
The weight was 1.25 tons, and the energy absorption efficiency was a good value of 0.79. The energy absorption amount was 0.62kJ.

比較例 1 実施の態様1に記載したものと同じ構造体を予
備圧縮することなく圧縮すると、第5図に示すよ
うに初期座屈荷重が極めて大きい圧縮特性曲線と
なつた。
Comparative Example 1 When the same structure as described in Embodiment 1 was compressed without pre-compression, a compression characteristic curve with an extremely large initial buckling load was obtained as shown in FIG.

この時の平均荷重は1.07ton最大荷重は1.74ton
であり、エネルギー吸収効率は0.63にとどまつ
た。エネルギー吸収量は0.69kJであつた。
The average load at this time is 1.07ton, and the maximum load is 1.74ton.
The energy absorption efficiency remained at 0.63. The amount of energy absorbed was 0.69kJ.

実施の態様 2,3 実施の態様1と同じ構造体を各々10%、25%予
備圧縮すると、そのエネルギー吸収効率は各々
0.74、0.73であつた。エネルギー吸収量は各々
0.63、0.58kJであつた。
Embodiment 2, 3 When the same structure as in Embodiment 1 is precompressed by 10% and 25%, respectively, the energy absorption efficiency is
It was 0.74 and 0.73. The amount of energy absorbed is
It was 0.63 and 0.58kJ.

比較例 2 実施の態様1と同じ構造体で40%予備圧縮した
ものを用いると、平均荷重は0.83ton最大荷重
1.27tonでありそのエネルギー吸収効率は0.65と
低下した。またエネルギー吸収量も0.52kJに低下
した。
Comparative Example 2 Using the same structure as in Example 1 but pre-compressed by 40%, the average load is 0.83ton maximum load
1.27ton, and its energy absorption efficiency decreased to 0.65. The amount of energy absorbed also decreased to 0.52kJ.

実施の態様 4 ポリプロピレン(メルトインデツクス1.6、密
度0.91g/cm3)を用いて第3図に示すような格子
状のセル構造体を射出成形した。この構造体をそ
の高さ(80mm)の15%だけ予備圧縮した後直ちに
力を除いて回復させた。
Embodiment 4 A lattice-like cell structure as shown in FIG. 3 was injection molded using polypropylene (melt index 1.6, density 0.91 g/cm 3 ). The structure was precompressed by 15% of its height (80 mm) and then immediately unloaded and allowed to recover.

次いで50mm/minの速度でその高さの50%まで
圧縮したところ、平均荷重2.6ton最大荷重3.0ton
の値を示した。したがつてエネルギー吸収効率は
0.87、エネルギー吸収量は1.02kJであつた。
Then, when it was compressed to 50% of its height at a speed of 50 mm/min, the average load was 2.6 tons, and the maximum load was 3.0 tons.
The value of Therefore, the energy absorption efficiency is
0.87, and the energy absorption was 1.02kJ.

比較例 3 実施の態様4と同じ構造体を予備圧縮すること
なく用いると平均荷重は2.7ton最大荷重は3.9ton
の値を示した。したがつてエネルギー吸収効率は
0.69にとどまつた。エネルギー吸収量は1.06kJで
あつた。
Comparative Example 3 When the same structure as in Embodiment 4 is used without pre-compression, the average load is 2.7 tons and the maximum load is 3.9 tons.
The value of Therefore, the energy absorption efficiency is
It remained at 0.69. The amount of energy absorbed was 1.06kJ.

以上の如く本発明に従つて予め力の方向に5〜
30%圧縮することによつてエネルギー吸収効率お
よびエネルギー吸収量共にすぐれていることが解
る。したがつて例えば自動車のバンパー等に本発
明を実施すれば、その効果は極めて大きい。
As described above, according to the present invention, in advance, the
It can be seen that both energy absorption efficiency and energy absorption amount are excellent by compressing the material by 30%. Therefore, if the present invention is applied to, for example, an automobile bumper, the effect will be extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す平面図、第2
図は第1図の側面図、第3図は他の実施例を示す
斜視図、第4図は第1図に示すエネルギー吸収要
素を60%圧縮した後の圧縮率と荷重との関係を示
すグラフ、第5図は第1図に示すエネルギー吸収
要素を圧縮せずに行つた圧縮率と荷重との関係を
示すグラフである。 1……柱面体、2……リブ、A……エネルギー
吸収要素、S……空間、C……区画部材。
FIG. 1 is a plan view showing one embodiment of the present invention, and FIG.
The figure is a side view of Fig. 1, Fig. 3 is a perspective view showing another embodiment, and Fig. 4 shows the relationship between compression ratio and load after compressing the energy absorbing element shown in Fig. 1 by 60%. The graph in FIG. 5 is a graph showing the relationship between the compression ratio and the load when the energy absorbing element shown in FIG. 1 is not compressed. 1... Cylindrical body, 2... Rib, A... Energy absorbing element, S... Space, C... Division member.

Claims (1)

【特許請求の範囲】 1 弾性体より成り、力の方向と平行または平行
に近い柱面およびその柱面に囲まれた1個または
複数の空間を持ち、かつその柱面を予め力の方向
に柱面の高さの5〜30%圧縮した後、力を除いて
回復させたことを特徴とするセル構造体より成る
エネルギー吸収要素。 2 前記柱面の肉厚の率化率が0.02以下であるこ
とを特徴とする特許請求の範囲第1項記載のエネ
ルギー吸収要素。 3 前記セル構造体が複数の薄肉の円柱または円
錐台とそれを連結するリブより成る特許請求の範
囲第2項記載のエネルギー吸収要素。
[Claims] 1. It is made of an elastic body, has a cylindrical surface parallel or nearly parallel to the direction of force, and one or more spaces surrounded by the cylindrical surface, and has the cylindrical surface in the direction of the force in advance. An energy absorbing element made of a cell structure, which is compressed by 5 to 30% of the height of the columnar surface and then allowed to recover by removing the force. 2. The energy absorbing element according to claim 1, wherein the ratio of wall thickness of the columnar surface is 0.02 or less. 3. The energy absorbing element according to claim 2, wherein the cell structure comprises a plurality of thin cylinders or truncated cones and ribs connecting them.
JP14205680A 1980-10-13 1980-10-13 Energy absorption element Granted JPS5769129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14205680A JPS5769129A (en) 1980-10-13 1980-10-13 Energy absorption element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14205680A JPS5769129A (en) 1980-10-13 1980-10-13 Energy absorption element

Publications (2)

Publication Number Publication Date
JPS5769129A JPS5769129A (en) 1982-04-27
JPS633177B2 true JPS633177B2 (en) 1988-01-22

Family

ID=15306383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14205680A Granted JPS5769129A (en) 1980-10-13 1980-10-13 Energy absorption element

Country Status (1)

Country Link
JP (1) JPS5769129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026195A1 (en) * 1996-12-13 1998-06-18 Toyo Boseki Kabushiki Kaisha Impact absorber made of resin

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168348U (en) * 1988-05-20 1989-11-28
DE68907880T2 (en) * 1988-12-24 1993-11-04 Minoru Sangyo PLASTIC BUMPER.
JPH11351302A (en) * 1998-06-12 1999-12-24 Toyobo Co Ltd Shock absorber and shock absorbing method using the same
JP2002333047A (en) * 2001-05-09 2002-11-22 Hitachi Chem Co Ltd Shock absorbing material for automobile
JP2007207330A (en) * 2006-01-31 2007-08-16 Toshiba Corp Buffer support member, buffer support structure, and portable terminal
JP5228819B2 (en) * 2008-11-13 2013-07-03 マツダ株式会社 Impact energy absorbing member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026195A1 (en) * 1996-12-13 1998-06-18 Toyo Boseki Kabushiki Kaisha Impact absorber made of resin

Also Published As

Publication number Publication date
JPS5769129A (en) 1982-04-27

Similar Documents

Publication Publication Date Title
CA2008357C (en) Rubber spring element
US4022505A (en) Energy absorbing cellular media for vehicles
US6752450B2 (en) Formed energy absorber
EP1058950B1 (en) Plastic battery container having reduced end wall deflection
CA2455153C (en) Energy absorbing bumper
US7766386B2 (en) Energy absorbing padding for automotive applications
US4165113A (en) Multicellular elastomeric shock-absorbing device
JP2014122703A (en) New energy absorbing body
US6245408B1 (en) Honeycomb core with controlled crush properties
US20100300824A1 (en) Shock absorbing apparatus
JPS633177B2 (en)
JPH0125928B2 (en)
US3409199A (en) Packaging tray
CN212225852U (en) Novel energy absorption element
WO2014002566A1 (en) Impact energy-absorbing body
GB2331492A (en) Vehicle bumper assemblies
US20020043747A1 (en) Efficiency impact absorption device
JP4082145B2 (en) Shock absorbing member
US4366885A (en) Protective strip for a road vehicle, and a road vehicle having such a strip
US3445553A (en) Method of making a shock isolator element for cushioned container unit
EP1348884A1 (en) Formable energy absorber utilizing a foam stabilized corrugated ribbon
KR100432824B1 (en) End wall made of moldable material
JPH11334501A (en) Automobile bumper core material and manufacture thereof
CN214985681U (en) Composite hexagonal energy absorption structure
JP3473137B2 (en) Energy absorber mounting structure