JPS63310573A - Fuel line control system of fuel cell power generating facilities - Google Patents

Fuel line control system of fuel cell power generating facilities

Info

Publication number
JPS63310573A
JPS63310573A JP62146286A JP14628687A JPS63310573A JP S63310573 A JPS63310573 A JP S63310573A JP 62146286 A JP62146286 A JP 62146286A JP 14628687 A JP14628687 A JP 14628687A JP S63310573 A JPS63310573 A JP S63310573A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
hydrogen concentration
hydrogen
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62146286A
Other languages
Japanese (ja)
Inventor
Tadashi Komatsu
正 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62146286A priority Critical patent/JPS63310573A/en
Publication of JPS63310573A publication Critical patent/JPS63310573A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To appropriately control fuel supply rate independent of load variation by installing a hydrogen concentration detecting sensor on the outlet side of a fuel gas passage in a fuel cell, and controlling the supply rate of reforming raw material to a reformer based on the output of the hydrogen concentration detecting sensor. CONSTITUTION:A hydrogen concentration detecting sensor 12 is installed in a manifold 16 on the outlet side of a fuel gas passage in the fuel cell 1. The sensor 12 outputs voltage proportional to the hydrogen concentration passing through the manifold 1b. The output signal of the sensor 12 is inputted to a controller 13, and the control signal from the controller 13 feedback controls the number of revolution of a raw material pump, or the reforming raw material supply rate to the reformer 2, so that hydrogen concentration in fuel is retained in a setting value which is previously specified by the controller 13. The optimum amount of fuel is constantly supplied to the cell 1 independent of load variation and without fear of fuel gas shortage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料電池に改質器を組合せ、改質器を通じ
て得た水素リッチな改質ガスを燃料として燃料電池の燃
料極側に供給して発電を行う燃料電池発電設備の燃料系
1Ill111vi置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention combines a fuel cell with a reformer, and supplies hydrogen-rich reformed gas obtained through the reformer to the fuel electrode side of the fuel cell as a fuel. The present invention relates to a fuel system 1Ill111vi of a fuel cell power generation facility that generates power using a fuel cell.

〔従来の技術〕[Conventional technology]

周知のように燃料電池は燃料極、酸化剤極、およびこの
両極の間に挟まれた電解賞マトリックス層とからなる単
位セルの積層体として成り、前記燃料極、酸化剤極へ反
応ガスとしての水素と酸素を供給することによる電気化
学的反応で発電するものであり、ここで通常は水素源と
してはメタン。
As is well known, a fuel cell consists of a stack of unit cells consisting of a fuel electrode, an oxidizer electrode, and an electrolytic matrix layer sandwiched between the two electrodes, and a reactant gas is supplied to the fuel electrode and the oxidizer electrode. Electricity is generated through an electrochemical reaction by supplying hydrogen and oxygen, where methane is usually used as the hydrogen source.

メタノール等の改質原料を改質して得られた水素リンチ
な改質ガスを使用し、酸素源としては空気を使用してい
る。
Hydrogen-free reformed gas obtained by reforming a reforming raw material such as methanol is used, and air is used as the oxygen source.

ところで、燃料電池に供給する反応ガスが不足すると、
起電反応に伴うガス消費により前記した積層体の単位セ
ルが部分的にガス欠状態となり、かつガス欠となった単
位セルは他の単位セルでの出力電圧によって電解賞が電
気分解を引き起こし、著しい損傷を受けることになる。
By the way, if there is a shortage of reactant gas supplied to the fuel cell,
Due to the gas consumption accompanying the electromotive reaction, the unit cells of the above-mentioned laminate become partially depleted of gas, and the gas depleted unit cells cause electrolytic decomposition due to the output voltage of other unit cells. You will suffer significant damage.

このために燃料電池に反応ガスを供給する場合にはガス
欠状態の発生を防止するよう安全率を掛け、発電量に対
応する理論的なガス消費量に対して常に過剰ぎみに反応
ガスを燃料電池へ供給する必要がある。またこの場合に
燃料電池出力の反応ガス利用率に対する依存性2発電効
率等の面から、通常は燃料電池での反応ガスの理論消費
量に対して燃料(水素)の供給量を161〜1.4倍、
空気の(酸素)供給量を1.7〜3.3倍の過剰率を掛
けて供給するようにしている。これはガス利用率に換算
すると、燃料の利用率70〜90%、空気の利用率30
〜60%に相当する。
For this reason, when supplying reactant gas to the fuel cell, a safety factor is applied to prevent the occurrence of gas shortages, and the reactant gas is always supplied in excess of the theoretical gas consumption corresponding to the amount of power generated. It is necessary to supply it to the battery. In this case, from the viewpoint of dependence of the fuel cell output on the reaction gas utilization rate 2 power generation efficiency, etc., the amount of fuel (hydrogen) supplied is usually set at 161 to 1.2% relative to the theoretical consumption of the reaction gas in the fuel cell. 4 times,
The amount of air (oxygen) supplied is multiplied by an excess ratio of 1.7 to 3.3 times. When converted to gas utilization rate, this means fuel utilization rate of 70-90% and air utilization rate of 30%.
This corresponds to ~60%.

一方、燃料電池の運転時に負荷変動に対応して前記過剰
率を維持しつつ燃料電池への反応ガス供給量を制御する
ため、特に燃料供給系に付いて従来では例えば燃料電池
の入口側で燃料の流量をオリフィス等で計測し、これを
基に改質器へ供給する改質原料の供給量をその時点での
負荷に応じて適正に増減制御するiIl1m方式が採ら
れている。
On the other hand, in order to control the amount of reactant gas supplied to the fuel cell while maintaining the above-mentioned excess rate in response to load fluctuations during operation of the fuel cell, in particular in the fuel supply system, the fuel The iIl1m method is adopted, in which the flow rate of the reforming material is measured with an orifice or the like, and based on this, the amount of reforming raw material supplied to the reformer is appropriately increased or decreased depending on the load at that time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで上記した従来の制御方式では次記のような問題
点がある。すなわち燃料電池の総合効率面から燃料(水
素)の利用率を75〜85%として運転制御する場合に
定格負荷時の理論的な燃料消費量を100とすれば、前
記利用率を維持するに必要な実際の燃料流量範囲は11
8〜133であってその上限と下限の間の幅は15であ
るのに対し、負荷が定格の40%に低下した場合にはそ
の燃料流量範囲は47〜53となってその幅は6となる
。すなわち燃料電池の負荷変動に対して一定の燃料利用
率を維持しつつ燃料電池への燃料供給量を適正に制御す
るには、燃料流量の計測手段として幅広い測定範囲と高
い計測精度が必要となる。
However, the conventional control method described above has the following problems. In other words, when controlling the operation with a fuel (hydrogen) utilization rate of 75 to 85% in terms of overall efficiency of the fuel cell, if the theoretical fuel consumption at rated load is 100, then the amount of fuel required to maintain the utilization rate is 100%. The actual fuel flow range is 11
8 to 133, and the width between the upper and lower limits is 15, whereas if the load drops to 40% of the rating, the fuel flow range is 47 to 53, and the width is 6. Become. In other words, in order to properly control the amount of fuel supplied to the fuel cell while maintaining a constant fuel utilization rate in response to load fluctuations in the fuel cell, a wide measurement range and high measurement accuracy are required as a means of measuring fuel flow rate. .

しかしながら先記した従来の制御方式で用いるオリフィ
ス等の計測手段では幅広い測定範囲、高い計測精度の条
件を満たすことが難しく、このために従来では計測誤差
により燃料電池への燃料供給量が多少少な目になった場
合でもガス欠状態が発生することのないように、あらか
じめ燃料の供給過剰率を高めに設定して運転制御するよ
うにしている。しかし燃料供給量の過剰率を高く設定す
ることは、それだけ燃料電池での燃料利用率が低くなり
、かつ余分に改質ガスを生成する必要が生じるために改
質原料の消費量、改質器での改質反応に要する外部から
与える熱量を含めた燃料電池発電設備の総合効率を低下
させる原因となる。
However, it is difficult for the measuring means such as orifices used in the conventional control method mentioned above to meet the requirements of a wide measurement range and high measurement accuracy, and for this reason, in the past, the amount of fuel supplied to the fuel cell may be slightly reduced due to measurement errors. In order to prevent a gas shortage situation from occurring even in such a case, the oversupply rate of fuel is set high in advance and the operation is controlled. However, setting a high excess rate of fuel supply will lower the fuel utilization rate in the fuel cell, and it will also be necessary to generate extra reformed gas, which will increase the amount of reformed raw material consumed and the reformer This causes a reduction in the overall efficiency of the fuel cell power generation equipment, including the amount of heat provided from the outside that is required for the reforming reaction.

この発明は上記の点にかんがみなされたものであり、そ
の目的は燃料電池の出口側における燃料の水素濃度が発
電量に応じて減少することに着目し、この水素濃度を制
御検出値として燃料供給量を制御することにより、燃料
電池の負荷変動に関係なく常に高い燃料利用率を維持さ
せて効率よく発電できるようにした燃料電池発電設備の
燃料系制御装置を提供することにある。
This invention was made in consideration of the above points, and its purpose is to focus on the fact that the hydrogen concentration of the fuel at the outlet side of the fuel cell decreases in accordance with the amount of power generation, and to supply fuel using this hydrogen concentration as a control detection value. It is an object of the present invention to provide a fuel system control device for a fuel cell power generation facility, which can maintain a high fuel utilization rate regardless of load fluctuations of the fuel cell and efficiently generate power by controlling the amount of fuel.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、この発明によれば、燃料
電池に改質器を組合せ、該改質器を通じて得た水素リッ
チな改質ガスを燃料として燃料電池の燃料極側に供給し
て発電を行う燃料電池発電設備に対し、燃料電池内にお
ける燃料ガス通路の出口側に水素濃度検出センサを配備
し、かつ該センサの出力値を基に改質器への改質原料供
給量を制御して燃料電池の水素利用率を一定値に維持さ
せるフィードバック制御系を備えて構成するものとする
In order to solve the above problems, according to the present invention, a fuel cell is combined with a reformer, and hydrogen-rich reformed gas obtained through the reformer is supplied as fuel to the fuel electrode side of the fuel cell. For fuel cell power generation equipment that generates electricity, a hydrogen concentration detection sensor is installed on the exit side of the fuel gas passage in the fuel cell, and the amount of reformed raw material supplied to the reformer is controlled based on the output value of the sensor. The fuel cell is configured to include a feedback control system that maintains the hydrogen utilization rate of the fuel cell at a constant value.

〔作用〕[Effect]

まずメタン、メタノール等の改質原料を改質器を通じて
得た改質ガスは70〜80%の水素と20〜30%の炭
酸ガスを主成分とした組成の気体であり、燃料電池はこ
の改質ガスを燃料として燃料中の水素を消費して発電を
行う、すなわち燃料電池に供給された燃料の組成のうち
、炭酸ガスの量は変化がないのに対して水素は発電量に
応じて電池内部で消費されるために入口側に比べて出口
側での水素濃度が小さくなる。またこの場合における燃
料電池内での水素利用率と出口側での燃料の水素濃度と
の関係は第2図のごとくであり、発電量を一定とすれば
電池内部での水素利用率の大小によって出口側での燃料
の水素濃度は大きく変化するようになる。
First, the reformed gas obtained from reforming raw materials such as methane and methanol through a reformer is a gas whose main components are 70 to 80% hydrogen and 20 to 30% carbon dioxide. Electricity is generated by using clean gas as fuel and consuming the hydrogen in the fuel.In other words, in the composition of the fuel supplied to the fuel cell, the amount of carbon dioxide does not change, but the amount of hydrogen increases depending on the amount of power generated. Since hydrogen is consumed internally, the concentration of hydrogen on the outlet side is lower than that on the inlet side. In addition, in this case, the relationship between the hydrogen utilization rate inside the fuel cell and the hydrogen concentration of the fuel at the outlet side is as shown in Figure 2. If the amount of power generation is constant, the hydrogen utilization rate inside the cell depends on the hydrogen concentration. The hydrogen concentration of the fuel on the outlet side begins to change significantly.

したがって前記構成のように燃料電池の燃料ガス通路出
口側に水素濃度検出センサを配備してここを通流する燃
料の水素濃度を分析することにより、この検出値からそ
の時点での燃料電池の水素利用率を求めることができる
。したがって前記センサの検出値を基に、燃料電池出口
側での水素濃度をあらかじめ設定した一定値に維持する
ように燃料の供給量、つまり改質器への改質原料供給量
を制御することにより、ガス欠状態が発生しない範囲で
水素利用率を高めに保持しつつ、かつ負荷変動に関係な
く燃料供給量を適正に制御して燃料電池発電設備を効率
よく運転することができるようになる。
Therefore, by disposing a hydrogen concentration detection sensor on the fuel gas passage outlet side of the fuel cell as in the above configuration and analyzing the hydrogen concentration of the fuel flowing therethrough, it is possible to determine the hydrogen concentration in the fuel cell at that point based on this detected value. You can find the utilization rate. Therefore, based on the detected value of the sensor, by controlling the amount of fuel supplied, that is, the amount of reforming raw material supplied to the reformer, so as to maintain the hydrogen concentration at the fuel cell outlet side at a preset constant value. It becomes possible to efficiently operate the fuel cell power generation equipment by maintaining a high hydrogen utilization rate within a range that does not cause a gas shortage state, and by appropriately controlling the fuel supply amount regardless of load fluctuations.

また上記において、水素濃度センサからの出力信号を基
に燃料供給量を制御するフィードバック制御系では、水
素濃度の変化に対するセンサの応答速度が充分に速くな
いと急激な負荷変動に対して追随性のよい制御が行えな
い、かかる点、ガス分析の分野で一般に使用されている
熱伝導ガス分析計を使用したのでは、燃料のガス温度、
湿度等を分析計に合った条件にするために燃料電池の燃
料ガス通路の出口側よりポンプ等で燃料をサンプリング
して分析計まで導く必要があり、このために応答速度に
遅れが生じる可能性が大となる。かかる点、水素濃度検
出センサとして独立の小形燃料電池の単位セルをセンサ
として燃料電池の燃料ガス通路出口側に配備し、ここを
流れる燃料の水素濃度に応じた電圧を出力させることに
より、速い応答速度で燃料の水素濃度を検出することが
可能となる。
In addition, in the above-mentioned feedback control system that controls the fuel supply amount based on the output signal from the hydrogen concentration sensor, if the response speed of the sensor to changes in hydrogen concentration is not fast enough, it will not be able to follow sudden load changes. Using a heat conduction gas analyzer, which is commonly used in the field of gas analysis, does not allow good control of the fuel gas temperature.
In order to adjust the humidity and other conditions to match the analyzer, it is necessary to sample the fuel from the outlet side of the fuel gas passage of the fuel cell using a pump, etc. and guide it to the analyzer, which may cause a delay in response speed. becomes large. In this regard, a quick response can be achieved by installing an independent small fuel cell unit cell as a hydrogen concentration detection sensor on the fuel gas passage exit side of the fuel cell and outputting a voltage according to the hydrogen concentration of the fuel flowing therethrough. It becomes possible to detect the hydrogen concentration of the fuel based on the speed.

〔実施例〕〔Example〕

第1図はこの発明の実施例による燃料電池発電設備の燃
料系制御装置を示したシステムフロー図であり、図中1
は燃料電池、2はバーナ燃焼式の改質器、3は改質原料
タンクである。ここで燃料電池1は周知のようにセルス
タックの周域に燃料給徘用のマニホールドla、 lb
と空気給徘用のマニホールド1c+ ldを装備してお
り、前記燃料入口側のマニホールド1aには改質器2か
ら引出した燃料供給ライン4が、また空気入口側のマニ
ホールドlcには空気プロア5を介して反応空気供給ラ
イン6が接続配管されている。一方、改質器2はバーナ
2aを装備の燃焼炉2b内に改質原料の気化器2c。
FIG. 1 is a system flow diagram showing a fuel system control device for a fuel cell power generation facility according to an embodiment of the present invention.
2 is a fuel cell, 2 is a burner combustion type reformer, and 3 is a reforming raw material tank. As is well known, the fuel cell 1 has manifolds la and lb for fuel supply around the cell stack.
and a manifold 1c+ld for air supply.The manifold 1a on the fuel inlet side is equipped with a fuel supply line 4 drawn out from the reformer 2, and the manifold lc on the air inlet side is equipped with an air proa 5. A reaction air supply line 6 is connected therethrough. On the other hand, the reformer 2 has a combustion furnace 2b equipped with a burner 2a and a vaporizer 2c for reforming raw material.

および改質触媒を充填した改質反応管2dを直列に接続
して収容した構造であり、ここで気化器2cの入口には
前記の改質原料タンク3から原料ポンプ7を介して引出
した原料供給ライン8が接続され、さらにバーナ2aに
は燃料電池1の燃料出口側のマニホールド1bから引出
したオフガスライン9.および空気プロア10を介して
燃焼空気供給ライン11が接続されている。なお前記原
料ポンプ7はその入力電圧を変えることにより回転数が
制御される直流モータ駆動ポンプである。
It has a structure in which a reforming reaction tube 2d filled with a reforming catalyst is connected and housed in series, and the inlet of the vaporizer 2c is connected to the raw material drawn out from the reforming raw material tank 3 via the raw material pump 7. A supply line 8 is connected to the burner 2a, and an off-gas line 9. A combustion air supply line 11 is connected via an air blower 10. The raw material pump 7 is a DC motor-driven pump whose rotational speed is controlled by changing its input voltage.

かかる燃料電池発電設備に対し、この発明により燃料電
池1の燃料ガス通路出口側、つまりマニホールド1bの
内部にここを通流する燃料の水素濃度を検出する水素濃
度検出センサ12が配備されており、かつこのセンサ1
2を含めて該センサ12の出力値を基に原料ポンプ7の
回転数制御、つまり改質器2への改質原料供給流量を制
御する制御器13とでフィードバック制御系を構成して
いる。ここで前記の水素濃度検出センサ12としては、
ここを通流する燃料の水素濃度に応じた電圧を起電する
小形燃料電池の単位セルとして成る燃料電池型センサが
採用されている。
In such fuel cell power generation equipment, according to the present invention, a hydrogen concentration detection sensor 12 is provided on the fuel gas passage outlet side of the fuel cell 1, that is, inside the manifold 1b, for detecting the hydrogen concentration of the fuel flowing therethrough. Katsuko sensor 1
2 and a controller 13 that controls the rotation speed of the raw material pump 7 based on the output value of the sensor 12, that is, the flow rate of the reforming raw material supplied to the reformer 2, constitutes a feedback control system. Here, as the hydrogen concentration detection sensor 12,
A fuel cell type sensor is used as a unit cell of a small fuel cell that generates a voltage depending on the hydrogen concentration of the fuel flowing through the sensor.

次に上記構成による動作を説明すると、まずメタノール
等の改質原料に所定比率の水を混合させたものを改質器
2に供給することにより、改質原料は気化された上で改
質触媒との接触反応により水素と炭酸ガスを主成分とす
る水素リッチなガスに改質される。またここで得られた
改質ガスは燃料として改質器2よりマニホールド1aを
通じて燃料電池1の燃料極に供給され、反応空気供給ラ
インを通じて酸化剤極側に供給された反応空気とともに
燃料電池1が起電反応により発電を行い、かつこの起電
反応の過程で燃料は発電量に相応した量の水素が消費さ
れる。また燃料の水素消費分を除いた残ガスはマニホー
ルド1bを通じて改質2のバーナ2aに還流し、ここで
燃焼して改質反応に必要な熱量を与える。
Next, to explain the operation of the above configuration, first, a mixture of a reforming raw material such as methanol and water at a predetermined ratio is supplied to the reformer 2, and the reforming raw material is vaporized and then catalyzed by the reforming catalyst. It is reformed into a hydrogen-rich gas consisting mainly of hydrogen and carbon dioxide through a catalytic reaction with. The reformed gas obtained here is supplied as a fuel from the reformer 2 to the fuel electrode of the fuel cell 1 through the manifold 1a, and the fuel cell 1 is supplied with the reaction air supplied to the oxidizer electrode side through the reaction air supply line. Electricity is generated by an electromotive reaction, and in the process of this electromotive reaction, hydrogen is consumed as fuel in an amount corresponding to the amount of electricity generated. Further, the remaining gas after removing the hydrogen consumption from the fuel is returned to the burner 2a of the reformer 2 through the manifold 1b, where it is combusted to provide the amount of heat necessary for the reforming reaction.

一方、前記のように燃料電池1における燃料ガス通路の
出口側ではマニホールド1bの内部には水素濃度検出セ
ンサとして小形燃料電池型のセンサ12が収容配備され
ており、このセンサ12はマニホールド1bを通流する
燃料の水素濃度に比例した電圧を出力する。なお当該セ
ンサ12の出力と水素濃度との関係は第3図の如くであ
り、水素濃度の大小に応じて出力が増減する。また図中
の基準値とは燃料電池1に供給される燃料の入口側での
水素濃度を80%、燃料電池での水素利用率を80%と
した場合のセンサ12の出力値である。
On the other hand, as described above, on the outlet side of the fuel gas passage in the fuel cell 1, a small fuel cell type sensor 12 is housed inside the manifold 1b as a hydrogen concentration detection sensor, and this sensor 12 passes through the manifold 1b. Outputs a voltage proportional to the hydrogen concentration of the flowing fuel. The relationship between the output of the sensor 12 and the hydrogen concentration is as shown in FIG. 3, and the output increases or decreases depending on the magnitude of the hydrogen concentration. Further, the reference value in the figure is the output value of the sensor 12 when the hydrogen concentration at the inlet side of the fuel supplied to the fuel cell 1 is 80% and the hydrogen utilization rate in the fuel cell is 80%.

一方、前記センサ12の出力信号は制御器13に入力さ
れ、該制御器13からの制御信号により燃料電池の出口
側における燃料の水素濃度があらかじめ制御器13で設
定した所定の設定値に維持されるように原料ポンプ70
回転数、したがって改質器2への改質原料供給流量がフ
ィードバック制御される。
On the other hand, the output signal of the sensor 12 is input to the controller 13, and the hydrogen concentration of the fuel at the outlet side of the fuel cell is maintained at a predetermined setting value set in advance by the controller 13 according to the control signal from the controller 13. The raw material pump 70
The rotation speed, and therefore the flow rate of the reforming raw material supplied to the reformer 2, is feedback-controlled.

またここで燃料電池の負荷が変動し1例えば負荷が増加
すると、負荷に比例して燃料中の水素消費量が増して燃
料ガス通路の出口側での燃料の水素濃度が低下するよう
になるが、この水素濃度の低下はセンサ12により検出
され、制御器13を介して原料ポンプ7の回転数が高め
られる。この結果として改質原料の供給流量、したがっ
て燃料電池への燃料供給流量が所定の水素利用率を維持
するように増加方向に制御される。なお負荷が減少した
場合には、逆に出口側での燃料の水素濃度が高(なるの
で、その変化割合に応じて改質原料の供給流量を少なく
する方向に制御されるようになる。
Also, if the load on the fuel cell fluctuates, for example, the load increases, the amount of hydrogen consumed in the fuel increases in proportion to the load, and the hydrogen concentration in the fuel at the outlet side of the fuel gas passage decreases. This decrease in hydrogen concentration is detected by the sensor 12, and the rotation speed of the raw material pump 7 is increased via the controller 13. As a result, the supply flow rate of the reforming raw material, and therefore the fuel supply flow rate to the fuel cell, is controlled in an increasing direction so as to maintain a predetermined hydrogen utilization rate. Note that when the load decreases, on the contrary, the hydrogen concentration of the fuel on the outlet side becomes high, so the supply flow rate of the reforming raw material is controlled to be reduced in accordance with the rate of change.

これにより燃料電池の負荷変動に左右されず、かつガス
欠発生のおそれなしに、常に燃料電池に対して最適量の
燃料が供給されるようになる。したがって従来のように
燃料供給量の過剰率を必要以上に高めに設定する必要が
なく、燃料電池発電設備を効率よく運転することができ
る。
As a result, the optimal amount of fuel can always be supplied to the fuel cell without being affected by load fluctuations on the fuel cell and without the fear of running out of gas. Therefore, there is no need to set the excessive rate of fuel supply higher than necessary as in the conventional case, and the fuel cell power generation equipment can be operated efficiently.

なお、図示実施例は燃料電池の燃料ガス通路出口側に配
備した水素濃度センサの出力信号のみで燃料の供給流量
を制御する方式を示したが、燃料電池の発電量から演算
される理論水素消費量をベースに、過剰に供給する割合
を前記センサからの検出信号によってきめ細かに制御さ
せることも可能である。
The illustrated embodiment shows a method in which the fuel supply flow rate is controlled only by the output signal of the hydrogen concentration sensor installed on the fuel gas passage outlet side of the fuel cell, but the theoretical hydrogen consumption calculated from the power generation amount of the fuel cell Based on the amount, it is also possible to finely control the proportion of excessive supply based on the detection signal from the sensor.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明によれば、燃料電池に改質器
を組合せ、該改質器を通じて得た水素リッチな改質ガス
を燃料として燃料電池の燃料極側に供給して発電を行う
燃料電池発電設備に対し、燃料電池内における燃料ガス
通路の出口側に水素濃度検出センサを配備し、かつ該セ
ンサの出力値を基に改質器への改質原料供給量を制御し
て燃料電池の水素利用率を一定値に維持させるフィード
バック制御系を備えて構成したことにより、ガス欠状態
が発生しない範囲で水素利用率を高めに保持しつつ、か
つ負荷変動に関係なく常に燃料電池への燃料供給量を適
正に制御することができ、これにより燃料使用量の無駄
な増分を抑えて燃料電池発電設備の総合効率の向上を図
ることができる。
As described above, according to the present invention, a fuel cell is combined with a reformer, and hydrogen-rich reformed gas obtained through the reformer is supplied as fuel to the fuel electrode side of the fuel cell to generate electricity. For battery power generation equipment, a hydrogen concentration detection sensor is installed on the exit side of the fuel gas passage in the fuel cell, and the amount of reformed raw material supplied to the reformer is controlled based on the output value of the sensor. The structure is equipped with a feedback control system that maintains the hydrogen utilization rate at a constant value, which maintains the hydrogen utilization rate at a high level within the range that does not cause a gas shortage condition, and also maintains the hydrogen utilization rate at a constant level regardless of load fluctuations. The amount of fuel supplied can be appropriately controlled, thereby suppressing unnecessary increases in the amount of fuel used and improving the overall efficiency of the fuel cell power generation equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例による燃料系制御装置を示す燃料
電池発電設備のシステムフロー図、第2図は燃料電池の
水素利用率と電池出口側における燃料の水素濃度との関
係図、第3図は燃料電池型センサの出力と水素濃度との
関係図である0図において、 1:燃料電池、1a:燃料入口側マニホールド、1b:
燃料出口側マニホールド、2:改質器、3:改質原料タ
ンク、4:燃料供給ライン、7:原料ポンプ、12:水
素濃度検出センサ、13:制御器。 代理人フFFl!l III 口1’a r  ”−7
−’。 (し 謬り用命ト】 第2図
FIG. 1 is a system flow diagram of a fuel cell power generation facility showing a fuel system control device according to an embodiment of the present invention, FIG. 2 is a relationship diagram between the hydrogen utilization rate of the fuel cell and the hydrogen concentration of the fuel at the cell outlet side, and FIG. Figure 0 shows the relationship between the output of a fuel cell type sensor and hydrogen concentration, where 1: fuel cell, 1a: fuel inlet side manifold, 1b:
Fuel outlet side manifold, 2: reformer, 3: reforming raw material tank, 4: fuel supply line, 7: raw material pump, 12: hydrogen concentration detection sensor, 13: controller. Agent FFFl! l III Mouth 1'a r''-7
-'. (In error) Figure 2

Claims (1)

【特許請求の範囲】 1)燃料電池に改質器を組合せ、該改質器を通じて得た
水素リッチな改質ガスを燃料として燃料電池の燃料極側
に供給して発電を行う燃料電池発電設備に対し、燃料電
池内における燃料ガス通路の出口側に水素濃度検出セン
サを配備し、かつ該センサの出力値を基に改質器への改
質原料供給量を制御して燃料電池の水素利用率を一定値
に維持させるフィードバック制御系を備えたことを特徴
とする燃料電池発電設備の燃料系制御装置。 2)特許請求の範囲第1項記載の燃料系制御装置におい
て、水素濃度検出センサが、燃料電池内の燃料ガス通路
出口側に配備されてここを通流する燃料の水素濃度に応
じた出力を起電する小形燃料電池型のセンサであること
を特徴とする燃料電池発電設備の燃料系制御装置。
[Scope of Claims] 1) Fuel cell power generation equipment that combines a fuel cell with a reformer and supplies hydrogen-rich reformed gas obtained through the reformer as fuel to the fuel electrode side of the fuel cell to generate electricity. In contrast, a hydrogen concentration detection sensor is installed on the exit side of the fuel gas passage in the fuel cell, and the amount of reforming material supplied to the reformer is controlled based on the output value of the sensor, thereby making it possible to utilize hydrogen in the fuel cell. 1. A fuel system control device for a fuel cell power generation facility, characterized by comprising a feedback control system that maintains a rate at a constant value. 2) In the fuel system control device according to claim 1, the hydrogen concentration detection sensor is arranged at the outlet side of the fuel gas passage in the fuel cell and outputs an output according to the hydrogen concentration of the fuel flowing therethrough. A fuel system control device for fuel cell power generation equipment, characterized by being a small fuel cell type sensor that generates electricity.
JP62146286A 1987-06-12 1987-06-12 Fuel line control system of fuel cell power generating facilities Pending JPS63310573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62146286A JPS63310573A (en) 1987-06-12 1987-06-12 Fuel line control system of fuel cell power generating facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62146286A JPS63310573A (en) 1987-06-12 1987-06-12 Fuel line control system of fuel cell power generating facilities

Publications (1)

Publication Number Publication Date
JPS63310573A true JPS63310573A (en) 1988-12-19

Family

ID=15404264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62146286A Pending JPS63310573A (en) 1987-06-12 1987-06-12 Fuel line control system of fuel cell power generating facilities

Country Status (1)

Country Link
JP (1) JPS63310573A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827227A2 (en) * 1996-08-30 1998-03-04 General Motors Corporation Controlled selective carbon monoxide oxidation
EP0827226A2 (en) * 1996-08-26 1998-03-04 General Motors Corporation PEM fuel cell monitoring system
JP2001176527A (en) * 1999-12-16 2001-06-29 Daikin Ind Ltd Fuel cell system and fuel cell cogeneration system
JP2004055192A (en) * 2002-07-17 2004-02-19 Mitsubishi Materials Corp Operation method and system for solid electrolyte fuel cell
WO2007105076A2 (en) * 2006-03-16 2007-09-20 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2010537382A (en) * 2007-08-20 2010-12-02 マイ エフシー エイビー Fuel cell assembly with feedback sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827226A2 (en) * 1996-08-26 1998-03-04 General Motors Corporation PEM fuel cell monitoring system
EP0827226A3 (en) * 1996-08-26 1998-07-15 General Motors Corporation PEM fuel cell monitoring system
EP0827227A2 (en) * 1996-08-30 1998-03-04 General Motors Corporation Controlled selective carbon monoxide oxidation
EP0827227A3 (en) * 1996-08-30 2004-02-04 General Motors Corporation Controlled selective carbon monoxide oxidation
JP2001176527A (en) * 1999-12-16 2001-06-29 Daikin Ind Ltd Fuel cell system and fuel cell cogeneration system
JP4678115B2 (en) * 2002-07-17 2011-04-27 三菱マテリアル株式会社 Operation method and operation system of solid oxide fuel cell
JP2004055192A (en) * 2002-07-17 2004-02-19 Mitsubishi Materials Corp Operation method and system for solid electrolyte fuel cell
WO2007105076A2 (en) * 2006-03-16 2007-09-20 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2007105076A3 (en) * 2006-03-16 2007-11-15 Toyota Motor Co Ltd Fuel cell system
KR101049920B1 (en) * 2006-03-16 2011-07-15 도요타 지도샤(주) Fuel cell system
JP2010537382A (en) * 2007-08-20 2010-12-02 マイ エフシー エイビー Fuel cell assembly with feedback sensor
US8889307B2 (en) 2007-08-20 2014-11-18 Myfc Ab Fuel cell assembly having feed-back sensor
US9401522B2 (en) 2007-08-20 2016-07-26 Myfc Ab Fuel cell assembly having feed-back sensor

Similar Documents

Publication Publication Date Title
CN101322268B (en) Utilization-based fuel cell monitoring and control
US6740433B2 (en) Method and apparatus for monitoring a hydrogen containing gas stream
US6770391B2 (en) Hydrogen sensor for fuel processors of a fuel cell
US8012641B2 (en) Controlling the fuel concentration for a fuel cell
US6587766B2 (en) Method for controlling the power of a fuel cell stack, method for controlling the power of a drive unit of an electric vehicle, and fuel cell device
JPH0458463A (en) Output control device for fuel cell power generating system
US7582371B2 (en) Fuel cell system having fuel and water controlling means
CN110534770B (en) Fuel cell system
JPH0572071B2 (en)
JP2009070788A (en) Fuel supply control method and fuel cell device utilizing the method
CN102208667B (en) Utilization-based fuel cell monitoring and control
US20020094461A1 (en) Oxidant injection control
CN101416339B (en) Fuel cell system and control method thereof
JPS63310573A (en) Fuel line control system of fuel cell power generating facilities
JPWO2005018035A1 (en) FUEL CELL POWER GENERATION SYSTEM, METHOD FOR DETECTING DEGRADATION OF THE REFORMER, AND FUEL CELL POWER GENERATION METHOD
US20060292011A1 (en) Method of correcting flow rate in fuel supply unit of fuel cell system
JP2007137719A (en) Fuel reforming apparatus, and fuel cell power generation apparatus using it and its operation method
US20080292928A1 (en) Method for purging pem-type fuel cells
JPH0719615B2 (en) Fuel cell power generation system
JP5411901B2 (en) Fuel cell system
JP2840000B2 (en) Fuel cell system and control method thereof
JP2001325975A (en) Fuel cell power generation apparatus and its control method
JPH0714595A (en) Operating method of power generating device of fuel cell type
JPH01251561A (en) Control of combustor for fuel cell reformer
JPS60207255A (en) Fuel cell control system