JPS63303878A - Porous ceramic structure - Google Patents

Porous ceramic structure

Info

Publication number
JPS63303878A
JPS63303878A JP62140442A JP14044287A JPS63303878A JP S63303878 A JPS63303878 A JP S63303878A JP 62140442 A JP62140442 A JP 62140442A JP 14044287 A JP14044287 A JP 14044287A JP S63303878 A JPS63303878 A JP S63303878A
Authority
JP
Japan
Prior art keywords
porous ceramic
ceramic structure
cell
average
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62140442A
Other languages
Japanese (ja)
Inventor
Yukihisa Takeuchi
幸久 竹内
Hitoshi Yoshida
均 吉田
Naoki Ueda
直樹 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP62140442A priority Critical patent/JPS63303878A/en
Priority to EP87306496A priority patent/EP0254557A3/en
Publication of JPS63303878A publication Critical patent/JPS63303878A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the pressure drop of gas flowing through a porous ceramic structure by making the ratio of the average major axis size of cells to the average minor axis size in the central part of a cross-section of a cellular structure forming the porous ceramic structure lower than that in the peripheral part. CONSTITUTION:This porous ceramic structure is made of a cellular structure provided with a three-dimensional network skeleton 11 having an internal communicating space 12. Each cell 10 of the cellular structure has a slender shape and the cells 10 in the central part of a cross-section of the cellular structure have a lower ratio (b/a) of the average major axis size (b) to the average minor axis size (a) than the cells 10 in the peripheral part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は触媒担体なと、特に内燃機関排気ガス浄化用セ
ラミックス触媒担体に用いる多孔質セラミックス構造体
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a porous ceramic structure used as a catalyst carrier, particularly as a ceramic catalyst carrier for purifying exhaust gas of an internal combustion engine.

〔従来の技術〕[Conventional technology]

従来、自動車等の排気ガス浄化用触媒担体として用いら
れる三次元網目状骨格を有するセラミックス構造体(以
下多孔質セラミックス構造体と称す)において、この多
孔質セラミックス構造体の断面中央部を見掛は密度が密
の多孔質体とし、また他の部分を見掛は密度が粗の多孔
質体として、例えば、自動車の排気管等に取り付けるこ
とによって、多孔質セラミックス構造体の中心を通る排
気ガスの流速を低下させることにより、流速分布を小さ
くさせて、浄化機能を向上させるという提案が特開昭5
7−53242号公報によってなされている。
Conventionally, in a ceramic structure having a three-dimensional network skeleton (hereinafter referred to as a porous ceramic structure) used as a catalyst carrier for purifying exhaust gas in automobiles, etc., the central part of the cross-section of the porous ceramic structure has an appearance of By using a porous body with a dense density and a porous body with an apparently coarse density in other parts, for example, by attaching it to an automobile exhaust pipe, etc., it is possible to prevent exhaust gas passing through the center of the porous ceramic structure. Japanese Patent Laid-Open No. 5 (1973) proposed that by lowering the flow velocity, the flow velocity distribution would be narrowed and the purification function would be improved.
This is disclosed in Japanese Patent No. 7-53242.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、多孔質セラミックス構造体の断面中央部を見掛
は密度が密の多孔質体とすることは同時に流体が流れる
際の圧力損失を上昇させるという問題が生じていたー。
However, making the porous ceramic structure appear to be a dense porous body in the center of its cross section has the problem of increasing pressure loss when fluid flows.

本発明は以上の問題点に鑑みたもので、浄化性能を向上
させるとともに、圧力損失を低(した多孔質セラミック
ス構造体を提供するものである。
The present invention has been made in view of the above problems, and aims to provide a porous ceramic structure with improved purification performance and low pressure loss.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の多孔質セラミックス構造体のセル構造の一部を
第1図に、またその単一のセルの模式的断面図を第2図
に示す。本発明の多孔質セラミックス構造体は内部連通
空間を有する三次元網目状の骨格を備えたセル構造をな
している。また、このセル構造の単一のセル10は第2
図に示すように長細く、楕円体に近い多面体(12ない
し14面体)であり、三次元綱目状の骨格11は多面体
の稜線を構成している。なお、内部連通空間は符号12
で示される。
A part of the cell structure of the porous ceramic structure of the present invention is shown in FIG. 1, and a schematic cross-sectional view of a single cell is shown in FIG. The porous ceramic structure of the present invention has a cell structure including a three-dimensional mesh-like skeleton having internal communication spaces. Moreover, the single cell 10 of this cell structure is
As shown in the figure, it is an elongated polyhedron close to an ellipsoid (12 to 14 faces), and the three-dimensional mesh-like skeleton 11 constitutes the ridgeline of the polyhedron. Furthermore, the internal communication space is designated by the code 12.
It is indicated by.

まず、われわれは、体格形状直径107mm、長さ80
IIlI11であり、それぞれ平均長径すと平均短径a
との比b / aが異なる多孔質セラミックス構造体に
より、比b / aと圧力損失との関係を調べた。
First, we have a body shape with a diameter of 107 mm and a length of 80 mm.
IIIlI11, and the average major axis and average minor axis a
The relationship between the ratio b/a and pressure drop was investigated using porous ceramic structures with different ratios b/a.

また、圧力損失の測定は、上記セラミ・ノクス構造体の
円柱軸方向に空気を流して行った。空気は3n(/mi
n流し、また、空気が円柱側面から流れないようにして
測定した。測定した結果を第3図に示す。
In addition, the pressure loss was measured by flowing air in the direction of the cylinder axis of the ceramic-nox structure. Air is 3n(/mi
Measurements were taken with air flowing through the cylinder, and with air not flowing from the side surface of the cylinder. The measured results are shown in Figure 3.

第3図より、われわれは、セルがほぼ球形(b/aは1
〜1.4程度)である従来の多孔質セラミック構造体に
比べ、セラミックス構造体を構成するセルの長袖A−A
方向の平均長径すと短軸B−B方向の平均短径aとの比
b / aを1.5より太き(していくと圧力損失が低
下していくことを見出した。
From Figure 3, we can see that the cell is almost spherical (b/a is 1
1.4) compared to conventional porous ceramic structures, the long-sleeved A-A of the cells that constitute the ceramic structure
It has been found that when the ratio b/a of the average major axis in the direction to the average minor axis a in the minor axis B-B direction is made thicker than 1.5, the pressure loss decreases.

そこで、本発明では、以上の結果に鑑み、セラミックス
構造体の見掛は密度を変えるのではなく、多孔質セラミ
ックス構造体の多孔質部を形成する断面中央部の平均長
径すと平均短径aとの比b/aを外周方向に従って、比
b / aを中心部より大きくするという技術的手段を
採用する。
Therefore, in the present invention, in view of the above results, instead of changing the apparent density of the ceramic structure, the average major axis of the central section of the cross section forming the porous part of the porous ceramic structure is added to the average minor axis a. A technical means is adopted in which the ratio b/a is made larger in the outer circumferential direction than in the center.

〔作用〕[Effect]

上記技術的手段を採用することにより、例えば、この多
孔質セラミックス構造体が自動車の排気管に取り付けら
れた際には、多孔質セラミックス構造体の中心を通る排
気ガスは、圧損が若干高いため流速が若干低下させられ
、外周部との流速分布が小さくなる。そのため、浄化性
能を向上させることができ、かつ、多孔質セラミックス
構造体を構成するセルが楕円形状であるので、従来と比
べて圧力損失を低下させることができる。
By adopting the above technical means, for example, when this porous ceramic structure is installed in the exhaust pipe of a car, the exhaust gas passing through the center of the porous ceramic structure has a slightly high flow rate due to the slightly high pressure drop. is slightly lowered, and the flow velocity distribution with respect to the outer circumference becomes smaller. Therefore, purification performance can be improved, and since the cells constituting the porous ceramic structure have an elliptical shape, pressure loss can be reduced compared to the conventional method.

圧力損失を低下させることができるのは、円柱状のセラ
ミックス構造体の中をガスが直線的に進むと考えた場合
、セルが楕円形状であればあるほど、ガス粒子はガスの
流れに対して直角なセルの骨格によって乱される確率が
小さくなる。つまり、圧力損失がガスに働く慣性力と粘
性力とにより生じていることを考えれば、セルが楕円形
状であればあるほどガスがセルの骨格と衝突する回数が
城るので、ガスの乱れが少なくなることにより、慣性力
が減じ圧力損失が低下するのである。
The pressure drop can be reduced by assuming that gas travels linearly through a cylindrical ceramic structure, and the more elliptical the cell is, the more the gas particles will be able to resist the gas flow. The probability of being disturbed by the orthogonal cell skeleton is reduced. In other words, considering that pressure loss is caused by inertial force and viscous force acting on the gas, the more elliptical the cell, the more likely the gas will collide with the cell skeleton, which will reduce the turbulence of the gas. By decreasing the amount, the inertial force is reduced and the pressure loss is reduced.

〔実施例〕〔Example〕

本発明の多孔質セラミックス構造体20として、体格断
面形状、長径146M、短径75mm、および長さ14
3鵬の楕円柱状のものを用意し、第4図にその斜視図を
示した。ここで、多孔質部25においてのセラミックス
の見掛は密度は0.2〜0゜3g/aaである。また、
セラミックス構造体20の最外周には補強層28として
緻密なセラミックス層が厚さ2−で設けられている。多
孔質部25は第2図に示すような長細いセル構造をもっ
た多孔質セラミックスで構成され、平均長径すと平均短
径aとの比b / aは、第5図の如く、多孔質部25
の中心部から外周方向に従い、約2.7より連続的に太
き(なり、多孔質部25の最外周では約4となっている
The porous ceramic structure 20 of the present invention has a body cross-sectional shape, a major axis of 146 mm, a minor axis of 75 mm, and a length of 14 mm.
A three-dimensional elliptical cylinder was prepared, and its perspective view is shown in Fig. 4. Here, the apparent density of the ceramic in the porous portion 25 is 0.2 to 0.3 g/aa. Also,
A dense ceramic layer with a thickness of 2-2 is provided as a reinforcing layer 28 on the outermost periphery of the ceramic structure 20. The porous portion 25 is made of porous ceramic having an elongated cell structure as shown in FIG. 2, and the ratio b/a of the average major axis to the average minor axis a is as shown in FIG. Part 25
From the center to the outer circumferential direction, the thickness increases continuously from about 2.7 mm, and at the outermost circumference of the porous portion 25, the thickness increases to about 4 mm.

次に本発明の多孔質セラミックス構造体の製造方法につ
いて第6図を用いて説明する。
Next, the method for manufacturing the porous ceramic structure of the present invention will be explained using FIG. 6.

即ち、従来の方法によってポリウレタンフォームを発泡
させた後、気泡膜を除去して連通化したセル構造を有す
る樹脂発泡体であるポリウレタンフォーム30を用意す
る。その後、第6図(a)の如く、一方に凸状部35a
、36aが形成された引張り治具35と36の中間に、
ポリウレタンフォームを設ける。そして、引張り治具3
5,36の凸状部35a、36aに、ウレタンフオーム
と十分強固に接着可能であり、かつ100°C以下でも
固着可能な接着剤38を塗布し、第6図(b)の如く、
引張り治具35,36の凸状部35a、36aをポリウ
レタンフォーム30の両端に押し付け、その状態におい
て凸状部35a、36aに付着させた接着剤を硬化させ
る。その後、第6図(C)の如く、引張り治具35.3
6を両方向に引き伸ばすことによって、ポリウレタンフ
ォーム30の中央部の伸び率を小さく、外周部の伸び率
を大きくすることができる。そして、この状態のままで
約100〜150°Cの温度を有する炉の中で約30〜
90分間保持することにより、引き伸ばされたセル構造
をもつポリウレタンフォームを得ることができる。また
、引張り治具35.36からのポリウレタンフォームの
取り出しは、ポリウレタンフォームの両端をナイフ等に
より切断することにより行う。
That is, after foaming polyurethane foam using a conventional method, the cell membrane is removed to prepare polyurethane foam 30, which is a resin foam having a connected cell structure. After that, as shown in FIG. 6(a), a convex portion 35a is formed on one side.
, 36a are formed between the tension jigs 35 and 36,
Provide polyurethane foam. And tension jig 3
An adhesive 38 that can be bonded sufficiently firmly to the urethane foam and can be bonded even at 100° C. or lower is applied to the convex portions 35a and 36a of 5 and 36, as shown in FIG. 6(b).
The convex portions 35a, 36a of the tensioning jigs 35, 36 are pressed against both ends of the polyurethane foam 30, and in this state, the adhesive attached to the convex portions 35a, 36a is cured. After that, as shown in FIG. 6(C), the tension jig 35.3
By stretching 6 in both directions, the elongation rate of the central portion of the polyurethane foam 30 can be reduced, and the elongation rate of the outer peripheral portion can be increased. Then, in this state, it is placed in a furnace with a temperature of about 100 to 150 °C for about 30 to
By holding for 90 minutes, a polyurethane foam with an elongated cell structure can be obtained. Further, the polyurethane foam is removed from the tensioning jig 35, 36 by cutting both ends of the polyurethane foam with a knife or the like.

こうして得られたポリウレタンフォームを断面形状が短
径75mm、長径146田の断面形状で、長さ約143
mmの楕円柱状に加工した。なお、セルの長袖の方向は
円柱軸と一致させた。
The thus obtained polyurethane foam has a cross-sectional shape with a minor axis of 75 mm and a major axis of 146 mm, and a length of approximately 143 mm.
It was processed into an elliptical cylinder shape of mm. Note that the direction of the long sleeve of the cell was made to coincide with the cylinder axis.

次にこのポリウレタンフォームにセラミックススラリー
を含浸させ、エアガンや遠心分離装置を用いて余分なス
ラリーを除去した後、50〜80°Cで乾燥させ、さら
に、上記のセラミックススラリーよりも高粘度のセラミ
ックススラリーをポリウレタンフォームの最外周に塗布
し、乾燥させた。
Next, this polyurethane foam is impregnated with ceramic slurry, excess slurry is removed using an air gun or centrifugal separator, and then dried at 50 to 80°C. was applied to the outermost periphery of the polyurethane foam and allowed to dry.

そして、1000〜1300°Cで約7時間焼成するこ
とによって三次元綱目状構造を有する多孔質セラミック
ス構造体を得た。なお、ここで、スラリーの原料は、焼
成によりコーディエライト組織となる酸化マグネシウム
(MgO)、アルミナ(A j! Z O’s ) 、
シリカ(SiOt)を含む混合粉末、あるいは上記混合
粉末を加熱してコーディエライト系セラミックスとし、
これを粉末化した合成コーディエライト粉末に対して、
メチルセルロース、ポリビニルアルコール等のバインダ
5〜10wt%、界面活性剤、分散剤等を2〜3wt%
、水50〜100wt%を加え撹拌混合したものである
Then, by firing at 1000 to 1300°C for about 7 hours, a porous ceramic structure having a three-dimensional mesh structure was obtained. Note that here, the raw materials for the slurry are magnesium oxide (MgO), alumina (A j! Z O's), which becomes a cordierite structure by firing.
Mixed powder containing silica (SiOt) or the above mixed powder is heated to produce cordierite ceramics,
For synthetic cordierite powder made by powdering this,
5 to 10 wt% of binder such as methylcellulose or polyvinyl alcohol, 2 to 3 wt% of surfactant, dispersant, etc.
, 50 to 100 wt % of water was added and mixed with stirring.

更に、上記の製造方法によって得られた多孔質セラミッ
クス構造体の骨格表面に比表面積が10rrf/g以上
の例えばr−AlzO8をフオーム状セラミックス12
当り100〜200g付着させ、その後、白金、ロジウ
ム、ルテニウム等の貴金属を付着させることにより、最
外周に補強層が設けられた多孔質セラミックス構造体で
ある触媒浄化担体とした。
Further, on the skeletal surface of the porous ceramic structure obtained by the above manufacturing method, for example, r-AlzO8 having a specific surface area of 10 rrf/g or more is applied to the foamed ceramic 12.
By depositing 100 to 200 g per portion and then depositing noble metals such as platinum, rhodium, and ruthenium, a catalyst purification carrier, which is a porous ceramic structure provided with a reinforcing layer on the outermost periphery, was obtained.

ここで、比較例1として平均短径aが約5−1平均長径
すと平均短径aとの比b / aが約1.3であるセル
構造(はぼ球形な従来セル)で、多孔質郡全体をセラミ
ックス密度0.2g/ccとしたものを、また比較例2
としては、セル径が約1.3躯である従来のモノリス担
体を用意した。
Here, as Comparative Example 1, a cell structure (conventional spherical cell) in which the average minor axis a is approximately 5-1, the average major axis and the average minor axis a, b/a, is approximately 1.3 is used. Comparative Example 2 also had a ceramic density of 0.2 g/cc for the entire material.
A conventional monolith carrier having a cell diameter of approximately 1.3 cells was prepared.

比較実験を第7図を用いて述べる。まず、各々の多孔質
セラミックス構造体を体積約1300 cc、断面形状
が短径75mm、長径146mmの楕円形状、長さを1
43+++mに成形する。この各多孔質セラミックス構
造体を排気管60中にセラミックス構造体の保持用ネッ
ト65を介して設置する。
A comparative experiment will be described using FIG. First, each porous ceramic structure has a volume of approximately 1300 cc, a cross-sectional shape of an ellipse with a minor axis of 75 mm, a major axis of 146 mm, and a length of 1.
Shape to 43+++m. Each porous ceramic structure is installed in the exhaust pipe 60 via a net 65 for holding the ceramic structure.

その後、2000 ccの内燃機関による2800rp
m+ −360rIm)Igの条件下において、排気ガ
スを冷却させることにより、排気ガス温度と窒素酸化物
(NOx)の浄化率との関係を調べた。その結果を第8
図に示した。第8図より明らかなように、本発明のもの
が、比較例1、比較例2と比べて低温の排気ガス温度に
おいても、窒素酸化物の浄化率を維持することができた
。また比較例1と比較すると、浄化率は大幅に向上した
Then 2800rpm by 2000cc internal combustion engine
The relationship between the exhaust gas temperature and the nitrogen oxide (NOx) purification rate was investigated by cooling the exhaust gas under the condition of m+ -360rIm)Ig. The results are shown in the 8th section.
Shown in the figure. As is clear from FIG. 8, the product of the present invention was able to maintain the purification rate of nitrogen oxides even at a lower exhaust gas temperature than Comparative Examples 1 and 2. Moreover, when compared with Comparative Example 1, the purification rate was significantly improved.

これは、本発明よりなる多孔質セラミックス構造体にお
いては、触媒担体全体が有効に利用されていることを示
している。
This shows that in the porous ceramic structure of the present invention, the entire catalyst carrier is effectively utilized.

また、常温の空気を3r[/min流して圧力損失を測
定した結果、比較例1が22mmHgであるのに対し、
本発明例は13mmHgと圧力損失は大幅に低減するこ
とができた。
In addition, as a result of measuring the pressure loss by flowing room temperature air at 3 r[/min], the pressure loss was 22 mmHg in Comparative Example 1, whereas
In the example of the present invention, the pressure loss was significantly reduced to 13 mmHg.

前記実施例では、断面形状が楕円形状のものについて行
ったが、もちろん他の形状でも同様の結果が得られ、例
えば円柱状、四角形状、六角形状でもよい。
In the above embodiments, the cross-sectional shape was elliptical, but of course similar results can be obtained with other shapes, such as cylindrical, square, and hexagonal shapes.

前記実施例では、多孔質セラミックス構造体の材質とし
てコージェライトを用いたが、本発明ではこれに限られ
るものではなく、他にアルミナ、ムライト、β−スポジ
ューメン、窒化珪素、炭化珪素等を用いることができる
In the above embodiment, cordierite was used as the material for the porous ceramic structure, but the present invention is not limited to this, and other materials such as alumina, mullite, β-spodumene, silicon nitride, and silicon carbide may also be used. Can be done.

前記実施例では、多孔質部のセル構造の平均短径aと平
均長径すとの比b / aを多孔質部の中心部で最も小
とし、外周方向に従い連続的に大としたが、第9図に示
す如く、比b / aを段階状に変化させても同様の効
果が得られる。
In the above example, the ratio b/a of the average minor axis a to the average major axis of the cell structure of the porous portion was the smallest at the center of the porous portion and increased continuously in the outer circumferential direction. As shown in FIG. 9, the same effect can be obtained by changing the ratio b/a stepwise.

前記実施例では、多孔質セラミックス構造体を内燃機関
の排気ガス浄化用触媒担体として用いたが、ディーゼル
エンジンから排出されるディーゼルパティキュレートの
捕集体としても同様の効果を得ることができる。
In the above embodiment, the porous ceramic structure was used as a catalyst carrier for purifying exhaust gas of an internal combustion engine, but the same effect can be obtained by using it as a collector for diesel particulates discharged from a diesel engine.

(発明の効果〕 本発明である多孔質セラミックス構造体の多孔質を構成
するセル構造を、セルの平均短径aと平均長径すとの比
b / aを1.5以上とし、かつ多孔質部の中心部で
はセルの平均短径aと平均長径すとの比b / aを小
とし、外周部に従い、中心部より比b / aを大とす
ることにより、多孔質セラミックス構造体を流れるガス
の圧力損失を停止させ、浄化率を高めることができた。
(Effect of the invention) The cell structure constituting the porosity of the porous ceramic structure of the present invention has a ratio b/a of the average short axis a to the average long axis of the cells of 1.5 or more, and is porous. At the center of the cell, the ratio b/a of the average short axis a to the average long axis of the cell is made small, and at the outer periphery, the ratio b/a is made larger than the center, so that the flow through the porous ceramic structure is reduced. We were able to stop the gas pressure loss and increase the purification rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の多孔質セラミックス構造体のセル構造
組織を示す模式図、第2図は第1図のセル構造の一部を
拡大して示す模式図、第3図は平均長径すと平均短径a
との比b / aと圧力損失との関係を示す特性図、第
4図は本発明の多孔質セラミックス構造体の一例を示す
模式図、第5図は第4図の多孔質セラミックス構造体に
おける比b/aの分布を示す特性図、第6図は本発明の
多孔質セラミックス構造体の製造方法の一例を示す模式
図、第7図は多孔質セラミックス構造体の実験方法を示
す模式図、第8図は多孔質セラミックス構造体の特性を
示す特性図、第9図は他の実施例を示す特性図である。 10・・・セル、11・・・骨格、12・・・内部連通
空間。
Fig. 1 is a schematic diagram showing the cell structure of the porous ceramic structure of the present invention, Fig. 2 is a schematic diagram showing an enlarged part of the cell structure in Fig. 1, and Fig. 3 is a schematic diagram showing the cell structure of the porous ceramic structure of the invention. Average minor axis a
Fig. 4 is a schematic diagram showing an example of the porous ceramic structure of the present invention, and Fig. 5 is a characteristic diagram showing the relationship between the ratio b/a and pressure loss. A characteristic diagram showing the distribution of the ratio b/a, FIG. 6 is a schematic diagram showing an example of the method for producing the porous ceramic structure of the present invention, and FIG. 7 is a schematic diagram showing the experimental method for the porous ceramic structure. FIG. 8 is a characteristic diagram showing the characteristics of the porous ceramic structure, and FIG. 9 is a characteristic diagram showing another example. 10... Cell, 11... Skeleton, 12... Internal communication space.

Claims (2)

【特許請求の範囲】[Claims] (1)内部連通空間を有する三次元網目状の骨格を備え
セル構造をなした多孔質セラミックス構造体において、 前記セル構造の個々のセルが長細い形状を有しており、
前記セルの平均長径bと平均短径aとの比b/aが、前
記構造体の断面中央部よりも外周部の方が大であるよう
に構成されていることを特徴とする多孔質セラミックス
構造体。
(1) In a porous ceramic structure having a cellular structure and having a three-dimensional mesh-like skeleton having an internal communication space, each cell of the cellular structure has an elongated shape,
A porous ceramic characterized in that the ratio b/a of the average major axis b to the average minor axis a of the cells is larger at the outer periphery than at the center of the cross section of the structure. Structure.
(2)前記セルの平均長径bと平均短径aとの比b/a
が、少なくとも1.5以上であることを特徴とする特許
請求の範囲第1項記載の多孔質セラミックス構造体。
(2) Ratio b/a of the average major axis b and average minor axis a of the cell
2. The porous ceramic structure according to claim 1, wherein the porous ceramic structure is at least 1.5.
JP62140442A 1986-07-22 1987-06-04 Porous ceramic structure Pending JPS63303878A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62140442A JPS63303878A (en) 1987-06-04 1987-06-04 Porous ceramic structure
EP87306496A EP0254557A3 (en) 1986-07-22 1987-07-22 A porous structure and a process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62140442A JPS63303878A (en) 1987-06-04 1987-06-04 Porous ceramic structure

Publications (1)

Publication Number Publication Date
JPS63303878A true JPS63303878A (en) 1988-12-12

Family

ID=15268735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62140442A Pending JPS63303878A (en) 1986-07-22 1987-06-04 Porous ceramic structure

Country Status (1)

Country Link
JP (1) JPS63303878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126341A (en) * 2005-11-07 2007-05-24 Toshiba Corp Anisotropic porous material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126341A (en) * 2005-11-07 2007-05-24 Toshiba Corp Anisotropic porous material

Similar Documents

Publication Publication Date Title
KR100736303B1 (en) Honeycomb Structured Body
KR100882767B1 (en) Honeycomb structure and method for manufacturing the same
KR100692356B1 (en) Honeycomb Structure Body
JP4459476B2 (en) Porous honeycomb structure and manufacturing method thereof
EP1457260B1 (en) Honeycomb structure with different porosities and pore diameters
EP1728544B1 (en) Honeycomb structure and method for manufacturing the same
CN104529422B (en) The manufacturing method of ceramic structure
US20060292342A1 (en) Honeycomb structure
US20080092499A1 (en) Porous Honeycomb Filter
EP2070576A1 (en) Ceramic honeycomb structure and process for producing ceramic honeycomb structure
JP6581851B2 (en) Plugged honeycomb structure and plugged honeycomb segment
EP0042301B1 (en) Ceramic honeycomb filters and the production thereof
JP4753785B2 (en) Honeycomb structure
KR20060135493A (en) Honeycomb structured body and exhaust gas purifying apparatus
KR20030094349A (en) Honeycomb structure
EP1489060A1 (en) Honeycomb structural body, method of manufacturing the structural body, and method of measuring outer peripheral distortion of the structural body
US9346003B2 (en) Honeycomb structure
JP2003001029A (en) Porous ceramic honeycomb filter
CN109838291B (en) Honeycomb structure
JP2012213755A (en) Honeycomb structural body, and honeycomb catalyst body
US8236404B2 (en) Honeycomb structure
JP2020049428A (en) Honeycomb filter
JP2005144250A (en) Honeycomb structure body
WO2005068396A1 (en) Honeycomb structure and method for producing the same
EP2174698A1 (en) Honeycomb Structure