JPS63232309A - Electric double-layer capacitor - Google Patents

Electric double-layer capacitor

Info

Publication number
JPS63232309A
JPS63232309A JP62063675A JP6367587A JPS63232309A JP S63232309 A JPS63232309 A JP S63232309A JP 62063675 A JP62063675 A JP 62063675A JP 6367587 A JP6367587 A JP 6367587A JP S63232309 A JPS63232309 A JP S63232309A
Authority
JP
Japan
Prior art keywords
conductive
electric double
electrode
layer capacitor
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62063675A
Other languages
Japanese (ja)
Inventor
博 齋藤
原田 延幸
青嶋 良幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP62063675A priority Critical patent/JPS63232309A/en
Publication of JPS63232309A publication Critical patent/JPS63232309A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気二重層コンデンサに係り、詳しくはその
内部抵抗を改善したものに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to electric double layer capacitors, and more particularly to electric double layer capacitors with improved internal resistance.

従来の技術 電気二重層コンデンサは、従来のコンデンサに比較して
単位体積当たり数千倍にも及ぶ静電容量を持っているた
め、コンデンサと電池の両方の機能を有することかでき
、例えば後者よりの応用例としてバックアップ用電源に
用いられている。
Conventional technology Electric double layer capacitors have a capacitance per unit volume that is several thousand times higher than that of conventional capacitors, so they can function as both a capacitor and a battery; As an example of its application, it is used as a backup power source.

電気二重層コンデンサは、例えば第4図に示すように、
非電子伝導性かつイオン透過性の多孔質セパレータ1を
介して活性炭と電解質溶液からなる1対の分極性電極2
.2°を設け、これらのそれぞれの分極性電極に電子伝
導性かつイオン不透過性の導電性集電電極3.3°を設
けて基本セルを構成し、この基本セルを絶縁体4.4“
により封止した構造を有するものである。これにより導
電性集電電極3.3′に電圧を印加したとき、多孔質セ
パレータlを通して電解質溶液のイオンをプラス、マイ
ナスの電荷に分離し、導電性集電電極3.3”との間に
それぞれ電気二重層を形成させることを可能にし、その
動作の信頼性を維持するとともに、取扱の便宜をはかっ
たものである。
An electric double layer capacitor, for example, as shown in Fig. 4,
A pair of polarizable electrodes 2 made of activated carbon and an electrolyte solution are inserted through a non-electronically conductive and ion-permeable porous separator 1.
.. 2°, and each of these polarizable electrodes is provided with an electron-conductive and ion-impermeable conductive collector electrode 3.3° to form a basic cell, and this basic cell is connected to an insulator 4.4"
It has a sealed structure. As a result, when a voltage is applied to the conductive current collecting electrode 3.3', ions in the electrolyte solution are separated into positive and negative charges through the porous separator l, and between the conductive current collecting electrode 3.3'' Each of these makes it possible to form an electric double layer, maintains operational reliability, and facilitates handling.

上記分極性電極は、例えばヤシガラ、オガクズ、石炭等
の天然高分子材料やフェノール、レーヨン、ポリアクリ
ルニトリル等の人工高分子材料から造られた活性炭と、
プロピレンカーボネート、アセトニトリル等の高誘電率
の有機溶媒に無機酸塩を溶解した非水溶液系の電解質液
と、アクリル樹脂、ボ11アミド樹脂、フェノール樹脂
等の結合剤等からなる。
The polarizable electrode includes activated carbon made from natural polymeric materials such as coconut shell, sawdust, and coal, and artificial polymeric materials such as phenol, rayon, and polyacrylonitrile;
It consists of a non-aqueous electrolyte solution in which an inorganic acid salt is dissolved in an organic solvent with a high dielectric constant such as propylene carbonate or acetonitrile, and a binder such as acrylic resin, bo-11 amide resin, or phenol resin.

発明が解決しようとする問題点 このような分極性電極は、活性炭粒子を樹脂溶液と混練
し、溶剤を除去したのち電解質液を含浸させたものであ
り、一方集電電極はその表面を粗面化することにより集
電電極表面積を増加させて集電電極と分極性電極との接
触抵抗を下げるような手段を施されているが、まだ集電
電極と分極性電極との接触抵抗が高く、電気二重層コン
デンサの内部抵抗が大きいという欠点があり、利用し得
る電流量が少ないと云う問題点があった。
Problems to be Solved by the Invention Such polarizable electrodes are made by kneading activated carbon particles with a resin solution, removing the solvent, and then impregnating them with an electrolyte solution.On the other hand, current collecting electrodes have a roughened surface. Although measures have been taken to increase the surface area of the current collecting electrode and lower the contact resistance between the current collecting electrode and the polarizable electrode, the contact resistance between the current collecting electrode and the polarizable electrode is still high. Electric double layer capacitors have the disadvantage of having a large internal resistance, and the problem is that the amount of current that can be used is small.

本発明の目的は、内部抵抗が小さく、利用し得゛る電流
量の多い電気二重層コンデンサを提供することにある。
An object of the present invention is to provide an electric double layer capacitor with low internal resistance and a large amount of usable current.

問題点を解決するための手段 本発明は、上記問題点を解決するために、非電子伝導性
かつイオン透過性の多孔質セパレータと、該多孔質セパ
レータの少なくとも一方の側に設けられる分極性電極と
の構成体の両側に導電性集電電極を有する電気二重層コ
ンデンサにおいて、分極性電極と導電性集電電極の間に
生成分に導電性粉末を含有した導電層を設けたことを特
徴とする電気二重層コンデンサを提供するものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a porous separator that is non-electronically conductive and ion-permeable, and a polarizable electrode provided on at least one side of the porous separator. An electric double layer capacitor having conductive current collecting electrodes on both sides of the structure, characterized in that a conductive layer containing conductive powder as a product is provided between the polarizable electrode and the conductive current collecting electrode. The purpose of this invention is to provide an electric double layer capacitor.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明における電気二重層コンデンサの分極性電極は活
性炭、電解質液及び樹脂を少なくとも含有するが、その
等個直列抵抗の経時劣化を抑制する点からは、さらに導
電性物質を含有することが望ましい。
The polarizable electrode of the electric double layer capacitor in the present invention contains at least activated carbon, an electrolyte solution, and a resin, but from the viewpoint of suppressing the deterioration of the equal series resistance over time, it is desirable to further contain a conductive substance.

活性炭としては、例えばレゾール型フェノール樹脂の如
き熱硬化性樹脂を炭化したあと、賦活して製造した球状
その他の形状のものが例示される。
Examples of activated carbon include those in spherical and other shapes manufactured by carbonizing and then activating a thermosetting resin such as a resol type phenolic resin.

球状のものはその充填密度を大きくでき、静電容量を大
きくとれる点で好ましい、上記レゾール型フェノール樹
脂の縮重合度は各種のものが使用できるが、これらに限
らず他の樹脂で変性した変性フェノール樹脂やその他の
熱硬化性樹脂も使用できる。
Spherical ones are preferable because they can increase the packing density and increase the capacitance.The above resol type phenolic resin can have various degrees of condensation polymerization, but is not limited to these and modified resins modified with other resins. Phenolic resins and other thermosetting resins can also be used.

この熱硬化性樹脂を炭化し、賦活するには各種の方法が
あり、そのいずれも使用可能であるが、例えば賦活方法
としては大別してガス賦活方法、薬品賦活方法の二通り
挙げられる。前者は各種の高温の酸化性ガス(例えば水
蒸気、二酸化炭素、空気など)との気相反応で賦活する
方法であり、後者は脱水性の塩類や酸(塩化カルシウム
、塩化マグネシウム、塩化亜鉛、リン酸、硫酸など)と
750℃以下の温度で反応させる方法である。これらの
方法による一例として水蒸気と塩化亜鉛による賦活炭の
細孔分布では、後者が数10人、前者が10Å以下に細
孔半径の中心があることが例示される。これらのガス賦
活方法、薬品賦活方法は併用されることもできる。
There are various methods for carbonizing and activating this thermosetting resin, and any of them can be used. For example, the activation method can be broadly classified into two types: a gas activation method and a chemical activation method. The former is a method of activation through a gas phase reaction with various high-temperature oxidizing gases (e.g., water vapor, carbon dioxide, air, etc.), and the latter is a method of activation using dehydrating salts and acids (calcium chloride, magnesium chloride, zinc chloride, phosphorus, etc.). This is a method in which the reaction is carried out at a temperature of 750°C or lower. As an example of these methods, in the pore distribution of activated carbon using water vapor and zinc chloride, the latter has a center of pore radius of several tens of pores, and the former has a center of pore radius of 10 Å or less. These gas activation methods and chemical activation methods can also be used in combination.

活性炭には上記のほかに従来使用されているヤシガラ活
性炭等の天然材料から作られる活性炭、フェノール、レ
ーヨン、ポリアクリルニトリル等の人工高分子材料から
作られる活性炭のいずれも単独又は組合わせて使用でき
、その形状もファイバ(繊維)状、クロス状等無定形の
ものも用いられる。
In addition to the above-mentioned activated carbon, activated carbon made from natural materials such as conventionally used coconut shell activated carbon, activated carbon made from artificial polymeric materials such as phenol, rayon, and polyacrylonitrile can be used alone or in combination. Amorphous shapes such as fibers and cross shapes are also used.

上記電解質液には、プロピレンカーボネート、γ−ブチ
ロラクトン等のエステル類、アセトニトリル等のニトリ
ル類、クロロホルム等のハロゲン化物類、アセトン等の
ケトン類、ジメチルホルムアミド等のアミド類、ピリジ
ン等のアミン類、テトラヒドロフラン等のエーテル類、
ブタノール等のアルコール類、ニトロメタン等のニトロ
化合物類、ジメチルスルホキシド等の硫黄化合物等の溶
媒にC102SBF; 5PFi6 、AsF6.  
AlCl2− 、CF35Oi等のリチウム塩その他の
金属塩、アルキルアンモニウム塩等を熔解したものが挙
げられるが、これに限定されるものではなく、酸、アル
カリや塩類の水溶液の電解質液も使用できる。
The above electrolyte solution includes esters such as propylene carbonate and γ-butyrolactone, nitriles such as acetonitrile, halides such as chloroform, ketones such as acetone, amides such as dimethylformamide, amines such as pyridine, and tetrahydrofuran. ethers such as
C102SBF; 5PFi6, AsF6.
Examples include those obtained by melting lithium salts such as AlCl2-, CF35Oi, other metal salts, alkylammonium salts, etc., but are not limited thereto, and electrolyte solutions such as aqueous solutions of acids, alkalis, and salts can also be used.

また、本発明に用いられる樹脂は、例えばポリメチル(
メタ)アクリレート、ポリエチル(メタ)アクリレート
、ポリ(メタ)アクリレート、ポリアクリルニトリル等
のアクリルモノマーの重合体からなるアクリル樹脂ある
いはこれらの七ツマ−と他のモノマーの例えばスチレン
ーアクリルニトリル共車合体等の樹脂、ポリ酢酸ビニル
、ポリ塩化ビニル等のビニル単独重合体樹脂、ポリ塩化
ビニル酢酸ビニル共重合体、塩化ビニリデン−アクリロ
ニトリル−塩化ビニル等のビニル共重合体樹脂、アセタ
ール樹脂、ナイロン等のポリアミド樹脂、ポリウレタン
樹脂、ポリカーボネート樹脂、ポリエチレンオキサイド
等のポリアルキレンオキサイド樹脂、フッ化ビニリデン
と三フフ化エチレンとの共重合体4M脂、エチルセルロ
ース、酢酸セルロース等のセルロース誘導体、ブチルゴ
ム、天然ゴム等のゴムが例示される。
Furthermore, the resin used in the present invention is, for example, polymethyl (
Acrylic resins consisting of polymers of acrylic monomers such as meth)acrylate, polyethyl(meth)acrylate, poly(meth)acrylate, and polyacrylonitrile, or combinations of these seven polymers with other monomers, such as styrene-acrylonitrile co-mers, etc. resins, vinyl homopolymer resins such as polyvinyl acetate and polyvinyl chloride, vinyl copolymer resins such as polyvinyl chloride and vinyl acetate copolymers, vinylidene chloride-acrylonitrile-vinyl chloride, acetal resins, and polyamide resins such as nylon. Examples include polyurethane resins, polycarbonate resins, polyalkylene oxide resins such as polyethylene oxide, 4M copolymers of vinylidene fluoride and ethylene trifluoride, cellulose derivatives such as ethyl cellulose and cellulose acetate, and rubbers such as butyl rubber and natural rubber. be done.

また、本発明に用いられる導電性物質にはファーネス法
によるアセチレンブラック、他のファーネス法あるいは
衝撃法によるカーボンブラック、チャンネル法によるカ
ーボンブラック、グラファイト、ポリアセチレンの如き
導電性高分子、カーボン繊維、金属繊維、金属フレーク
、金属粉末等が例示される。なお、導電性物質とバイン
ダーを例えば導電性樹脂により兼用することもでき、こ
の場合も含む。
In addition, the conductive substances used in the present invention include acetylene black produced by a furnace method, carbon black produced by another furnace method or impact method, carbon black produced by a channel method, conductive polymers such as graphite and polyacetylene, carbon fibers, and metal fibers. , metal flakes, metal powder, etc. Note that, for example, a conductive resin may be used as both the conductive substance and the binder, and this case is also included.

本発明において、分極性電極は使用状態で固形を維持す
るもので、集電電極を重ねることにより容易に電気二重
層コンデンサを製造することができ、電解質液の漏出防
止のための封止手段を用いなくても良い。このような成
形体の分極性電極を作成するには、上記の熱可塑性樹脂
を上記電解質を溶解した電解質溶液に加熱溶解し、その
ままあるいは冷却してゲル状(力を加えない限り流動、
変形しない固形状態)にしてから活性炭、導電性物質を
加えるか、樹脂、電解質液、活性炭、導電性物質を同時
に加えて例えば三本ロール等で混練する方法等樹脂の電
解質液に活性炭、導電性物質を加えることが電解質を均
一に含有させる点で好ましい。
In the present invention, the polarizable electrode remains solid in use, and an electric double layer capacitor can be easily manufactured by stacking current collecting electrodes, and a sealing means is provided to prevent electrolyte leakage. It doesn't have to be used. To create such a molded polarizable electrode, the above thermoplastic resin is heated and dissolved in an electrolyte solution containing the above electrolyte, and it is left in a gel-like state (flowing unless force is applied) by heating or cooling it.
Add activated carbon and a conductive substance to the resin electrolyte solution, or add resin, electrolyte solution, activated carbon, and conductive substance simultaneously and knead with a triple roll, etc. Adding a substance is preferable in that the electrolyte is contained uniformly.

このようにして分極性電極を作成すると、活性炭と樹脂
と溶剤からなる液を塗布し、溶剤を揮発除去した後に電
解質液を含浸させる方法に比べ、溶剤を除去する工程が
省略でき、さらに電解質液を樹脂等に予め混合して分極
性電極を作成すると、電解質液の含浸の工程も省け、さ
らに工程の短縮と品質の向上をもたらすことができる。
By creating polarizable electrodes in this way, the process of removing the solvent can be omitted, compared to the method of applying a solution consisting of activated carbon, resin, and solvent, and then impregnating the electrolyte solution after the solvent has evaporated and removed. If a polarizable electrode is prepared by pre-mixing with a resin or the like, the step of impregnating with an electrolyte solution can be omitted, further shortening the process and improving quality.

また、本発明に用いられる導電性集電電極としては、電
解質液に安定な金属箔、導電性ゴム、不浸透処理した可
撓性グラファイト等が例示される。
Further, examples of the conductive current collecting electrode used in the present invention include metal foil that is stable in the electrolyte, conductive rubber, and flexible graphite treated to be impermeable.

本発明においては上記分極性電極と導電性集電電極との
間に導電層を設ける。この導電層は分極性電極よりも電
気抵抗が小さく、これを設けることにより分極性電極を
導電性集電電極に直接設けるより両者の間の抵抗を小さ
くできる。この導電層としてはステンレススチール、ア
ルミニウムのほかにニッケル、タングステン、モリブデ
ン、錫、白金等の金属粉末、また、高導電性のケッチェ
ンブラック、アセチレンブラック等その他上記の導電性
物質の有機溶媒等電解質液成分に耐蝕性のある物質を主
成分とすることが好ましいが、その構造としてはこの導
電性物質の粉末を分極性電極よりは緻密に充填し、その
間隙を少なくして導電性を高めたものが例示される。こ
の導電層にはバインダーとして上記樹脂を含有させるこ
ともできる。
In the present invention, a conductive layer is provided between the polarizable electrode and the conductive current collecting electrode. This conductive layer has a lower electrical resistance than the polarizable electrode, and by providing this layer, the resistance between the polarizable electrode and the conductive current collecting electrode can be made smaller than when the polarizable electrode is directly provided on the conductive current collecting electrode. In addition to stainless steel and aluminum, this conductive layer includes metal powders such as nickel, tungsten, molybdenum, tin, and platinum, as well as highly conductive Ketjen black, acetylene black, and other electrolytes such as organic solvents of the above-mentioned conductive substances. It is preferable that the liquid component has a corrosion-resistant substance as its main component, but its structure is such that the powder of this conductive substance is packed more densely than a polarizable electrode, and the gaps between them are reduced to improve conductivity. Things are exemplified. This conductive layer can also contain the above resin as a binder.

また、本発明に用いられる多孔質セパレータは、その材
質°としてはセロハン、ポリプロピレンやポリエチレン
等の高分子材料や天然繊維が挙げられ、形状としては多
数の微小な貫通孔を有する微孔フィルム、ある程度の厚
みをもち複雑な微細孔をもつスポンジ状フィルム、不織
布あるいはこれらを組合わせたものが例示される。これ
らにかぎらず電解質液との共存性のよいこと、活性炭が
通過しないこと、イオン透過性(あるいは気孔率)が大
きいこと、機械的強度が十分であることの諸性質を満足
する材料も使用することができる。コンデンサ特性の点
からは、漏れ電流の小さいことが必要なものには比較的
気孔率の小さいもの、直列等価抵抗の小さいことが必要
なものには比較的気孔率の大きいものが好ましい。
In addition, the material of the porous separator used in the present invention includes cellophane, polymeric materials such as polypropylene and polyethylene, and natural fibers, and the shape includes a microporous film with many minute through holes, a certain degree of Examples include a sponge-like film with a thickness of In addition to these materials, we also use materials that satisfy the following properties: good coexistence with the electrolyte solution, no passage of activated carbon, high ion permeability (or porosity), and sufficient mechanical strength. be able to. From the viewpoint of capacitor characteristics, it is preferable to use a capacitor with a relatively low porosity for a capacitor that requires a small leakage current, and a capacitor that has a relatively high porosity for a capacitor that requires a low series equivalent resistance.

本発明の電気二重層コンデンサを製造するには、分極性
電極がシート状の成形体の場合には上記の多孔質セパレ
ータの両面に分極性電極を重ね、さらに導電層を介して
集電電極をこれら両側の分極性電極表面に重ね挟持する
ことにより出来上がる。
In order to manufacture the electric double layer capacitor of the present invention, when the polarizable electrode is a sheet-like molded body, the polarizable electrode is stacked on both sides of the above-mentioned porous separator, and then a current collecting electrode is attached via a conductive layer. It is completed by stacking and sandwiching these on the surfaces of the polarizable electrodes on both sides.

この導電層を設けるには、これをシート状に形成し分極
性電極と集電電極の間に挟持させても良いが、分極性電
極及び/又は集電電極の主面に埋込むか、この主面表面
に塗布形成しても良い。例えば上記導電性物質をゴムに
練り込んだ未加硫導電性ゴムシート板(集電電極となる
もの)に成形した導電層、あるいは未加硫状態の導電層
を形成し、これを底板にして筒状の未加硫ゴムのガスケ
ットを載置し、その開放端から上端まで分極性電極を充
填する。この後多孔質セパレータを充填物側に当てがい
、さらに上記と同様に分極性電極を充填したガスケット
をその充填物側を多孔質セパレータに当てかった状態で
加硫する。このようにして基本セルができあがるが、こ
れを封止容器に導電性接着剤で固定して収めリード線を
接続できるようにすると電気二重層コンデンサができあ
がる。
To provide this conductive layer, it may be formed into a sheet and sandwiched between the polarizable electrode and the current collector electrode, but it may be buried in the main surface of the polarizable electrode and/or the current collector electrode, or It may be formed by coating on the main surface. For example, a conductive layer formed on an unvulcanized conductive rubber sheet plate (which becomes a current collecting electrode) in which the above conductive substance is kneaded into rubber, or an unvulcanized conductive layer is formed, and this is used as a bottom plate. A cylindrical unvulcanized rubber gasket is placed and filled with polarizable electrodes from its open end to its upper end. Thereafter, a porous separator is applied to the filling side, and the gasket filled with polarizable electrodes is further vulcanized in the same manner as above with the filling side being applied to the porous separator. In this way, a basic cell is completed, and when it is fixed in a sealed container with conductive adhesive and connected to lead wires, an electric double layer capacitor is completed.

本発明における電気二重層コンデンサには、多孔質セパ
レータの両側に分極性電極を有し、それぞれの分極性電
極に集電電極を有する構造のもののみならず、多孔質セ
パレータの片側に分極性電極を有し、この分極性電極と
多孔質セパレータのそれぞれに集電電極を設けたものも
含まれる。
The electric double layer capacitor of the present invention includes not only a structure having polarizable electrodes on both sides of a porous separator and a current collecting electrode on each polarizable electrode, but also a structure in which a polarizable electrode is provided on one side of the porous separator. It also includes one in which the polarizable electrode and the porous separator are each provided with a current collecting electrode.

作用 分極性電極に使用されている活性炭は形状が不定形で、
その組成、形状によって比抵抗は異なるが、金属と比較
して1〜2桁程度高く、集電電極との接触抵抗が高くな
る。このような活性炭を含有する分極性電極と集電電極
の間に電解質液に対して耐蝕性の優れた導電性物質の粉
末からなる導電層を設けると、活性炭と集電電極との直
接の接触が避けられ、集電電極と導電層の接触抵抗は小
さくなり、一方この導電層と分極性電極の接触は電解質
液の浸透等により良く行えるので、全体として分極性電
極と集電電極との間の抵抗を小さくできると考えられる
が、その原理の詳細は明らかでない。
The activated carbon used in working polarizable electrodes has an irregular shape;
Although the specific resistance varies depending on its composition and shape, it is about one to two orders of magnitude higher than that of metal, and the contact resistance with the current collecting electrode is high. If a conductive layer made of powder of a conductive material with excellent corrosion resistance against electrolyte solution is provided between the polarizable electrode containing activated carbon and the current collecting electrode, direct contact between the activated carbon and the current collecting electrode can be achieved. is avoided, and the contact resistance between the current collector electrode and the conductive layer becomes small.On the other hand, since the contact between the conductive layer and the polarizable electrode can be made better by penetration of the electrolyte, the overall resistance between the polarizable electrode and the current collector electrode is reduced. It is thought that the resistance can be reduced, but the details of the principle are not clear.

実施例 次に本発明の実施例を第1図ないし第3図に基づいて説
明する。
Embodiment Next, an embodiment of the present invention will be explained based on FIGS. 1 to 3.

実施例1 第1図に示すように15fl角、厚さ0.1 mのステ
ンレス板からなる集電電極11.11′ と、15寵角
、厚さ0.1鶴の多孔質セパレータ12を用意する。
Example 1 As shown in Fig. 1, a current collector electrode 11.11' made of a stainless steel plate with a 15 fl angle and a thickness of 0.1 m, and a porous separator 12 with a 15 fl angle and a thickness of 0.1 m were prepared. do.

次いで、過塩素酸テトラエチルアンモニウムを0.5m
ol濃度含むプロピレンカーボネート1fi253@量
部中にポリメチルメタクリレート(旭化成社製デルペフ
) LP−1)5重量部を加え、攪拌しながら加熱し、
100℃に達したら100℃に保温したまま攪拌を続け
、ポリメチルメタクリレートを完全熔解する。この溶液
を室温まで冷却し、ゲル状物を得る。
Next, add 0.5 m of tetraethylammonium perchlorate.
5 parts by weight of polymethyl methacrylate (Delpef LP-1 manufactured by Asahi Kasei Co., Ltd.) was added to 1fi253@ parts of propylene carbonate containing the ol concentration, and heated while stirring.
When the temperature reaches 100°C, stirring is continued while keeping the temperature at 100°C to completely melt the polymethyl methacrylate. This solution is cooled to room temperature to obtain a gel-like substance.

次いで、活性炭粉末(クラレケミカル社製BP−20)
2重量部とカーボンブラック3M量部とを上記ゲル状物
とともに三本ロールミルで混練し、厚さ0.6flのシ
ート状に成形し、これから直径10mの円形の2枚の分
極性電極13.13”を裁断する。
Next, activated carbon powder (BP-20 manufactured by Kuraray Chemical Co., Ltd.)
2 parts by weight and 3M parts of carbon black were kneaded together with the gel material in a three-roll mill, formed into a sheet with a thickness of 0.6 fl, and from this was formed two circular polarizable electrodes 10 m in diameter. ” to cut.

上記分極性電極13.13′ のそれぞれの主面にステ
ンレススチール粉末(和光化学社製、100メツシユの
篩通過、300メツシユの篩下通過)を300メツシユ
篩を通してこの粉末が1〜5層重なる程度ふりかける。
Stainless steel powder (manufactured by Wako Kagaku Co., Ltd., passed through a 100 mesh sieve, passed through a 300 mesh sieve) was passed through a 300 mesh sieve on each main surface of the polarizable electrode 13, 13' to the extent that the powder overlapped in 1 to 5 layers. Sprinkle.

これにロール間隔0.6mのロールプレスをかけてステ
ンレススチール粉末を分極性電極の主面に埋設し、導電
層14.14’を有する分極性電極を形成する。
This is subjected to a roll press with a roll interval of 0.6 m to embed stainless steel powder in the main surface of the polarizable electrode, thereby forming a polarizable electrode having conductive layers 14 and 14'.

この分極性電極13.13°のステンレススチール粉末
からなる導電層14.14°の主面を上記集電電極11
.11°のそれぞれに重ね、ついでこれらの分極性電極
側を上記多孔質セパレータ12の両面に重ね、多孔質セ
パレータを介して両側の分極性電極を集電電極で挟持し
て基本セルを作製する。
The main surface of the conductive layer 14.14° made of stainless steel powder of this polarizable electrode 13.13° is connected to the current collecting electrode 11.
.. Then, the polarizable electrodes are stacked on both sides of the porous separator 12, and the polarizable electrodes on both sides are sandwiched between current collecting electrodes with the porous separator interposed therebetween to produce a basic cell.

このようにして得られた電気二重層コンデンサの静電容
量を下記の手順に従って測定する。
The capacitance of the electric double layer capacitor thus obtained is measured according to the following procedure.

第2図に示す測定回路に上記で得られた電気二重層コン
デンサ15のステンレス板(集電電極)を供試料端子1
6.17に接続する。この状態でスイッチS−を端子1
日側に接続させ、2.8vに達した後から定電圧充電に
切り換え、30分間試料に充電させる。
The stainless steel plate (collecting electrode) of the electric double layer capacitor 15 obtained above is attached to the sample terminal 1 in the measurement circuit shown in FIG.
Connect to 6.17. In this state, switch S- is connected to terminal 1.
After the voltage reaches 2.8V, switch to constant voltage charging and charge the sample for 30 minutes.

その後、スイッチSWを端子19側に切り換え、第3図
に示すように1mAで定電流放電し、電圧計20で1、
OVになった時刻T1と、0.5vになった時刻T2.
とを測定する。これらの測定値から次式により静電容量
を求め、その結果を表1に示す、なお21は電源22は
電流計、23.24は可変抵抗器である。
After that, switch SW is switched to the terminal 19 side, a constant current is discharged at 1 mA as shown in FIG.
Time T1 when it became OV and time T2 when it became 0.5v.
and to measure. The capacitance was determined from these measured values using the following formula, and the results are shown in Table 1. Reference numeral 21 indicates a power supply 22, an ammeter, and 23 and 24, variable resistors.

ただし、C:静電容量(Farad) i:電流(Amp) T1、T2:時刻(分) 次いで、市販のLCRメータ(YHP4274A)でI
 KHzにおける抵抗値を測定し、初期抵抗値として表
1に示す。
However, C: Capacitance (Farad) i: Current (Amp) T1, T2: Time (minutes) Next, use a commercially available LCR meter (YHP4274A) to
The resistance value at KHz was measured and shown in Table 1 as the initial resistance value.

さらに再び第2図に示す測定回路に上記電気二重層コン
デンサ15を供試料端子I6.17に接続し、スイッチ
舗を端子18側に接続して上記と同様に定電圧充電して
30分後、スイッチSWを端子19側に切り換えて0.
3V以下になるまで放電することを1サイクルとし、こ
れを1000サイクル繰り返した後、上記と同様にこの
電気二重層コンデンサの抵抗値を測定し、上記で得た初
期抵抗値との変化率を求め、その結果を表1に抵抗変化
率として示した。
Furthermore, the electric double layer capacitor 15 was connected to the test sample terminal I6.17 in the measurement circuit shown in FIG. Switch the switch SW to the terminal 19 side and set it to 0.
One cycle is discharging until the voltage drops to 3V or less. After repeating this 1000 cycles, measure the resistance value of this electric double layer capacitor in the same way as above, and find the rate of change from the initial resistance value obtained above. The results are shown in Table 1 as resistance change rates.

実施例2 実M 例1において、ステンレススチール粉末の代わり
にアルミニウム粉末(和光化学社製、100メツシュ篩
通過、300メツシュ篩不通過)を用いた以外は同様に
して電気二重層コンデンサを作製し、これについても実
施例Iと同様に静電容量、初期抵抗値、抵抗変化率を求
め、その結果を表1に示す。
Example 2 Actual M An electric double layer capacitor was produced in the same manner as in Example 1 except that aluminum powder (manufactured by Wako Chemical Co., Ltd., passed through a 100 mesh sieve, did not pass through a 300 mesh sieve) was used instead of stainless steel powder, In this case as well, the capacitance, initial resistance value, and rate of change in resistance were determined in the same manner as in Example I, and the results are shown in Table 1.

実施例3 実施例1において、ステンレススチール粉末の代わりに
アセチレンブラック(平均粒径0.5μ醜)1重量部用
いた以外は同様にして電気二重層コンデンサを作製し、
これについても実施例1と同様に静電容量、初期抵抗値
、抵抗変化率を求め、その結果を表1に示す。
Example 3 An electric double layer capacitor was produced in the same manner as in Example 1 except that 1 part by weight of acetylene black (average particle size 0.5μ) was used instead of stainless steel powder,
In this case as well, the capacitance, initial resistance value, and resistance change rate were determined in the same manner as in Example 1, and the results are shown in Table 1.

実施例4 実施例1において、ステンレススチール粉末の代わりに
球状フェノール樹脂粉末の表面に無電解ニッケル及び電
解ニッケルメッキを施した粉末を用いた以外は同様にし
て電気二重層コンデンサを作製し、これについても実施
例1と同様に静電容量、初期抵抗値、抵抗変化率を求め
、その結果を表1に示す。
Example 4 An electric double layer capacitor was produced in the same manner as in Example 1, except that instead of stainless steel powder, powder obtained by plating the surface of spherical phenolic resin powder with electroless nickel and electrolytic nickel was used. Similarly to Example 1, the capacitance, initial resistance value, and rate of change in resistance were determined, and the results are shown in Table 1.

実施例5 実施例1において、ゲル状物2重量部中にチタン粉末(
和光化学社性lOOメツシュ通過、350メッシュ不通
過)5重量部加えて混練してから0.1 m厚さのシー
ト状に成形し、これから直径10amの円板2枚を打ち
抜き、これらの円板2枚のそれぞれを分極性電極の一生
面に重ねてそれぞれ導電層を形成し、これを分極性電極
として用いた以外は同様にして電気二重層コンデンサを
作製し、これについても実施例1と同様に静電容量、初
期抵抗値、抵抗変化率を求め、その結果を表1に示す。
Example 5 In Example 1, titanium powder (
5 parts by weight (passed through Wako Kagaku Corporation's lOO mesh, did not pass through 350 mesh) was added, kneaded, and formed into a sheet with a thickness of 0.1 m. From this, two discs with a diameter of 10 am were punched out. An electric double layer capacitor was produced in the same manner as in Example 1, except that the two sheets were stacked on each side of the polarizable electrode to form a conductive layer, and this was used as the polarizable electrode. The capacitance, initial resistance value, and resistance change rate were determined, and the results are shown in Table 1.

比較例 実施例工において、ステンレススチールの粉末を用いた
導電層を設けなかったことと、集電電極をエキスバンド
メタル(布引製作所のラスターメタル)を用いたこと以
外は同様にして電気二重層コンデンサを作製し、これに
ついても実施例1と同様に静電容量、初期抵抗値、抵抗
変化率を求め、その結果を表1に示す。
An electric double layer capacitor was manufactured in the same manner as in the comparative example except that the conductive layer using stainless steel powder was not provided and the collector electrode was made of expanded metal (Nunobiki Seisakusho's Luster Metal). was prepared, and its capacitance, initial resistance value, and resistance change rate were determined in the same manner as in Example 1, and the results are shown in Table 1.

上記結果より、実施例のものは初期抵抗が比較例のもの
の172以下、抵抗変化率が173以下であることがわ
かる。
From the above results, it can be seen that the initial resistance of the example was 172 or less and the resistance change rate was 173 or less than that of the comparative example.

発明の効果 本発明によれば、集電電極と分極性電極の間に導電性物
質の粉末を含有亡しめた導電層を設けたので、この導電
層と集電電極の間、この導電層と分極性電極の間の接触
抵抗を少なくすることができ、電気二重層コンデンサの
内部抵抗を小さくすることができる。これにより利用す
ることのできる電流量を多くすることができ、その性能
を向上し、電気回路素子としての利用範囲を拡大するこ
とができる。
Effects of the Invention According to the present invention, a conductive layer containing powder of a conductive substance is provided between a current collecting electrode and a polarizable electrode, so that between this conductive layer and the current collecting electrode, this conductive layer and The contact resistance between the polarizable electrodes can be reduced, and the internal resistance of the electric double layer capacitor can be reduced. This makes it possible to increase the amount of current that can be used, improve its performance, and expand its range of use as an electric circuit element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)は本発明あ一実施例の電気二重層コンデン
サの構造を示す図、同(ロ)はその部分拡大図、第2図
はその測定回路図、第3図は動作説明図、第4図は従来
の電気二重層コンデンサの構造を示す図である。 図中、1111’ は集電電極、12は多孔質セパレー
タ、13.13”は分極性電極である。 昭和62年03月20日
Fig. 1 (A) is a diagram showing the structure of an electric double layer capacitor according to the first embodiment of the present invention, Fig. 1 (B) is a partially enlarged view thereof, Fig. 2 is a measurement circuit diagram thereof, and Fig. 3 is an operation explanatory diagram. , FIG. 4 is a diagram showing the structure of a conventional electric double layer capacitor. In the figure, 1111' is a current collecting electrode, 12 is a porous separator, and 13.13'' is a polarizable electrode. March 20, 1988

Claims (1)

【特許請求の範囲】[Claims] 1)非電子伝導性かつイオン透過性の多孔質セパレータ
と、該多孔質セパレータの少なくとも一方の側に設けら
れる分極性電極との構成体の両側に導電性集電電極を有
する電気二重層コンデンサにおいて、分極性電極と導電
性集電電極の間に主成分に導電性粉末を含有した導電層
を設けたことを特徴とする電気二重層コンデンサ。
1) In an electric double layer capacitor having conductive current collecting electrodes on both sides of a structure of a non-electronically conductive and ion permeable porous separator and a polarizable electrode provided on at least one side of the porous separator. An electric double layer capacitor characterized in that a conductive layer containing conductive powder as a main component is provided between a polarizable electrode and a conductive current collecting electrode.
JP62063675A 1987-03-20 1987-03-20 Electric double-layer capacitor Pending JPS63232309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62063675A JPS63232309A (en) 1987-03-20 1987-03-20 Electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62063675A JPS63232309A (en) 1987-03-20 1987-03-20 Electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JPS63232309A true JPS63232309A (en) 1988-09-28

Family

ID=13236169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62063675A Pending JPS63232309A (en) 1987-03-20 1987-03-20 Electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JPS63232309A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359630U (en) * 1989-10-17 1991-06-12
JP2011054891A (en) * 2009-09-04 2011-03-17 Murata Mfg Co Ltd Electrochemical device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359630U (en) * 1989-10-17 1991-06-12
JP2011054891A (en) * 2009-09-04 2011-03-17 Murata Mfg Co Ltd Electrochemical device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4705566B2 (en) Electrode material and manufacturing method thereof
JP3791180B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor having the electrode
US6998193B2 (en) Microporous membrane and its uses thereof
US5143805A (en) Cathodic electrode
KR101289521B1 (en) Production method for electric double layer capacitor
US6527955B1 (en) Heat-activatable microporous membrane and its uses in batteries
CA1278032C (en) Cathodic electrode
US7074688B2 (en) Method of making an electrode for an electrochemical capacitor and the method of making an electrochemical capacitor
WO1999054953A1 (en) Composite polymer electrolyte for a rechargeable lithium battery
WO1997008763A1 (en) Cell and production method thereof
KR20030029110A (en) Particulate electrode including electrolyte for a rechargeable lithium battery
JP2003514352A (en) Lithium battery containing gel electrolyte
KR20160114587A (en) Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
US4731310A (en) Cathodic electrode
WO1999056336A1 (en) Solid electrolytic secondary battery
JP3508514B2 (en) Organic electrolyte battery
JP2010003940A (en) Active carbon for electrode material and energy storage device
JP2545216B2 (en) Electric double layer capacitor
JP2516756B2 (en) Electric double layer capacitor
JPS63232309A (en) Electric double-layer capacitor
JP2000113876A (en) Electrode for electrochemical device, manufacture of the same, and electrochemical device
JPS63232308A (en) Electric double-layer capacitor
JP2008258205A (en) Manufacturing method of electrode for electric double-layer capacitor
JPS63121247A (en) Negative electrode of secondary battery
JPH01103818A (en) Electric double-layer capacitor