JPS63145727A - Production of whisker formed body - Google Patents

Production of whisker formed body

Info

Publication number
JPS63145727A
JPS63145727A JP29320186A JP29320186A JPS63145727A JP S63145727 A JPS63145727 A JP S63145727A JP 29320186 A JP29320186 A JP 29320186A JP 29320186 A JP29320186 A JP 29320186A JP S63145727 A JPS63145727 A JP S63145727A
Authority
JP
Japan
Prior art keywords
group
compound
general formula
whisker
whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29320186A
Other languages
Japanese (ja)
Inventor
Hiromi Osaki
浩美 大崎
Motoyuki Yamada
素行 山田
Akira Hayashida
章 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP29320186A priority Critical patent/JPS63145727A/en
Publication of JPS63145727A publication Critical patent/JPS63145727A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a formed body having superior shape retentivity and high wettability with a molten matrix, by dispersion whiskers in a soln. of an org. silicone polymer in an org. solvent, filtering the resulting dispersion liq. to form a cake and heating the cake in a nonoxidizing gas to make the org. polymer inorg. CONSTITUTION:Inorg. short fiber type whiskers of SiC, SiN or the like are added to a soln. of an org. silicone polymer such as polycarbosilane in an org. solvent and the soln. is stirred to uniformly disperse the whiskers. The resulting dispersion liq. is filtered to form a cake and this cake is dried, optionally press- formed and baked by heating to about 600-1,500 deg.C in a nonoxidizing atmosphere to make the org. silicone polymer inorg. By this treatment, a whisker formed body having a ceramic-like substance produced on the surfaces of the whiskers and at the joined parts of the whiskers is obtd. When a molten matrix is impregnated into the form body under pressure, the formed body is not deformed and a homogeneous composite body can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は繊維強化複合材を製造する際の骨格となる新規
なウィスカー成型体、とくには保形性に優れ、!Lつマ
トリックスに対する漉れ性の良好なウィスカー成型体の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides a novel whisker molded body that serves as a skeleton for producing fiber-reinforced composite materials, and which has particularly excellent shape retention! The present invention relates to a method for manufacturing a whisker molded body having good strainability for an L-matrix.

(従来の技術) 近年、高強度、耐熱性という点から炭化珪素や窒化珪素
などのウィスカーを骨格として、プラスチック・金属・
合金・セラミックスなどをマトリックスとしたm維強化
複合材料が注目されている。
(Conventional technology) In recent years, whiskers such as silicon carbide and silicon nitride have been used as skeletons for plastics, metals, and other materials due to their high strength and heat resistance.
M-fiber-reinforced composite materials using alloys, ceramics, etc. as a matrix are attracting attention.

その製造方法としては、 (+)ウィスカーをマトリックスとなるプラスチック・
金属・合金・セラミックスなどの粉体中に混合し、ホッ
トプレスする方法(例えば米国特許:l、8:l:1,
697号明細書)、(2) ウィスカー成71.lj体
を作成し、これにマトリックスとなるプラスチック・金
属・合金などを液状に熔融した状態にして圧入・トー・
1化する方法がしられているが、前者(+)には均一分
散性が良く、ウィスカー含有率のy制御が容易であるこ
と。
The manufacturing method is to mix (+) whiskers with plastic matrix and
A method of mixing metals, alloys, ceramics, etc. into powder and hot pressing (for example, U.S. Patent: 1, 8:1:1,
697 specification), (2) whisker formation 71. A lj body is created, and a matrix of plastic, metal, alloy, etc. is melted into a liquid state and then press-fitted, towed, etc.
A method of unifying is known, but the former (+) has good uniform dispersibility and easy control of the whisker content.

大型品の製造がi+(能などの長所があり、また後者(
2)では複合化プロセスが短く、筒中−であること y
4造コストが安いなどの長所がある。
The production of large products has advantages such as i+ (noh), and the latter (
In 2), the compounding process is short and in-tube.
It has advantages such as low construction cost.

本発明は後者(2)の方法に含まれるものであって、複
合材料はその骨格となウィスカー成型体の均?1性、均
一分散性が大きな影響をIiえることが知られているた
め、ウィスカー成型体を如何にして製造するかという点
を検討し、改良したものである。即ち、後者(2)の長
所を保持しつつ前者(+)の均一分散とウィスカー含有
率の一制御を容易ならしようとするものである。
The present invention is included in the latter method (2), in which the composite material is a skeleton of a uniform whisker molded body. Since it is known that uniformity and uniform dispersibility have a large influence, we have studied and improved how to produce whisker molded bodies. That is, it is intended to maintain the advantages of the latter (2) while facilitating uniform dispersion of the former (+) and control of whisker content.

ウィスカー成型体の製造方法として従来知られている方
法は (イ)ウィスカーを乾燥状態または水・イTfi溶剤に
よる湿潤状態で加圧成型する方法であって、例えばウィ
スカーを媒体に分散させ、ろ通接のウィスカーケーキを
機械的加圧により成型する方法(特開昭59−1211
98、特開昭6O−55000) 、ろ過の際にガスを
圧入してウィスカーケーキを得て加圧成型する方法(特
開昭6O−161400)、ウィスカー分散液に振動を
与えてウィスカーを沈降させ、上澄み液を除去して乾燥
後、加圧成型する方法(特開昭59−227761) (ロ)ウィスカーを水・有機溶媒に分散し、遠心脱水す
る方法(特開昭6O−65200)(八)無機質または
打−機質バインダーを添加して加圧成型する方法であっ
て、例えば、ホウ酸、アルカリ金属ホウ酸塩、アルカリ
金属アルミン酸塩を使用する方法(特開昭6O−204
660)、アルギン酸ナトリウムとアクリル酸の混合物
を使用する方法(特開昭6O−210600)、メチル
セルロースを使用する方法(特開昭6l−19744)
などがある。
Conventionally known methods for manufacturing whisker molded bodies include (a) pressure molding of whiskers in a dry state or in a wet state with water and Tfi solvent; for example, whiskers are dispersed in a medium and passed through a filtration process; Method of forming a whisker cake by mechanical pressure (Japanese Patent Application Laid-Open No. 59-1211
98, JP-A-6O-55000), a method of pressure-injecting gas during filtration to obtain a whisker cake and molding it under pressure (JP-A-6O-161400), a method of applying vibration to a whisker dispersion to sediment the whiskers. , a method in which the supernatant liquid is removed, dried, and then pressure molded (JP-A-59-227761) (b) A method in which whiskers are dispersed in water or an organic solvent and centrifugally dehydrated (JP-A-6O-65200) (8) ) A method in which an inorganic or organic binder is added and pressure molded, for example, a method using boric acid, an alkali metal borate, or an alkali metal aluminate (Japanese Patent Application Laid-Open No. 6O-204
660), a method using a mixture of sodium alginate and acrylic acid (JP-A-6O-210600), a method using methylcellulose (JP-A-6L-19744)
and so on.

(発明が解決しようとする問題点) 従来の技術において、加圧による成型方法である(イ)
または(0)の方法は粉末を取り扱うための般的な方法
であって、このような方法では成型体の端部が欠けたり
、成型体の中に大小の亀裂が残イtするというような保
形性の点で問題となり、あるいは均質性に劣るという不
利がある。またその結果として複合体を製造した場合に
欠陥の原因となる。また、ウィスカーの絡み合いで生ず
る凝集物が成型体中に存在することにより、マトリック
スの侵入を妨げることに、よっても、やはり複合体を製
造した場合に欠陥の原因となって、複合体の強度低下を
招くこととなる。更に(0)の方法では高密度の成型体
を得ることが出来るという有利性はあるものの円形また
は円筒状の成型体しか製造出来ず、複雑な他の形状の成
型体製造には不適当である。
(Problems to be solved by the invention) In the conventional technology, the molding method uses pressure (a)
Alternatively, method (0) is a general method for handling powder, and such methods may cause the edges of the molded product to chip or leave small and large cracks in the molded product. This poses a problem in terms of shape retention, or has the disadvantage of being inferior in homogeneity. Furthermore, as a result, defects may occur when a composite is manufactured. In addition, the presence of aggregates caused by the entanglement of whiskers in the molded body prevents the matrix from entering the molded body, which also causes defects when the composite is manufactured, reducing the strength of the composite. will be invited. Furthermore, although method (0) has the advantage of being able to obtain a molded body with high density, it can only produce a circular or cylindrical molded body, and is unsuitable for producing molded bodies of other complex shapes. .

このようにバインダーを使用しない方法では複合体製造
に極めて大きな困難を伴うため、バインダーの使用は不
可欠のものとなるが、従来知られている(八)の方法で
はウィスカー同志の接合強度が低いために保形性に劣る
という不利と共に、熔融マトリックスの圧入に際しても
高温を必要とするために変形が著しく、複合体中への均
質な複合化が損なわれたり、バインダーが変質すること
によってマトリックスとウィスカーの界面の密着が悪い
という欠点がある。このような不利を解消すべく、バイ
ンダーを添加した成型体を加熱することによってバイン
ダーを無機化する手法が行なわれるが、従来知られてい
るバインダーではガラス質または炭素質のものとなって
しまい、マトリックス上の接合強度が低い欠点を避ける
ことが出来ない。特にマトリックスが金属の場合は界面
、で反応が起こり、極度に複合体強度の低下をもたらす
こととなる。
In this way, the use of a binder is indispensable because it is extremely difficult to manufacture a composite using a method that does not use a binder.However, in the conventionally known method (8), the bonding strength between the whiskers is low. In addition to the disadvantage of poor shape retention, high temperatures are required to inject the molten matrix, resulting in significant deformation, which may impair homogeneous compositing into the composite, or alter the quality of the binder, causing the matrix and whiskers to deteriorate. The disadvantage is that the adhesion between the interfaces is poor. In order to overcome these disadvantages, a method has been used to inorganize the binder by heating a molded body to which the binder has been added, but conventionally known binders are vitreous or carbonaceous. The drawback of low bonding strength on the matrix cannot be avoided. Particularly when the matrix is metal, a reaction occurs at the interface, resulting in an extreme decrease in the strength of the composite.

このような種々の不利を解決すべく、本発明者らは加熱
・焼成することによって無機化して炭化珪素または窒化
珪素質とすることの出来る物質に着Ell、、説、0検
討した結果、本発明を完成させたものである。
In order to solve these various disadvantages, the present inventors investigated the possibility of using a material that can be mineralized into silicon carbide or silicon nitride by heating and firing, and as a result, the present invention was developed. It is a completed invention.

(発明の構成) 本発明は以上のような問題点を解決できる新規なウィス
カー成型方法に関するものである。即ち、本発明者らは
ウィスカーを有機珪素ポリマーを溶かした有機溶媒中に
分散させ、ろ過した後、湿潤したウィスカーをそのまま
あるいは所定の密度、所定の形状に加圧した後、非酸化
性ガス雰囲気ドで加熱し、1゛記イ「機珪素ポリマーを
無機化させることによって、マトリックス圧入時に変形
せず、保形性に優れ、マトリックスに対して江れ性が良
く、マトリックスの侵入を容易ならしめる複合性能に悪
影響をおよぼさない成型体の製造出来ることを見出し、
本発明を完成させた。
(Structure of the Invention) The present invention relates to a novel whisker molding method that can solve the above-mentioned problems. That is, the present inventors dispersed whiskers in an organic solvent in which an organosilicon polymer was dissolved, filtered the wet whiskers, either left them as they were, or pressurized them to a predetermined density and shape, and then placed them in a non-oxidizing gas atmosphere. 1) By inorganicizing the organosilicon polymer, it does not deform when press-fitting into the matrix, has excellent shape retention, and has good bulging properties against the matrix, making it easier for the matrix to penetrate. We discovered that it is possible to produce molded bodies that do not adversely affect composite performance.
The present invention has been completed.

本発明の始発材として使用されるウィスカーは炭化珪素
、窒化珪素などの無機質短繊維が好ましく、その直径は
0.05〜3.0μm、長さ3〜200μmのものが大
計じやすい。
The whiskers used as the starting material of the present invention are preferably inorganic short fibers of silicon carbide, silicon nitride, etc., and the diameter thereof is easily 0.05 to 3.0 μm and the length is 3 to 200 μm.

に記つィスカーを有機珪素ポリマーを溶かした溶媒中に
入れ、攪拌し、均一に分散させるが、ここで使用する有
機珪素ポリマーは珪素と炭素を主骨格成分とす−るポリ
カルボシラン類または珪素と″や素をト骨格成分とする
イf機シラザン市合体であって、分子17jaoo〜5
,000の範囲であるものが好ましい。本発明で有効な
有機珪素ポリマーのうちのポリカルボシラン類としては
The whiskers described above are placed in a solvent in which an organosilicon polymer is dissolved and stirred to disperse them uniformly.The organosilicon polymer used here is polycarbosilane or silicon whose main skeleton components are silicon and carbon. It is an if machine silazane city combination with ``and'' and element as the skeleton components, and the molecule 17jaoo ~ 5
,000 is preferred. Among the organosilicon polymers effective in the present invention, polycarbosilanes include:

■一般式(R1R2Si)nで示される環状ポリシラン
(但し、nは少なくとも4以上、rtl、 R2はそれ
ぞれ水素、アルキリ基、フェニル基、シリル基のうちい
ずれか一種を示す)または、一般式%式%) で示される鎖状ポリシラン(但し、nは少なくとも30
以−ヒ、R’、 R2はそれぞれ水素、アルキル基、フ
ェニル基、シリル基のうちのいずれか一種を示す)のう
ちより選ばれたポリシラン骨格を有する有機珪素化合物
を、非酸化性雰囲気中で300〜600℃の温度で熱分
解1■合反応させて得られた珪素と炭素を主骨格成分と
するポリカルボシラン (特公昭57−26527)■ 前記ポリシラン骨格を有する11機珪素化合物100重
11部に対し、 (1)ホウ酸、無水ホウ酸、ホウ酸金属塩、ホウ酸ニス
デルのうちから選ばれるいずれか一種と([:、、I+
、、)2Siel□とを2:3のモル比て混合・加熱し
て得られるセミ無機化合物、 (2)  般式 %式% (−ローN−)3  で示される化合物、(但し、 l
(3,Pはそれぞれ1価の炭化水素基、(−(:+12
−)llsi(R″)3  (nは整数、口5は1価の
炭化水素基)または−N(R7)2基(nl+は水素原
Y“または1価の炭化水素1を示す) (:1) −Ft式(on7)、 (但し、藺はTi、
7.r、1じは1価の炭化水素基を示す)から選ばれる
少なくとも神の金属化合物と(Cr、1li) zsi
 ’叶)2とを1:2のモル比で混合・加熱して得られ
るポリメタロシロキサン、 の3種の群から選ばれる少なくとも一種の化合物0.1
〜15市111部を添加してなる1μ合物を前記した条
件と同様な方法で得たポリカルボシラン化合物(特公昭
57−266011、特開昭1i0−120725.特
公昭61−239:12) ■前記■または■のポリカルボシラン類のうちから選ば
れる少なくとも一種の化合物100重晴部に対し、 (1)一般式(OR7)4(但し、M、 R’は前記に
同じ)で示される金属化合物 (2)一般式(OR7)。(但し、M、It’は前記に
同じ)から選ばれる少なくとも一種の金属化合物と(C
,、I+5)2si (叶)2とを1:2のモル比で混
合・加熱して得られるポリメタロシロキサン の2種の群から選ばれる少なくとも一種の化合物0.1
〜!5屯に部を添加してなる混合物を、不活性ガス雰囲
気中で100〜300℃の温度で重合反応させて得られ
た珪素と炭素を主骨格成分とするポリカルボシラン化合
物(特開昭56−74126、特開昭56−9292:
l、特開昭56−5828、特開昭56−1:]162
8)、また有機シラザン重合体としては、 ■メチルジクロロシラン、メチルトリクロロシランに、
史にジメチルジクロロシランあるいはド記般式 %式% (イ11シ、11’は塩素、!;!素、メチルJ、t、
エチル」、し、フェニル基、1(9は水素、塩素、臭素
、メチル基、エチル基、フェニルJ^、1(10および
1(目水素、メチルJ^、Xは塩素、臭素をそれぞれ示
す)で表される珪素化合物との混合物とアンモニアとを
反応させて1!−らねるアンモノリシス生成物を、更に
脱プロトン化がuJ能な塩」^性触媒により混合させて
Illられるシラザン!■合体などが例示される。
■ Cyclic polysilane represented by the general formula (R1R2Si) n (where n is at least 4 or more, and rtl and R2 each represent any one of hydrogen, an alkyl group, a phenyl group, and a silyl group) or a general formula % formula %) linear polysilane (where n is at least 30
An organosilicon compound having a polysilane skeleton selected from the group consisting of hydrogen, an alkyl group, a phenyl group, and a silyl group, in which R' and R2 each represent one of hydrogen, an alkyl group, a phenyl group, and a silyl group, is heated in a non-oxidizing atmosphere. Polycarbosilane whose main skeleton components are silicon and carbon obtained by thermal decomposition 1 reaction at a temperature of 300 to 600°C (Japanese Patent Publication No. 57-26527) (1) Any one selected from boric acid, boric anhydride, boric acid metal salts, Nisdel borate and ([:,, I+
,,) A semi-inorganic compound obtained by mixing and heating 2Siel□ at a molar ratio of 2:3, (2) A compound represented by the general formula % (-RhoN-)3, (However, l
(3, P are monovalent hydrocarbon groups, (-(:+12
-)llsi(R'')3 (n is an integer, port 5 is a monovalent hydrocarbon group) or -N(R7)2 group (nl+ indicates hydrogen atom Y'' or monovalent hydrocarbon 1) (: 1) -Ft formula (on7), (however, Ti is
7. r, 1di represents a monovalent hydrocarbon group) and (Cr, 1li) zsi
At least one compound selected from the following three groups: polymetallosiloxane obtained by mixing and heating 2 and 2 at a molar ratio of 1:2.
A polycarbosilane compound obtained by adding 111 parts of ~15 1μ compound under the same conditions as described above (Japanese Patent Publications No. 57-266011, No. 120725 No. 120725, No. 61-239:12) ■For every 100 parts of at least one compound selected from the polycarbosilanes of ■ or ■ above, (1) a metal represented by the general formula (OR7) 4 (where M and R' are the same as above); Compound (2) General Formula (OR7). (However, M, It' are the same as above) and at least one metal compound selected from (C
,,I+5)2si(Kano)2 at a molar ratio of 1:2 and heating at least one compound selected from two groups of polymetallosiloxanes 0.1
~! A polycarbosilane compound having silicon and carbon as main skeleton components obtained by polymerizing a mixture obtained by adding 5 parts to -74126, JP-A-56-9292:
l, JP-A-56-5828, JP-A-56-1: ] 162
8), and as organic silazane polymers, ■Methyldichlorosilane, methyltrichlorosilane,
Dimethyldichlorosilane or the general formula % (I11, 11' is chlorine, !;! elementary, methyl J, t,
Ethyl", phenyl group, 1 (9 is hydrogen, chlorine, bromine, methyl group, ethyl group, phenyl J^, 1 (10 and 1 (eyes hydrogen, methyl J^, X represent chlorine and bromine, respectively) A mixture of a silicon compound represented by the formula and ammonia is reacted to produce a 1!-stranded ammonolysis product, which is further mixed with a salt catalyst capable of deprotonation to produce a silazane!■ coalescence, etc. is exemplified.

これらのポリカルボシラン類あるいは有機シラザン市合
体はいずれも有意差はないかマトリックスとの界面の接
合強度を高く維持する1bにはポリマー中に含まれる酸
素台!11の少ない方が望ましい。またポリマーの分i
−呈は5,000以にでは溶剤に溶けにくくなり、F[
つ重合反応のル制御も容易でなくなる為5,000以ト
が望ましく、800以トーでは成型体を加熱・焼成する
過程でポリ7−が揮散・消失して本発明の効力が失われ
てくるので好まし〈ない。特に好ましくは分子−r+L
 l 、Ooo〜4,500の範囲である。
Is there any significant difference between these polycarbosilanes or organic silazane combinations? 1b maintains a high bonding strength at the interface with the matrix because of the oxygen contained in the polymer! The lower the number of 11, the better. Also, the polymer fraction i
- When the temperature is higher than 5,000, it becomes difficult to dissolve in solvents, and F[
5,000 or more is desirable because it becomes difficult to control the polymerization reaction, and if it is more than 800, poly 7- volatilizes and disappears during the process of heating and firing the molded product, and the effectiveness of the present invention is lost. So I don't like it. Particularly preferably the molecule -r+L
l, ranging from Ooo to 4,500.

次に使用される溶剤としてはポリカルボシラン類または
有機シラザン川合体をト分に溶解させるものであれば何
でもよいが、取り扱い上沸点が50〜200℃の範囲の
溶剤が望ましい。
The next solvent to be used may be any solvent as long as it can dissolve the polycarbosilanes or the organic silazane polymer, but a solvent with a boiling point in the range of 50 to 200 DEG C. is preferable for handling reasons.

ト記ポリマーの濃度はウィスカー成型体の保形性を十分
持たせるような濃度であれば範囲は限定されないが、0
 、 l ITI に%以下では保形性が十分でなく、
20%以上では溶液の粘度が高くなって取り扱いが難し
くなる1)、好ましくは0.1〜20%が良い。
The concentration of the polymer mentioned above is not limited in its range as long as it has a sufficient shape retention property of the whisker molded product, but the range is not limited to 0.
, If the ITI is less than %, the shape retention is insufficient,
If it exceeds 20%, the viscosity of the solution becomes high and it becomes difficult to handle 1), and preferably 0.1 to 20%.

ウィスカーの分散は上記ポリマー溶液中にそのまま投入
すればよいが、ウィスカー同志が絡み合い、大きな塊状
物となっている場合には溶液が含浸しやすいように適宜
機械的な解砕処理を行う必要がある。ウィスカー投入後
は溶液の含浸を短時間に、また均一に行う為に、適当な
攪拌装置にて攪拌を行うことが良い。
Whiskers can be dispersed by simply adding them into the polymer solution, but if the whiskers are entangled and form large lumps, it is necessary to mechanically disintegrate them as appropriate to make it easier for them to be impregnated with the solution. . After adding the whiskers, it is preferable to stir them using a suitable stirring device in order to uniformly impregnate the whiskers in a short time.

次にウィスカー分散溶液をろ過装置に流入する。ろ過は
ろ過機能を備えたプラスチック、金属、合金、セラミッ
クスなどの細孔を有する構造の型内で行うが、必要に応
じて型内にろ紙、ろイ11、金属フィルター、セラミッ
クスフィルター等のる材を設置してもよい。またろ過は
當圧で行ってもよいが、複合化の際のVr値(’を一位
体積当たりの繊維容:■1)を考慮して所望の密度とな
るように加圧下で行うことが望ましい。ろ過終了後は溶
剤を除人する1−1的でウィスカーの乾燥を行うが、後
の焼成工程で乾燥できる為にこの工程を省いても差し支
えない。乾燥は型内からウィスカーを取り出して行って
も良いが、変形を防ぐ為に型のまま乾燥することが望ま
しい。また常温・大気圧下で乾燥させれば良いが、史に
短時間で乾燥する1〜には加熱及び減圧下で行っても良
い。
The whisker dispersion solution then flows into the filtration device. Filtration is performed in a mold with a pore structure made of plastic, metal, alloy, ceramic, etc. with a filtration function, but if necessary, a material such as filter paper, filter 11, metal filter, ceramic filter, etc. may be added to the mold. may be installed. Although filtration may be performed under pressure, it is recommended to take into account the Vr value (fiber volume per unit volume: ■1) during compositing and perform it under pressure to achieve the desired density. desirable. After filtration, the whiskers are dried in a 1-1 step to remove the solvent, but since they can be dried in the subsequent firing step, this step can be omitted. Drying can be carried out by removing the whiskers from the mold, but it is preferable to dry them in the mold to prevent deformation. Further, it is sufficient to dry at room temperature and atmospheric pressure, but in cases 1 to 1 which require drying in a short period of time, heating and reduced pressure may be performed.

次いで乾燥後のウィスカーに残存するポリマーを無機化
させ、ウィスカー成型体に保形強度を与え、空隙を有す
るようにする為に焼成を行う。焼成温度は酸化性ガス雰
pl気下、600℃以上で!!機化させウィスカー同志
を固着させる。600℃以下ではポリマーが十分に無機
化せずウィスカー同志の接合強度が高くないために保形
性が1分でない。また1500℃以上では炭化珪素また
は窒化珪素の焼結か始まり、成型体強度も徐々に低下す
る傾向となるので好ましくなく、経済的にも有利でない
。焼成にあたってはウィスカーを成型する際に使用した
型は焼成する温度に耐える材質のものであれば、乾燥か
ら焼成までこの型をそのまま使用しても差し支えない。
Next, baking is performed in order to inorganize the polymer remaining in the whiskers after drying, give shape-retaining strength to the whisker molded body, and create voids. The firing temperature is 600℃ or higher in an oxidizing gas atmosphere! ! Mechanize it and fix Whisker comrade. At temperatures below 600° C., the polymer is not sufficiently mineralized and the bonding strength between the whiskers is not high, resulting in shape retention of less than 1 minute. Moreover, if it is higher than 1500°C, sintering of silicon carbide or silicon nitride will begin, and the strength of the molded body will tend to gradually decrease, which is not preferable and is not economically advantageous. During firing, as long as the mold used to mold the whiskers is made of a material that can withstand the firing temperature, the mold may be used as is from drying to firing.

次に本発明に使用されるポリカルボシラン類及び有機シ
ラザン市合体の製造方法を示す参考例、及び本発明の実
施例をあげて説明する。
Next, reference examples showing methods for producing polycarbosilanes and organic silazane composites used in the present invention and examples of the present invention will be described.

参考例1゜ 金属ナトリウム2.3 Kg (100モル)とキシレ
ン+1とを110℃に加熱し、激しく攪拌しながらこれ
にジメチルジクロロシラン6.5にgを3時間かけて徐
々に滴下し、キシレンの弱い通流下に反応させ、反応後
沈殿物をろ過した。水で6回洗浄したところジメチルポ
リシラン[(c++:+)2sD、、の白色粉末2.5
にg(収率86%)を、得た。
Reference Example 1゜ 2.3 kg (100 mol) of metallic sodium and xylene +1 were heated to 110°C, and 6.5 g of dimethyldichlorosilane was gradually added dropwise over 3 hours to this while stirring vigorously, and xylene was added. After the reaction, the precipitate was filtered. After washing 6 times with water, a white powder of dimethylpolysilane [(c++:+)2sD, 2.5%
g (yield 86%) was obtained.

参考例2゜ 参考例1で合成された鎖状ポリシラン100gを三ツ1
1フラスコに入れ、攪拌機、温度計、及び′や素環入管
を取り付ける。系内を゛や素で置換した後10℃/hの
シを温速度で420℃まで昇温し420℃で5時間保持
して反応を終Yした。38gの褐色のポリカルボシラン
を得た。
Reference Example 2゜ 100g of linear polysilane synthesized in Reference Example 1 was added to three
1 Place in a flask and attach a stirrer, a thermometer, and a ring tube. After replacing the inside of the system with nitrogen and hydrogen, the temperature was raised to 420°C at a rate of 10°C/h and maintained at 420°C for 5 hours to complete the reaction. 38 g of brown polycarbosilane was obtained.

参考例3゜ 参考例1で得たジメチルポリシラン200gとB−トリ
メチル−N−トリフェニルボラジン20gとを温度計、
揮発性ガス留出排管、攪拌機および不活性ガス導入管を
取り付けた四ツ[−1フラスコに仕込み加熱したところ
、250℃位から熱分解1r合反応が始まり、揮発性成
分の発生と共に透明な液体となったが、さらにこの温度
を徐々に)−Hさせて380℃で2時間反応を行わせた
のち冷却したところ、融点が135〜142℃である黄
緑色透明な樹脂状物+4:l g (収−165%)が
1”−1’J h タが、コh ハS i41.3%、
  8 1.2:1%、N  1.50%テSi:B=
12.9:lのモル比で、B、Nを理論−七近く含有す
る有機金属共重合体であった。
Reference Example 3 200 g of dimethylpolysilane obtained in Reference Example 1 and 20 g of B-trimethyl-N-triphenylborazine were mixed with a thermometer,
When heated in a four-piece flask equipped with a volatile gas distillation exhaust pipe, a stirrer, and an inert gas inlet pipe, thermal decomposition 1r reaction started at about 250°C, and as volatile components were generated, a transparent gas was formed. It became a liquid, but when this temperature was gradually raised to )-H and the reaction was carried out at 380°C for 2 hours and then cooled, a yellow-green transparent resinous substance with a melting point of 135-142°C +4:1 was obtained. g (Yield -165%) is 1"-1'J h Ta is Koh Ha Si41.3%,
8 1.2:1%, N 1.50%TeSi:B=
It was an organometallic copolymer containing approximately -7 theoretical amounts of B and N at a molar ratio of 12.9:l.

参考例4゜ アンモノリシスTI! [メチルジクロロシラン:メチルトリクロロシラン:ジ
メチルジクロロシラン=75: 15: 10 (モル
%)] 攪拌機、温度計、N112導入管、深冷コンデンサーを
装備し、乾燥したIIlの四ツ目フラスコにヘキサン8
50mj2を仕込んだ後、メチルジクロロシラン4:]
、Ig、メチルトリクロロシランl+、2g、ジメチル
ジクロロシラン6.5gを加え、−20℃に冷却した。
Reference example 4゜Ammonolysis TI! [Methyldichlorosilane: methyltrichlorosilane: dimethyldichlorosilane = 75: 15: 10 (mol %)] Hexane 8 was placed in a dry four-eye IIl flask equipped with a stirrer, a thermometer, an N112 inlet tube, and a deep cooling condenser.
After charging 50mj2, methyldichlorosilane 4:]
, Ig, 2 g of methyltrichlorosilane l+, and 6.5 g of dimethyldichlorosilane were added, and the mixture was cooled to -20°C.

過剰の気体状アンモニアを12ffi/llrの速度で
4時間この溶液に加えた(NI+3全添加量2.1モル
)。この反応混合物を室温まで温め、その際未反応N1
13が逃げられるよう冷却器を空冷凝縮器に変えた。次
に、ドライボックス中で反応混合物から副生じた塩化ア
ンモニウムをろ過により除去した。史にケークを200
11IILのヘキサンで洗浄し、ろ液から減圧下(60
℃/ 1 mmtlg)においてヘキサンをストリップ
した。残留物(アンモノリシス生成物)は透明な流動性
の液体て、26gを得た。
Excess gaseous ammonia was added to this solution at a rate of 12ffi/llr for 4 hours (total addition of NI+3 2.1 moles). The reaction mixture was warmed to room temperature while unreacted N1
The cooler was changed to an air-cooled condenser so that 13 could escape. Next, by-product ammonium chloride was removed from the reaction mixture by filtration in a dry box. 200 cakes in history
Wash with 11 IIL of hexane, and extract the filtrate under reduced pressure (60
The hexane was stripped at 0.degree. C./1 mmtlg). The residue (ammonolysis product) was a clear fluid liquid, and 26 g was obtained.

亜介工習 :100mfiの五ツ11フラスコに攪拌機、温度計、
滴トロートをとりつけ、ドライボックス中で水素化カリ
ウム0.2 g (5ミリモル)及びNal!で脱水処
理した口IF 125mMをフラスコに注入した。この
フラスコをトライボックス中よりとり出し、窒素管路に
連結した。常温下、混合物を攪拌してに11を分散させ
ながら滴Fロートより TIIF 75mQに溶解した
アンモノリシスト程で得られた生成物10gを15分か
けてゆっくりと加えた。この添加の間に大:IThの気
体の発生がみられ、1時間後に気体の発生が停止1−シ
た。沃化メチル3gを加えるとに1の白色沈殿が牛した
。更に30分間攪拌後、大部分のTIIF溶媒を減圧で
除去し、残留する白色スラリーに80 mlのへキサン
を加えた。この混合物をろ過し、ろ液を減圧F (1n
onllg) 70℃にてヘキサンを除去すると、9.
1gの粘稠固体(シラザン市合体)がj!tられた。
Asuke training: 100 mfi five 11 flasks, stirrer, thermometer,
A droplet tube was placed in a dry box containing 0.2 g (5 mmol) of potassium hydride and Nal! 125 mM of dehydrated IF was injected into the flask. This flask was taken out of the try box and connected to a nitrogen pipe. At room temperature, while stirring the mixture and dispersing 11, 10 g of the product obtained by dissolving ammonolycyst in 75 mQ of TIIF was slowly added over 15 minutes from a dropping funnel. During this addition, evolution of large ITh gas was observed, and the gas evolution stopped after 1 hour. When 3 g of methyl iodide was added, a white precipitate appeared. After stirring for an additional 30 minutes, most of the TIIF solvent was removed under reduced pressure and 80 ml of hexane was added to the remaining white slurry. This mixture was filtered and the filtrate was collected under reduced pressure F (1n
onllg) When hexane is removed at 70°C, 9.
1g of viscous solid (silazane city combination) is j! I was beaten.

このものは固イ1゛粘度(ベンゼン、20℃) 0.0
7、融点90℃で、ヘキサン、ベンゼン、 TIIF及
びその他の有機溶媒に可溶性であった。また、11犬か
らは3400cl ’にN11.2980cm−’にC
−H、2150cm−1に5i−11,1260cm−
’に5iCI1.の各々の吸収が認められた。また、ヘ
ンゼン凝固点降F法による分子’+t fl!’1定で
は1020であった。
This stuff is hard.Viscosity (benzene, 20℃) 0.0
7. It had a melting point of 90°C and was soluble in hexane, benzene, TIIF and other organic solvents. Also, from 11 dogs, 3400cl' was N11.2980cm-'C
-H, 2150cm-1 to 5i-11, 1260cm-
' to 5iCI1. Absorption of each of these was observed. In addition, the molecule '+t fl! by the Hensen freezing point depression F method is calculated. '1 constant was 1020.

参考例5゜ アンモノリシス[シ [メチルジクロロシラン:メチルトリクロロシラン:1
.2−ビス(メチルジクロロシリル)エタン=75: 
10: 15 (モル%)]攪拌機、温度計、Nl+、
3導入管、深冷コンデンサーを装備し、乾燥したiIL
の四ツ目フラスコにヘキサン850II1.I2を仕込
んだ後、メチルジクロロシラン4:1.Ig、メチルト
リクロロシラン7.5 g、 1.2−ビス(メチルジ
クロロシリル)エタン19.2gを加え、−20℃に冷
却した。過剰の気体状アンモニアを45 Q /llr
の速度で1.5時間このf8液に加えた(N11.全添
加−13,0モル)。この反応混合物を室温まで温め、
その際未反応N113が逃げられるよう冷n1器を空冷
凝縮器に変えた。次に、トライボックス中で反応(μ合
物から副生じた塩化アンモニウムをろ過により除去した
。史にケークを200+++1のヘキサンで洗浄し、ろ
液から減圧下(60℃/1mlmm1lにおいてヘキサ
ンをストリップした。残留物(アンモノリシス生成物)
は透明な流動性の液体で、31gを得た。
Reference Example 5 Ammonolysis [Methyldichlorosilane: Methyltrichlorosilane: 1
.. 2-bis(methyldichlorosilyl)ethane = 75:
10: 15 (mol%)] Stirrer, thermometer, Nl+,
Equipped with 3 inlet tubes and deep-cooled condenser, dry iIL
Add hexane 850II1 to a four-eye flask. After charging I2, methyldichlorosilane 4:1. Ig, 7.5 g of methyltrichlorosilane, and 19.2 g of 1,2-bis(methyldichlorosilyl)ethane were added, and the mixture was cooled to -20°C. Excess gaseous ammonia at 45 Q/llr
was added to this f8 solution for 1.5 hours at a rate of (N11. total addition - 13.0 mol). The reaction mixture was warmed to room temperature and
At that time, the cold N1 reactor was replaced with an air-cooled condenser so that unreacted N113 could escape. Next, ammonium chloride, a by-product of the reaction (μ), was removed by filtration in a try box. The cake was washed with 200+1 hexane, and the hexane was stripped from the filtrate under reduced pressure (60° C./1 ml mm 1 liter). .Residue (ammonolysis product)
31 g of a clear fluid liquid was obtained.

血介工菫 :100m意の三ツ[lフラスコに攪拌機、温度計、滴
Fロートをとりつけ、ドライボックス中で水素化カリウ
ム0.2 g(5ミリモル)及びNa1lで脱水処理し
た°rllF 125 mlをフラスコに注入した。こ
のフラスコをドライボックス中よりとり出し、窒素管路
に連結した。常温F、混合物を攪拌して8+1を分散さ
せながら病上−ロートより TIIF 75mff1に
溶解したアンモノリシス工程で得られた生成物10gを
15分かけてゆっくりと加えた。この添加の間に人:I
(の気体の発生がみられ、1時間後に気体の発生が停止
F−シた。沃化メチル3gを加えるとに1の白色沈殿が
生じた。史に30分間攪拌後、大部分のTi1l’溶媒
を減圧で除去し、残留する白色スラリーに801nQの
ヘキサンを加えた。この混合物をろ過し、ろ液を減圧F
 (l mmmm1l 70℃にてヘキサンを除去する
と、9.1gの粘稠固体(シラザン!■合体)がIll
られた。
Kesukeiko Sumire: 125 ml of 100ml flask equipped with a stirrer, a thermometer, and a dropping funnel, and dehydrated with 0.2 g (5 mmol) of potassium hydride and 1l of Na in a dry box. was injected into the flask. This flask was taken out of the dry box and connected to a nitrogen pipe. At room temperature F, while stirring the mixture to disperse 8+1, 10 g of the product obtained in the ammonolysis step dissolved in 75 mff1 of TIIF was slowly added through a funnel over 15 minutes. During this addition person:I
After 1 hour, the gas evolution stopped. When 3 g of methyl iodide was added, a white precipitate of 1 was formed. After stirring for 30 minutes, most of the Ti1l' The solvent was removed under reduced pressure and 801 nQ of hexane was added to the remaining white slurry. The mixture was filtered and the filtrate was removed under reduced pressure at F.
(l mmmm1 l When hexane is removed at 70°C, 9.1 g of viscous solid (silazane! ■ combined) is
It was done.

このものは固有粘度(ベンゼン、20℃) 0.06、
融点90℃で、ヘキサン、ベンゼン、 TIIF及びそ
の他の有機溶媒に可溶性であった。また、IRからは:
1400cm−’にN11.2980cm−’にC−1
t 、 2150cm−’にSi−■、1260cm−
’に5iC1l、の各々の吸収が認められた。また、ベ
ンゼン凝固点降下法による分子量測定では++joであ
った。
This product has an intrinsic viscosity (benzene, 20°C) of 0.06,
It has a melting point of 90°C and is soluble in hexane, benzene, TIIF and other organic solvents. Also, from IR:
N11 at 1400cm-'. C-1 at 2980cm-'
t, 2150 cm-', Si-■, 1260 cm-
Absorption of 5iC1l was observed in '. Furthermore, the molecular weight was determined to be ++jo by benzene freezing point depression method.

実施例!。Example! .

参考例2で得たポリカルボシランtoo gをキシレン
900gに溶解させ10重驕%の溶液を得た。この溶液
中に炭化けい素ウィスカー78gを投入し、攪拌装置を
用いて30分間攪拌し均一に分散させた。次にこの分散
液を内寸:]Oma+X 30mmを有し、底部に細孔
を備えた肉厚の角型金属製容器に入れろ過し、その後そ
のままの状態でケークの上部から約150にg/cm2
にて圧縮プレスし成形した。次いで乾燥のlbにウィス
カーの入った金属製容器をそのまま箱71.Ij電気炉
内に入れ、静ガス中にて200℃で1時間乾燥を行った
。冷却?&2金属性容器からウィスカー成形体を取り出
し、箱形電気炉内にて静雰囲気中、大気圧Fで800℃
にて1時間焼成を行った後、取り出したところ:lOx
 ]Ox 150 mmでvr値l IS 、 0%の
ウィスカー成形体が1iiられた。この成形体は端部の
欠損などがなく、極めて取扱い易い成形体であった。こ
のようにし・て得られたウィスカー成形体を支点間距g
loomI11の3点曲げ強度測定機にて、強度を測定
したところ15にg/C112という高い強度を備えた
ウィスカー成形体であった。
Too g of the polycarbosilane obtained in Reference Example 2 was dissolved in 900 g of xylene to obtain a 10% by weight solution. 78 g of silicon carbide whiskers were added to this solution and stirred for 30 minutes using a stirring device to uniformly disperse the mixture. Next, this dispersion was filtered into a thick square metal container with an inner dimension of Oma+X 30 mm and a pore at the bottom, and then left as it was to give about 150 g/g/ml from the top of the cake. cm2
It was compressed and molded. Next, the metal container containing the whiskers was placed in the dry lb box 71. It was placed in an Ij electric furnace and dried at 200° C. for 1 hour in static gas. cooling? &2 Take out the whisker molded body from the metal container and heat it at 800°C at atmospheric pressure F in a static atmosphere in a box-shaped electric furnace.
After firing for 1 hour at
] Ox 150 mm, vr value l IS , 0% whisker molded body 1ii was produced. This molded product had no damage at the edges and was extremely easy to handle. The whisker molded body obtained in this way is
The strength was measured using a room I11 three-point bending strength measuring machine, and the whisker molded product had a high strength of 15g/C112.

実施例2゜ 実施例1で得られたウィスカー成形体を鋳型内に設置し
、鋳型を約500℃に保った。その後800℃のアルミ
ニウム合金(^C4G)溶湯を注入し、1000にg/
Cl112にて高圧鋳造を行い角柱状の複合体を得た。
Example 2 The whisker molded product obtained in Example 1 was placed in a mold, and the mold was maintained at about 500°C. After that, molten aluminum alloy (^C4G) at 800℃ was injected and the temperature reached 1000g/
High-pressure casting was performed using Cl112 to obtain a prismatic composite.

この複合体の引張強度を測定したところ61Kg/mm
2、弾性率+0.5 L/ma+2であった。次にその
複合体の破断面を電子顕微鏡にて観察した結果、不良介
在物の存在及びボイドの形成は全くみとめられなかった
The tensile strength of this composite was measured and was 61Kg/mm.
2, the elastic modulus was +0.5 L/ma+2. Next, the fractured surface of the composite was observed under an electron microscope, and no defective inclusions or void formation was found at all.

実施例3〜10゜ 実施例1に示す成形条件及びポリカルボシラン溶液中の
ポリカルボシラン濃度を第1表に示し□たとおりに変え
た以外は実施例1に示すのと同様一方法でウィスカー成
形体を作成し、3点曲げ強度を測定したところ第1表に
示したとおりの高い値を示すものであった。更に実施例
3.5及び6の成形体をへ1合金(八C4C)で複合化
し引張強度を測定し、第1表に示したような高強度複合
体を得ることが出来た。
Examples 3 to 10° Whiskers were produced in the same manner as in Example 1, except that the molding conditions and the polycarbosilane concentration in the polycarbosilane solution were changed as shown in Table 1. A molded product was prepared and its three-point bending strength was measured, and it showed high values as shown in Table 1. Further, the molded bodies of Examples 3.5 and 6 were composited with He1 alloy (8C4C) and the tensile strength was measured, and high strength composites as shown in Table 1 could be obtained.

実施例11〜+2゜ 実施例1に示したポリカルボシラン溶液に変えて参考例
2で得られたポリカルボシラン及び参考例3.4で得ら
れた有機シラザン1重合体を使用した以外は実施例1に
示した方法と同様な方法でウィスカー成形体を作成し、
成形体の3点曲げ強度を測定したところ第2表に示した
とおりの高い値を示すものであった。
Example 11~+2゜Execution except that the polycarbosilane obtained in Reference Example 2 and the organosilazane monopolymer obtained in Reference Example 3.4 were used instead of the polycarbosilane solution shown in Example 1. A whisker molded body was created using a method similar to that shown in Example 1,
When the three-point bending strength of the molded product was measured, it showed high values as shown in Table 2.

第  2  表 比較例 1゜ 実施例1に示すポリカルボシラン溶液にウィスカーを浸
11°1せずに成Jl、+71.た以外は実施例1に示
したのと同様な方法てVf(/f17.5%のウィスカ
ー成形体を作成し、3点曲げ強度を4!1定したところ
1.5K)<7cm2と低いものであった。
Table 2 Comparative Example 1° Whiskers were immersed in the polycarbosilane solution shown in Example 1 at 11°1 and formed Jl, +71. A whisker molded body with Vf (/f 17.5%) was prepared in the same manner as shown in Example 1, and the three-point bending strength was determined to be 4!1, which was 1.5K) <7 cm2. Met.

比較例2゜ 比較例!で得られたウィスカー成形体を実施例2に示し
たのと同様な方法で複合体を作成した。
Comparative example 2゜Comparative example! A composite body was prepared using the whisker molded body obtained in the same manner as shown in Example 2.

その複合体を破断した後、その破断面を電r−顕微鏡に
て観察した結果、ボイドの形成が認められ、またウィス
カーが均一に分散しておらず良好な複合体は得られなか
った。
After the composite was fractured, the fractured surface was observed using an electron microscope. As a result, the formation of voids was observed, and the whiskers were not uniformly dispersed, making it impossible to obtain a good composite.

[発明の効果] このようにして得られたウィスカー成型体はバインダー
を使用せずに加圧成撃のみで得られる成型体に比較して
、その保形性に優れており、また汎用樹脂をバインダー
として使用した成型体よりもウィスカー同志の接合強度
が高い為に保形性が極めて良好であって、溶融マトリッ
クスの圧入に際しても変形がなく、複合体中への均質な
複合化が確保出来°る4r利性が′jえられる。またウ
ィスカーの表面に生成された無機化物質は炭化珪素質ま
たは窒化珪素質であってマトリックスとの≦され性が良
いムに、マトリックスの侵入が良く、またウィスカー同
志が僅かに絡み合った部分にも浸透してその部分で炭化
珪素質または窒化珪素質物質が生成して埋めてしまう1
)に、複合体を製造した際にも欠陥となることがなく、
強度の高い複合材料を得ることができる。
[Effects of the invention] The whisker molded product obtained in this way has excellent shape retention compared to a molded product obtained only by pressurized molding without using a binder, and it is also easy to use general-purpose resin. Because the bonding strength between the whiskers is higher than that of the molded product used as a binder, the shape retention is extremely good, and there is no deformation when the molten matrix is press-fitted, ensuring homogeneous compounding into the composite. The 4r advantage is obtained. In addition, the inorganic substance generated on the surface of the whiskers is silicon carbide or silicon nitride, which has good compatibility with the matrix, and allows the matrix to penetrate easily. It penetrates and forms silicon carbide or silicon nitride substances in that area, filling it up.
), there will be no defects when the composite is manufactured, and
A composite material with high strength can be obtained.

Claims (1)

【特許請求の範囲】 1、有機珪素ポリマーを含む有機溶媒溶液中にウィスカ
ーを分散させ、次いでこの分散液をろ過して得たケーキ
をそのまま、あるいは加圧成型後、非酸化性雰囲気下に
加熱・焼成して有機珪素ポリマーを無機化させ、ウィス
カー表面およびウィスカー接合部にセラミック質物質を
生成させることを特徴とするウィスカー成型体の製造方
法。 2、ウィスカーが、炭化珪素または窒化珪素であること
を特徴とする特許請求の範囲第1項記載の製造方法。 3、有機珪素ポリマーが、一般式(R^1R^2Si)
_nで示される環状ポリシラン(但し、nは少なくとも
4以上、R^1、R^2はそれぞれ水素原子、アルキル
基、フェニル基、シリル基のうちのいずれか▲数式、化
学式、表等があります▼ で示される鎖状ポリシラン(但し、nは少なくとも30
以上、R^1、R^2はそれぞれ水素原子、アルキル基
、フェニル基、シリル基のうちのいずれか一種を示す)
のうちより選ばれたポリシラン骨格を有する有機珪化合
物を不活性ガス雰囲気中で300〜600℃の温度で熱
分解重合反応させて得られた珪素と炭素とを主骨格成分
とするポリカルボシランであって、分子量が800〜5
,000の範囲であることを特徴とする特許請求の範囲
第1項または第2項に記載の方法。 4、有機珪素ポリマーが、一般式(R^1R^2Si)
_nで示される環状ポリシラン(但し、n、R^1、R
^2はそれぞれ前記に同じ)または、 ▲数式、化学式、表等があります▼ で示される鎖状ポリシラン(但し、n、R^1、R^2
はそれぞれ前記に同じ)のうちより選ばれたポリシラン
骨格を有する有機珪素化合物100重量部に対し、 (1)ホウ酸、無水ホウ酸、ホウ酸金属塩、ホウ酸エス
テルのうちから選ばれるいずれか一種と(C_6H_5
)_2SiCl_2とを2:3のモル比で混合・加熱し
て得られるセミ無機化合物、 (2)一般式 ▲数式、化学式、表等があります▼で示される化合物、 (但しR^3R^4はそれぞれ1価の炭化水素基、(−
CH_2−)_nSi(R^5)_3(nは整数、R^
5は1価の炭化水素基)または−N(R^6)_2基〔
R^6は水素原子または1価の炭化水素基〕を示す) (3)一般式(OR^7)、(但し、MはTi、Zr、
R^7は1価の炭化水素基を示す)から選ばれる少なく
とも一種の金属化合物と(C_6H_5)_2Si(O
H)_2とを1:2のモル比で混合・加熱して得られる
ポリメタロシロキサン、 の3種の群から選ばれる少なくとも一種の化合物0.1
〜15重量部を添加してなる混合物を不活性ガス雰囲気
気中で300〜600℃の温度で熱分解重合させて得ら
れた珪素と炭素とを主骨格成分とするポリカルボシラン
化合物であって、分子量が800〜5,000の範囲で
あることを特徴とする特許請求の範囲第1項または第2
項に記載の方法。 5、有機珪素ポリマーが、[1]一般式(R^1R^2
Si)_nで示される環状ポリシラン(但し、nは少な
くとも4以上、R^1、R^2はそれぞれ水素原子、ア
ルキル基、フェニル基、シリル基のうちのいずれか一種
を示す)または、一般式 ▲数式、化学式、表等があります▼ で示される鎖状ポリシラン(但し、nは少なくとも30
以上、R^1、R^2はそれぞれ水素原子、アルキル基
、フェニル基、シリル基のうちのいずれか一種を示す)
のうちより選ばれたポリシラン骨格を有する有機珪素化
合物を不活性ガス雰囲気中で300〜600℃の温度で
熱分解重合反応させて得られた珪素と炭素とを主骨格成
分とするポリカルボシラン化合物、および[2]前記ポ
リシラン骨格を有する有機珪素化合物100重量部に対
し、 (1)ホウ酸、無水ホウ酸、ホウ酸金属塩、ホウ酸エス
テルのうちから選ばれるいずれか一種と(C_6H_5
)_2SiCl_2とを2:3のモル比で混合・加熱し
て得られるセミ無機化合物、 (2)一般式 ▲数式、化学式、表等があります▼ で示される化合物、 (但しR^3、R^4はそれぞれ1価の炭化水素基、(
−CH_2−)_nSi(R^5)_3(nは整数、R
^5は1価の炭化水素基)または−N(R^6)_2基
〔R^6は水素原子または1価の炭化水素基〕を示す) (3)一般式(OR^7)_4(但し、MはTi、Zr
、R^7は1価の炭化水素基を示す)から選ばれる少な
くとも一種の金属化合物と(C_6H_5)_2Si(
OH)_2とを1:2のモル比で混合・加熱して得られ
るポリメタロシロキサン、 の3種の群から選ばれる少なくとも一種の化合物0.1
〜15重量部を添加してなる混合物を不活性ガス雰囲気
中で300〜600℃の温度で熱分解重合反応させて得
られた珪素と炭素とを主骨格成分とするポリカルボシラ
ン化合物から選ばれる少なくとも一種の化合物100重
量部に対し、(1)一般式(OR^7)_4(但し、M
、R^7は前記に同じ)で示される金属化合物、 (2)一般式(OR^7)_4(但し、M、R^7は前
記に同じ)から選ばれる少なくとも一種の金属化合物と
(C_6H_5)_2Si(OH)_2とを1:2のモ
ル比で混合・加熱して得られるポリメタロシロキサン、 の2種の群から選ばれる少なくとも一種の化合物0.1
〜15重量部を添加してなる混合物を、不活性ガス雰囲
気中で100〜300℃の温度で重合反応させて得られ
た珪素と炭素を主骨格成分とするポリカルボシラン化合
物であって、分子量が800〜5,000の範囲である
ことを特徴とする特許請求の範囲第1項から第4項まで
のいずれかに記載の方法。 6、有機珪素ポリマーが、メチルジクロロシラン、メチ
ルトリクロロシラン、ジメチルジクロロシランの混合物
とアンモニアとを反応させて得られるアンモノリシス生
成物を、更に脱プロトン化が可能な塩基性触媒により重
合させて得られる有機シラザン重合体であることを特徴
とする特許請求の範囲第1項または第2項に記載の方法
。 7、有機珪素ポリマーが、メチルジクロロシラン、メチ
ルトリクロロシラン、および下記一般式▲数式、化学式
、表等があります▼ (但し、R^8は塩素、臭素、メチル基、エチル基、フ
ェニル基、R^9は水素、塩素、臭素、メチル基、エチ
ル基、フェニル基、R^1^0およびR^1^1は水素
、メチル基、Xは塩素、臭素をそれぞれ示す)で示され
る珪素化合物との混合物とアンモニアとを反応させて得
られるアンモノリシス生成物を、更に脱プロトン化が可
能な塩基性触媒により重合させて得られる有機シラザン
重合体であることを特徴とする特許請求の範囲第1項ま
たは第2項に記載の方法。 8、有機珪素ポリマーを含む有機溶媒溶液中の有機珪素
ポリマー濃度が、0.1〜30重量%の範囲であること
を特徴とする特許請求の範囲第1項から第5項までのい
ずれかに記載の方法。 9、有機珪素ポリマーを無機化させる際の加熱・焼成す
る温度が、600〜1500℃の範囲であることを特徴
とする特許請求の範囲第1項から第6項までのいずれか
に記載の方法。 10、有機珪素ポリマーを無機化させる際の非酸化性雰
囲気が、アルゴン、窒素、ヘリウム、アンモニア、また
は一酸化炭素であることを特徴とする特許請求の範囲第
1項から第7項までのいずれかに記載の方法。 11、ウィスカー表面およびウィスカー接合部に生成す
るセラミック質物質が、炭化珪素質物質、窒化珪素質物
質またはその混合物であることを特徴とする特許請求の
範囲第1項から第8項までのいずれかに記載の方法。
[Claims] 1. Whiskers are dispersed in an organic solvent solution containing an organosilicon polymer, and then this dispersion is filtered to obtain a cake, which is heated as it is or after pressure molding in a non-oxidizing atmosphere. - A method for manufacturing a whisker molded body, which comprises firing to inorganicize an organic silicon polymer to generate a ceramic substance on the whisker surface and whisker joints. 2. The manufacturing method according to claim 1, wherein the whisker is silicon carbide or silicon nitride. 3. The organosilicon polymer has the general formula (R^1R^2Si)
Cyclic polysilane represented by __n (where n is at least 4, R^1 and R^2 are each a hydrogen atom, an alkyl group, a phenyl group, or a silyl group ▲ Numerical formula, chemical formula, table, etc. are available ▼ A linear polysilane represented by (where n is at least 30
In the above, R^1 and R^2 each represent one of a hydrogen atom, an alkyl group, a phenyl group, and a silyl group)
A polycarbosilane whose main skeleton components are silicon and carbon obtained by subjecting an organosilicon compound having a polysilane skeleton selected from among these to a thermal decomposition polymerization reaction at a temperature of 300 to 600°C in an inert gas atmosphere. The molecular weight is 800-5
3. A method according to claim 1 or claim 2, characterized in that it is in the range of ,000. 4. Organosilicon polymer has the general formula (R^1R^2Si)
Cyclic polysilane represented by __n (however, n, R^1, R
^2 are the same as above) or ▲There are mathematical formulas, chemical formulas, tables, etc.▼
are the same as above), per 100 parts by weight of an organosilicon compound having a polysilane skeleton selected from among (1) boric acid, boric anhydride, boric acid metal salts, and boric esters. One kind (C_6H_5
) A semi-inorganic compound obtained by mixing and heating _2SiCl_2 at a molar ratio of 2:3, (2) A compound represented by the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (However, R^3R^4 is Monovalent hydrocarbon group, (-
CH_2-)_nSi(R^5)_3 (n is an integer, R^
5 is a monovalent hydrocarbon group) or -N(R^6)_2 group [
R^6 represents a hydrogen atom or a monovalent hydrocarbon group] (3) General formula (OR^7), (where M is Ti, Zr,
R^7 represents a monovalent hydrocarbon group) and (C_6H_5)_2Si(O
H)_2 and polymetallosiloxane obtained by mixing and heating at a molar ratio of 1:2, at least one compound selected from the following three groups: 0.1
A polycarbosilane compound having silicon and carbon as main skeleton components obtained by thermally decomposing and polymerizing a mixture containing 15 parts by weight at a temperature of 300 to 600°C in an inert gas atmosphere, Claim 1 or 2, characterized in that the molecular weight is in the range of 800 to 5,000.
The method described in section. 5. The organosilicon polymer has the general formula [1] (R^1R^2
Si) cyclic polysilane represented by _n (where n is at least 4 and R^1 and R^2 each represent any one of a hydrogen atom, an alkyl group, a phenyl group, and a silyl group) or a general formula ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Chain polysilane shown by (however, n is at least 30
In the above, R^1 and R^2 each represent one of a hydrogen atom, an alkyl group, a phenyl group, and a silyl group)
A polycarbosilane compound whose main skeleton components are silicon and carbon obtained by subjecting an organosilicon compound having a polysilane skeleton selected from among these to a thermal decomposition polymerization reaction at a temperature of 300 to 600°C in an inert gas atmosphere. , and [2] 100 parts by weight of the organosilicon compound having a polysilane skeleton, (1) any one selected from boric acid, boric anhydride, boric acid metal salts, and boric acid esters and (C_6H_5
)_2 A semi-inorganic compound obtained by mixing and heating SiCl_2 at a molar ratio of 2:3, (2) A compound represented by the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (However, R^3, R^ 4 is a monovalent hydrocarbon group, (
-CH_2-)_nSi(R^5)_3 (n is an integer, R
^5 is a monovalent hydrocarbon group) or -N(R^6)_2 group [R^6 is a hydrogen atom or a monovalent hydrocarbon group]) (3) General formula (OR^7)_4( However, M is Ti, Zr
, R^7 represents a monovalent hydrocarbon group) and (C_6H_5)_2Si(
Polymetallosiloxane obtained by mixing and heating OH)_2 at a molar ratio of 1:2, at least one compound selected from the following three groups: 0.1
Selected from polycarbosilane compounds whose main skeleton components are silicon and carbon obtained by subjecting a mixture formed by adding ~15 parts by weight to a thermal decomposition polymerization reaction at a temperature of 300 to 600°C in an inert gas atmosphere. (1) General formula (OR^7)_4 (however, M
, R^7 is the same as above); (2) at least one metal compound selected from the general formula (OR^7)_4 (where M and R^7 are the same as above); and (C_6H_5 )_2Si(OH)_2 at a molar ratio of 1:2, polymetallosiloxane obtained by mixing and heating, at least one compound selected from the following two groups: 0.1
A polycarbosilane compound having silicon and carbon as main skeleton components obtained by polymerizing a mixture obtained by adding ~15 parts by weight at a temperature of 100 to 300°C in an inert gas atmosphere, and having a molecular weight of 5. A method according to any one of claims 1 to 4, characterized in that . 6. An organosilicon polymer is obtained by polymerizing an ammonolysis product obtained by reacting a mixture of methyldichlorosilane, methyltrichlorosilane, and dimethyldichlorosilane with ammonia using a basic catalyst capable of further deprotonation. 3. The method according to claim 1 or 2, wherein the method is an organic silazane polymer. 7. Organosilicon polymers include methyldichlorosilane, methyltrichlorosilane, and the following general formula ▲ Numerical formula, chemical formula, table, etc. ▼ (However, R^8 is chlorine, bromine, methyl group, ethyl group, phenyl group, R ^9 is hydrogen, chlorine, bromine, methyl group, ethyl group, phenyl group, R^1^0 and R^1^1 are hydrogen, methyl group, X is chlorine and bromine, respectively). Claim 1, characterized in that it is an organic silazane polymer obtained by polymerizing an ammonolysis product obtained by reacting a mixture of and ammonia with a basic catalyst capable of further deprotonation. or the method described in Section 2. 8. Any one of claims 1 to 5, characterized in that the concentration of the organosilicon polymer in the organic solvent solution containing the organosilicon polymer is in the range of 0.1 to 30% by weight. Method described. 9. The method according to any one of claims 1 to 6, characterized in that the heating and firing temperature during mineralization of the organosilicon polymer is in the range of 600 to 1500°C. . 10. Any one of claims 1 to 7, wherein the non-oxidizing atmosphere when mineralizing the organosilicon polymer is argon, nitrogen, helium, ammonia, or carbon monoxide. Method described in Crab. 11. Any one of claims 1 to 8, characterized in that the ceramic substance generated on the whisker surface and the whisker joint is a silicon carbide substance, a silicon nitride substance, or a mixture thereof. The method described in.
JP29320186A 1986-12-08 1986-12-08 Production of whisker formed body Pending JPS63145727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29320186A JPS63145727A (en) 1986-12-08 1986-12-08 Production of whisker formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29320186A JPS63145727A (en) 1986-12-08 1986-12-08 Production of whisker formed body

Publications (1)

Publication Number Publication Date
JPS63145727A true JPS63145727A (en) 1988-06-17

Family

ID=17791730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29320186A Pending JPS63145727A (en) 1986-12-08 1986-12-08 Production of whisker formed body

Country Status (1)

Country Link
JP (1) JPS63145727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990009461A2 (en) * 1989-02-15 1990-08-23 Technical Ceramics Laboratories, Inc. Shaped bodies containing short inorganic fibers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734080A (en) * 1980-08-04 1982-02-24 Nippon Carbon Co Ltd Manufacture of sintered body
JPS637344A (en) * 1986-06-27 1988-01-13 Tokai Carbon Co Ltd Production of whisker preform

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734080A (en) * 1980-08-04 1982-02-24 Nippon Carbon Co Ltd Manufacture of sintered body
JPS637344A (en) * 1986-06-27 1988-01-13 Tokai Carbon Co Ltd Production of whisker preform

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990009461A2 (en) * 1989-02-15 1990-08-23 Technical Ceramics Laboratories, Inc. Shaped bodies containing short inorganic fibers

Similar Documents

Publication Publication Date Title
US4869854A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
DE2736073C2 (en) Method for producing a dense silicon carbide body
EP0153008B1 (en) Preceramic organosilazane polymers
JPS6353293B2 (en)
JP2002514996A (en) Ceramic material composed of hydride siloxane-based ceramic precursor and metal and / or ceramic powder
US6884861B2 (en) Metal nanoparticle thermoset and carbon compositions from mixtures of metallocene-aromatic-acetylene compounds
DE4217579A1 (en) Process for the production of polysilazanes
CA1281477C (en) Method for converting si-h containing polysiloxanes to new and useful preceramic polymers and ceramic materials
JPS6197357A (en) Silicon carbide precursor composition
US4948763A (en) Preparation of hollow ceramic fibers
KR940007325B1 (en) Process for preparation of polysila methylrenosilane
EP0342673B1 (en) Process for producing a shaped boron nitride product
Li et al. Preparation of Si–C–N–Fe magnetic ceramics from iron‐containing polysilazane
JPH06128035A (en) Silicon filled polymer precursor for sic-a1n ceramic
CA1225511A (en) Branched polysilahydrocarbon precursors for silicon carbide
JPS63145727A (en) Production of whisker formed body
JP2004509126A (en) Silicon boron carbonitride ceramics and precursor compounds, their preparation and use
JPH02194028A (en) Polysubstituted chlorinated silazane polymer, its preparation, silicon nitride ceramic material which can be produced from said polymer, and manufacture of said ceramic material
EP0361181B1 (en) Infusibilization of organic silazane polymers and preparation of hollow ceramic fibers
JPH02175658A (en) New ceramic composition, production thereof and forming assistant
JPS59232811A (en) Preparation of aromatic polyamide-imide resin molding
JPH02248378A (en) High-strength complex ceramics, preparation thereof and use thereof
JPH0581556B2 (en)
JPH0251530A (en) Polysilazane, its preparation its use as precursor of ceramic and said ceramic
JPH02194025A (en) Polymeric chlorosilazane, preparation thereof, ceramic material which contains silicon nitride and can be produced therefrom, and manufacture of said ceramic material