JPS6238209A - Degasifying treatment process of high viscosity fluid under reduced pressure - Google Patents

Degasifying treatment process of high viscosity fluid under reduced pressure

Info

Publication number
JPS6238209A
JPS6238209A JP17786885A JP17786885A JPS6238209A JP S6238209 A JPS6238209 A JP S6238209A JP 17786885 A JP17786885 A JP 17786885A JP 17786885 A JP17786885 A JP 17786885A JP S6238209 A JPS6238209 A JP S6238209A
Authority
JP
Japan
Prior art keywords
container
fluid
vessel
slurry
high viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17786885A
Other languages
Japanese (ja)
Inventor
Yukinori Kawamura
幸則 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP17786885A priority Critical patent/JPS6238209A/en
Publication of JPS6238209A publication Critical patent/JPS6238209A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove efficiently under low temperature the gas mixed and solved in the high viscosity fluid by moving gradually the fluid from the first vessel to the second vessel under reduced pressure. CONSTITUTION:With the cock 6 closed, an adequate quantity of high viscosity fluid to be degasified is put into the first vessel 1, and after the opening being completely closed with the rubber stopper 4 and also the cock 6a and 8 being closed to drive the air exhauster 10, the connecting device is depressurized by opening the cock 8. Next, the first vessel 1a and the second vessel 2a are moved and rotated on the same level supported by the center of clamp 3 connecting the branching tubes 1a and 2a. The slurry in the first vessel 1 flows through the connected branching tube 1a and 2a and fills up gradually the second vessel 2. As the slurry flow-line is depressurized down to around 5- 10cmHg, degasification is carried out efficiently while the slurry flows through the line.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は気体が混入もしくは溶存している高粘性流体を
減圧脱気処理する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method for degassing a highly viscous fluid in which gas is mixed or dissolved under reduced pressure.

〔従来技術とその問題点〕[Prior art and its problems]

例えばセラミック板などを製造するとき、通常原料粉体
、有機バインダー、可塑剤、解膠剤、溶剤からなる高粘
性のスラリーを用いて例えばドクターブレード法などl
こよりグリーンシートに成形した後、高温で焼成するか
このスラリーを製造する過程で空気などの気体が混入も
しくは溶存しやすく、一旦混入もしくは溶存した気体は
スラIJ−が高い粘性をもっているため、短時間のうち
には外部に放出され難いという問題が古くからある。
For example, when manufacturing ceramic plates, etc., a highly viscous slurry consisting of raw material powder, an organic binder, a plasticizer, a deflocculant, and a solvent is usually used, such as by the doctor blade method.
After forming the slurry into a green sheet, it is fired at a high temperature or during the process of manufacturing this slurry, gases such as air are likely to be mixed in or dissolved, and once mixed or dissolved, the slurry will not last for a short time because the slurry has a high viscosity. There has been a long-standing problem that it is difficult for internal substances to be released to the outside.

スラリー沖に気体が存在したままグリーンシートを成形
すると表面に現われる気泡によってグリンシートの平坦
度を損うことになるのでグリーンシートの成形過程で内
部に存在する気体を積極的に除去する脱気処理を行なわ
ねばならない。
If a green sheet is formed with gas present in the slurry, the flatness of the green sheet will be damaged by air bubbles appearing on the surface, so deaeration treatment is performed to actively remove the gas present inside the green sheet during the forming process of the green sheet. must be carried out.

従来この種の高粘性流体の脱気処理に対して、いくつか
の方法が知られているが、比較的簡単な方法としては、
この流体中に脱泡済や消泡剤を添加して脱気するかまた
は流体を加熱して粘性を低下することにより脱気する方
法があり、その他に減圧脱気法がある。
Several methods have been known for degassing this type of highly viscous fluid, but a relatively simple method is:
There are methods of degassing the fluid by adding defoaming or an antifoaming agent to the fluid, or heating the fluid to lower its viscosity, and there is also a vacuum degassing method.

脱泡剤や消泡剤を添加する方法は流体中の原料粉体、有
機バインダー、溶剤などの種類によっては大きな効果を
発揮することがある反面、はとんど効果のない、(4合
もあり、流体構成材料の如何Iこかかわらず一般に通用
する最適な脱泡剤や消泡剤を見出すことは困難である。
The method of adding defoamers and antifoaming agents can be very effective depending on the type of raw material powder, organic binder, solvent, etc. in the fluid, but on the other hand, it is rarely effective ( Therefore, it is difficult to find an optimal defoaming agent or antifoaming agent that can be used in general, regardless of the fluid constituent material.

さらに使用する脱泡剤や消泡剤の化学組成によっては流
体の成分と化学反応を起こして最終製品の性能に悪い影
響を及ぼすこともある。
Furthermore, depending on the chemical composition of the defoamer or antifoaming agent used, it may cause a chemical reaction with the components of the fluid, which may adversely affect the performance of the final product.

流体の温度をあげ粘性を低下させると同時に流体に混在
している気体の熱膨張を利用して気泡を自然に浮上させ
る脱気方法は、最も簡単容易であ溶剤の蒸発を防止する
意味から昇温温度をゐまり高くできず、脱気能力に限度
がある。
The deaeration method, which raises the temperature of the fluid and lowers its viscosity while at the same time making use of the thermal expansion of the gas mixed in the fluid to cause air bubbles to rise naturally, is the simplest and easiest method, and is highly recommended because it prevents solvent evaporation. The temperature cannot be raised too high, and there is a limit to the deaeration ability.

減圧脱気方法は最も一般的であるが、前述のように有機
溶剤を含んだ流体に対しては温度をあげると溶剤の蒸発
が盛になり、圧力を極端に低くしても同様の結果をもた
らすので結局低温で適当な減圧状態として長時間の減圧
脱気を行なわざるを得ない。しかし粉体を分散させた流
体を長時間静止状態で減圧すると、流体の下部に粉体が
沈降するようになり、上部との密度差が生じ、また流体
の表面では溶剤が部分的に蒸発して表面に凝集皮膜が形
成されるなど脱気処理を阻害するという欠点がある。こ
れに対して攪拌器を用いて流体を強制的に攪拌しながら
脱気することもできるが、このようにすると逆に気体を
まき込む恐れがあることおよび攪拌器と減圧容器とのシ
ールの点などいくつかの問題をもっている。
The vacuum degassing method is the most common, but as mentioned above, for fluids containing organic solvents, increasing the temperature will increase the evaporation of the solvent, so even if the pressure is extremely low, the same result will not occur. As a result, long-term decompression degassing must be carried out at a low temperature and under an appropriate reduced pressure. However, if a fluid with powder dispersed in it is depressurized for a long time in a stationary state, the powder will settle at the bottom of the fluid, creating a density difference with the top, and the solvent will partially evaporate at the surface of the fluid. This has the drawback that degassing is inhibited, such as the formation of an agglomerated film on the surface. On the other hand, it is possible to use a stirrer to forcibly stir the fluid while degassing it, but doing so may cause gas to be mixed in, and there are issues with sealing between the stirrer and the vacuum container. There are some problems such as.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みてなされたものであり。 The present invention has been made in view of the above points.

その目的は粉体をバインダーとともに有機溶剤中に分散
させたスラリーのような高い粘性を有する流体に混入も
しくは溶存している気体を簡単な装置により脱泡剤の使
用や攪拌などを行うことなく、低温で短時間に効率よく
除去することができる減圧脱気方法を提供することにあ
る。
The purpose is to remove gas mixed or dissolved in a highly viscous fluid, such as a slurry made by dispersing powder and binder in an organic solvent, using a simple device without using defoamers or stirring. It is an object of the present invention to provide a reduced pressure degassing method that can efficiently remove gas at low temperatures and in a short time.

〔発明の要点〕[Key points of the invention]

一端を閉じた2個の管状容器をそれぞれ長手方向の延長
線上で互に直交するように配置し各容器の側面から分岐
した管整適当な間隔をもって連結した装置を用いて、第
1の容器を垂直に立てた状態で気体を含む高粘性流体を
充填した後、第一の容器を排気装置により減圧しながら
容器連結部を中心として第1.第2の容器が同一面上を
移動するように回動し、第1の容器から第2の容器へ流
体を徐々に移すことにより、流体が連結管中を流れると
きに薄帯状となって連続的に通過するので、このとき流
体中に含まれる気体が放出されやすくなり、遂に第2の
容器が垂直となる立直に達するまで回動して容器間の流
体の移行が終了すると同時に脱気過程も完了するように
したものである。
Using a device in which two tubular containers with one end closed are arranged perpendicularly to each other on the longitudinal extension line and connected with pipes branching from the sides of each container with appropriate spacing, the first container is connected. After filling the first container with a high viscosity fluid containing gas in a vertically standing state, the first container is depressurized by an exhaust device and the first container is moved around the container connection part. The second container rotates so as to move on the same plane, and the fluid is gradually transferred from the first container to the second container, so that when the fluid flows through the connecting pipe, it forms a continuous ribbon. At this time, the gas contained in the fluid is easily released, and the second container finally rotates until it reaches the vertical position, completing the transfer of fluid between the containers and simultaneously starting the degassing process. It was also completed.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

第1図は本発明に用いる装置の要部断面図である。第1
図において、一端を閉じた例えば直径約60mのガラス
管からなる第1の容器1の上部には直径約30mの分岐
管1aが第1の容器1の長手方向に対して上向きζこ4
5°の角度を持つようζこ取りつけてあり、第1の容器
1と全く同形状を有する第2の容器2にも同様に分岐管
2aを備えている。そしてこれら二つの容器1と2はそ
れぞれの分岐管1aと23の端面をすり合わせにより密
接させ、外周部から両分肢管の轟接部をクランプ3によ
り気密に固定するこのように結合して一体となった第1
の容器1と第2の容器2とは互の分岐管1aと2aによ
って連通ずるとともに、これらの位置関係はすべて同一
平面上にあって、第1の容器lと第2の容器2がそれぞ
れ長手方向の延長上で直交するよう構成される。また第
1の容器l、第2の容器2の開口部はいずれもゴム栓4
゜4aで密栓し、底部は排出管5,5aとコツクロ。
FIG. 1 is a sectional view of a main part of the apparatus used in the present invention. 1st
In the figure, a branch pipe 1a with a diameter of about 30 m is arranged upwardly in the longitudinal direction of the first container 1 at the top of a first container 1 made of a glass tube with a diameter of about 60 m, for example, with one end closed.
The second container 2, which is attached at an angle of 5 degrees and has exactly the same shape as the first container 1, is also provided with a branch pipe 2a. These two containers 1 and 2 are joined together in this way by bringing the end faces of the respective branch pipes 1a and 23 into close contact by rubbing together, and fixing the connecting parts of both limb pipes from the outer periphery airtight with the clamps 3. The first
The container 1 and the second container 2 communicate with each other through branch pipes 1a and 2a, and their positional relationship is on the same plane, so that the first container 1 and the second container 2 are longitudinally parallel to each other. It is configured to be orthogonal on the extension of the direction. Furthermore, the openings of the first container l and the second container 2 are both connected to rubber stoppers 4.
It is tightly closed with ゜4a, and the bottom is connected to the discharge pipes 5 and 5a.

6aをとりつけであるが、とくにいずれか一方の容器、
第1図の場合は第1の容器1のゴム栓4に排気管7とそ
の途中にコック8を設けて排気管7の一端がゴム管9に
より排気装置10に接続される。
6a is attached, especially one of the containers,
In the case of FIG. 1, an exhaust pipe 7 and a cock 8 are provided in the rubber stopper 4 of the first container 1, and one end of the exhaust pipe 7 is connected to an exhaust device 10 through a rubber pipe 9.

以上のように二つの容器を連結した装置を用いて本発明
ではまずコツクロを閉じ第1の容器lに脱気処理する高
粘性流体を適当量大れてゴム栓4で開口部を密閉し、コ
ノクロa、8を閉じて排気装置10を駆動した後、コッ
ク8を開く七この連結容器は減圧状態とf、fる。次い
で分岐管1aと23とを結合しているクランプ3の中央
を支点として第1の容器1と第2の容器2とが同一平面
上で移動するように回動させる。但し第1図には回動駆
動機構および容器の支持機構などは省略しである。
In the present invention, using a device in which two containers are connected as described above, first, the container is closed, an appropriate amount of high viscosity fluid to be degassed is poured into the first container, and the opening is sealed with a rubber stopper 4. After closing the condensers a and 8 and driving the exhaust device 10, the cock 8 is opened and the connected containers are brought into a reduced pressure state. Next, the first container 1 and the second container 2 are rotated using the center of the clamp 3 connecting the branch pipes 1a and 23 as a fulcrum so that they move on the same plane. However, the rotation drive mechanism and the container support mechanism are omitted in FIG.

二つの容器の回動による位置の移動を脱気処理過程とし
て第2図に概念図で示した。ただし第2図は連結容器の
みを示し、その他のものは省略したが第2図1こより本
発明の脱気作用を説明する。
The movement of the positions due to the rotation of the two containers is conceptually shown in FIG. 2 as a degassing process. However, although FIG. 2 only shows the connecting container and other components are omitted, the deaeration effect of the present invention will be explained with reference to FIG. 2.

まずはじめ第2図(a)のように例えば粘度が室温で5
000〜i o o o ocpのシート成形用のセラ
ミックスラリ−11を適量入れた第1の容器1が床面に
垂直になっており、このとき空の°第2の容器2は分岐
管1aと2aの結合によって斜め上方に位置し、その長
手方向は床面に平行である。この状態からクランプ3の
中心を支点として第1の容器1と第2の容器2が同一平
面上を移動し、第1の容器1が上方に、第2の容器2が
下方に位置するように徐々に回動させる。第2図(b)
は連結容器の回動途中の状態を示したものである。この
回動によって第1の容器lの中にあるスラIJ −11
は連結された分岐管1aと23の中を流れ、徐々に第2
の容器2に溜るようになる。さらに連結容器の回動が進
行し、第2の容器2が床面に垂直になったとき、すなわ
ち第2図(C)のごとくなった時点で回動を停止する、
各容器の位置関係は第2図(a)のスタートとのときと
逆に第1の容器1の方が第2の容器2の斜め上方にあり
、その長手方向が床面と平行になる。その結果スラリー
11は完全に第1の容器1から第2の容器2へ移行する
First of all, as shown in Figure 2(a), for example, the viscosity is 5 at room temperature.
A first container 1 containing an appropriate amount of ceramic slurry 11 for sheet forming of 000 to io 2a, it is located diagonally above, and its longitudinal direction is parallel to the floor surface. From this state, the first container 1 and the second container 2 move on the same plane using the center of the clamp 3 as a fulcrum, so that the first container 1 is located above and the second container 2 is located below. Rotate gradually. Figure 2(b)
shows the state in which the connecting container is in the middle of rotation. This rotation causes the slurry IJ-11 in the first container l to
flows through the connected branch pipes 1a and 23, and gradually flows into the second branch pipe 1a and 23.
It will accumulate in container 2. The rotation of the connected container further progresses, and when the second container 2 becomes perpendicular to the floor surface, that is, as shown in FIG. 2(C), the rotation is stopped.
Contrary to the positional relationship between the containers at the start in FIG. 2(a), the first container 1 is diagonally above the second container 2, and its longitudinal direction is parallel to the floor surface. As a result, the slurry 11 is completely transferred from the first container 1 to the second container 2.

第2図(a)〜(C)の過程を通じて二つの容器1,2
と分岐管1 a 、 2aを連結したスラリー流路はこ
れらの回転中も5〜10c!ILHg程度に減圧されて
いるのでスラIJ −11に存在する気体は脱気される
が、本発明ではとくに第1の容器lと第2の容器2の各
分岐管1a、2aで形成される流路をスラリーが徐々(
こ通過するときに脱気が効果的に行なわれる、すなわち
第1の容器1に滞留しているスラリー11はそのままで
は気泡の抜ける表面は変らないが、スラリー11が分岐
管1a、2aからなる流路を薄い帯状となって連続的に
流れ表面が常に更新されるので、底部に存在している微
小な気泡も必ず表面近傍に導かれ、容易に脱気が行なわ
れるのである。したがってスラリー11が流通する径路
はある程度の距離が必要であるが、本実施例の場合は1
00m程度とするのがよく、またスラリー11を薄い帯
状として容器間を移行させることができるように回動速
度をかなり遅くする必要があるが、処理量や流路長など
を堪案した上で最適条件を決めるのがよい。かくして脱
気処理されたスラリー11は第1図に示した排出管5a
のコツクロaを開いて取り出すことができ、次回の脱気
処理は二つの容器をそのままの位置とし。
Through the process of Figure 2 (a) to (C), the two containers 1 and 2
The slurry flow path connecting the branch pipes 1a and 2a is 5~10c even during these rotations! Since the pressure is reduced to about ILHg, the gas present in the slurry IJ-11 is degassed, but in the present invention, the flow formed by the branch pipes 1a and 2a of the first container 1 and the second container 2 is Slurry gradually flows down the road (
In other words, the slurry 11 staying in the first container 1 will not change the surface from which air bubbles can escape, but if the slurry 11 passes through the branch pipes 1a and 2a, the air will be effectively degassed. Since the flow is continuous in a thin strip along the path and the surface is constantly renewed, minute air bubbles existing at the bottom are always guided to the vicinity of the surface and deaeration is easily performed. Therefore, the path through which the slurry 11 flows needs to be a certain distance;
It is best to set the rotation speed to about 00 m, and it is necessary to make the rotation speed considerably slow so that the slurry 11 can be transferred between containers as a thin strip. It is best to determine the optimal conditions. The slurry 11 thus deaerated is discharged into the discharge pipe 5a shown in FIG.
The container can be opened and taken out, and the next time the degassing process will be done, the two containers will remain in the same position.

第2の容器2にスラIJ −11を入れ、前述と同様に
90.。回動させて第1の容器1の方へスラリー11を
移行することにより行なうことができる。
Put Slur IJ-11 into the second container 2, and do the same as above for 90. . This can be done by rotating the slurry 11 towards the first container 1.

以上のごとく本発明は気体の存在する流体を脱気処理す
るときに、その流体を加熱や攪拌することなく減圧され
た容器間を連結管を通して移行するだけでよいから短時
間に処理される一方、僅かな処理量でも行なうことがで
き、しかも処理終了時点が極めて明確になる。また流体
がスラリーのようにチクソトロピー性を有する場合には
、容器間を流れる際粘性が低下するので、さらに脱気効
果が顕著になるという利点もある。
As described above, when degassing a fluid containing gas, the present invention can be processed in a short time because the fluid only needs to be transferred between depressurized containers through a connecting pipe without heating or stirring. , it can be carried out even with a small amount of processing, and the point at which the processing ends is extremely clear. Further, when the fluid has thixotropic properties like a slurry, the viscosity decreases when flowing between containers, so there is an advantage that the degassing effect becomes even more pronounced.

〔発明の効果〕〔Effect of the invention〕

高粘性流体中に混入もしくは溶存する気体を減圧脱気処
理するに当り、従来減圧だけでは効率が悪いので加熱、
攪拌などの補助手段を用いていたが、溶剤などの蒸発が
著しく、高粘性流体では攪拌も容易でないなど、却って
櫨々の点で脱気効果を損うものであったのに対し、本発
明によれば実施例で説明したように、分岐管で連結した
二つの容器を減圧状態とし、連結部を支点としてこれら
容器をゆっくり回動させ、一方の容器に入れた流体を連
結管を通して他方の空の容器に移行させることにより実
質的に流体の表面積が拡大されるために、流体中の脱気
が容器を回動させるだけの簡単な方法で確実に行なわれ
、溶剤などの蒸発の悪影響を抑制するとともに、なんら
補助的手段を用いることなく、短時間に効率よく減圧脱
気処理することができるものである。
When degassing gas mixed or dissolved in a high viscosity fluid under reduced pressure, conventional depressurization alone is inefficient, so heating,
Although auxiliary means such as stirring were used, the evaporation of the solvent was significant and stirring was not easy in highly viscous fluids, which actually impaired the degassing effect due to the lack of consistency. According to the above, as explained in the example, two containers connected by a branch pipe are brought into a reduced pressure state, and the containers are slowly rotated using the connection as a fulcrum, and the fluid contained in one container is transferred through the connection pipe to the other. Since the surface area of the fluid is substantially expanded by transferring it to an empty container, degassing of the fluid can be carried out reliably by simply rotating the container, thereby eliminating the negative effects of evaporation of solvents, etc. In addition, it is possible to carry out vacuum degassing treatment efficiently in a short period of time without using any auxiliary means.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法が適用される装置の要部断面図、
第2図は本発明による脱気処理過程を示す概念図である
。 l・・・第1の容器、la、2a・・・分枝管、2・・
・第2の容器、3・・・クランプ、4.4a・・・ゴム
栓、5゜5a、7・・・排出管、G、6a、8・・・コ
ック、10第1図
FIG. 1 is a sectional view of a main part of an apparatus to which the method of the present invention is applied;
FIG. 2 is a conceptual diagram showing the degassing process according to the present invention. l...first container, la, 2a...branch pipe, 2...
・Second container, 3... Clamp, 4.4a... Rubber stopper, 5゜5a, 7... Discharge pipe, G, 6a, 8... Cock, 10 Fig. 1

Claims (1)

【特許請求の範囲】[Claims] 1)一端を閉じ他端開口部近傍の側方に開口面と45°
の傾きを有する分岐管を備えた二つの管状容器を、それ
ぞれ長手方向の延長が直交しかつ同一平面上に位置する
ように各分岐管先端部で連結し、第1の管状容器を床面
に垂直に立て、被処理流体を注入した後、両管状容器の
開口部を密栓していずれかの管状容器から排気しながら
分岐管連結部を支点として両管状容器を床面に垂直な同
一平面上で90°回動することにより、被処理流体を連
結管を通して第1の管状容器から第2の管状容器へ移行
させることを特徴とする高粘性流体の減圧脱気処理方法
1) Close one end and make a 45° angle with the opening surface on the side near the opening on the other end.
Two tubular containers each having a branch pipe having an inclination of Stand vertically, and after injecting the fluid to be treated, seal the openings of both tubular containers, and while exhausting air from either tubular container, place both tubular containers on the same plane perpendicular to the floor using the branch pipe connection as a fulcrum. A method for vacuum degassing treatment of a high viscosity fluid, characterized in that the fluid to be treated is transferred from a first tubular container to a second tubular container through a connecting pipe by rotating the fluid by 90°.
JP17786885A 1985-08-13 1985-08-13 Degasifying treatment process of high viscosity fluid under reduced pressure Pending JPS6238209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17786885A JPS6238209A (en) 1985-08-13 1985-08-13 Degasifying treatment process of high viscosity fluid under reduced pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17786885A JPS6238209A (en) 1985-08-13 1985-08-13 Degasifying treatment process of high viscosity fluid under reduced pressure

Publications (1)

Publication Number Publication Date
JPS6238209A true JPS6238209A (en) 1987-02-19

Family

ID=16038468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17786885A Pending JPS6238209A (en) 1985-08-13 1985-08-13 Degasifying treatment process of high viscosity fluid under reduced pressure

Country Status (1)

Country Link
JP (1) JPS6238209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088815A1 (en) * 2006-01-31 2007-08-09 National Institute Of Advanced Industrial Science And Technology Clay film and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088815A1 (en) * 2006-01-31 2007-08-09 National Institute Of Advanced Industrial Science And Technology Clay film and method for producing same
JPWO2007088815A1 (en) * 2006-01-31 2009-06-25 独立行政法人産業技術総合研究所 Clay film and method for producing the same
JP5688783B2 (en) * 2006-01-31 2015-03-25 独立行政法人産業技術総合研究所 Clay film and method for producing the same

Similar Documents

Publication Publication Date Title
KR100682778B1 (en) Vacuum degassing apparatus for molten glass
JP2005517197A (en) Microfluidic separation column apparatus and assembly method
JPS62204086A (en) Pipe
US20130122196A1 (en) Coating apparatus and method for forming a coating layer on monolith substrates
CN104661732A (en) Defect detection method for monolithic separation membrane structures, repair method, and monolithic separation membrane structures
JPH04219128A (en) Membrane device for effecting filtration, separation and catalytic reaction
JPS6238209A (en) Degasifying treatment process of high viscosity fluid under reduced pressure
JP4875648B2 (en) Separation membrane assembly
JP2010110704A (en) Manufacturing method for separation membrane
CN105879687B (en) A kind of ceramic hollow fibrous membrane filter core element and its component
US3791526A (en) Solvent weld adhesive for reverse osmosis membranes
FI80386C (en) Filtration method and apparatus for use in the process
US3773181A (en) Sealing membranes in a reverse osmosis module
JP3861459B2 (en) Vacuum degassing equipment for molten glass
CN116371676A (en) Glue filling device
CN114381233B (en) Preparation method of microporous ceramic adhesive solidified at room temperature
JP3362878B2 (en) Liquid fluid transfer device
CN108444894A (en) Study the infiltrative experimental rig of particle inner through hole gap and its method
JP5951415B2 (en) Strength inspection method for monolithic separation membrane structure
JPH10314503A (en) Apparatus fordegassing fluid
JP2002292253A (en) Filter module
JP6541644B2 (en) Monolith-type substrate, monolithic separation membrane structure and method for producing monolithic-type substrate
JP2000095527A (en) Reduced-pressure defoaming system
CN216296037U (en) Solid phase micro-extraction detection device for marine solution
CN219291870U (en) Glue filling device