JPS62276760A - Manufacture of complex electrode for fuel cell - Google Patents

Manufacture of complex electrode for fuel cell

Info

Publication number
JPS62276760A
JPS62276760A JP61119297A JP11929786A JPS62276760A JP S62276760 A JPS62276760 A JP S62276760A JP 61119297 A JP61119297 A JP 61119297A JP 11929786 A JP11929786 A JP 11929786A JP S62276760 A JPS62276760 A JP S62276760A
Authority
JP
Japan
Prior art keywords
parts
weight
carbon
thermosetting resin
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61119297A
Other languages
Japanese (ja)
Other versions
JPH0626128B2 (en
Inventor
Yoshio Suzuki
義雄 鈴木
Toyoichi Shimada
島田 豊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP61119297A priority Critical patent/JPH0626128B2/en
Publication of JPS62276760A publication Critical patent/JPS62276760A/en
Publication of JPH0626128B2 publication Critical patent/JPH0626128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reduce the electrical resistance at the adhesive layer, by mixing a graphite powder to a thermosetting resin component as a carbonizing substance. CONSTITUTION:At both sides of a gas impermeable carbon thin plate, a porous carbon composition with penetrating hole group around its center of the thickness is attached integrally through a carbonizing substance, and then, a baking- carbonization process is given to produce a complex electrode for a fuel cell. In this manufacture process, to 100wt parts of a thermosetting resin initial condensate, a mixture of 30 to 70wt parts of graphite powder of mean particle diameter less than 80mum, 0.1 to 10wt parts of carbon fiber chops with the diameter less than 20mum and the length less than 1 mm, and 0.01 to 1 wt parts of a surface active agent is used. As the thermosetting resin initial condensate, a phenolic resin or a furan type resin with little residual carbon rate after the baking-carbonization is used.

Description

【発明の詳細な説明】 3、発明の詳細な説明 「産業上の利用分野」 本発明は、多孔質炭素電極板と気体不透過性炭素セパレ
ーター板とを一体的に形成するリン酸型燃料電池用複合
電極の製造方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a phosphoric acid fuel cell in which a porous carbon electrode plate and a gas-impermeable carbon separator plate are integrally formed. The present invention relates to a method of manufacturing a composite electrode for use.

「従来の技術」 燃料電池は、リン酸を保持したマトリックス層の両面に
触媒を担持した多孔質電極板と気体不透過性セパレータ
ー板とを配置して単位セルを構成し、各単位セルを多数
直列接続することにより所定のスタック構造に形成して
いる。電極板およびセパレーター板の形状は、燃料と酸
化剤の気体流通溝を付けるか否かによってリブ付または
平板に分かれるが、これらの部材には耐熟性、耐蝕性、
導電性、熱伝導性、易加工性などの特性が必要とされて
おり、この要求特性を満たすものとして炭素材が有用さ
れている。
``Prior art'' A fuel cell consists of a unit cell made by arranging a porous electrode plate supporting a catalyst and a gas-impermeable separator plate on both sides of a matrix layer holding phosphoric acid, and a large number of each unit cell. A predetermined stack structure is formed by connecting them in series. The shape of the electrode plate and separator plate can be divided into ribbed or flat plates depending on whether or not grooves are provided for gas flow for fuel and oxidizer.
Characteristics such as electrical conductivity, thermal conductivity, and ease of processing are required, and carbon materials are useful as materials that meet these required characteristics.

このスタック構造においては、電極板とセパレーター板
間の接触抵抗を出来る限り小さくするためにスタック全
体を強固に圧締、密着させること、さらに全体をコンパ
クト化するために電極板およびセパレーター板の厚さを
薄くすることが必要とされている。しかしながら、炭素
材は機械的強度が十分でないためにハンドリングや電池
組立時に破損を生じる場合がある。
In this stack structure, in order to minimize the contact resistance between the electrode plates and separator plates, the entire stack must be firmly pressed and adhered, and the thickness of the electrode plates and separator plates must be adjusted to make the entire stack compact. It is necessary to make it thinner. However, since carbon materials do not have sufficient mechanical strength, they may be damaged during handling or battery assembly.

このような理由から、多孔質炭素電極板と気体不透過性
炭素セパレーター仮とを一体的に形成することにより、
接触抵抗の減少や機械的強度の増大をはかり、電池組立
を容易にする試みがなされている。例えば、出願人は気
体不透過性炭素セパレーター板の両面に、厚さのほぼ中
央部に貫通孔群を有する多孔質炭素電極板を、炭化性物
質を介して一体的に接合する方法を提案した(特願昭6
O−290848)。この場合、炭化性物質としては未
硬化状態の炭素セパレーター板あるいは熱硬化性樹脂の
初期縮合物または当該樹脂にコークス、黒鉛、ガラス状
カーボン等の微粉を配合したものが用いられる。
For these reasons, by integrally forming the porous carbon electrode plate and the gas-impermeable carbon separator temporary,
Attempts have been made to reduce contact resistance and increase mechanical strength to facilitate battery assembly. For example, the applicant proposed a method in which porous carbon electrode plates having a group of through holes approximately in the center of the thickness are integrally joined to both sides of a gas-impermeable carbon separator plate via a carbonizable material. (Tokugan Sho 6
O-290848). In this case, the carbonizable material used is an uncured carbon separator plate, an initial condensate of a thermosetting resin, or a mixture of the resin with fine powder such as coke, graphite, or glassy carbon.

「発明が解決しようとする問題点」 しかしながら、上記炭化性物質は接着強度の増大と電気
抵抗の減少化の両立をはかることが困難である。すなわ
ち、強固な接着層の形成には樹脂成分が多い程有利であ
るが相対的に電気抵抗の増大を招き、一方黒鉛微粉末を
配合すると電気抵抗の増大化を防止することができるが
接着強度が相対的に低下するという難点がある。
"Problems to be Solved by the Invention" However, it is difficult to achieve both an increase in adhesive strength and a decrease in electrical resistance with the above-mentioned carbonizable material. In other words, the more resin components are advantageous in forming a strong adhesive layer, but this results in a relative increase in electrical resistance.On the other hand, blending fine graphite powder can prevent an increase in electrical resistance, but decreases adhesive strength. The problem is that there is a relative decline in

「問題点を解決するための手段」 本発明は上記問題点を解消し、接着層の接着強度と電気
抵抗の改善を目的とするものである。
"Means for Solving the Problems" The present invention aims to solve the above problems and improve the adhesive strength and electrical resistance of the adhesive layer.

すなわち、本発明は気体不透過性炭素薄板の両面に、厚
さのほぼ中央部に貫通孔群を有する多孔質炭素成形体を
、炭化性物質を介して一体的に接着した後焼成炭化処理
する燃料電池用複合Ti極の製造方法において、前記炭
化性物質が熱硬化性樹脂初期縮合物100重量部に対し
て平均粒径80μ次以下の黒鉛粉末30〜70重量部、
直径20μm以下、長さ1jIff以下の炭素繊維チョ
ップ0.1〜10重量部および界面活性剤0.01−I
 M置部の組成より成ることを構成的特徴とする燃料電
池用複合電極の製造方法である。
That is, in the present invention, a porous carbon molded body having a group of through holes approximately in the center of the thickness is integrally adhered to both sides of a gas-impermeable carbon thin plate via a carbonizable substance, and then fired and carbonized. In the method for producing a composite Ti electrode for a fuel cell, the carbonizable substance is 30 to 70 parts by weight of graphite powder with an average particle size of 80 μm or less based on 100 parts by weight of the thermosetting resin initial condensate;
0.1 to 10 parts by weight of carbon fiber chops with a diameter of 20 μm or less and a length of 1jIff or less and 0.01-I surfactant
This is a method for producing a composite electrode for a fuel cell, the structural feature of which is that it consists of a composition of an M placement part.

多孔質炭素成形体は、炭素繊維チョップと熱硬化性樹脂
との複合体を焼成炭化処理するような方法で得られる。
The porous carbon molded body is obtained by a method in which a composite of chopped carbon fibers and a thermosetting resin is sintered and carbonized.

例えば、水溶性フェノール樹脂と炭素繊佳チョップとを
水に分散させてスラリー状にし、このス°ラリ−を所定
形状の金型中に注入した後加圧成形、加熱硬化処理する
ことにより製造される。この場合、金型中の所定位置に
棒状体を挿着し、加熱硬化処理後膣棒状体を抜き出すこ
とにより貫通孔群を形成することができる。棒状体の材
質としては、成形硬化体から抜き出すことが容易な金属
やテフロン樹脂などが使用される。また、前記スラリー
を抄紙法を利用して成形することもできる。
For example, water-soluble phenolic resin and chopped carbon fibers are dispersed in water to form a slurry, and this slurry is injected into a mold of a predetermined shape, followed by pressure molding and heat curing. Ru. In this case, the through-hole group can be formed by inserting the rod-like body into a predetermined position in the mold and extracting the vaginal rod-like body after heat-hardening treatment. As the material of the rod-shaped body, metal, Teflon resin, or the like, which can be easily extracted from the molded and cured body, is used. Further, the slurry can also be formed using a papermaking method.

気体不透過性炭素薄板は、予め粒度を調整した黒鉛粉末
あるいはコークス粉末などとフェノール系やフラン系な
どの熱硬化性樹脂液とを混練し、混練物をモールド成形
した後所定厚さの薄板状にロール圧延成形して得られる
。この薄板状成形体は、加熱硬化浸炭化性物質を介して
前記多孔質炭素成形体と一体的に接着される。次いで、
不活性雰囲気中で加熱して焼成炭化することにより多孔
質炭素電極板と気体不透過性炭素セパレーター仮とが一
体的に接合した燃料電池用複合1!極を製造することが
できる。
Gas-impermeable carbon thin plates are made by kneading graphite powder or coke powder, etc. whose particle size has been adjusted in advance, with a thermosetting resin liquid such as phenol or furan, molding the mixture, and then forming it into a thin plate of a predetermined thickness. It is obtained by roll rolling. This thin plate-shaped molded body is integrally bonded to the porous carbon molded body through a heat-curing carburizing substance. Then,
Composite 1 for fuel cells, in which a porous carbon electrode plate and a temporary gas-impermeable carbon separator are integrally joined by heating and firing in an inert atmosphere to carbonize! poles can be manufactured.

本発明はこの炭化性物質として、熱硬化性樹脂初期縮合
物100重風部に対して平均粒径80μm以下の黒鉛粉
末30〜70重量部、直径20μm以下、長さLaw以
下の炭素繊維チョップ0.1−10重量部および界面活
性剤0.01〜I重量部の割合いで混合したものを使用
する。
The present invention uses, as this carbonizable material, 30 to 70 parts by weight of graphite powder with an average particle size of 80 μm or less per 100 parts of the thermosetting resin initial condensate, and carbon fiber chopped with a diameter of 20 μm or less and a length of Law or less. A mixture of 1 to 10 parts by weight of surfactant and 0.01 to 1 part by weight of surfactant is used.

本発明において用いられる熱硬化性樹脂初期縮合物とし
ては、焼成炭化後の残炭率の高いフェノール系やフラン
系などの樹脂を使用することが好ましい。また、混合す
る黒鉛粉末は人造黒鉛、天然黒鉛いずれも使用でき、炭
素繊維チョップは黒鉛繊維チョップを用いることもでき
る。界面活性剤としては、陽イオン、陰イオン、中性界
面活性剤などいずれを使用してもよい。
As the thermosetting resin initial condensate used in the present invention, it is preferable to use a phenol-based or furan-based resin that has a high residual carbon content after firing and carbonization. Moreover, both artificial graphite and natural graphite can be used as the graphite powder to be mixed, and graphite fiber chop can also be used as the carbon fiber chop. As the surfactant, any of cations, anions, neutral surfactants, etc. may be used.

この場合、黒鉛粉末の平均粒径が80μ次を越えると接
着層の機械的強度の低下が大きくなり、また導電性を維
持し電気抵抗を低位に保持するとともに機械的強度を維
持するためには30〜70重量部の割合で配合すること
が必要である。
In this case, if the average particle size of the graphite powder exceeds 80 μm, the mechanical strength of the adhesive layer will decrease significantly. It is necessary to mix it in a proportion of 30 to 70 parts by weight.

接着層の強度向上をはかるために複合する炭素繊維は、
接着層の表面平滑性を維持するために繊維径および長さ
の短い短ta維を用いることが必要であり、直径20μ
m以下、長さ1mx以下の炭素繊維チョップを0.1−
1o重量部の割合で配合する。また接着強度向上のため
に添加する界面活性剤はできるだけ少量に抑えることが
重要であり、0.01−1型出部の範囲内で添加するこ
とが必要である。
Carbon fibers are composited to improve the strength of the adhesive layer.
In order to maintain the surface smoothness of the adhesive layer, it is necessary to use short ta fibers with a short fiber diameter and length.
0.1-m or less carbon fiber chop with a length of 1mx or less
It is blended in a proportion of 10 parts by weight. Further, it is important to suppress the amount of surfactant added in order to improve adhesive strength, and it is necessary to add the surfactant within the range of 0.01-1 mold extrusion.

「作 用」 本発明においては、炭化性物質として熱硬化性樹脂成分
に黒鉛粉末を配合することにより接着層の電気抵抗の減
少をはかるとともに、機械的強度の低下は炭素繊維チョ
ップを複合することにより効果的に防止される。更に、
添加する界面活性剤は電極板とセパレーター板との界面
接着性能を増大して接着強度の向上に機能する。
"Function" In the present invention, the electrical resistance of the adhesive layer is reduced by blending graphite powder into the thermosetting resin component as a carbonizing substance, and the mechanical strength is reduced by combining carbon fiber chops. effectively prevented by Furthermore,
The added surfactant functions to increase the interfacial adhesion performance between the electrode plate and the separator plate, thereby improving the adhesive strength.

「実施例」 水溶性フェノール樹脂(日本ライヒホールド(味)製プ
ライオーフェンJ303)10重量部と炭素70重量部
を水20重量部中に加えて攪拌し、均一に分散させてス
ラリー状にした。このスラリーをステンレスの棒状体を
挿着した金型中に注入し、乾燥加圧成形し、次いで14
0℃にて加熱硬化処理した後冷却してステンレス棒状体
を抜きだした。
"Example" 10 parts by weight of a water-soluble phenol resin (Priorfen J303 manufactured by Nippon Reichhold (Aji)) and 70 parts by weight of carbon were added to 20 parts by weight of water and stirred to uniformly disperse them to form a slurry. This slurry was injected into a mold fitted with a stainless steel rod, dried and pressure molded, and then
After heating and hardening at 0° C., the stainless steel rod was cooled and extracted.

このようにして150ii角、厚さ2 、3 mm、厚
さのほぼ中央部に直径Lawの貫通孔30本を有する多
孔質炭素電極板を製造した。
In this way, a porous carbon electrode plate was manufactured, which was 150mm square, 2.3 mm thick, and had 30 through holes with a diameter Law approximately in the center of the thickness.

また、平均粒径5μ麗の人造黒鉛粉末100重量部に液
状フェノール樹脂100重量部を加えて充分に混練し、
この混練物をロール圧延し次いでモールド成形により平
板に成形した後180℃で3時間加熱硬化処理して15
0 mm角、厚さ0.5Hの炭素セパレーター板を製造
した。
In addition, 100 parts by weight of liquid phenol resin was added to 100 parts by weight of artificial graphite powder with an average particle size of 5 μm, and the mixture was thoroughly kneaded.
This kneaded material was rolled, then molded into a flat plate, and then heated and hardened at 180°C for 3 hours to give a
A carbon separator plate having a size of 0 mm square and a thickness of 0.5H was manufactured.

炭化性接着剤として、フェノール樹脂初期縮合物(住友
デュレズ(株)PR940)100重量部に対して平均
粒径50μmの人造黒鉛粉末を40.60重量部、直径
16μ11長さO、l mmの炭素繊維チョップを0.
5.3重量部、界面活性剤として臭化ジエチル・ジメチ
ル・アンモニウムを0.1重量部の割合で配合し、充分
に加熱混練して均一なペースト状に調製した。なお、樹
脂硬化剤としてパラトルエン・スルホン酸クロライドを
2.5重量部の割合で添加した。
As a carbonizable adhesive, 40.60 parts by weight of artificial graphite powder with an average particle size of 50 μm was added to 100 parts by weight of a phenolic resin initial condensate (PR940, manufactured by Sumitomo Durez Co., Ltd.), and carbon with a diameter of 16 μm, a length of 0, and 1 mm was added. Fiber chop 0.
5.3 parts by weight and 0.1 part by weight of diethyl dimethyl ammonium bromide as a surfactant were blended, and the mixture was sufficiently heated and kneaded to form a uniform paste. In addition, 2.5 parts by weight of para-toluene sulfonic acid chloride was added as a resin curing agent.

この炭化性接着剤を、面記セパレーター板の両面に均一
に塗布した後多孔質炭素電極板を、貫通孔群が互いに直
交する方向にして接着し、常温下に12時間圧着硬化処
理し、次いで180℃で3時間加熱して硬化処理を完結
させた。このようにで5℃/hの昇温速度で1100℃
に昇温し、3時間保持して焼成炭化処理をした。
After this carbonizable adhesive was evenly applied to both sides of the surface separator plate, a porous carbon electrode plate was bonded with the through-holes perpendicular to each other, and pressure-cured for 12 hours at room temperature. The curing process was completed by heating at 180° C. for 3 hours. In this way, the temperature rises to 1100℃ at a heating rate of 5℃/h.
The temperature was raised to , and maintained for 3 hours to perform firing carbonization treatment.

この一体化接合体の緒特性を測定して別表に示した。The properties of this integrated composite were measured and shown in the attached table.

比較のために炭素繊維チョップおよび界面活性剤を配合
せず、それ以外は実施例と同じ組成の接着剤ペーストを
調製し、同様の方法で一体化接合体を製造してその特性
を同表中に併記した。
For comparison, an adhesive paste with the same composition as in the example was prepared without adding carbon fiber chops and surfactant, and an integrated bonded body was manufactured in the same manner, and its properties were as shown in the table. Also listed.

「発明の効果」 上記説明で明らかなように、本発明の炭化性接着剤を使
用することにより接着層の強度の増大とともに電気抵抗
を低位に保持した複合電極を容易に製造することが可能
となる。したがって、リン酸型燃料電池の小型コンパク
ト化、高能率化に大きく貢献することができる。
"Effects of the Invention" As is clear from the above explanation, by using the carbonizable adhesive of the present invention, it is possible to easily manufacture a composite electrode that maintains the electrical resistance at a low level while increasing the strength of the adhesive layer. Become. Therefore, it can greatly contribute to miniaturization and high efficiency of phosphoric acid fuel cells.

Claims (1)

【特許請求の範囲】[Claims] 1、気体不透過性炭素薄板の両面に、厚さのほぼ中央部
に貫通孔群を有する多孔質炭素成形体を炭化性物質を介
して一体的に接着した後焼成炭化処理する燃料電池用複
合電極の製造方法において、前記炭化性物質が熱硬化性
樹脂初期縮合物100重量部に対して平均粒径80μm
以下の黒鉛粉末30〜70重量部、直径20μm以下、
長さ1mm以下の炭素繊維チョップ0.1〜10重量部
および界面活性剤0.01〜1重量部の組成より成るこ
とを特徴とする燃料電池用複合電極の製造方法。
1. A fuel cell composite in which a porous carbon molded body having a group of through holes approximately in the center of the thickness is integrally adhered to both sides of a gas-impermeable carbon thin plate via a carbonizable substance, and then fired and carbonized. In the method for manufacturing an electrode, the carbonizable substance has an average particle size of 80 μm based on 100 parts by weight of the thermosetting resin initial condensate.
30 to 70 parts by weight of the following graphite powder, 20 μm or less in diameter,
A method for producing a composite electrode for a fuel cell, characterized in that the composition comprises 0.1 to 10 parts by weight of chopped carbon fibers having a length of 1 mm or less and 0.01 to 1 part by weight of a surfactant.
JP61119297A 1986-05-26 1986-05-26 Method for manufacturing composite electrode for fuel cell Expired - Lifetime JPH0626128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61119297A JPH0626128B2 (en) 1986-05-26 1986-05-26 Method for manufacturing composite electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61119297A JPH0626128B2 (en) 1986-05-26 1986-05-26 Method for manufacturing composite electrode for fuel cell

Publications (2)

Publication Number Publication Date
JPS62276760A true JPS62276760A (en) 1987-12-01
JPH0626128B2 JPH0626128B2 (en) 1994-04-06

Family

ID=14757926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61119297A Expired - Lifetime JPH0626128B2 (en) 1986-05-26 1986-05-26 Method for manufacturing composite electrode for fuel cell

Country Status (1)

Country Link
JP (1) JPH0626128B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928630A (en) * 1972-07-13 1974-03-14
JPS6020471A (en) * 1983-07-13 1985-02-01 Mitsubishi Pencil Co Ltd Manufacture of members for fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928630A (en) * 1972-07-13 1974-03-14
JPS6020471A (en) * 1983-07-13 1985-02-01 Mitsubishi Pencil Co Ltd Manufacture of members for fuel cell

Also Published As

Publication number Publication date
JPH0626128B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
JP3573444B2 (en) Carbonaceous separator member for polymer electrolyte fuel cell and method of manufacturing the same
JP3616255B2 (en) Separator member for polymer electrolyte fuel cell and method for producing the same
JPS62276760A (en) Manufacture of complex electrode for fuel cell
JPS60155516A (en) Preparation of thin plate of carbon
JPS62154470A (en) Manufacture of carbon member for fuel cell
JPH0131445B2 (en)
JPH06104591B2 (en) Method for manufacturing thin plate carbonaceous compact
JPH0677461B2 (en) Method for producing carbon composite member for fuel cell
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
EP0581367A1 (en) Substrates containing resin, fibers and anti-agglomeration agent
JPS6259508A (en) Production of carbonaceous, thin plate
JP2003020278A (en) Carbonaceous thin plate
JP3342508B2 (en) Method for producing impermeable carbonaceous plate
JPS62188173A (en) Manufacture of complex electrode for fuel cell
JPH0159969B2 (en)
JP2003002744A (en) Carbonaceous thin plate
JPH10167855A (en) Porous carbon material
JPS62160661A (en) Production of thin carbon plate for fuel cell separator
JPH06329469A (en) Preformed carbonaceous material and production of electrode substrate
JPH0220589B2 (en)
JPS62180963A (en) Manufacture of carbonaceous member for fuel cell
JPH0757741A (en) Manufacture of carbonaceous preformed body and electrode substrate
JP2002343374A (en) Separator for fuel cell, and manufacturing method of the same
JPS60189168A (en) Porous plate for fuel cell electrode