JPS62256382A - Redox cell - Google Patents

Redox cell

Info

Publication number
JPS62256382A
JPS62256382A JP61097987A JP9798786A JPS62256382A JP S62256382 A JPS62256382 A JP S62256382A JP 61097987 A JP61097987 A JP 61097987A JP 9798786 A JP9798786 A JP 9798786A JP S62256382 A JPS62256382 A JP S62256382A
Authority
JP
Japan
Prior art keywords
microorganism
positive electrolyte
reaction
reduction
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61097987A
Other languages
Japanese (ja)
Inventor
Hideo Tsunoda
英男 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61097987A priority Critical patent/JPS62256382A/en
Publication of JPS62256382A publication Critical patent/JPS62256382A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reproduce a positive electrolyte without use of electric power and to produce a microorganism or a metabolite of the mocroorganism by using iron solution as a positive electrolyte in which a microorganism is used for reproduction. CONSTITUTION:Reduction with a gas containing reducing gas 12 such as hydrogen and city gas, photochemical reduction with optical catalyst, and bioreaction reduction is performed in a tank 9. Reproduction of a positive electrolyte is performed by a positive electrolyte reproducing bioractor 8 with a microorganism. The air 16 is intro duced into the bioractor 8, and reaction of the positive electrolyte is Fe<2+> Fe<3+>. The microorganism 10 is propagated by using energy produced in oxidation reaction and carbon dioxide in the air as a carbon source, and separated with a suitable separating device. The positive electrolyte reproduced is returned to a flow-type electrolytic bath 5 through a pump 16, and the propagated microorganism or a metabolite is taken out from the reactor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレドックス電池さらに詳しくは微生物を利用し
たレドックス電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a redox battery, and more particularly to a redox battery using microorganisms.

〔従来の技術〕[Conventional technology]

タンクに貯蔵したレドックス溶液を流通形電解セルに供
給して充放電させる方式の電池はレドックス電池と称さ
れる。レドックス電池の原理を第2図により説明する。
A battery that charges and discharges a redox solution stored in a tank by supplying it to a flow-through electrolytic cell is called a redox battery. The principle of a redox battery will be explained with reference to FIG.

レドックス溶液は、鉄イオンやクロ、ムイオンのように
、原子価数の変化するイオンを活物質として含む溶液で
あって、流通形電解槽5の隔膜15により隔てられた正
極6側に供給される正極液と、48!妬ワ41111 
f砒給食hス偵服府とより成り、その組合せは、それぞ
れの液を構成する活物質の溶解度、標準電極電位等によ
って選定される。
The redox solution is a solution containing as an active material ions whose valence number changes, such as iron ions, chromium ions, and chromium ions, and is supplied to the positive electrode 6 side separated by the diaphragm 15 of the flow-through electrolytic cell 5. Positive electrode liquid and 48! Jealousy 41111
The combination is selected depending on the solubility of the active material constituting each liquid, standard electrode potential, etc.

正極液にFeイオン、負極液にCrイオンを用いる場合
の電解槽内の酸化還元反応は次のように表わされる。
The oxidation-reduction reaction in the electrolytic cell when Fe ions are used in the positive electrode solution and Cr ions are used in the negative electrode solution is expressed as follows.

、   3−1−         2+正極側、Fe
  −)−e    Fe        (ll負極
側:Cr2+==ゴCr” −1−e      (2
)3+2+−ム 2+ 全反応 Fe  十Cr     Fe  十〇r” 
18Jすなわち、鉄イオンとクロムイオンとを直接反応
させることなく、その電子の授受を外部回路を介して行
わせ、反応エネルギーを電気エネルギーに変換するもの
である。上記反応において右側に進行する場合が放電で
あり、放電の能力が下れば、左gllIK進行する反応
により再生する。この再生は、電気的に行うことすなわ
ち充電によってもよいし、また例えば空気および気体燃
料によって正極液を酸化し負極液を還元すわばよいこと
も明らかであり、レドックス電池が電気的に充電可能な
再生形燃料電池に分類される所以である。
, 3-1- 2+ positive electrode side, Fe
−)−e Fe (ll Negative electrode side: Cr2+==Go Cr” −1−e (2
)3+2+-mu 2+ Total reaction Fe 10Cr Fe 10r”
18J, in other words, does not directly react iron ions and chromium ions, but exchanges electrons through an external circuit to convert reaction energy into electrical energy. In the above reaction, when the reaction progresses to the right, it is discharge, and if the discharge capacity decreases, it is regenerated by a reaction that progresses to the left. It is clear that this regeneration can be carried out electrically, that is, by charging, or by oxidizing the positive electrolyte and reducing the negative electrolyte, for example, with air and gaseous fuel. This is why it is classified as a regenerative fuel cell.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、電力を用いることなく正極液の再生を
行い、同時に微生物およびまたは微生物の代謝産物も産
生できるレドックス電池を提供することにある。
An object of the present invention is to provide a redox battery that can regenerate a catholyte without using electricity and simultaneously produce microorganisms and/or metabolites of the microorganisms.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、正極液の再生に微生物を用いてなる正極液に
鉄溶液を用いるレドックス電池である。
The present invention is a redox battery that uses microorganisms to regenerate the catholyte and uses an iron solution as the catholyte.

本発明の正極液には例えば硫酸鉄、塩化鉄のように溶液
中で容易にイオン化する鉄化合物が用いられその活物質
である二価鉄(Fe”)の三価鉄(Fe3+)への酸化
・再生に使用する微生物は、例えば公知のつぎのバクテ
リアを挙げることができる。
The positive electrode solution of the present invention uses an iron compound that easily ionizes in solution, such as iron sulfate or iron chloride, and the active material, divalent iron (Fe''), is oxidized to trivalent iron (Fe3+). - Examples of microorganisms used for regeneration include the following known bacteria.

5ulfolobus  属のうち鉄を酸化するものこ
れらは何れも好酸性の鉄酸化微生物であって、これらの
微生物単独またはこれらの二種以上を共存させてもよく
、またこれら微生物(細菌)の酸化能力や物質生産能力
の優れた変異株も用いられ、この変異株は天然に見出さ
れるもののほか人工的手法例えば紫外線照射や遺伝子の
導入・組み替えなどで作られたものであってもよい。ま
たこれら細菌は純粋系であっても他の微生物との共存系
であってもよい。
All of the genus Ulfolobus that oxidize iron are acidophilic iron-oxidizing microorganisms, and these microorganisms may be used singly or in combination of two or more, and the oxidizing ability of these microorganisms (bacteria) and Mutant strains with superior substance-producing ability are also used, and these mutant strains may be those found naturally or those created by artificial methods such as ultraviolet irradiation, gene introduction, and recombination. Furthermore, these bacteria may be in a pure system or in a coexisting system with other microorganisms.

微生物による再生反応は、回分反応でも連続反応でもよ
く、微生物は、系内に分散させても、担体に固定して用
いてもよい。微生物を担体に固定すると特に連続系にお
ける微生物のリサイクルや回収が容易である。担体には
活性炭や無機酸化物および有機物などが利用できる。上
記再生反応には、公知の微生物の栄養源のほか例えば硫
酸銅などの微量栄養素を加えることにより微生物の増殖
や代謝産物の産生を促進し、反応速度を高めることがで
きる。
The regeneration reaction by microorganisms may be a batch reaction or a continuous reaction, and the microorganisms may be used either dispersed within the system or fixed on a carrier. Immobilizing microorganisms on a carrier facilitates recycling and recovery of the microorganisms, especially in continuous systems. Activated carbon, inorganic oxides, organic substances, and the like can be used as the carrier. In addition to known nutritional sources for microorganisms, micronutrients such as copper sulfate can be added to the regeneration reaction to promote the growth of microorganisms and the production of metabolites, thereby increasing the reaction rate.

第1図に本発明のレドックス電池の一例を示す。FIG. 1 shows an example of a redox battery of the present invention.

第1図において負極液側の装置については基本的に前述
の第2図と変らないのであるが、第2図における負極液
貯槽14め代わりに再生のための槽9を示した。槽9に
おいては例えば水素ガス、都市ガス等の還元性ガス12
を含むガスによる還元。
In FIG. 1, the apparatus on the negative electrode liquid side is basically the same as in FIG. 2 described above, but a tank 9 for regeneration is shown instead of the negative electrode liquid storage tank 14 in FIG. In the tank 9, a reducing gas 12 such as hydrogen gas, city gas, etc.
Reduction by gas containing.

光触媒による光化学的還元または生物反応による還元が
行われる。正極液の再生には、本発明の微生物による正
極液再生用バイオリアクター8により行われる。バイオ
リアクターには空気16が導入され正極液の反応はFe
”+→Fe3+であって、加えられた微生物lOは酸化
反応によるエネルギーを用いて空気中の炭酸ガスを炭素
源として増殖し、公知の適当な分離装置によって分離さ
れ、再生された正極液はポンプ】6を経て流通形電解槽
5に戻され、増殖微生物およびまたは代謝産物11はリ
アクターより取出される。放電時における電解槽中の反
応は前述した通りである。
Photochemical reduction using a photocatalyst or reduction via a biological reaction is performed. The regeneration of the positive electrode liquid is carried out using the bioreactor 8 for regenerating positive electrode liquid using microorganisms of the present invention. Air 16 is introduced into the bioreactor, and the reaction of the catholyte is caused by Fe.
"+→Fe3+, the added microorganism 1O uses the energy from the oxidation reaction to proliferate using carbon dioxide gas in the air as a carbon source, and is separated by a known appropriate separation device, and the regenerated catholyte is pumped. 6 and returned to the flow-through electrolytic cell 5, and the proliferating microorganisms and/or metabolites 11 are taken out from the reactor.The reactions in the electrolytic cell during discharge are as described above.

〔実施例〕〔Example〕

正極液の微生物による回分再生試験を以下の条件で行っ
た。
A batch regeneration test using microorganisms of the positive electrode solution was conducted under the following conditions.

正極液組成  Fe+3・・・O Fe+2・・・0.2モル(硫酸第一鉄)P )]  
・・・1.5(硫酸酸性)使用バクテリアT、 fer
roxidana、液中初濃度約I×1 Q  cel
ls / m/、上記のバクテリア含有液に栄養源とし
てに2l−IrO20,1t / / 、  (Nl−
14)2804 0.1 t/lを加え25°C常圧下
で空気を吹込みながら攪拌し、ラグタイムをのぞいた1
5時間後に液を分析して次の値を得た。
Positive electrode liquid composition Fe+3...O Fe+2...0.2 mol (ferrous sulfate) P)]
...1.5 (acidic sulfuric acid) Bacteria T, fer
roxidana, initial concentration in liquid approximately I×1 Q cel
ls/m/, 2l-IrO20,1t//, (Nl-
14) Add 0.1 t/l of 2804 and stir at 25°C under normal pressure, excluding lag time.
After 5 hours, the liquid was analyzed and the following values were obtained.

Fe+3 ・・・0.2モル Fe” ・・・Oモル バクテリアの液中濃度 5〜(3×l Q cells
/m/以上の試験により再生された液が得た理論的な電
気量は1時間当り溶液1/当り0.018フアラデーで
あり、産生されたバクテリアは1時間当り溶液1/当り
3〜4 X I Q  cellsと計算される。
Fe+3...0.2 mol Fe"...O mol bacteria concentration in liquid 5~(3×l Q cells
The theoretical amount of electricity obtained by the regenerated solution by testing over /m/ is 0.018 Faradays per solution per hour, and the bacteria produced is 3 to 4 X per solution per hour. It is calculated as I Q cells.

〔発明の効果〕〔Effect of the invention〕

以上詳細に述べたように、本発明のレドックス電池は、
電力の生産と併せて細菌細胞ひいてはそのあらゆる構成
成分である核酸、酵素、蛋白質。
As described in detail above, the redox battery of the present invention is
Nucleic acids, enzymes, and proteins, which are the constituents of bacterial cells and all of their components, as well as the production of electricity.

補酵素、脂質、糖類などの生体物質あるいは代謝産物の
生産が可能である。
It is possible to produce biological substances or metabolites such as coenzymes, lipids, and sugars.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一例を示す図であり、第2図は従来の
レドックス電池の説明図である。 5・・・流通形電解槽、  6・・・正極、7・・・負
極、      8・・・バイオリアクター、9・・・
槽、      ]0・・・微生物、11・・・増殖微
生物、  12・・・還元性ガス、13・・・正極液貯
槽、  ]4・・・負極液貯槽、15・・・隔膜、  
   16・・・ポンプ、17・・・空気。
FIG. 1 is a diagram showing an example of the present invention, and FIG. 2 is an explanatory diagram of a conventional redox battery. 5... Flow-through electrolytic cell, 6... Positive electrode, 7... Negative electrode, 8... Bioreactor, 9...
Tank, ]0...Microorganism, 11...Proliferating microorganism, 12...Reducing gas, 13...Positive electrode liquid storage tank, ]4...Negative electrode liquid storage tank, 15...Diaphragm,
16...pump, 17...air.

Claims (1)

【特許請求の範囲】[Claims] 正極液の再生に微生物を用いてなる正極液に鉄溶液を用
いるレドックス電池。
A redox battery that uses microorganisms to regenerate the catholyte and uses an iron solution for the catholyte.
JP61097987A 1986-04-30 1986-04-30 Redox cell Pending JPS62256382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61097987A JPS62256382A (en) 1986-04-30 1986-04-30 Redox cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61097987A JPS62256382A (en) 1986-04-30 1986-04-30 Redox cell

Publications (1)

Publication Number Publication Date
JPS62256382A true JPS62256382A (en) 1987-11-09

Family

ID=14207019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61097987A Pending JPS62256382A (en) 1986-04-30 1986-04-30 Redox cell

Country Status (1)

Country Link
JP (1) JPS62256382A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001981A3 (en) * 2003-06-27 2006-03-30 Univ Western Ontario Biofuel cell
WO2007073598A1 (en) * 2005-12-27 2007-07-05 The University Of Western Ontario Fuel cell bioreactor
JP2009530784A (en) * 2006-03-24 2009-08-27 エイカル エナジー リミテッド Fuel cell
WO2011014953A1 (en) * 2009-08-07 2011-02-10 The University Of Western Ontario Bio-fuel cell system
WO2014208322A1 (en) * 2013-06-28 2014-12-31 日新電機 株式会社 Redox flow battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001981A3 (en) * 2003-06-27 2006-03-30 Univ Western Ontario Biofuel cell
JP2007505442A (en) * 2003-06-27 2007-03-08 ザ ユニバーシティ オブ ウエスタン オンタリオ Biofuel cell
US7572546B2 (en) 2003-06-27 2009-08-11 The University Of Western Ontario Biofuel cell
US7687161B2 (en) 2003-06-27 2010-03-30 The University Of Western Ontario Method for generating electricity
US8455144B2 (en) 2003-06-27 2013-06-04 The University Of Western Ontario Bio-fuel cell system
WO2007073598A1 (en) * 2005-12-27 2007-07-05 The University Of Western Ontario Fuel cell bioreactor
US8450015B2 (en) 2005-12-27 2013-05-28 The University Of Western Ontario Fuel cell bioreactor
JP2009530784A (en) * 2006-03-24 2009-08-27 エイカル エナジー リミテッド Fuel cell
WO2011014953A1 (en) * 2009-08-07 2011-02-10 The University Of Western Ontario Bio-fuel cell system
WO2014208322A1 (en) * 2013-06-28 2014-12-31 日新電機 株式会社 Redox flow battery
JP6028862B2 (en) * 2013-06-28 2016-11-24 日新電機株式会社 Redox flow battery

Similar Documents

Publication Publication Date Title
US7544429B2 (en) Membraneless and mediatorless microbial fuel cell
Fornero et al. Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells
González-Pabón et al. Hydrogen production in two-chamber MEC using a low-cost and biodegradable poly (vinyl) alcohol/chitosan membrane
ATE491156T1 (en) BIO-ELECTROCHEMICAL PROCESS FOR PRODUCING HYDROGEN
Rahimnejad et al. Microbial fuel cell (MFC): an innovative technology for wastewater treatment and power generation
US20200002180A1 (en) Electrochemical system for producing ammonia from nitrogen oxides and preparation method thereof
WO1996005336A1 (en) Electrochemical device for removal and regeneration of oxygen and method
CN210656331U (en) Sewage treatment device of coupling microbial fuel cell and electro-Fenton system
CN101385180A (en) Device comprising a new cathode system and method for generating electrical energy with use thereof
CN101447584B (en) Microbial fuel cell capable of regenerating cathode acceptor by utilizing natural lighting
US20230287462A1 (en) A process to treat a carbon dioxide comprising gas
JP2005501387A (en) Fuel cell
JP2000133326A (en) Power generating method and battery using vital organism metabolism
JPH0227668A (en) Battery capacity maintaining method for redox flow battery
JPS62256382A (en) Redox cell
CN112813459A (en) Microbial electrolytic cell and uranium-containing wastewater treatment method
JPS6273577A (en) Bromine-copper redox type fuel cell
JP5027462B2 (en) Method for culturing photosynthetic microorganisms
Xing et al. Hydrogen production from waste stream with microbial electrolysis cells
CN102650063B (en) Method for recovering elementary-substance cobalt from lithium cobaltate in one step by utilizing microbial electrolysis cell
Young et al. The theoretical aspects of biochemical fuel cells
US3226262A (en) Bio-electrode assembly for generating electricity
Wu et al. Deciphering the role and mechanism of nano zero-valent iron on medium chain fatty acids production from CO2 via chain elongation in microbial electrosynthesis
CN110357273A (en) A kind of fuel-cell device and ammonia nitrogen removal and ferric iron regeneration method
CN214991905U (en) Microbial electrolysis cell