JPS62106602A - Manufacture of organic positive characteristics thermistor - Google Patents

Manufacture of organic positive characteristics thermistor

Info

Publication number
JPS62106602A
JPS62106602A JP24685885A JP24685885A JPS62106602A JP S62106602 A JPS62106602 A JP S62106602A JP 24685885 A JP24685885 A JP 24685885A JP 24685885 A JP24685885 A JP 24685885A JP S62106602 A JPS62106602 A JP S62106602A
Authority
JP
Japan
Prior art keywords
heating
element body
thermistor
metal foil
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24685885A
Other languages
Japanese (ja)
Inventor
鹿間 隆
山本 朝之
高岡 祐一
勝之 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP24685885A priority Critical patent/JPS62106602A/en
Publication of JPS62106602A publication Critical patent/JPS62106602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、導電性粒子が混入分散した有機高分子材料の
正の抵抗/温度特性を利用する有機性正特性サーミスタ
に製造方法に係り、詳しくは該有機性正特性サーミスタ
の素体に電極を形成する方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing an organic positive temperature coefficient thermistor that utilizes the positive resistance/temperature characteristics of an organic polymer material in which conductive particles are mixed and dispersed. More specifically, the present invention relates to a method of forming electrodes on the element body of the organic positive temperature coefficient thermistor.

〈従来の技術〉 第5図は従来例の有機性正特性サーミスタの断面図であ
り、第6図はサーミスタ本体の拡大断面図である。これ
らの図において、1oはサーミスタ本体である。該サー
ミスタ本体1゜は、素体2゜の両主表面にそれぞれ電極
3゜、3゜を形成して構成されている。前記素体2゜は
、導電性粒子が混入分散した有機高分子を構成材料とす
るものである。導電性粒子としては、カーボンブランク
、カーボングラファイト、金属等の粉体が用いられる。
<Prior Art> FIG. 5 is a sectional view of a conventional organic positive temperature coefficient thermistor, and FIG. 6 is an enlarged sectional view of the thermistor body. In these figures, 1o is the thermistor body. The thermistor body 1° is constructed by forming electrodes 3° and 3° on both main surfaces of an element body 2°, respectively. The element body 2° is made of an organic polymer in which conductive particles are mixed and dispersed. As the conductive particles, powders such as carbon blank, carbon graphite, and metal are used.

また、有機性高分子としては、ボリエヂレン、ポリプロ
ピレン、ポリブタジェン系の樹脂か用いられる。
Further, as the organic polymer, polyethylene, polypropylene, or polybutadiene resins are used.

導電性粒子が混入分散した有機高分子材料は、正の抵抗
/温度特性を示す。有機性正特性サーミスタは、この有
機高分子材料の抵抗/温度特性を利用するものである。
An organic polymer material in which conductive particles are mixed and dispersed exhibits positive resistance/temperature characteristics. Organic positive temperature coefficient thermistors utilize the resistance/temperature characteristics of this organic polymer material.

4o、4oはリード端子である。各リード端子4゜はそ
れぞれ電極3゜の外面に半田付けにより取着される。5
oはサーミスタ本体1゜とリード端子4゜の基部とを絶
縁被覆するコート部である。該コート部5゜は樹脂より
形成される。
4o and 4o are lead terminals. Each lead terminal 4° is attached to the outer surface of the electrode 3° by soldering. 5
o is a coating portion that insulates the thermistor body 1° and the base of the lead terminal 4°. The coat portion 5° is made of resin.

しかして、上記有機性正特性サーミスタを製造するに当
たって、素体2゜の両主表面にそれぞれ電極3゜、3゜
を形成してサーミスタ本体1゜を構成するには、従来、
次のような2つの方法が一般に行なわれている。
Therefore, in manufacturing the organic positive temperature coefficient thermistor, in order to form the thermistor main body 1° by forming electrodes 3° and 3° on both main surfaces of the element body 2°, conventionally,
The following two methods are generally used.

第1の方法は、素体2゜の両主表面にそれぞれ金属メッ
キを施す方法である。第2の方法は、電極3oとなる金
属箔を素体2゜の両主表面にそれぞれ熱圧着する方法で
ある。この熱圧着の方法では、一対のプレス板間に素体
2゜と金属箔03..3.とをセットし、両者を素体2
゜材料の融点以上の温度で熱圧着する。
The first method is to apply metal plating to both main surfaces of the element body 2°. The second method is to thermocompress metal foils that will become the electrodes 3o onto both main surfaces of the element body 2°. In this thermocompression bonding method, an element body 2° and a metal foil 03° are placed between a pair of press plates. .. 3. and set both as element 2.
゜Thermocompression bonding is carried out at a temperature above the melting point of the material.

〈発明が解決しようとする問題点〉 ところで、メッキによる電極形成方法では、電極3゜と
素体2゜との接着強度が充分ではない。また、電極3゜
であるメッキ膜の膨張率が、素体2゜の膨張率の約40
分の1程度と極めて小さいため、後の工程である半田付
けやコート部の焼き付は等の加熱工程で素体2゜と電極
3゜とが異なる膨張率で膨張収縮を繰り返す。そのため
、電極3゜の剥離が生じやすい。
<Problems to be Solved by the Invention> By the way, in the electrode forming method using plating, the adhesive strength between the electrode 3° and the element body 2° is not sufficient. In addition, the expansion rate of the plating film at 3° for the electrode is about 40, which is the expansion rate for the 2° element body.
Because it is extremely small, about 1/2 of that, the element body 2° and the electrode 3° repeatedly expand and contract at different expansion rates during subsequent heating processes such as soldering and baking of the coated portion. Therefore, peeling of the electrode at 3° tends to occur.

これに対して、熱圧着による電極形成方法によれば、素
体2゜の表層部分が溶解して金属箔3゜と結合するため
、該素体2゜と?1を極3゜との接着強度が大きく、半
田付は等の加熱工程においても電極3゜の剥離が生じな
い。
On the other hand, according to the electrode forming method using thermocompression bonding, the surface layer of the element body 2° is melted and bonded to the metal foil 3°, so that the surface layer of the element body 2° is bonded to the metal foil 3°. The adhesive strength between No. 1 and the 3° electrode is high, and the 3° electrode does not peel off even during heating processes such as soldering.

しかしながら、金属箔3゜の熱圧着時には、素体2oと
金属箔3゜との間には少なからず空気が残存する。素体
2゜は、熱圧着と同時に溶融により金属箔3oと接合す
るので、前記の残存空気が外部に流出することなく閉じ
こめられ、第6図に示すように、素体2゜と金属箔3゜
との間に気体層6゜ができる。
However, when the metal foil 3° is thermocompressed, a considerable amount of air remains between the element body 2o and the metal foil 3°. Since the element body 2° is bonded to the metal foil 3o by thermocompression and melting at the same time, the remaining air is trapped without flowing out to the outside, and the element body 2° and the metal foil 3o are bonded together as shown in FIG. A gas layer of 6° is created between the two.

この気体層6゜は、半田付は工程での加熱やヒートサイ
クル試験での加熱により、膨張収縮を繰り返して拡大す
る。この拡大した気体層6oにより、サーミスタの抵抗
値が増大し、初期抵抗値が所望の値から大きく外れると
いう不都合が生じる。
This gas layer 6° expands by repeatedly expanding and contracting due to heating during the soldering process and heating during a heat cycle test. This enlarged gas layer 6o increases the resistance value of the thermistor, causing the disadvantage that the initial resistance value deviates significantly from the desired value.

本発明は、従来の両方法の問題点に鑑み、素体と71i
tiとの接着強度を充分な大きさに保ちながら、素体と
電極との間での気体層の発生を無くし、該気体層による
初期抵抗値の増大を防止することを目的とする。
In view of the problems of the conventional both methods, the present invention provides an element body and a 71i
The purpose is to eliminate the generation of a gas layer between the element body and the electrode while maintaining a sufficient adhesive strength with Ti, and to prevent an increase in the initial resistance value due to the gas layer.

〈問題点を解決するための手段〉 本発明は、上記目的を達成するために、素体の両主表面
にそれぞれ電極となる金属箔を面接させる工程と、前記
素体と金属箔とを素体材料の融点より低い温度で加熱圧
接する第1段の加熱加圧工程と、該第1段の加熱加圧工
程の後に素体と金属箔とを素体材料の融点以上の温度で
熱圧着する第2段の加熱加圧工程とを含んで有機性正特
性サーミスタの製造方法を構成した。
<Means for Solving the Problems> In order to achieve the above object, the present invention includes a step of bringing metal foils serving as electrodes onto both main surfaces of an element body, and a step of bringing the element body and the metal foil into contact with each other. A first heating and pressing process of heating and pressing at a temperature lower than the melting point of the body material, and after the first heating and pressing process, thermocompression bonding the element body and metal foil at a temperature higher than the melting point of the element material. A method for manufacturing an organic positive temperature coefficient thermistor was constructed, including a second heating and pressurizing step.

く作用〉 上記の構成によれば、第1段の加熱加圧工程において、
素体材料の融点以下の温度で金属箔が素体に加熱圧接さ
れている間に、両者間に残存している空気が押し出され
るようにして外部に流出し、両者間には空気が残存しな
くなる。この状態で第2段の加熱加圧工程で融点以上の
温度で素体と金属箔とが圧着されるから、素体と金属箔
とは隙間なく全面で密着する。したがって、素体と電極
との間に気体層がないサーミスタ本体が得られる。
Effect> According to the above configuration, in the first stage heating and pressurizing step,
While the metal foil is heated and pressure welded to the element body at a temperature below the melting point of the element material, the air remaining between the two is pushed out and flows out to the outside, and air remains between the two. It disappears. In this state, the element body and the metal foil are pressed together at a temperature higher than the melting point in the second heating and pressing step, so that the element body and the metal foil are in close contact with each other over the entire surface without any gaps. Therefore, a thermistor body without a gas layer between the element body and the electrode can be obtained.

したがって、後の半田付は等の工程で加熱されても、気
体層に基づく抵抗値の増大が生じない。
Therefore, even if heat is applied in subsequent soldering steps, the resistance value will not increase due to the gas layer.

〈実施例〉 以下、本発明を第1図および第2図に示す実施例に基づ
いて詳細に説明する。第1図は本発明方法4こより得ら
れる有機性正特性サーミスタの本体部分の断面図である
。同図において、サーミスタ本体lは、素体2と一対の
電極3.3とから構成されている。前記素体2は、導電
性粒子が、昆入分散した有機高分子を構成材料とする。
<Example> Hereinafter, the present invention will be explained in detail based on the example shown in FIGS. 1 and 2. FIG. 1 is a sectional view of the main body of an organic positive temperature coefficient thermistor obtained by method 4 of the present invention. In the figure, the thermistor main body 1 is composed of an element body 2 and a pair of electrodes 3.3. The element body 2 is made of an organic polymer in which conductive particles are dispersed.

また、電極3は、金属箔で構成されている。該金属箔3
は、熱圧着により素体2の両主表面にそれぞれ圧着され
ている。4.4はリード端子、5はコート部である。こ
れらの有機性正特性サーミスタの基本構成は、第5図お
よび第6図に示した従来例のものと同様である。また、
その構成材料についても、従来例のものと同様なものが
使用可能である。
Furthermore, the electrode 3 is made of metal foil. The metal foil 3
are bonded to both main surfaces of the element body 2 by thermocompression bonding. 4.4 is a lead terminal, and 5 is a coat portion. The basic structure of these organic positive temperature coefficient thermistors is the same as that of the conventional examples shown in FIGS. 5 and 6. Also,
As for its constituent materials, the same materials as those of the conventional example can be used.

次に、上記構成のサーミスタ本体1を形成する方法を具
体的に説明する。
Next, a method for forming the thermistor body 1 having the above configuration will be specifically explained.

(イ)第1実施例 第2図(A )(B )(C)はそれぞれ本発明方法の
一実施例の各工程を示す説明図である。まず、素体2と
しては、カーボンブラックを混入分散したポリエチレン
樹脂を構成材料とする素体を用いた。
(A) First Embodiment FIGS. 2(A), 2(B), and 2(C) are explanatory views showing each step of an embodiment of the method of the present invention. First, as the element body 2, an element body whose constituent material is a polyethylene resin mixed and dispersed with carbon black was used.

また、電極となる金属箔3としては、ニッケルの金属箔
を用いた。そして、第2図(A)に示すように、熱圧着
用の一対のプレス板6.6間に、前記素体2と、一対の
金属箔3.3とをセットした。
Further, as the metal foil 3 serving as an electrode, a nickel metal foil was used. Then, as shown in FIG. 2(A), the element body 2 and a pair of metal foils 3.3 were set between a pair of press plates 6.6 for thermocompression.

次いで、第2図(B)に示すように、第1段の加熱加圧
工程として、これら素体2および金属箔3゜3を両プレ
ス板6.6により素体材料の融点より低い温度で加熱加
圧した。この場合、素体材料の融点か130°Cである
のに対して、加熱温度を50°Cに設定した。加圧力は
、150kg/cm2である。この条件による加熱加圧
を各2分ずつ3回操り返した。
Next, as shown in FIG. 2(B), in the first heating and pressing step, the element body 2 and the metal foil 3°3 are pressed by both press plates 6.6 at a temperature lower than the melting point of the element material. It was heated and pressurized. In this case, the melting point of the element material was 130°C, while the heating temperature was set at 50°C. The pressing force was 150 kg/cm2. The heating and pressurization under these conditions was repeated three times for 2 minutes each.

この融点以下での加熱加圧により、素体2と金属箔3と
の間に残存している空気がことごとく外部に流出した。
By heating and pressurizing at a temperature below the melting point, all the air remaining between the element body 2 and the metal foil 3 leaked out to the outside.

なお、この工程での加熱温度は、素体材料の融点以下で
、周囲7益度より高ければよい。
Note that the heating temperature in this step should just be below the melting point of the base material and higher than the ambient temperature.

第1段の加熱加圧工程に続いて、加熱温度を素体材料の
融点より高い190°Cにまて上げて、両プレス仮6.
6により加熱加圧を行なった。これが第2段の加熱加圧
工程である。加圧力は、150kg/cm”である。こ
の条件による加熱加圧を各2分ずつ3回繰り返した。
Following the first heating and pressing process, the heating temperature was raised to 190°C, which is higher than the melting point of the base material, and both presses were temporarily pressed at 6.
Heating and pressurizing was carried out using 6. This is the second heating and pressing step. The pressing force was 150 kg/cm''.Heating and pressing under these conditions was repeated three times for 2 minutes each.

これによって、素体2の表層が溶融して金属箔3と強固
に結合した。また、素体2と金属箔3とは、両者間に空
気が残存しない状態で圧着するから、両者間には気体層
が形成されなかった。
As a result, the surface layer of the element body 2 was melted and firmly bonded to the metal foil 3. Moreover, since the element body 2 and the metal foil 3 were pressed together without any air remaining between them, no gas layer was formed between them.

上記各工程を経ることによって、第1図に示したような
サーミスタ本体lが得られた。このサーミスタ本体lの
各電極3.3には、リード端子4゜4がそれぞれ半田付
けされ、その後、サーミスタ本体Iの全部とリード端子
4.4の基部とが樹脂で被覆され、コート部5が形成さ
れる。これらの工程は、従来の方法の場合と同様である
ので、詳細な説明は省略する。
By going through each of the above steps, a thermistor body l as shown in FIG. 1 was obtained. A lead terminal 4.4 is soldered to each electrode 3.3 of this thermistor body I, and then the entire thermistor body I and the base of the lead terminal 4.4 are coated with resin, and the coating portion 5 is It is formed. These steps are the same as in the conventional method, so detailed explanations will be omitted.

次に、上記各工程により得られたサーミスタ本体lにつ
いて特性を調べた。すなわち、サーミスタ本体lを1c
m角の大きさに切断し、その後の加工工程による抵抗変
化率を検査した。その変化状態を第3図の特性図に示す
。従来の熱圧着による方法には、ニッケルの箔を使用し
た。
Next, the characteristics of the thermistor body l obtained through each of the above steps were investigated. In other words, the thermistor body l is 1c
It was cut into m square pieces, and the rate of change in resistance due to subsequent processing steps was examined. The state of change is shown in the characteristic diagram of FIG. The conventional thermocompression bonding method used nickel foil.

第3図の特性図からも明らかなように、従来の方法によ
るサーミスタ本体の抵抗変化率が半田付は工程およびコ
ート部形成工程により50%以上となったのに対して、
本発明方法によるサーミスタ本体1の抵抗変化率は、半
田付は後らコート部の形成後ら大きく変化せず、10%
未満に収まった。
As is clear from the characteristic diagram in Figure 3, the rate of change in resistance of the thermistor body by the conventional method was over 50% due to the soldering process and the coating part forming process.
The resistance change rate of the thermistor body 1 according to the method of the present invention does not change significantly after soldering and after the formation of the coated part, and is 10%.
It fell below.

また、上記の検査と同様の対象に関して、ヒートサイク
ル試験を行なった。その結果を第4図の特性図に示す。
In addition, a heat cycle test was conducted on the same objects as those tested above. The results are shown in the characteristic diagram of FIG.

該試験では、−20℃で30分、25℃で3分、120
°Cで30分、25°Cで3分という温度/時間条件を
1サイクルとして、このサイクルを多数回繰り返した。
In this test, -20°C for 30 minutes, 25°C for 3 minutes, 120°C
This cycle was repeated many times with temperature/time conditions of 30 minutes at °C and 3 minutes at 25 °C as one cycle.

同図からも明らかなように、従来のメソギによるサーミ
スタ本体、もしくは従来の熱圧着によるサーミスタ本体
は、それぞれ!00サイクルもしくは1000サイクル
で抵抗変化率が100%近くにまで増大したのに対し、
本発明方法によるサーミスタ本体1は、1000サイク
ルの後でも、10%程度の変化率であって、抵抗変化率
がほとんど変化しなかったことが分かる。
As is clear from the figure, the thermistor body is made using conventional metal wires, or the thermistor body is made using conventional thermocompression bonding. While the resistance change rate increased to nearly 100% at 00 cycles or 1000 cycles,
It can be seen that in the thermistor body 1 manufactured by the method of the present invention, even after 1000 cycles, the rate of change in resistance was approximately 10%, and the rate of change in resistance hardly changed.

(ロ)第2実施例 上記第1実施例では、その第2段の加熱加圧工程におい
て、加熱温度を素体+材料の融点より60°C高い19
0°Cに設定したか、この第2実施例では、加熱温度を
素体(材料の融点より10°C高い140℃、および素
体材料の融点より110°C高い240℃に設定した。
(B) Second Embodiment In the first embodiment described above, in the second heating and pressing step, the heating temperature was set to 19°C, which was 60°C higher than the melting point of the element body + material.
In this second example, the heating temperature was set at 140°C, which is 10°C higher than the melting point of the element material, and 240°C, which is 110°C higher than the melting point of the element material.

この実施例に用いた素材、および第2段の加熱加圧工程
にいたる工程は、第1実施例の場合と同様である。
The materials used in this example and the steps leading to the second heating and pressing step are the same as in the first example.

前記の温度条件により第2段の加熱加圧工程を実施して
得られたサーミスタ本体1について、抵抗値と電極3の
接着強度とを検査した結果を次の第1表に示す、この表
には、第1実施例により得られたサーミスタ本体lの抵
抗値と接着強度とを併記している。抵抗値の検査試料は
、いずれもIcm角のサーミスタ本体lである。接着強
度は、幅Icm、長さ10cmのサーミスタ本体Iを検
査対象とし、その電極3を長さ方向に毎分2mの速度で
引き剥がした。表中、抵抗値は常温(25℃)での値で
ある。
The results of testing the resistance value and the adhesive strength of the electrode 3 for the thermistor body 1 obtained by carrying out the second heating and pressurizing process under the above temperature conditions are shown in Table 1 below. The resistance value and adhesive strength of the thermistor main body l obtained in the first example are also listed. The resistance value test samples were all Icm square thermistor bodies. The adhesive strength was tested using a thermistor main body I having a width of I cm and a length of 10 cm, and the electrode 3 was peeled off in the length direction at a speed of 2 m/min. In the table, the resistance values are values at room temperature (25° C.).

(以下余白) (第1表) 140   10.19    1   0.2319
0   1   0.1.1    1   0.53
240       0.24    10.剣−−第
1表に示した結果から、加熱温度が素体材料の融点に近
い場合は、抵抗値が比較的小さいが、接着強度か充分で
はなく、これに対して、加熱温度が素体材料の融点より
大幅に高いと、接着強度は大きくなるが、抵抗値が増大
することか分かる。
(Left below) (Table 1) 140 10.19 1 0.2319
0 1 0.1.1 1 0.53
240 0.24 10. Sword: From the results shown in Table 1, when the heating temperature is close to the melting point of the element material, the resistance value is relatively small, but the adhesive strength is not sufficient; It can be seen that when the temperature is significantly higher than the melting point of the material, the adhesive strength increases, but the resistance value also increases.

したがって、この第2段の加熱加圧工程での加熱温度と
素体材料の融点との温度差△Tを、20’C〜100℃
の範囲内に収めることが好ましい。温度差△Tをこの範
囲内に収めると、抵抗値の増大が微少におさえられると
ともに、充分な接着強度が得られる。
Therefore, the temperature difference ΔT between the heating temperature in this second heating and pressing step and the melting point of the element material is set at 20'C to 100°C.
It is preferable to keep it within the range of . When the temperature difference ΔT is kept within this range, the increase in resistance value can be suppressed to a slight extent, and sufficient adhesive strength can be obtained.

〈発明の効果〉 以上のように本発明によれば、第1段の加熱加圧工程で
素体と金属箔との間に残存する空気が押し出されて外部
に流出し、次の第2段の加熱加圧工程では素体と金属箔
との間に空気か残存しない状態で両者が熱圧着されるか
ら、素体と金属箔との間に気体層が発生せず、両者が全
面にわたって隙間なく密着する。したがって、充分な接
着強度が得られるばかりでなく、従来の方法によるサー
ミスタのように、気体層による抵抗値の増大という不都
合か起こらず、所望の低い値の初期抵抗値が得られる。
<Effects of the Invention> As described above, according to the present invention, the air remaining between the element body and the metal foil is pushed out in the first stage heating and pressurizing process and flows out to the outside. In the heating and pressurizing process, the element body and the metal foil are bonded under heat and pressure without any air remaining between them, so no gas layer is generated between the element body and the metal foil, and there is no gap between the two over the entire surface. Close contact without any problem. Therefore, not only sufficient adhesive strength can be obtained, but also a desired low initial resistance value can be obtained without the inconvenience of increased resistance due to a gas layer, which is the case with conventional thermistors.

また、素体と電極との間に気体層が存在せず、リード端
子の半田付けやコート部の焼き付けにより抵抗値が増大
するという不都合が生じないから、半田付は等の温度条
件を広い範囲で設定することができ、サーミスタ本体に
対する加工が容易となる。
In addition, since there is no gas layer between the element body and the electrode, there is no problem of increased resistance due to soldering of the lead terminal or baking of the coated part, so soldering can be carried out over a wide range of temperature conditions. This makes it easy to process the thermistor body.

さらに従来の熱圧着によるサーミスタでは、気体層の大
きさや発生数、発生側所に応じてサーミスタ毎に抵抗値
のばらつきが生じるが、本発明によるサーミスタでは、
抵抗値変化の原因となる気体層が存在しないから、各サ
ーミスタ毎に抵抗値が一定し、その結果、良品率が向上
する。
Furthermore, in conventional thermocompression bonded thermistors, resistance values vary from one thermistor to another depending on the size, number, and location of gas layers, but with the thermistor of the present invention,
Since there is no gas layer that causes a change in resistance value, the resistance value is constant for each thermistor, and as a result, the rate of non-defective products is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第4図は本発明の実施例に係り、第1図は
本発明実施例により得られるサーミスタ本体の断面図、
第2図(A )(B )(C)はそれぞれ前記実施例の
各工程を示す説明図、第3図は前記サーミスタ本体の加
熱による抵抗変化率を示す特性図、第4図は該サーミス
タ本体のヒートサイクル試験による抵抗変化率を示す特
性図である。 第5図および第6図は従来例に係り、第5図は従来方法
により得られるサーミスタの断面図、第6図は従来の熱
圧着により得られるサーミスタ本体の拡大断面図である
。 l・・・サーミスタ本体、2・・・素体、3・・・電極
(金属箔)、4・・リード端子、5・・・コート部、6
・・・プレス板。
1 and 4 relate to an embodiment of the present invention, and FIG. 1 is a sectional view of a thermistor body obtained by an embodiment of the present invention;
Figures 2 (A), (B), and (C) are explanatory diagrams showing each process of the above embodiment, Figure 3 is a characteristic diagram showing the rate of change in resistance due to heating of the thermistor body, and Figure 4 is the thermistor body. FIG. 3 is a characteristic diagram showing the resistance change rate by a heat cycle test. 5 and 6 relate to conventional examples, FIG. 5 is a sectional view of a thermistor obtained by the conventional method, and FIG. 6 is an enlarged sectional view of the thermistor body obtained by conventional thermocompression bonding. l... Thermistor body, 2... Element body, 3... Electrode (metal foil), 4... Lead terminal, 5... Coating part, 6
...Press board.

Claims (2)

【特許請求の範囲】[Claims] (1)導電性粒子を混入分散した有機高分子を素体の構
成材料とする有機性正特性サーミスタを製造するに当た
って、前記素体の両主表面にそれぞれ電極を形成するに
おいて、 前記素体の両主表面にそれぞれ電極となる金属箔を面接
させる工程と、前記素体と金属箔とを素体材料の融点よ
り低い温度で加熱圧接する第1段の加熱加圧工程と、該
第1段の加熱加圧工程の後に素体と金属箔とを素体材料
の融点以上の温度で熱圧着する第2段の加熱加圧工程と
を含むことを特徴とする有機性正特性サーミスタの製造
方法。
(1) In manufacturing an organic positive temperature coefficient thermistor whose element body is made of an organic polymer mixed and dispersed with conductive particles, forming electrodes on both main surfaces of the element body, a step of bringing metal foils to serve as electrodes onto both main surfaces, a first heating and pressing step of welding the element body and the metal foil together at a temperature lower than the melting point of the element material; A method for manufacturing an organic positive temperature coefficient thermistor, comprising a second heating and pressing step of thermocompression bonding the element body and metal foil at a temperature equal to or higher than the melting point of the element material after the heating and pressing step. .
(2)第2段の加熱加圧工程における加熱温度が、素体
材料の融点より20℃高い温度から100℃高い温度ま
での範囲内に設定される特許請求の範囲第1項に記載の
有機性正特性サーミスタの製造方法。
(2) The organic material according to claim 1, wherein the heating temperature in the second heating and pressing step is set within a range of 20°C higher to 100°C higher than the melting point of the base material. A method for manufacturing a positive characteristic thermistor.
JP24685885A 1985-11-01 1985-11-01 Manufacture of organic positive characteristics thermistor Pending JPS62106602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24685885A JPS62106602A (en) 1985-11-01 1985-11-01 Manufacture of organic positive characteristics thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24685885A JPS62106602A (en) 1985-11-01 1985-11-01 Manufacture of organic positive characteristics thermistor

Publications (1)

Publication Number Publication Date
JPS62106602A true JPS62106602A (en) 1987-05-18

Family

ID=17154768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24685885A Pending JPS62106602A (en) 1985-11-01 1985-11-01 Manufacture of organic positive characteristics thermistor

Country Status (1)

Country Link
JP (1) JPS62106602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9573813B2 (en) 2011-07-22 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Graphite oxide, graphene oxide or graphene, electric device using the same and method of manufacturing the same, and electrodialysis apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9573813B2 (en) 2011-07-22 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Graphite oxide, graphene oxide or graphene, electric device using the same and method of manufacturing the same, and electrodialysis apparatus

Similar Documents

Publication Publication Date Title
US5351390A (en) Manufacturing method for a PTC thermistor
US2381025A (en) Blocking-layer rectifier
JPH07111981B2 (en) Method of fixing electronic device to substrate
JPH03152992A (en) Printed circuit and its manufacture
US3435127A (en) Conductive adhesive articles and manufacture
US4442324A (en) Encapsulated backplate for electret transducers
JPS6340216A (en) Conductive tape
US2509909A (en) Conductive device
JPS62106602A (en) Manufacture of organic positive characteristics thermistor
US3224072A (en) Method of forming an electrical connection to an insulating base
US4325183A (en) Process for producing an electrical resistor having a metal foil bonded to a ceramic or glass-ceramic substrate
US3157473A (en) Electrical connections to thin conductive layers
JP4581379B2 (en) Heating element and method for manufacturing the same
US2706682A (en) Metallising the surfaces of ceramic bodies
JP3827514B2 (en) Polymer PTC element
JP3470462B2 (en) Method for manufacturing electrode for electric double layer capacitor
JPS6329901A (en) Manufacture of organic positive characteristics thermistor
US3329922A (en) Welded terminal resistor
JP6719176B2 (en) Method of joining aluminum members
JP2762813B2 (en) Connection method of semiconductor chip
JPH0861331A (en) Metal joining method
JPS62113402A (en) Organic positive characteristics thermistor
JP2000174066A (en) Method of mounting semiconductor device
JPS61149867A (en) Testing method of dielectric strength of metallic base substrate
JPS58125383A (en) Eutectic pressure welding method