JPS61199481A - Inverter - Google Patents

Inverter

Info

Publication number
JPS61199481A
JPS61199481A JP60040469A JP4046985A JPS61199481A JP S61199481 A JPS61199481 A JP S61199481A JP 60040469 A JP60040469 A JP 60040469A JP 4046985 A JP4046985 A JP 4046985A JP S61199481 A JPS61199481 A JP S61199481A
Authority
JP
Japan
Prior art keywords
voltage
circuit
switch element
power
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60040469A
Other languages
Japanese (ja)
Other versions
JPH0337394B2 (en
Inventor
Kuniharu Iwasaki
岩崎 邦治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP60040469A priority Critical patent/JPS61199481A/en
Publication of JPS61199481A publication Critical patent/JPS61199481A/en
Publication of JPH0337394B2 publication Critical patent/JPH0337394B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stopping Of Electric Motors (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To rapidly and accurately control a regeneration by controlling a power regenerative switch element parallel to a power reactor rectifier on the basis of a voltage detection and a current direction detection to return the regenerative energy to an AC power source. CONSTITUTION:When a motor 6 normally rotates and is not in a regenerative brake state, 3-phase ACs are converted by a power factor 4 to a DC, and further converted by an inverter 5 to 3-phase AC, and supplied to the motor 6. When becoming a regenerative state, switches 21-23 are closed by the outputs of a voltage detector 13 and a direction detector 15, and a control signal is supplied to transistors Q1-Q6. The transistors Q1-Q6 are connected in parallel with power reactor rectifiers D1-D6, and the regenerative energy is returned therethrough to an AC power source.

Description

【発明の詳細な説明】 〔産業上の第11用分野〕 本発明は交流電動機を制御駆動するためのインバータ装
置に関し、更に詳細には、電力回生回路を備えたインバ
ータ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Eleventh Industrial Field] The present invention relates to an inverter device for controlling and driving an AC motor, and more particularly to an inverter device equipped with a power regeneration circuit.

〔従来の技術〕[Conventional technology]

従来の交流電動機(誘導電動機或いは同期電動機)を可
変速運転するたぬの従来のインバータ装置は第4図に示
す如く構成されていた。第4図において、111121
 +:3+は三相交流電淵ライン、(4)は順変換回路
、(5)は逆変換回路、(6)は交流電動機、(71(
8)は一対の直流ライン、(9)は電圧平鋼用コンデン
サ、00)はエイ・ルギー放出用抵抗、(111はトラ
ンジスタ、02)は電圧構出(ロ)路である。なお、逆
変換回路(5;は三相ブリッジ接続されたトランジスタ
Qと電力回生用ダイオードDとを含む。
Tanu's conventional inverter device for operating a conventional AC motor (induction motor or synchronous motor) at variable speed was constructed as shown in FIG. In Figure 4, 111121
+: 3+ is a three-phase AC power line, (4) is a forward conversion circuit, (5) is an inverse conversion circuit, (6) is an AC motor, (71 (
8) is a pair of DC lines, (9) is a capacitor for voltage flat steel, 00) is a resistor for energy discharge, (111 is a transistor, and 02) is a voltage configuration (RO) path. Note that the inverse conversion circuit (5; includes a three-phase bridge-connected transistor Q and a power regeneration diode D.

この回路で、電動機16)の停止又は腋速時において、
電動機16)が発電機として動作した場合には、電動機
(6)の巻線に発生した電圧によつ又ダイオードDがオ
ンになり、回生エイルギーがコンデンサ(9)に吸収さ
tする。回生エネルギーが大きくて直流ライン+7) 
(81間の電圧が所定値よりも高くなると、重圧検出回
路(12;の出力でトランジスタ011がオン制御され
、抵抗(1,+11でエネルギーが消費さj、回生制動
カニ達成さ扛る。
With this circuit, when the electric motor 16) is stopped or at axle speed,
When the electric motor 16) operates as a generator, the voltage generated in the winding of the electric motor (6) also turns on the diode D, and regenerated energy is absorbed into the capacitor (9). The regenerative energy is large and the DC line +7)
(When the voltage between 81 and 81 becomes higher than a predetermined value, the output of the heavy pressure detection circuit (12) turns on the transistor 011, and the resistor (1, +11) consumes energy, achieving regenerative braking.

〔発明が#決しようとする問題虞〕[Problems that the invention attempts to solve]

第4図の回路において頻繁に回生制動状態となると、抵
抗口0)に頻繁に電流が流れ、温度が異常に上昇した。
When the regenerative braking condition frequently occurred in the circuit shown in FIG. 4, current frequently flowed through the resistor port 0) and the temperature rose abnormally.

このため、抵抗0())の電力容量ン太きくしなければ
ならなかった。fた。正常運転時における一対の直流ラ
イン+71 +81間の電圧VDのりプルに応答してト
ランジスタ旧」がオンになること乞防止するたy)に、
トランジスタ(1,]J ’Yオンにするための参照電
圧(基進電圧)vDSのレベルを第2図の廃線で示す如
く高く設定しなげればならなかった。
For this reason, it was necessary to increase the power capacity of the resistance 0()). It was. In order to prevent the transistor "old" from turning on in response to the voltage VD between the pair of DC lines +71 and +81 during normal operation,
In order to turn on the transistor (1,]J'Y, the level of the reference voltage (base voltage) vDS had to be set high as shown by the broken line in FIG.

このたぬ、回生が迅速に開始しないという問題、及びコ
ンデンサ(9)の耐圧を高めなければならないという問
題があった。上述の如(、抵抗GO)の大容量化、及び
コンデンサ(9)の高耐圧のたぬに、これ等が大型にな
ると、順逆変換回路を小型にしても、インバータ装置が
全体として大型になった。ゴた、抵抗0ωでエネルギー
を消費するので、総合的に効率を高ぬることが出来なか
った。そこで、本発明の目的は、電力損失の少ない回生
制御を迅速且つ適切に行うことが出来るインバータ装置
を提供1−ることにある。
In addition, there was a problem that regeneration did not start quickly, and a problem that the withstand voltage of the capacitor (9) had to be increased. As mentioned above, due to the large capacitance of the resistor GO and the high withstand voltage of the capacitor (9), if these components become large, even if the forward/inverse conversion circuit is made small, the inverter device as a whole will become large. Ta. Unfortunately, energy was consumed when the resistance was 0ω, so overall efficiency could not be improved. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an inverter device that can quickly and appropriately perform regeneration control with little power loss.

〔問題点を解決するたぬの手段〕[Tanu's means of solving problems]

上述の如き目的ケ達成するたぬの本発明のインバータ装
置は、交流電源に接続された順変換用整流素子から成る
順変換回路と、前記+1IiII変換用整流素子に逆並
列に接続された電力回生用スイッチ素子と、前記順変換
回路の一対の直流ラインと交流電動機との間に接続され
た逆変換用スイッチ素子から成る逆変換回路と、前記逆
変換用スイッチ素子に逆並列接続された整流素子と、前
記一対の直流ライン間に接続されたコンデンサと、前記
一対の回流ライン間の電圧乞検出する直流電圧検出回路
と、前記コンデンサと前記逆変換回路との間で前記直流
ラインに流れる電流の向きが逆向きになったことを検出
する電流方向検出回路と、前記回生用スイッチ集子ケオ
ンにするレベルを示す電圧を発生する参照電圧発生回路
と、前記直流′重圧検出回路から得られる直流検出電圧
と前記参照電圧発生回路から得られる参照電圧とを比較
し、前記電力回生用スイッチ素子を通して電力回生する
ことが可能な電圧関係にあるか否かを判定する電圧比較
回路と、前記電流方向検出回路から得られる電流の向き
が逆向きであること乞示す信号と前記電圧比較回路から
得られる前記電力回生用スイッチ素子Y’lf力回生動
作さゼることが可能であることぞ示−f信号とが同時に
発生して(・る期間内において前記電力回生用スイッチ
素子をオン状態に制御する回生制御回路とを有している
The inverter device of the present invention, which achieves the above objects, includes a forward conversion circuit comprising a forward conversion rectifier connected to an AC power supply, and a power regeneration circuit connected in antiparallel to the +1IiIII conversion rectifier. an inverse conversion circuit consisting of a switch element for inverse conversion, a switch element for inverse conversion connected between a pair of DC lines of the forward conversion circuit and an AC motor, and a rectifier element connected in antiparallel to the switch element for inverse conversion. A capacitor connected between the pair of DC lines, a DC voltage detection circuit that detects the voltage between the pair of circulating lines, and a current flowing through the DC line between the capacitor and the inverse conversion circuit. a current direction detection circuit that detects that the direction is reversed; a reference voltage generation circuit that generates a voltage that indicates the level at which the regeneration switch is turned on; and DC detection obtained from the DC' heavy pressure detection circuit. a voltage comparison circuit that compares a voltage with a reference voltage obtained from the reference voltage generation circuit and determines whether a voltage relationship exists that allows power regeneration through the power regeneration switch element; A signal indicating that the direction of the current obtained from the circuit is reversed, and a signal indicating that the power regeneration switch element Y'lf obtained from the voltage comparison circuit is capable of performing a force regeneration operation. and a regeneration control circuit that controls the power regeneration switch element to be in the on state within a period in which the power regeneration switch element and the power regeneration switch element simultaneously occur.

〔作 用〕[For production]

上記インバ〜り装置において、電動機が正常に回転して
いる時には、順変換回路の直流出方電圧が逆変換回路で
交流に変換されている。電動機が回生制動状態になると
、回生エネルギーが回生用整流素子を通してコンデンサ
側に返還される。そし℃、方向検出回路によって回生動
作中であることが検出され、同時に回流電圧がFN、神
電圧よりも高いことが検出されれば、この期間内でのみ
回生用スイッチ素子がオン制御され、回生エネルギーが
父流電簡に返還される。本発明の装置には市、流方向検
出回路が設けられているので、直流電圧、の大小のみに
応答して回生制御されない。即ち、通常時のりプルによ
って直流ラインの電圧が高いのか、回生に基づい℃電圧
が高いのかを判別てることが出来る。このため、迅速且
つ適切に回生制御される。
In the above inverter, when the motor is rotating normally, the DC voltage of the forward conversion circuit is converted into AC by the inversion circuit. When the motor enters a regenerative braking state, regenerative energy is returned to the capacitor through the regenerative rectifier. If the direction detection circuit detects that regeneration is in progress and at the same time detects that the recirculation voltage is higher than FN and the main voltage, the regeneration switch element is turned on only within this period, and regeneration starts. The energy is returned to the father's mail. Since the device of the present invention is provided with a flow direction detection circuit, regeneration control is not performed solely in response to the magnitude of the DC voltage. That is, it can be determined whether the DC line voltage is high due to normal ripple or whether the °C voltage is high based on regeneration. Therefore, regeneration control is performed quickly and appropriately.

〔実施例〕〔Example〕

次に、本発明の実施例に係わるインバータ装置乞示す第
1図を説明する。但し、この第1図において、符号山〜
(9)で示すものは第3図で同一符号で示すものと実質
的に同一であるので、その説明〉省略する0 1順変換回jug +41は、ブリッジ接続された整流
素子としての第1〜第6のダイオードD1〜D6の他に
、電力回生用スイッチ素子として第1〜第6のトランジ
スタQ1〜Q6を含む。第1〜第6のトランジスタQ、
〜Q6は、第1〜第6のダイオードD、〜D6に逆並列
接続され、回生時には逆変換制御される。
Next, FIG. 1 showing an inverter device according to an embodiment of the present invention will be explained. However, in this Figure 1, the symbol mountain ~
Since what is indicated by (9) is substantially the same as what is indicated by the same reference numerals in FIG. 3, the explanation thereof will be omitted. In addition to the sixth diodes D1 to D6, first to sixth transistors Q1 to Q6 are included as power regeneration switching elements. first to sixth transistors Q,
~Q6 is connected in antiparallel to the first to sixth diodes D and ~D6, and is controlled to be reversely converted during regeneration.

逆変換回路(5)は、三相ブリッジ接続された逆変換用
スイッチ素子としての第7〜第12のトランジスタQ、
〜Q+tの他に、これ咎に逆並列接続された電力回生用
整流素子としての第7〜第12のダイオードD7〜T)
nヶ含む。
The inverse conversion circuit (5) includes seventh to twelfth transistors Q as inverse conversion switching elements connected in a three-phase bridge;
In addition to ~Q+t, seventh to twelfth diodes D7 to T are connected in antiparallel to this as power regeneration rectifying elements)
Including n.

(I3)は直流電圧検出(ロ)路であり、一対の曲流ラ
イン+71 (81に接続され、直流電圧VDを発生す
るものである。  ゛ ■は電流方向検出用抵抗であり、コンデンサ+91と逆
変換回路]5)との間の直流ライン(81K面外に接続
されている。(I5)は電流方向検出回路であV、抵抗
−の両端電圧の向きによって電流の方向を検出し、逆方
向の時に高レベル出力を発生するものである。
(I3) is a DC voltage detection (b) path, which is connected to a pair of curved lines +71 (81) and generates a DC voltage VD. Inverse conversion circuit] 5) and the DC line (connected outside the 81K plane. (I5) is a current direction detection circuit that detects the direction of current according to the direction of the voltage across V and resistor -, and It generates a high level output when in the direction.

(15a)は参照電圧発生回路であり、交流筒1源ライ
ン+l l (21++3+に接続された整流回路から
成ジ、交流電源電圧に対応した参照電圧vDSを発生す
る。
(15a) is a reference voltage generation circuit, which is composed of a rectifier circuit connected to the AC cylinder 1 source line +l l (21++3+), and generates a reference voltage vDS corresponding to the AC power supply voltage.

(16)は比較回路であり、電圧検出回路(13)の検
出直流電圧VDと参照電圧発生回路(15jから得られ
る第2図で実線で示すような参照電圧vDSとを比較し
、参照電圧V よVも検出直流電圧VDが高くなったS 時に高レベル出力娑発生する回路である。
(16) is a comparison circuit that compares the detected DC voltage VD of the voltage detection circuit (13) with the reference voltage vDS as shown by the solid line in FIG. 2 obtained from the reference voltage generation circuit (15j), and This circuit also generates a high level output when the detected DC voltage VD becomes high.

(17)は回生制御回路であり、信号源として動く3つ
の比較回路u8)(i9)四と、へNDゲー)・とじて
働く3つのスイッチ12D I221 [23+と、反
転制御信号ケ得るたメF) 3 ツノN OT回路c!
1) 1251 t21i1 ト、回生w3間を決定す
るだめのANDゲー) 071とから成り、6本の出力
ラインは第]〜第6のトランジスタQ、〜Q6のベース
に接続され又いる。
(17) is a regeneration control circuit, which consists of three comparator circuits that act as signal sources: u8, F) 3 horn N OT circuit c!
1) 1251 t21i1 and an AND gate 071 for determining the regeneration w3, and the six output lines are connected to the bases of the sixth transistors Q and Q6.

郭1 [29+ +301は各相の相電流検出器であり
、回生電流の瞬時価を検出するたぬに設けらハ、ている
Reference numeral 1 [29+ +301 is a phase current detector for each phase, which is provided at a position where the instantaneous value of the regenerative current is detected.

(3]Jは基準相亀流伯号発生回路であり、亀のライン
+ll 121 +31の線間電圧を例えばトランスで
検出し、この線間電圧に対して30度の遅れ位相を有す
る相電圧ン例えばトランスの2次巻線で得、この相電圧
と一致した相電流を示す基準相電流信号な発生する回路
である。
(3) J is a reference phase Kamelyu Hakugo generation circuit, which detects the line voltage of the turtle line +ll 121 +31 with, for example, a transformer, and generates a phase voltage that has a phase lag of 30 degrees with respect to this line voltage. For example, it is a circuit that generates a reference phase current signal obtained from the secondary winding of a transformer and indicating a phase current that matches the phase voltage.

比較増幅回路08J f+ 91 C20)は、各相の
(・目電流検出器(28I(29)(ト)から得らtし
る検出直流電圧と基準相市流信号発生回路(3]Jから
得られる基準電流信号とを比較し、検出相電流信号しが
〃準相市流信号■8よりも小さい時に高レベル出力を発
生し、反対の時にはal/ヘル出力を発生するものであ
る。
The comparison amplifier circuit 08J f+ 91 C20) uses the detected DC voltage obtained from the current detector (28I (29) (g)) of each phase and the detected DC voltage obtained from the reference phase commercial signal generation circuit (3]J. When the detected phase current signal is smaller than the quasi-phase commercial signal 8, a high level output is generated, and when the opposite is true, an al/hel output is generated.

次に、第1図の回路の動作を説明する。今、電動機16
)が正常に回転し、回生制動状態にないとすれば、順変
換用のダイオードD1〜D6で三相交流が直流に変換さ
n、この直流がトランジスタQ、〜Qnで三相交流に変
換される。この期間には回生用トランジスタQ、〜Q6
及び回生用ダイオードD、〜I)+tはオフに保たれて
いる。
Next, the operation of the circuit shown in FIG. 1 will be explained. Now electric motor 16
) rotates normally and is not in a regenerative braking state, the forward conversion diodes D1 to D6 convert three-phase AC to DC, and this DC is converted to three-phase AC by transistors Q and Qn. Ru. During this period, regenerative transistors Q, ~Q6
and the regeneration diodes D, ~I)+t are kept off.

一方、回生状態になると、電圧検出回路Q3+から得ら
jる一対の直流ライン+71 +81間の検出常圧\l
Dが基準電圧VDsよりも高(なり、比較回路(I6)
の出力が高レベルになり、月つ方向検出回路(15)が
逆方向電流であることを示す高レベル出力を発生する。
On the other hand, in the regenerative state, the detected normal pressure between the pair of DC lines +71 and +81 obtained from the voltage detection circuit Q3+
If D is higher than the reference voltage VDs, the comparator circuit (I6)
output goes high, and the direction detection circuit (15) generates a high level output indicating reverse current.

そして、この2つの高レベル出力がANDゲート(27
)に入力するたぬに、ANDゲー) [271の出力が
高レベルにな9、第1、第2、及び第3のスイッチ12
1) +221 +231がオン状態になり、トランジ
スタQ、〜Q、にil制御信号ケ供給1−ることが可能
な状態になる。回生状態を電圧のみで検出イずに、電流
の方向ケ考慮して決定し一〇いるので、リプルと回生時
の電圧上昇と?判別することが可能、であり、回生検出
の基S電圧VD8を第2図の実線で示す如くリプルにか
かるように低く設定することが出来る。
Then, these two high level outputs are connected to an AND gate (27
), the AND game) [The output of 271 becomes high level 9, the first, second, and third switches 12
1) +221 and +231 are turned on, and it becomes possible to supply the il control signal to the transistors Q, -Q. The regenerative state is not detected only by voltage, but is determined by considering the direction of the current, so what is the difference between ripple and voltage rise during regeneration? The base S voltage VD8 for regeneration detection can be set low enough to be applied to the ripple as shown by the solid line in FIG.

各相の比較面M(181吐(20)は回生電流信号1つ
と基準電流信号1sとを第3図に示す如く比較し、検出
電流信号1つが基準電流信号1.よりも低い時に高レベ
ル出力ン発生し、高い時に低レベル出カケ発生する。
The comparison surface M (181 discharge (20) of each phase compares one regenerative current signal and the reference current signal 1s as shown in Fig. 3, and outputs a high level when one detected current signal is lower than the reference current signal 1. Low level output occurs when the level is high.

今、比較回路08)の出力が高レベルであり、且つスイ
ッチ圀)がオンであると丁れば、第]のトランジスタQ
、がオンになり、回生電流が流れる。この時、第2のト
ランジスタQ、にはNOT回路(241を弁して低レベ
ル信号が供給されるため、これがオフに保たれる。トラ
ンジスタQ、のオンで検出電流信号IDが暴悪電流信号
■8よジも大きくなると、比較回路(181の出力が低
レベルになり、トランジスタQ1がオフになる。回生電
流はこのように瞬時値制御されるたy)、相電圧と相電
流の位相を一致さゼた回生即ち力率】の回生を行うこと
が出来る。
Now, if the output of the comparator circuit 08) is at a high level and the switch circuit 08) is on, then the second transistor Q
, turns on and regenerative current flows. At this time, the second transistor Q is supplied with a low level signal by valving the NOT circuit (241), so it is kept off.When the transistor Q is turned on, the detected current signal ID changes to the violent current signal. ■When the 8 yen also increases, the output of the comparator circuit (181 becomes low level and the transistor Q1 is turned off.The regenerative current is controlled by the instantaneous value in this way), the phase of the phase voltage and phase current is changed. It is possible to perform regeneration with an unmatched power factor.

他の相の比較回路(1,9) +20)においても、比
較回路(18)と同様な卸+m+が行われる。
The same inventory +m+ as in the comparison circuit (18) is also performed in the comparison circuits (1, 9) +20) of other phases.

η→、動機16)がイダ止又は通常回転することにより
η→, by the motive 16) stopping or rotating normally.

逆方向電流が検出されなくなると、スイッチの旧221
(23jがオフ制御されるたぬ、トランジスタロ1〜Q
6モ・オフに保たれる。
When reverse current is no longer detected, the switch's old 221
(23j is controlled off, transistors 1 to Q
6mo is kept off.

以上、本発明の実施例につい℃述べたが、不発明はこれ
に限矩されるものではなく、更に変形可能なものである
。例えば、トランジスタQ1〜Qnの代りに、自己消弧
型のサイリスク、FET等ケ等用使用もよい、、3個の
スイッチt2]+ +221 +231の代りにトラン
ジスタQ1〜Q6に合ゼて6個のスイッチ乞設けてもよ
い。比較回路(181Q9) (20)から制御された
出力を発生する代ジに、常に高レベル又は低レベルの電
圧を発生する電源を設け、これに基づいてトランジスタ
Q1〜Q6ヲインバータ動作さゼるように分配する制御
信号を形成し、この制御信号を供給するか否かをAND
ゲー) (27)の出力で制御するようにしてもよい。
Although the embodiments of the present invention have been described above, the invention is not limited thereto and can be further modified. For example, instead of the transistors Q1 to Qn, self-extinguishing type transistors, FETs, etc. may be used.Instead of the three switches t2] + +221 +231, six switches combined with the transistors Q1 to Q6 can be used. A switch may also be provided. Comparison circuit (181Q9) A power supply that always generates a high-level or low-level voltage is provided in the circuit that generates the controlled output from (20), and based on this, the transistors Q1 to Q6 are operated as inverters. Form a control signal to be distributed to the
(27) may be used for control.

〔発明の力J果〕[The power of invention]

上述から明らかな如く1本発明によれば、電圧検出と電
流方向検出とに基づいて順変換用整流素子に並列の電力
回生用スイッチ素子を制御して回生エネルギーを交流電
源に返還するので、電力消費量の低′1#馨図ることが
出来る。電圧のみで回生開始を決定せずに、電流の向き
を考慮して回生開始を決定するので、回生開始の電圧レ
ベルを下げることが可能になり、迅速且つ正確な回生制
御が出来る。なお1回生開始の電圧レベルを下げれば、
一対の電流ライン間のコンデンサの耐圧な下げることが
出来る。寸だ、回生エネルギーを消費するたy〕の抵抗
が不要になるので、装置の小形化が可能になる。
As is clear from the above, according to one aspect of the present invention, the power regeneration switch element parallel to the forward conversion rectifier is controlled based on voltage detection and current direction detection to return regenerated energy to the AC power source. Low consumption can be achieved. Since the start of regeneration is not decided based on voltage alone, but the direction of current is taken into consideration, the voltage level at which regeneration is started can be lowered, and regeneration can be controlled quickly and accurately. Furthermore, if you lower the voltage level at the start of 1st regeneration,
The withstand voltage of the capacitor between a pair of current lines can be lowered. This eliminates the need for a resistor that consumes regenerative energy, making it possible to downsize the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係わるインバータ装置な示す
回路図、 第2図及び第3図は第1図の各部の波形図、第4図は従
来のインバータ装置のブロック図である。 山t21131・・・交流電源ライン、(4)・・・順
変換回路、+51・・逆変換回路、(6)・・・交流電
動機、+71 +81・・・直流ライン、(9)・・・
コンデンサ、(13)・・・直流電圧検出回路、0.I
I・・・電流方向検出用抵抗、Q5a)・・・参照電圧
発生回路、Obノ・・・比較回路、(17)・・・回生
制御回路。
FIG. 1 is a circuit diagram showing an inverter device according to an embodiment of the present invention, FIGS. 2 and 3 are waveform diagrams of various parts of FIG. 1, and FIG. 4 is a block diagram of a conventional inverter device. Mountain t21131...AC power line, (4)...Forward conversion circuit, +51...Inverse conversion circuit, (6)...AC motor, +71 +81...DC line, (9)...
Capacitor, (13)...DC voltage detection circuit, 0. I
I... Resistor for current direction detection, Q5a)... Reference voltage generation circuit, Ob... Comparison circuit, (17)... Regeneration control circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)交流電源に接続された順変換用整流素子から成る
順変換回路と、 前記順変換用整流素子に逆並列に接続された電力回生用
スイッチ素子と、 前記順変換回路の一対の直流ラインと交流電動機との間
に接続された逆変換用スイッチ素子から成る逆変換回路
と、 前記逆変換用スイッチ素子に逆並列に接続された整流素
子と、 前記一対の直流ライン間に接続されたコンデンサと、 前記一対の直流ライン間の電圧を検出する直流電圧検出
回路と、 前記コンデンサと前記逆変換回路との間で前記直流ライ
ンに流れる電流の向きが逆向きになつたことを検出する
電流方向検出回路と、 前記回生用スイッチ素子をオンにするレベルを示す電圧
を発生する参照電圧発生回路と、 前記直流電圧検出回路から得られる直流検出電圧と前記
参照電圧発生回路から得られる参照電圧とを比較し、前
記電力回生用スイッチ素子を通して電力回生することが
可能な電圧関係にあるか否かを判定する電圧比較回路と
、 前記電流方向検出回路から得られる電流の向きが逆向き
であることを示す信号と前記電圧比較回路から得られる
前記電力回生用スイッチ素子を電力回生動作させること
が可能であることを示す信号とが同時に発生している期
間内において前記電力回生用スイッチ素子をオン状態に
制御する回生制御回路と から成るインバータ装置。
(1) A forward conversion circuit consisting of a forward conversion rectifier connected to an AC power source, a power regeneration switch element connected antiparallel to the forward conversion rectifier, and a pair of DC lines in the forward conversion circuit. and an AC motor; a rectifying element connected in antiparallel to the inverse conversion switching element; and a capacitor connected between the pair of DC lines. a DC voltage detection circuit that detects the voltage between the pair of DC lines; and a current direction that detects that the direction of the current flowing in the DC line has become reversed between the capacitor and the inversion circuit. a detection circuit; a reference voltage generation circuit that generates a voltage indicating a level for turning on the regeneration switch element; a DC detection voltage obtained from the DC voltage detection circuit and a reference voltage obtained from the reference voltage generation circuit; A voltage comparison circuit that compares and determines whether or not there is a voltage relationship that allows power regeneration through the power regeneration switch element, and a current direction detection circuit that determines that the direction of the current obtained from the current direction detection circuit is opposite. The power regeneration switch element is turned on within a period in which a signal indicating that the power regeneration switch element is capable of operating the power regeneration switch element obtained from the voltage comparison circuit is generated at the same time. An inverter device consisting of a regeneration control circuit for controlling.
JP60040469A 1985-03-01 1985-03-01 Inverter Granted JPS61199481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60040469A JPS61199481A (en) 1985-03-01 1985-03-01 Inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60040469A JPS61199481A (en) 1985-03-01 1985-03-01 Inverter

Publications (2)

Publication Number Publication Date
JPS61199481A true JPS61199481A (en) 1986-09-03
JPH0337394B2 JPH0337394B2 (en) 1991-06-05

Family

ID=12581493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60040469A Granted JPS61199481A (en) 1985-03-01 1985-03-01 Inverter

Country Status (1)

Country Link
JP (1) JPS61199481A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3800753A1 (en) * 1987-01-13 1988-07-21 Kone Elevator Gmbh METHOD FOR CONTROLLING SEMICONDUCTOR SWITCHES IN A RECTIFIER BRIDGE AND CONTROL UNIT FOR CARRYING OUT THE METHOD
JPH02103891A (en) * 1988-10-07 1990-04-16 Daido Steel Co Ltd Ac arc furnace
DE102006028103A1 (en) * 2006-06-19 2007-12-20 Siemens Ag Line-side converter with uninterrupted switching between pulsed voltage-controlled operation and fundamental frequency unregulated operation, as well as method for uninterrupted switching of such a converter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240685B2 (en) * 2007-09-07 2013-07-17 東芝エレベータ株式会社 elevator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3800753A1 (en) * 1987-01-13 1988-07-21 Kone Elevator Gmbh METHOD FOR CONTROLLING SEMICONDUCTOR SWITCHES IN A RECTIFIER BRIDGE AND CONTROL UNIT FOR CARRYING OUT THE METHOD
US4841426A (en) * 1987-01-13 1989-06-20 Kone Elevator Gmbh Method for controlling the semiconductor switches of a rectifier bridge connected to an a.c. mains supply, and a control unit designed for applying the method
DE3800753C2 (en) * 1987-01-13 1995-06-22 Kone Elevator Gmbh Method for the master control of semiconductor switches of a regenerative rectifier and arrangement for carrying out the method
JPH02103891A (en) * 1988-10-07 1990-04-16 Daido Steel Co Ltd Ac arc furnace
DE102006028103A1 (en) * 2006-06-19 2007-12-20 Siemens Ag Line-side converter with uninterrupted switching between pulsed voltage-controlled operation and fundamental frequency unregulated operation, as well as method for uninterrupted switching of such a converter

Also Published As

Publication number Publication date
JPH0337394B2 (en) 1991-06-05

Similar Documents

Publication Publication Date Title
JP5359637B2 (en) Power converter
JP5849586B2 (en) 3-level power conversion circuit system
JP2760666B2 (en) Method and apparatus for controlling PWM converter
Bose Variable frequency drives-technology and applications
JP2008295280A (en) Motor driving device
JP2011024370A (en) Load driving apparatus and electric vehicle using the same
US20070267988A1 (en) Electronic braking and energy recycling system associated with dc brushless motor
JPH10136570A (en) Charger
JP4712148B2 (en) Power converter
JPS61199481A (en) Inverter
Dabour et al. A new fifteen-switch inverter topology for two five-phase motors drive
JP2021192577A (en) Vehicle and control method of vehicle
US11811353B2 (en) Load driving device, refrigeration cycle applicable apparatus, and air conditioner
Bhule et al. A Model Predictive Control Scheme for a Single-Phase Integrated Battery Charger with Active Power Decoupling for EV Application
JP3590541B2 (en) DC brushless motor drive
JP2560375Y2 (en) Power regeneration device
JP3576310B2 (en) AC electric vehicle control device
KR101893240B1 (en) Apparatus for controlling inverter
Jiang et al. An Open-Circuit Fault Detection Method of PMSM Fed by Dual Inverter With High Robustness
JPH0669316B2 (en) Power regeneration control circuit for power converter
Han et al. Induction motor control system using bidirectional quasi-Z source inverter
WO2022208593A1 (en) Power conversion device, motor driving device, and air conditioner
JP7392570B2 (en) inverter device
JPH0435990B2 (en)
JPS60200790A (en) Drive device for ac motor